04.03.2013 Views

Some studies on the effect of putrescine, ascorbic - Ozean ...

Some studies on the effect of putrescine, ascorbic - Ozean ...

Some studies on the effect of putrescine, ascorbic - Ozean ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ozean</strong> Journal <strong>of</strong> Applied Sciences 2(4), 2009<br />

ISSN 1943-2429<br />

© 2009 <strong>Ozean</strong> Publicati<strong>on</strong><br />

PHYSIOLOGICAL EFFECT OF PHENYLALANINE AND TRYPTOPHAN<br />

ON THE GROWTH AND CHEMICAL CONSTITUENTS OF ANTIRRHINUM<br />

MAJUS PLANTS<br />

Nahed, G. Abdel Aziz, M<strong>on</strong>a, H. Mahgoub and Azza, A.M. Mazher<br />

Department <strong>of</strong> Ornamental plant and Woody trees,<br />

Nati<strong>on</strong>al Research Centre, Dokki, Cairo, Egypt<br />

________________________________________________________________________________<br />

Abstract : A pot experiment was carried out in <strong>the</strong> nursery <strong>of</strong> <strong>the</strong> Nati<strong>on</strong>al Research Center, during <strong>the</strong><br />

two successive seas<strong>on</strong>s <strong>of</strong> 2007/2008 and 2008/2009, with <strong>the</strong> aim <strong>of</strong> studying <strong>the</strong> <strong>effect</strong> <strong>of</strong> foliar<br />

applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> amino acids phenylalanine and tryptophan (each at <strong>the</strong> rate <strong>of</strong> 50 or 100 ppm),<br />

applied separately or in combinati<strong>on</strong>s <strong>of</strong> <strong>the</strong> different c<strong>on</strong>centrati<strong>on</strong>s (plus untreated plants), <strong>on</strong> <strong>the</strong><br />

growth and chemical c<strong>on</strong>stituents <strong>of</strong> Antirrhinum majus plants. Results showed that, increasing <strong>the</strong><br />

two amino acids c<strong>on</strong>centrati<strong>on</strong>s gradually increased significantly all growth parameters, vegetative<br />

and flowering stages (plant height, number <strong>of</strong> branches, fresh and dry weights <strong>of</strong> plant as well as<br />

length <strong>of</strong> inflorescence, number <strong>of</strong> inflorescences/plant and fresh and dry weights <strong>of</strong><br />

inflorescences/plant), and <strong>the</strong> c<strong>on</strong>tents <strong>of</strong> <strong>the</strong> photosyn<strong>the</strong>tic pigments, total soluble sugars and total<br />

free amino acids in <strong>the</strong> leaves. The <strong>effect</strong> <strong>of</strong> tryptophan was superior to that <strong>of</strong> phenylalanine <strong>on</strong><br />

increasing plant growth at vegetative growth. The maximum plant growth as determined by all <strong>the</strong><br />

recorded parameters as obtained from plants treated tryptophan and phenylalanine at rate <strong>of</strong> 100<br />

ppm); separately or in combined between <strong>the</strong>m gave <strong>the</strong> best results than <strong>the</strong> o<strong>the</strong>rs treatments and<br />

untreated plants.<br />

Key words: amino acids, Antirrhinum majus, tryptophan and phenylalanine<br />

__________________________________________________________________________________<br />

INTRODUCTION<br />

Antirrhinum majus (Snapdrag<strong>on</strong>) is a species <strong>of</strong> Antirrhinum native <strong>of</strong> <strong>the</strong> Mediterranean regi<strong>on</strong>. It is<br />

a herbaceous perennial plant growing to 0.5 – 1.0 m tall, rarely up to 2.0 m. Numerous cultivars are<br />

available, including plants with lavenduer, orange, pink, yellow or white flowers. The regulati<strong>on</strong> <strong>of</strong><br />

plant growth and reproducti<strong>on</strong> could be achieved through many bioregulators especially as recently<br />

accepted to use naturally occurring regulators as amino acids. Amino acids as organic nitrogenous<br />

compounds are <strong>the</strong> building blocks in syn<strong>the</strong>sis <strong>of</strong> proteins which probably occurs by a process in<br />

which ribosomes catalyze <strong>the</strong> polymerizati<strong>on</strong> <strong>of</strong> amino acids (Bidwell, 1979; Davis, 1982).<br />

Research <strong>on</strong> <strong>the</strong> resp<strong>on</strong>se <strong>of</strong> plant to amino acid is <strong>the</strong>refore necessary for improving plant growth and<br />

plant producti<strong>on</strong> in <strong>the</strong>se regi<strong>on</strong>s. Gamal El-Din et al.,(1997) reported an increase in vegetative<br />

growth <strong>of</strong> lem<strong>on</strong>grass as a result <strong>of</strong> ornithine and phenylalanine treatments. In additi<strong>on</strong>, phenylalanine<br />

applicati<strong>on</strong> significantly increased fresh and dry weight <strong>of</strong> datura during vegetative and flowering<br />

stages (Youssef et al.,2004). M<strong>on</strong>a and Iman (2005) <strong>on</strong> Pelarg<strong>on</strong>ium graveolens, Gamal El-Din et al.,<br />

(2005) <strong>on</strong> Lupinus termis and Karima et al., (2005) <strong>on</strong> Matricaria chamomilla showed that all<br />

vegetative growth parameters were increased by treatments <strong>of</strong> <strong>the</strong> phenylalanine.<br />

