01.03.2013 Views

Eocene-Mid Miocene sedimentary rocks and Olympic Mountains

Eocene-Mid Miocene sedimentary rocks and Olympic Mountains

Eocene-Mid Miocene sedimentary rocks and Olympic Mountains

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sedimentary Basins of the <strong>Eocene</strong>, Oligocene,<br />

<strong>and</strong> <strong>Miocene</strong><br />

Tape<br />

here<br />

Wrangellia<br />

Seattle<br />

Portl<strong>and</strong><br />

Tape<br />

here<br />

Insular<br />

Superterrane<br />

Spokane<br />

6. Docking of the North Cascades<br />

100 – 60 Ma<br />

Nanaimo Formation:<br />

Overlap Sequence<br />

54–42? Ma<br />

Page 5<br />

Overlap sequences sit<br />

atop both terranes <strong>and</strong> the<br />

<strong>rocks</strong> they dock<br />

against—therefore they<br />

can provide a minimum<br />

age for both rock bodies<br />

Tape<br />

here<br />

Seattle<br />

Quesnellia Terrane<br />

Part of the<br />

Intermontane<br />

Superterrane<br />

Portl<strong>and</strong><br />

Subduction<br />

zone<br />

backsteps<br />

Recap: How did we<br />

assemble pre-<strong>Eocene</strong><br />

Washington?<br />

Aka: Insular Superterrane<br />

Skagit Crystalline Core<br />

High Grade Met.<br />

NW Cascades <strong>and</strong><br />

San Juan Thrust System<br />

Medium Grade Met.<br />

Melanges<br />

Low Grade Met.<br />

Farallon<br />

Plate<br />

Tape<br />

here<br />

Spokane<br />

5. Docking of Okanogan<br />

Highl<strong>and</strong>s<br />

(~170-180 m.y.)<br />

Page 4<br />

Cut<br />

along<br />

dotted<br />

line<br />

C-7 & C5<br />

Major Terrane Groupings<br />

of North Cascades<br />

Mount Stuart batholith - Stitching<br />

Pluton<br />

90 Ma<br />

So called Stitching plutons also<br />

provide minimum ages for terrane<br />

docking since they are in contact<br />

with both the terrane <strong>and</strong> the body<br />

of rock it docked with.


Plutons shown in<br />

red—note Mount<br />

Stuart stitching<br />

pluton at lower<br />

right<br />

Pickett Range<br />

Seattle<br />

Portl<strong>and</strong><br />

Spokane<br />

7. <strong>Eocene</strong> to <strong>Miocene</strong> S<strong>and</strong>stones <strong>and</strong><br />

Volcanics<br />

(55 to 20 m.y.)<br />

Page 6


<strong>Eocene</strong> Palm fossils in the<br />

Chuckanut S<strong>and</strong>stone near<br />

Bellingham show a warmer climate<br />

prevailed ~50 Ma<br />

Northcraft<br />

Formation volcanic<br />

<strong>rocks</strong>, early<br />

evidence of<br />

Cascades<br />

Volcanism ~37Ma<br />

Skookumchuck<br />

Formation: view to south<br />

in Centralia Coal Mine<br />

Photo donated by Larry McMIllan<br />

http://www.ci.tenino.wa.us/TeninoQuarry1_small.jpg<br />

<strong>Eocene</strong> McIntosh Formation:<br />

Tenino S<strong>and</strong>stone—quartz<br />

s<strong>and</strong>stones, but no evidence<br />

of Cascades volcanism yet!<br />

Pe Ell volcanic <strong>rocks</strong> near Rock Creek<br />

Metasequoia fossil


Coal seam in the<br />

Centralia Coal Mine:<br />

Carina Henderson<br />

points to a tonstein,<br />

decomposed volcanic<br />

ash<br />

Outcrop of Lincoln Creek Formation at Galvin<br />

Siletzia<br />

Terrane<br />

Tape<br />

here<br />

Cut<br />

alon<br />

g<br />

dotte<br />

d<br />

line<br />

Seattle<br />

Portl<strong>and</strong><br />

8. Docking of <strong>Olympic</strong><br />

Peninsula<br />

(25 to 30 m.y.)<br />

<strong>Olympic</strong> Subduction<br />

Zone<br />

Spokane<br />

Bivalve from outcrop on<br />

Gold St. in Centralia<br />

<strong>Eocene</strong> bivalve<br />


Geology Map<br />

http://www.ess.washington.edu/SEIS/PNSN/H<br />

AZARDS/CASCADIA/turbidite_record.html<br />

http://geology.wr.usgs.gov<br />

/parks/olym/geolmap.html<br />

http://www.geol.umd.edu/~jmerck/geol100/images<br />

/32/turbidite.gif<br />

20 my old Hoh Formation turbidite deposits (overturned) at<br />

Beach #4<br />

Hoh Formation turbidite deposits (looking down on overturned beds) <strong>Miocene</strong> <strong>rocks</strong> at Ruby Beach