The role <strong>of</strong> <strong>the</strong> amino acid tryptophan in stimulating <strong>the</strong> growth <strong>of</strong> several species were studied by<br />

Russell (1982) who reported that <strong>the</strong> increase in growth as a result <strong>of</strong> tryptophan applicati<strong>on</strong> may be<br />

due to its c<strong>on</strong>versi<strong>on</strong> into IAA. Attoa et al.,(2002) <strong>on</strong> Iberis amara L., Iman et al.,(2005) <strong>on</strong><br />

399


Chatharanthus roseus L. and Abou Dahab and Abd El-Aziz (2006) <strong>on</strong> Philodendr<strong>on</strong> erubescens,<br />

reported that spraying plants with <strong>the</strong> amino acid tryptophan increased plant growth.<br />

Rashad et al., (2002) <strong>on</strong> Capsicum annuum L. indicated that all used amino acids led to marked<br />

increase in leaves photosyn<strong>the</strong>tic pigmentrs. Iman et al.,(2005) <strong>on</strong> Catharanthus roseus L. showed<br />

that photosyn<strong>the</strong>tic pigments (chlorophyll a, b and carotenoids) in <strong>the</strong> leaves were increased as a result<br />

<strong>of</strong> applicati<strong>on</strong> <strong>of</strong> tryptophan. Harridy (1986) <strong>on</strong> Catharanthus roseus L. and Abou Dahab and Abd El-<br />

Aziz (2006) <strong>on</strong> Philodendr<strong>on</strong> erubescens found that foliar applicati<strong>on</strong> <strong>of</strong> different amino acid<br />

treatments caused a significant increase in <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> total free amino acids. Talaat and Youssef<br />

(2002) <strong>on</strong> Ocimum basilicum L., Wahba et al., (2002) <strong>on</strong> Antholyza aethiopica and Abou Dahab and<br />

Abd El-Aziz (2006) <strong>on</strong> Philodendr<strong>on</strong> erubescens indicated that applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> amino acids as a<br />

foliar spray caused an increase in <strong>the</strong> c<strong>on</strong>tents <strong>of</strong> total soluble sugars.<br />

The aim <strong>of</strong> this work to study <strong>the</strong> <strong>effect</strong> <strong>of</strong> amino acids phenylalanine and tryptophan, as well as <strong>the</strong>ir<br />

combinati<strong>on</strong>s, <strong>on</strong> <strong>the</strong> growth and chemical c<strong>on</strong>stituents <strong>of</strong> Antirrhinum majus plants and feasibility <strong>of</strong><br />

using those chemical to improve plant quality.<br />

MATERIALS AND METHODS<br />

Pot experiment was c<strong>on</strong>ducted during two successive seas<strong>on</strong>s 2007/2008 and 2008/2009 in<br />

experimental greenhouse <strong>of</strong> Nati<strong>on</strong>al Research Center, Dokki, Cairo, Egypt. It was intended to study<br />

<strong>the</strong> <strong>effect</strong> <strong>of</strong> foliar applicati<strong>on</strong> <strong>of</strong> amino acids phenylalanine and tryptophan <strong>on</strong> <strong>the</strong> growth and<br />

chemical c<strong>on</strong>stituents <strong>of</strong> Antirrhinum majus L. plant. Snapdrag<strong>on</strong> seeds were grown <strong>on</strong> pots filled<br />

with loamy soil in September <strong>of</strong> 2007 and 2008. Then, <strong>the</strong>y were thinned to three seedlings per pot.<br />

Fertilizati<strong>on</strong> <strong>of</strong> <strong>the</strong> plants was carried out at <strong>the</strong> rate <strong>of</strong> 2 g calcium superphosphate (16.0 % P2O5), 2 g<br />

calcium nitrate (15.5 % N) and 1 g potassium sulphate (48-52 % K2O) per pot. Each pot was irrigated<br />

with <strong>on</strong>e liter <strong>of</strong> tap water twice weekly. The plants were grown under natural c<strong>on</strong>diti<strong>on</strong>s: 15-35 o C<br />

and 10-20 o C day and night temperatures, respectively, with 12-13 h photoperiod. The plants were<br />

sprayed with <strong>the</strong> two amino acids phenylalanine and tryptophan, (each c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 50 or 100<br />

ppm) applied ei<strong>the</strong>r separately, or in combinati<strong>on</strong>s (at c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> 50:50, 50:100, 100:50 and<br />

100:100 ppm <strong>of</strong> phenylalanine and tryptophan, respectively), in additi<strong>on</strong> to <strong>the</strong> untreated plants. The<br />

amino acids foliar spray treatments were applied <strong>on</strong>e m<strong>on</strong>th after transplanting (<strong>on</strong> October 5 th in both<br />

seas<strong>on</strong>s) and were repeated two times at <strong>on</strong>e m<strong>on</strong>th intervals.<br />

The pots were arranged in a randomized complete blocks design, with 9 treatments (c<strong>on</strong>trol plus eight<br />

amino acids treatments), replicated three times, with each replicate (block) c<strong>on</strong>sisting <strong>of</strong> 10 plants /<br />

treatment.<br />

For determinati<strong>on</strong> <strong>of</strong> growth parameters, two samples <strong>of</strong> plants were harvested, <strong>the</strong> first <strong>on</strong>e at full<br />

vegetative stage (<strong>on</strong> February) and <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>e at full flowering stage (0n April). The following<br />

data were recorded: plant height (cm) , number <strong>of</strong> branches, fresh and dry weights <strong>of</strong> plant (g) as well<br />

as length <strong>of</strong> inflorescence (cm), number <strong>of</strong> inflorescences/plant and fresh and dry weights <strong>of</strong><br />

inflorescences/plant (g) were determined at different growth stages (vegetative and flowering stages,<br />

respectively). All previous data were subjected to statistical analysis <strong>of</strong> variance according to <strong>the</strong><br />

method described by Snedecor and Cochran (1980). Treatment means compared by LSD test and <strong>the</strong><br />

combined analysis <strong>of</strong> <strong>the</strong> two means was calculated according to <strong>the</strong> method <strong>of</strong> Steel and Torrie<br />

(1980). Fresh leaf samples were collected from plants receiving <strong>the</strong> different treatments and were<br />

chemical analyzed to determine <strong>the</strong>ir c<strong>on</strong>tents <strong>of</strong> photosyn<strong>the</strong>tic pigments (chlorophyll a, chlorophyll b<br />

and carotenoids) using <strong>the</strong> method described by Saric et al., (1967). Leaf samples were dried and<br />

<strong>the</strong>ir c<strong>on</strong>tents <strong>of</strong> <strong>the</strong> total soluble sugars were determined according to Dubois et al.,(1956). The<br />

c<strong>on</strong>tent <strong>of</strong> total free amino acids in leaves was determined according to Rosein (1957).<br />

RESULTS AND DISCUSSION<br />

Effect <strong>of</strong> phenylalanine, tryptophan and <strong>the</strong>ir interacti<strong>on</strong>:-<br />

On growth stage:<br />

Treatments <strong>of</strong> Antirrhinum majus L. plants with <strong>the</strong> amino acids phenylalanine and tryptophan had a<br />

significant <strong>effect</strong> <strong>on</strong> growth parameters (Table 1) and(Figure 1). However, all growth parameters,<br />

plant height, number <strong>of</strong> branches, fresh and dry weights <strong>of</strong> plant were increased by <strong>the</strong> different levels<br />

<strong>of</strong> phenylalanine and tryptophan as compared with <strong>the</strong> untreated plants. The positive <strong>effect</strong> <strong>of</strong> amino<br />

acids <strong>on</strong> yield may be due to <strong>the</strong> vital <strong>effect</strong> <strong>of</strong> <strong>the</strong>se amino acids stimulati<strong>on</strong> <strong>on</strong> <strong>the</strong> growth <strong>of</strong> plant<br />

400


cells. The positive <strong>effect</strong> <strong>of</strong> amino acids <strong>on</strong> growth was stated by Goss (1973) who indicated that<br />

amino acids can serve as a source <strong>of</strong> carb<strong>on</strong> and energy when carbohydrates become deficient in <strong>the</strong><br />

plant's amino acids are determinate, releasing <strong>the</strong> amm<strong>on</strong>ia and organic acid form which <strong>the</strong> amino<br />

acid was originally formed.<br />

The organic acids <strong>the</strong>n enter <strong>the</strong> Kerb's cycle, to be broken down to release energy through respirati<strong>on</strong>.<br />

Th<strong>on</strong> et al.,(1981) pointed out that amino acids provide plant cells with an immediately available<br />

source <strong>of</strong> nitrogen, which generally can be taken by <strong>the</strong> cells more rapidly than inorganic nitrogen.<br />

Similar increases in growth parameters as a result <strong>of</strong> amino acids treatments have been previously<br />

observed by several investigators <strong>on</strong> a number <strong>of</strong> plant species, Gamal El-Din et al.,(1997) <strong>on</strong> lem<strong>on</strong><br />

grass, Talaat and youssef (2002) <strong>on</strong> basil plant, El-Fawakhry and El-Tayeb (2003) <strong>on</strong> Chrysab<strong>the</strong>mum,<br />

M<strong>on</strong>a and Iman (2005) <strong>on</strong> Pelarg<strong>on</strong>ium graveolens plant and Nahed and Balbaa (2007) <strong>on</strong> Salvia<br />

farinacea plants, <strong>the</strong>y found that amino acids significantly increased vegetative growth.<br />

Data presented in Table (1) showed also that foliar spray <strong>of</strong> Antirrhinum majus L. plant with<br />

phenylalanine (100 ppm) combined with tryptophan (100 ppm) resulted in <strong>the</strong> tallest plants. It is also<br />

clear from <strong>the</strong> obtained data that foliar spray <strong>of</strong> snapdrag<strong>on</strong> plants with 100 ppm phenylalanine<br />

combined with 100 ppm tryptophan resulted in highest pr<strong>on</strong>ounced <strong>effect</strong>s <strong>on</strong> number <strong>of</strong> branches as<br />

well as fresh and dry weights <strong>of</strong> plants in growth stages. These results coincided with those obtained<br />

M<strong>on</strong>a and Iman (2005) <strong>on</strong> Pelarg<strong>on</strong>ium graveolens L. and Abou Dahab and Abd El-Aziz (2006) <strong>on</strong><br />

Philodendr<strong>on</strong> erubescens plant.<br />

Table (1) Effect <strong>of</strong> phenylalanine, tryptophan and <strong>the</strong>ir interacti<strong>on</strong> <strong>on</strong> growth <strong>of</strong> Anterrhinum majus L.<br />

during two stages (vegetative & flowering) (mean <strong>of</strong> two seas<strong>on</strong>s)<br />