Metasediments from the core of the <strong>Olympic</strong>s at Ruby Beach<br />

Youngest Oldest<br />

Peripheral Rocks:<br />

Mostly the Crescent Fm<br />

Core Rocks<br />

Age:<br />

Mostly <strong>Eocene</strong> (58–45 Myrs)<br />

Rocks<br />

Pillow Basalts<br />

Some Vesicular Basalts<br />

15-30 km thick<br />

Limestone(Red)<br />

w/deep water forams<br />

E-4<br />

E-4<br />

Age:<br />

<strong>Eocene</strong>-<strong>Miocene</strong> (40-20 Myrs)<br />

Metamorphosed 14-12 Myrs<br />

Rocks<br />

S<strong>and</strong>stones<br />

w/graded beds<br />

Shale<br />

Metamorphism<br />

East - Low Grade<br />

(11 km burial)<br />

West - Not Met.<br />

Major Rock Units of the <strong>Olympic</strong>s<br />

1. Peripheral Rocks<br />

2. Core Rocks<br />

Separated by reverse faults<br />

Crescent Formation<br />

Basalt of the Crescent Formation on Klahhane Ridge above Port<br />

Angeles; from http://geology.wr.usgs.gov/parks/olym/olym5.html<br />

E-4<br />


<strong>Olympic</strong> Structures<br />

Core Rocks<br />

Peripheral Rocks<br />

Note faults place older rock over younger rock<br />

Modern Analogy for Crescent<br />

basalts - Icel<strong>and</strong><br />

http://www.answers.com/topic/geo<br />

graphy-of-icel<strong>and</strong><br />

E-3<br />

http://www.calstatela.edu/dept/geol<br />

ogy/HotSpots.htm<br />

Plate Reconstruction: 55 Myrs<br />

D-2<br />

Interpretation: Peripheral Rocks E-4<br />

Basalt Chemistry = Hot Spot & Divergent Zone<br />

Terrane (fault bounded)<br />

Hot Spot Isl<strong>and</strong> (Yellowstone?)<br />

Possible <strong>Eocene</strong> Reconstruction<br />

55 Myrs<br />

Supporting Evidence:<br />

Rock Age<br />

35 Myrs<br />

E-1<br />

E-3


Interpretation: Core Rocks<br />

<strong>Olympic</strong><br />

History<br />

Western Core <strong>rocks</strong><br />

accreted first &<br />

were buried deepest<br />

(explains why they<br />

are oldest <strong>and</strong> most<br />

metamorphosed)<br />

Accretionary Wedge<br />

Trench Sediments<br />

But Why is the North “Wedge”<br />

(<strong>Olympic</strong>s) so much larger than the<br />

South “Wedge” (Willapa Hills/Oregon<br />

Coast Range)?<br />

2. There is a bend in the<br />

Juan de Fuca Plate<br />

under the <strong>Olympic</strong>s<br />

<strong>Olympic</strong>s<br />

Cross Section<br />

North ------ South<br />

N. America<br />

Juan de Fuca<br />

E-4<br />

E-4<br />

<strong>Olympic</strong> Accretionary Wedge<br />

But Why is the North “Wedge”<br />

(<strong>Olympic</strong>s) so much larger than the<br />

South “Wedge” (Willapa Hills/Oregon<br />

Coast Range)?<br />

1. Shoved in the Corner<br />

Insular ST<br />

<strong>Olympic</strong>s<br />

Coast<br />

Range<br />

Evidence for the Bend<br />

1. NW Volcanoes<br />

Steep Subduction Shallow Subduction<br />

100 Depth<br />

Washington<br />

Oregon<br />

QuickTime <strong>and</strong> a<br />

TIFF (Uncompressed) decompressor<br />

are needed to see this picture.


Why is there a Bend at all?<br />

Basin & Range Extention to the South<br />

Big blocks are rotating - north-seeking magnetic<br />

directions captured when Coast Range lavas<br />

cooled now point eastward.<br />

N<br />

v<br />

Coast Range basalt - similar to Hawaiian Isl<strong>and</strong>s - was<br />

52 million-year million year-old old submarine<br />

accreted to the continent about 50 million years ago;<br />

pillow basalt, Trask River<br />

then rotated clockwise.<br />

v<br />

Northwest Block<br />

model for long-term<br />

motion<br />

• Sierra Nevada dragged<br />

northward by Pacific<br />

Plate<br />

• Oregon (pink) pivots<br />

clockwise to get out of<br />

the way<br />

• Washington (green) gets<br />

squeezed against Canadahence<br />

all the earthquakes<br />

<strong>and</strong> faults.<br />

• SE Oregon <strong>and</strong> Nevada<br />

Stretch to fill in the gap<br />

behind rotating block<br />

Volcanoes, faults <strong>and</strong> EQ outline big blocks<br />

OC<br />

SN<br />

From Wells et al., 1998, after Magill<br />

et al., 1981, 1982; Guffanti <strong>and</strong><br />

Weaver, 1988; Sherrod <strong>and</strong> Smith,<br />

1990<br />

W. Oregon has been<br />

rotating clockwise for<br />

millions of years.<br />

• Rotation rate of 1.2° per Million<br />

years for at least 50 million years,<br />

based on paleomagnetic study.<br />

• Rotations are less to N, S, <strong>and</strong> E..<br />

(pie-shaped wedges are uncertainties<br />

about mean rotation from expected<br />

north seeking direction; modified<br />

from Gromme et al., 1986)<br />

PBO GPS receivers installed in PNW (green dots) -<br />

what are they going to measure?<br />

• Plate <strong>and</strong> block<br />

motions<br />

• Deformation of crust<br />

(its change in shape)<br />

along plate<br />

boundaries -<br />

especially above the<br />

Cascadia megathrust


GPS velocities 1995-2005<br />

McCaffrey, Qamar, King,<br />

Wells, et al, s GJI, 2007<br />

• Velocities rotate<br />

clockwise (block<br />

rotation)<br />

• decrease away from<br />

coast (compression<br />

above SZ)<br />

– Blue are campaign<br />

sites, red are<br />

continuous sites<br />

(PBO)<br />

– Many institutions:<br />

RPI, UW, GSC,<br />

USGS, OSU, NGS,<br />

PANGA, PBO

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!