Treatments (ppm)<br />

C<strong>on</strong>trol<br />

Plant<br />

height<br />

No. <strong>of</strong><br />

branches<br />

Vegetative Flowering<br />

F.W <strong>of</strong><br />

plant<br />

401<br />

D.W <strong>of</strong><br />

plant<br />

Plant<br />

height<br />

No. <strong>of</strong><br />

branches<br />

F.W <strong>of</strong><br />

plant<br />

cm gm cm gm<br />

Effect <strong>of</strong> Phenylalanine<br />

D.W <strong>of</strong><br />

plant<br />

58.28 10 78.26 12.59 83.33 14.67 151.27 38.1<br />

Phynyl.50 59.56 11.56 87.12 12.43 84.78 16.33 155.55 40.74<br />

Phynyl.100 63.39 13.22 95.62 15.09 91 18.22 180.09 47.68<br />

LSD 5% 1.62 0.87 2.68 0.9 2.07 0.97 8.35 1.18<br />

C<strong>on</strong>trol<br />

Effect <strong>of</strong> Tryptophan<br />

55.44 8.22 70.49 1084 81.22 15.22 150.63 38.91<br />

Tryp. 50 59.78 11.56 88.79 13.59 85.89 15.56 163.48 41.81<br />

Tryp. 100 66 15 101.72 16.68 92 18.44 172.79 45.8<br />

LSD 5% 1.62 0.87 2.68 0.9 2.07 0.97 8.35 1.18<br />

C<strong>on</strong>trol<br />

Effect <strong>of</strong> Interacti<strong>on</strong><br />

50.5 6.33 56.07 9.53 71.33 12.33 115.8 27.33<br />

Tryp. 50 58 9 77.97 11.77 89.33 14.67 164.2 41.35<br />

Tryp. 100 66.33 14.67 100.73 16.47 89.33 17 173.83 45.6<br />

Phynyl.50 57.33 8.67 70.8 11 77.67 14 140.53 37.06<br />

Phynyl.100 58.5 9.67 84.6 12 94.67 19.33 195.57 52.33<br />

Phynyl.50+Tryp. 50 60 12 91.07 12.9 89.7 18 180.5 46.47<br />

Phynyl.50+Tryp.100 61.33 14 99.5 16.4 87 17 145.6 38.69<br />

Phynyl.100+Trup.50 61.33 13.67 97.33 16.1 81.3 13.67 145.74 37.6<br />

Phynyl.100+Tryp.100 70.33 16.33 104.93 17.17 99.7 21.33 198.96 55.16<br />

LSD 5% 2.81 1.51 4.65 1.57 3.58 1.68 14.47 2.04


gram<br />

Fig. (1) Effect <strong>of</strong> phenylalanine and tryptophan <strong>on</strong> fresh and dry weight (gm) <strong>on</strong> Anterrhinum majus L.<br />

plant at vegetative stage.<br />

Value (g)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Fig. (2) Effect <strong>of</strong> phenylalanine and tryptophan <strong>on</strong> fresh and dry weight (gm) <strong>on</strong> Anterrhinum majus L.<br />

plant at flowering stage.<br />

On flowering:<br />

Vegetative<br />

stage<br />

C<strong>on</strong>trol<br />

Flowering stage<br />

T 50<br />

T 100<br />

Ph 50 ppm<br />

Data presented in Tables (1, 2) and Fig.(1, 2) showed that increasing different amino acids<br />

(phenylalanine or tryptophan) from 50 to 100 ppm significantly increased plant height, number <strong>of</strong><br />

branches, fresh and dry weights <strong>of</strong> plant as well as length <strong>of</strong> inflorescence, number <strong>of</strong><br />

inflorescences/plant and fresh and dry weights <strong>of</strong> inflorescences/plant. Phenylalanine caused<br />

increments <strong>on</strong> fresh and dry weights <strong>of</strong> inflorescence/plant by (3.3 % and 18.6%) respectively for <strong>the</strong><br />

50 ppm and 38.4 % and 57.9 %, respectively for 100 ppm compared with <strong>the</strong> untreated plants.<br />

However, tryptophan caused increments <strong>on</strong> fresh and dry weights <strong>of</strong> inflorescence/plant by (4.3 % and<br />

14.6 %) respectively for <strong>the</strong> 50 ppm and( 27.4 % and 30.7 %), respectively for 100 ppm compared with<br />

<strong>the</strong> untreated plants. Our results are combatable with those obtained by Bekheta and Mahgoub (2005)<br />

<strong>on</strong> Dianthus caryophyllus, M<strong>on</strong>a and Iman (2005) <strong>on</strong> Pelarg<strong>on</strong>ium graveolens L. and Nahed and<br />

Balbaa (2007) <strong>on</strong> Salvia farinacea plants, <strong>the</strong>y stated that applicati<strong>on</strong> <strong>of</strong> amino acids led to <strong>the</strong><br />

increments <strong>of</strong> flowering parameters and found that amino acids produced a high quality <strong>of</strong><br />

inflorescences. The stimulatory <strong>effect</strong> were found to be correlated with <strong>the</strong> increase in c<strong>on</strong>tent and<br />

activity levels <strong>of</strong> endogenous promoters particularly gibberellins and IAA which are known to promote<br />

linear growth <strong>of</strong> plant organs (Stoddart, 1986 and Wilkins, 1989).<br />

In additi<strong>on</strong>, <strong>the</strong> results obtained in table (2) indicated that, <strong>the</strong> interacti<strong>on</strong> between different involved<br />

factors (phenylalanine and tryptophan) were almost significant for flowering parameters. The highest<br />

values due to amino acids were obtained due to (100 ppm phenylalanine and 100 ppm tryptophan ) for<br />

flowering parameters.<br />

402<br />

Treatment (ppm)<br />

Ph100<br />

Ph 50+T 50<br />

Treatment (ppm)<br />

Ph 50+T100<br />

FW <strong>of</strong> plant<br />

DW <strong>of</strong> plant<br />

Ph 100+T 50<br />

FW <strong>of</strong> plant<br />

DW <strong>of</strong> plant<br />

Ph 100 +T 100


Table (2) Effect <strong>of</strong> phenylalanine, tryptophan and <strong>the</strong>ir interacti<strong>on</strong> <strong>on</strong> flowering parameters <strong>of</strong><br />

Anterrhinum majus L. plants (mean <strong>of</strong> two seas<strong>on</strong>s)<br />

Treatments (ppm)<br />

C<strong>on</strong>trol<br />

Length <strong>of</strong><br />

inflorescence<br />

No, <strong>of</strong><br />

inflorescence/pla<br />

nt<br />

403<br />

F.W <strong>of</strong><br />

inflorescences/<br />

plant<br />

cm gm<br />

Effect <strong>of</strong> Phenylalanine<br />

D.W <strong>of</strong><br />

inflorescences<br />

/plant<br />

19.06 16 9.98 1.88<br />

Phynyl.50 19.22 17.11 10.31 2.23<br />

Phynyl.100 20.67 20.78 13.81 2.97<br />

LSD 5% 0.87 0.95 0.52 0.25<br />

C<strong>on</strong>trol<br />

Effect <strong>of</strong> Tryptophan<br />

18.06 16.56 10.28 2.05<br />

Tryp. 50 20.06 17.22 10.72 2.35<br />

Tryp. 100 20.83 20.11 13.1 2.68<br />

LSD 5% 0.87 0.95 0.52 0.25<br />

C<strong>on</strong>trol<br />

Effect <strong>of</strong> Interacti<strong>on</strong><br />

15 13.33 6.98 1.03<br />

Tryp. 50 20.5 16.67 11.16 2.33<br />

Tryp. 100 21.67 18 11.81 2.3<br />

Phynyl.50 18 16 8.66 1.99<br />

Phynyl.100 21.17 20.33 15.21 3.12<br />

Phynyl.50+Tryp. 50 19 16.33 10.41 2.19<br />

Phynyl.50+Tryp.100 20.67 19 11.87 2.5<br />

Phynyl.100+Trup.50 19 16 9.14 1.95<br />

Phynyl.100+Tryp.100 21.83 26 17.07 3.56<br />

Value (g)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

LSD 5% 1.52 1.64 0.89 0.44<br />

Infloresences<br />

Treatment (ppm)<br />

FW DW<br />

Fig.(3) Effect <strong>of</strong> phenylalanine and tryptophan <strong>on</strong> fresh and dry weight (gm) <strong>on</strong> Anterrhinum majus L.<br />

plant inflorescences.


Chemical compositi<strong>on</strong>:<br />

Pigments c<strong>on</strong>tent: data in Table (3) showed that, <strong>the</strong> leaves c<strong>on</strong>tents <strong>of</strong> photosyn<strong>the</strong>tic pigments<br />

(chlorophyll a, b, a+b and carotenoids) increased by increasing amino acids c<strong>on</strong>centrati<strong>on</strong> compared<br />

with <strong>the</strong> untreated plants. In additi<strong>on</strong>, data indicated that <strong>the</strong> amino acids treatments which were used<br />

in this study had significant <strong>effect</strong> <strong>on</strong> all photosyn<strong>the</strong>tic pigments. Plants treated with 100 ppm<br />

tryptophan had <strong>the</strong> highest total chlorophyll c<strong>on</strong>tent (1.63 mg/g FW), while untreated plants gave <strong>the</strong><br />

lowest value (1.27 mg/g FW). The recorded data also revealed that plants treated with tryptophan at<br />

100 ppm had <strong>the</strong> highest carotenoids c<strong>on</strong>tent, compared to that found in plants receiving any o<strong>the</strong>r<br />

treatments. The comparis<strong>on</strong> between <strong>the</strong> <strong>effect</strong> <strong>of</strong> phenylalanine and tryptophan revealed that <strong>the</strong><br />

influence <strong>of</strong> tryptophan <strong>on</strong> increasing <strong>the</strong> photosyn<strong>the</strong>tic pigments (especially at <strong>the</strong> rate <strong>of</strong> 100 ppm,<br />

which can be described as <strong>the</strong> most <strong>effect</strong>ive treatment) was superior to that <strong>of</strong> Shoola (2000) <strong>on</strong><br />

Lavendula multifida plant and Abou Dahab and Abd El-Aziz (2006) <strong>on</strong> Philodendr<strong>on</strong> erubescens<br />

plants.<br />

As for <strong>the</strong> interacti<strong>on</strong> between <strong>the</strong> different levels <strong>of</strong> <strong>the</strong> two amino acids (phenylalanine+ tryptophan)<br />

applicati<strong>on</strong>, <strong>the</strong> higher values provided when spraying 100 ppm phenylalanine and 100 ppm<br />

tryptophan. The positive <strong>effect</strong> <strong>of</strong> foliar amino acids <strong>on</strong> enhancing all photosyn<strong>the</strong>tic pigments<br />

percentage may be due to <strong>the</strong> succnyl COA (Kerb's cycle intermediate) and <strong>the</strong> amino acid glycine,<br />

initiate <strong>the</strong> biosysn<strong>the</strong>tic pathway leading to chlorophyll formati<strong>on</strong>.<br />

Total soluble sugars c<strong>on</strong>tents:<br />

Effect <strong>of</strong> foliar applicati<strong>on</strong> with different levels <strong>of</strong> two amino acids (phenylalanine and tryptophan)<br />

were presented in Table (3) fig. (4) indicated that total soluble sugars c<strong>on</strong>tents as affected by different<br />

levels treatments, followed <strong>the</strong> same trend obtained previously <strong>on</strong> photosyn<strong>the</strong>tic pigments, were<br />

gradually increased by increasing <strong>the</strong> level <strong>of</strong> amino acids. Comparing <strong>the</strong> <strong>effect</strong> <strong>of</strong> phenylalanine and<br />

tryptophan , <strong>the</strong> data indicated that tryptophan was superior to phenylalanine. The percentages <strong>of</strong><br />

increase in <strong>the</strong> total soluble sugars c<strong>on</strong>tent caused by treating <strong>the</strong> plants with tryptophan at 100 ppm<br />

(compared with <strong>the</strong> c<strong>on</strong>trol) was 52.88%. <strong>the</strong> promotive affect <strong>of</strong> <strong>the</strong> amino acids <strong>on</strong> <strong>the</strong> total soluble<br />

sugars percentages may be due to <strong>the</strong>ir important role <strong>of</strong> <strong>the</strong> biosyn<strong>the</strong>sis <strong>of</strong> chlorophyll molecules<br />

which in turn affected total soluble sugars c<strong>on</strong>tent. Similar results have been reported in o<strong>the</strong>r plant<br />

species, Attoa et al.,(2002)<strong>on</strong> Iberis amara L., Iman et al.,(2005) <strong>on</strong> Catharanthus roseus L and Nahed<br />

and Balbaa (2007) <strong>on</strong> Salvia farinacea plants. C<strong>on</strong>sidering <strong>the</strong> interacti<strong>on</strong>, <strong>the</strong> maximum values <strong>of</strong> <strong>the</strong><br />

soluble sugars percentage was obtained at 100 ppm phenylalanine + 50 ppm tryptophan.<br />

404


Table (3) Effect <strong>of</strong> phenylalanine, tryptophan and <strong>the</strong>ir interacti<strong>on</strong> <strong>on</strong> chemical c<strong>on</strong>stituents <strong>of</strong><br />

Anterrhinum majus L. plants (mean <strong>of</strong> two seas<strong>on</strong>s)<br />

Treatments Chl. a<br />

C<strong>on</strong>trol<br />

Chl.<br />

b Chl. a+b Carotenoids<br />

405<br />

Free amino<br />

acids<br />

Soluble<br />

sugars<br />

mg/g % mg/g<br />

Effect <strong>of</strong> Phenylalanine<br />

1.01 0.37 1.38 0.27 5.69 3.24<br />

Phynyl.50 1.09 0.38 1.47 0.3 5.89 3.63<br />

Phynyl.100 1.1 0.41 1.51 0.29 6.24 3.87<br />

LSD 5% 0.02 0.01 0.03 0.01 0.19 0.06<br />

C<strong>on</strong>trol<br />

Effect <strong>of</strong> Tryptophan<br />

0.95 0.32 1.27 0.26 2.79 4.69<br />

Tryp. 50 1.1 0.37 1.47 0.29 3.63 5.97<br />

Tryp. 100 1.16 0.47 1.63 0.31 4.31 7.17<br />

LSD 5% 0.02 0.01 0.03 0.01 0.06 0.19<br />

C<strong>on</strong>trol<br />

Effect <strong>of</strong> Interacti<strong>on</strong><br />

0.81 0.26 1.07 0.22 3.64 2.15<br />

Tryp. 50 1.07 0.34 1.41 0.29 5.87 3.31<br />

Tryp. 100 1.15 0.5 1.65 0.32 7.57 4.26<br />

Phynyl.50 1 0.34 1.35 0.28 4.6 2.97<br />

Phynyl.100 1.04 0.35 1.39 0.29 5.82 3.25<br />

Phynyl.50+Tryp. 50 1.11 0.36 1.47 0.3 5.92 3.71<br />

Phynyl.50+Tryp.100 1.13 0.42 1.55 0.31 7.16 4.2<br />

Phynyl.100+Tryp.50 1.12 0.4 1.52 0.27 6.12 3.88<br />

Phynyl.100+Tryp.100 1.19 0.49 1.68 0.32 6.77 4.48<br />

LSD 5% 0.04 0.02 0.05 0.02 0.32 0.1<br />

Value<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

C<strong>on</strong>trol<br />

T 50<br />

T 100<br />

Ph 50 ppm<br />

Fig(4) Effect <strong>of</strong> phenylalanine and tryptophan <strong>on</strong> fresh and dry weight (gm) <strong>on</strong> free amino acids and<br />

soluble sugars.<br />

Ph100<br />

Ph 50+T 50<br />

Treatment (ppm)<br />

Ph 50+T100<br />

Free amino acids mg/g<br />

Soluble sugars %<br />

Ph 100+T 50<br />

Ph 100 +T 100


Total free amino acids:<br />

The results recorded in Table (3) and fig.(4) showed that spraying Antirrhinum majus plants with<br />

different amino acids treatments caused a significant increase in <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> total free ami<strong>on</strong> acids in<br />

leaves. Applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> high phenylalanine c<strong>on</strong>centrati<strong>on</strong> (100 ppm) was <strong>the</strong> most <strong>effect</strong>ive<br />

treatment in producing <strong>the</strong> highest values, followed by tryptophan <strong>of</strong> <strong>the</strong> rate <strong>of</strong> 100 ppm. The<br />

increase in <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> total free amino acids as a result <strong>of</strong> <strong>the</strong> tryptophan treatments may be<br />

attributed to its c<strong>on</strong>versi<strong>on</strong> <strong>of</strong> to IAA, as stated by Phillips (1971). Fur<strong>the</strong>rmore, <strong>the</strong> combinati<strong>on</strong><br />

between <strong>the</strong> two amino acids were almost positive for <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> <strong>the</strong> total free amino acids.<br />

Tryptophan at 100 ppm + phenylalanine at 100 ppm gave <strong>the</strong> highest values <strong>of</strong> <strong>the</strong> total free amino<br />

acid.<br />

Our results are in agreement with <strong>the</strong> findings <strong>of</strong> Harridy (1986) <strong>on</strong> Catharanthus roseus L and Abou<br />

Dahab and Abd El-Aziz (2006) <strong>on</strong> Philodendr<strong>on</strong> erubescens.<br />

Hence, it could be recommended that treatment <strong>of</strong> Antirrhinum majus plants with tryptophan and<br />

phenylalanine (especially at <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 100 ppm) had a beneficial <strong>effect</strong> growth and chemical<br />

c<strong>on</strong>stituents.<br />

REFERENCES<br />

Abou-Dahab, T.A.M. and G. Nahed, Abdel-Aziz, 2006. Physiological <strong>effect</strong> <strong>of</strong> diphenylamine and<br />

tryptophan <strong>on</strong> <strong>the</strong> growth and chemical c<strong>on</strong>stituents <strong>of</strong> Philedendr<strong>on</strong> erubescens plants.<br />

World, J. <strong>of</strong> Agric Sci., 2(1): 75-81.<br />

Attao, G. E., H.E. Wahba and A.A. Farahat, 2000. <strong>effect</strong> <strong>of</strong> some amino acids and sulphur<br />

fertilizati<strong>on</strong> <strong>on</strong> growth and chemical compositi<strong>on</strong> <strong>of</strong> Iberis amara L. plants. Egypt. J. Hort.,<br />

29:17-37.<br />

Bekheta, M.A. and M.H. Mahgoub , 2005. Applicati<strong>on</strong> <strong>of</strong> Kinetin and phenylalanine to improve<br />

flowering characters, vase life <strong>of</strong> cut flowers as well as vegetative growth and biochemical<br />

c<strong>on</strong>stituents <strong>of</strong> carnati<strong>on</strong> plants. Egypt. J. Appl. Sci.,20(6A): 234-246.<br />

Bidwell, R.G.S., 1979. Plant Physiology, 2 nd Ed., 236-238, MacMillan Publishing Co., Inc. New York.<br />

Davies, D.D., 1982. Physiological aspects <strong>of</strong> protein turn over. Encycl. Plant Physiol. New Series, 14<br />

A (Nucleic acids and proteins: structure biochemistry and physiology <strong>of</strong> proteins). 190-288.,<br />

Ed. Boulter, D. and Par<strong>the</strong>ir, B. Spring Verlag. Berlin, Heidelberg and New York.<br />

Dubios, M., K.A. Gilles, J.K. Hamilt<strong>on</strong>, P.A. Rebers and F.Smith, 1956. A colorimetric for<br />

determinati<strong>on</strong> <strong>of</strong> sugar and related substances. Anal Chem.,28:350-356.<br />

El-Fawakhry, F.M. and H.F. El-Tayeb, 2003. Effect <strong>of</strong> some amino acids and vitamins <strong>on</strong><br />

chrysan<strong>the</strong>mum producti<strong>on</strong>. J.Agric. Res.Alex.Univ., 8(4): 755-766.<br />

Gamal El-Din, K.M., S.A. Tarraf and L.K. Balbaa, 1997. Physiological <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>effect</strong> <strong>of</strong> some<br />

amino acids and microelements <strong>on</strong> growth and essential oil c<strong>on</strong>tent in lem<strong>on</strong> grass<br />

(Cymbopog<strong>on</strong> citrates Hort.). J.Agric Sci. Mansoura Univ., 22(12)4229-4241.<br />

Gamal El-Din, M. Karima and M. Nabila, Zaki, 2005. Effect <strong>of</strong> some amino acids <strong>on</strong> growth and<br />

biochemical c<strong>on</strong>sitituents <strong>of</strong> lupine plant (Lupinus termis L.). Egypt. J. Appl. Sci.,<br />

20(6A):70-78.<br />

Goss, J.A., 1973. Amino acid syn<strong>the</strong>sis and metabolism physiology <strong>of</strong> plants and <strong>the</strong>ir cell. P202.<br />

Pergam<strong>on</strong> Press INC., New York, Tor<strong>on</strong>to, Oxford, Sydney, Braunschweig.<br />

Harridy, I.M., 1986. Physiological <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> periwinkle plant, Catharanthus roseus G. D<strong>on</strong>.Ph.D.<br />

Thesis, Fac. Agric., Cairo Univ, Egypt.<br />

Iman M. Talaat, M.A. Bekheta and M<strong>on</strong>a M. Mahgoub, 2005. Physiological resp<strong>on</strong>se <strong>of</strong> periwinkle<br />

plants (Catharanthus roseus L.) to tryptophan and <strong>putrescine</strong>. Int.J.Agric.Biol., 2:210-213.<br />

Karima, A. Gamal El-Din and M.S.A. Abdel-Wahed, 2005. Effect <strong>of</strong> some amino acids <strong>on</strong> growth and<br />

essential oil c<strong>on</strong>tent <strong>of</strong> chamomile plant. Int. J. Agric. Biol., 7(3) 376-380.<br />

M<strong>on</strong>a, H. Mahgoub and Iman, M. Talaat, 2005. Physiological resp<strong>on</strong>se <strong>of</strong> rose geranium<br />

(Pelarogenium graveolens L.) to phenylalanine and nicotinic acid. Annals <strong>of</strong> Agric. Sci.<br />

Moshtohor, 43(3): 807-822.<br />

406


Nahed, G. Abd El-Aziz and Laila, K. Balbaa, 2007. Influence <strong>of</strong> tyrosine and zinc <strong>on</strong> growth,<br />

flowering and chemical c<strong>on</strong>stituents <strong>of</strong> Salvia farinacea plants. J. Appl. Sci. Res., 3(11):<br />

1479-1489.<br />

Phillips, I.D.J., 1971. Introducti<strong>on</strong> to <strong>the</strong> Biochemistry and Physiology <strong>of</strong> Plant Growth Horm<strong>on</strong>es.<br />

McGrow-Hill Book Company.<br />

Rashad, El-Sh, M.; E. El-Habba and M.M. Farahat, 2002. Growth, fruiting and active ingredient hot<br />

pepper plants as affected by phenylalanine, cinamic acid and coumaric acid. Egypt. J. Appl.<br />

Sci., 17(12): 698-715.<br />

Rosein, H. 1957. A modified ninhydrine colorimetric analysis Fr amino acid. Arch-Biochem. Biophys.<br />

67: 10-15.<br />

Russell, R.S. 1982. Plant Root Systems. 1 st Ed. ELBS. UK., pp: 17-18.<br />

Saric, M.; R. Kostrori; T. Guppina and L. Geris, 1967. Chlorophyll determinati<strong>on</strong> Univ Sadu-<br />

Prakitikum is Kiziologize Bilijaka-Beagrad, Haucua Anjiga, pp: 215.<br />

Shoala, A.W.T., 2000. Physiological <str<strong>on</strong>g>studies</str<strong>on</strong>g> <strong>on</strong> lavender plants (Lavendula multifida). Ph. D. Thesis,<br />

Fac. Agric, Cairo Univ., Egypt.<br />

Snedecor, G.W. and W.G. Cochran. 1980. Statistical Method. 7 th Edn. Iowa State Univ. Press., USA.<br />

Steel, R.G.D. and J.H. Torrie, 1980. Principles and Procedures <strong>of</strong> Statistics. Sec<strong>on</strong>d Editi<strong>on</strong>, M.C.<br />

Graw-Hillbook Co. Inc., New York, Tor<strong>on</strong>to, L<strong>on</strong>d<strong>on</strong>.<br />

Stoddart, J.L., 1986. Gibberellin receptor. In " Horm<strong>on</strong>es Receptors and Cellualr Interacti<strong>on</strong>s in<br />

Plants". (Ed. Chadwick, C.M. and D.R. Carrod) Cambridge Univ. Press. Cambridge, L<strong>on</strong>d<strong>on</strong>,<br />

New York.<br />

Talaat, I. Iman and A.A. Youssef, 2002. The role <strong>of</strong> <strong>the</strong> amino acids lysine, ornithine in growth and<br />

chemical c<strong>on</strong>stituents <strong>of</strong> Basil plant. Egypt Appl. Sci., 17(5): 83-95.<br />

Th<strong>on</strong>, M; A. Maretzki; E. Korner and W.S. Soki, 1981. Nutrient uptake and accumulati<strong>on</strong> by sugar<br />

cane cell culture in relati<strong>on</strong> to growth cycle. Plant Cell Tissue and organ Culture, (1): 3-14.<br />

Wahba, H.E; M.M. Safaa, G.E. Attoa and A.A. Farahat , 2002. Resp<strong>on</strong>se <strong>of</strong> Antholyza acthipoica L.<br />

to foliar spray with some amino acids and mineral nutriti<strong>on</strong> with sulphur. Annals <strong>of</strong><br />

Agric.Sci. Cairo Univ., 47(3): 929-944.<br />

Wilkins, M.B., 1989. " Advanced Plant Physiology". Pitman Publishing Inc. L<strong>on</strong>d<strong>on</strong>.<br />

Youssef, A.A.; R.A. El-Mergawi and M.S.A. Abd El-Wahed, 2004. Effect <strong>of</strong> <strong>putrescine</strong> and<br />

phenylalanine <strong>on</strong> growth and alkaloid producti<strong>on</strong> <strong>of</strong> some Datura species. J.Agric.Sci.<br />

Mansoura univ., 29: 4037-4057.<br />

407

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!