04.03.2013 Views

Geology and Ore Genesis of Silver–Barite Mineralization in the ...

Geology and Ore Genesis of Silver–Barite Mineralization in the ...

Geology and Ore Genesis of Silver–Barite Mineralization in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Geology</strong> <strong>and</strong> <strong>Ore</strong> <strong>Genesis</strong> <strong>of</strong> Silver–<br />

Barite <strong>M<strong>in</strong>eralization</strong> <strong>in</strong> <strong>the</strong> Central<br />

Mojave Desert, CA<br />

David R. Jessey<br />

Geological Sciences Department<br />

California Polytechnic University-Pomona<br />

ABSTRACT<br />

Silver–barite deposits <strong>of</strong> <strong>the</strong> central Mojave Desert, near Barstow, CA have yielded more<br />

than $20 million <strong>in</strong> silver <strong>and</strong> barite. <strong>M<strong>in</strong>eralization</strong> occurs <strong>in</strong> rocks rang<strong>in</strong>g <strong>in</strong> age from<br />

Precambrian Waterman Gneiss to early-middle Miocene Barstow Formation, but nearly all<br />

<strong>of</strong> <strong>the</strong> recorded production is from <strong>the</strong> early Miocene Pickh<strong>and</strong>le Formation. Pickh<strong>and</strong>le<br />

volcanic rocks host numerous northwest-trend<strong>in</strong>g silver–barite ve<strong>in</strong>s emplaced along<br />

steeply dipp<strong>in</strong>g faults. The highest ore grades are encountered <strong>in</strong> <strong>the</strong> oxidized apex <strong>of</strong> <strong>the</strong><br />

ve<strong>in</strong>s where silver chlorides <strong>and</strong> native silver are <strong>the</strong> chief ore m<strong>in</strong>erals.<br />

Geochronology <strong>in</strong>dicates <strong>the</strong> ma<strong>in</strong> pulse <strong>of</strong> m<strong>in</strong>eralization occurred at 17 Ma. This co<strong>in</strong>cides<br />

with <strong>the</strong> wan<strong>in</strong>g stages <strong>of</strong> detachment fault<strong>in</strong>g (Waterman Hills detachment fault) <strong>and</strong> likely<br />

predates <strong>the</strong> <strong>in</strong>itiation <strong>of</strong> dextral shear along <strong>the</strong> Calico fault. Silver–barite ore was<br />

deposited as massive, open-space fill<strong>in</strong>g with<strong>in</strong> listric faults <strong>in</strong> <strong>the</strong> Pickh<strong>and</strong>le Formation,<br />

while it is largely dissem<strong>in</strong>ated with<strong>in</strong> siltstone <strong>of</strong> <strong>the</strong> Barstow Formation. Paragenetic<br />

studies suggest that m<strong>in</strong>eralization happened was constra<strong>in</strong>ed to a s<strong>in</strong>gle event, requir<strong>in</strong>g a<br />

plumb<strong>in</strong>g system that enabled fluids to rise upward, perhaps along faults <strong>in</strong> <strong>the</strong> Barstow<br />

Formation, <strong>and</strong> <strong>the</strong>n migrate laterally along permeable horizons. Fluid <strong>in</strong>clusion<br />

geo<strong>the</strong>rmometry <strong>in</strong>dicates Pickh<strong>and</strong>le ve<strong>in</strong>s were emplaced at depths <strong>in</strong> excess <strong>of</strong> one<br />

kilometer while Barstow ores were deposited very near <strong>the</strong> surface.<br />

One model proposes meteoric water circulat<strong>in</strong>g downward along <strong>the</strong> detachment fault<br />

surface. At depth, <strong>the</strong> meteoric water would be heated by plutons that fed Pickh<strong>and</strong>le<br />

volcanism <strong>and</strong> move convectively upward along normal faults with<strong>in</strong> <strong>the</strong> overly<strong>in</strong>g plate <strong>of</strong><br />

<strong>the</strong> Waterman Hills detachment fault. As <strong>the</strong> fluid cooled, ore would be deposited with<strong>in</strong> <strong>the</strong><br />

Pickh<strong>and</strong>le Formation. Where available conduits <strong>and</strong> favorable stratigraphic horizons<br />

presented <strong>the</strong>mselves, ore deposition would also have occurred with<strong>in</strong> <strong>the</strong> overly<strong>in</strong>g<br />

Barstow Formation. Subsequent right oblique-slip <strong>and</strong> transpression along <strong>the</strong> Calico fault<br />

resulted <strong>in</strong> uplift <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s, creat<strong>in</strong>g <strong>the</strong> present day topographic <strong>and</strong><br />

structural relationships. In deeply eroded areas, such as Wall Street Canyon, <strong>the</strong> apices <strong>of</strong><br />

outcropp<strong>in</strong>g silver ve<strong>in</strong>s were oxidized generat<strong>in</strong>g <strong>the</strong> “high-grade” silver chloride ores <strong>of</strong><br />

<strong>the</strong> Calico District.


Introduction<br />

Silver–barite m<strong>in</strong>eralization occurs along a 30 kilometer wide b<strong>and</strong> stretch<strong>in</strong>g across <strong>the</strong> central Mojave<br />

Desert from <strong>the</strong> Bullion <strong>and</strong> Cady Mounta<strong>in</strong>s near Ludlow, CA northwest to <strong>the</strong> Mitchel Range, a<br />

distance <strong>of</strong> approximately 60 miles. Most <strong>of</strong> <strong>the</strong> prospects <strong>and</strong> nearly all <strong>of</strong> <strong>the</strong> significant production<br />

occurred with<strong>in</strong> <strong>the</strong> Calico M<strong>in</strong><strong>in</strong>g District located along <strong>the</strong> sou<strong>the</strong>rn flank <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s four<br />

miles nor<strong>the</strong>ast <strong>of</strong> Barstow, CA (Fig.1). The largest m<strong>in</strong>es were situated along <strong>the</strong> south flank <strong>of</strong> <strong>the</strong><br />

Calico Mounta<strong>in</strong>s, <strong>in</strong> or immediately adjacent to Wall Street Canyon.<br />

The history <strong>of</strong> <strong>the</strong> Calico<br />

M<strong>in</strong><strong>in</strong>g District has been<br />

documented by numerous<br />

authors; Weber (1966)<br />

provides an excellent<br />

summary. The district<br />

flourished from <strong>the</strong> 1880s to<br />

<strong>the</strong> close <strong>of</strong> <strong>the</strong> n<strong>in</strong>eteenth<br />

century. The manpower<br />

shortage dur<strong>in</strong>g World War I<br />

<strong>and</strong> subsequent Great<br />

Depression marked <strong>the</strong> end <strong>of</strong><br />

significant m<strong>in</strong><strong>in</strong>g activity, but<br />

not before <strong>the</strong> district had<br />

established itself as <strong>the</strong><br />

largest silver producer <strong>in</strong> Figure 1. Silver–barite occurrences near <strong>the</strong> Calico Mounta<strong>in</strong>s.<br />

California. Total silver<br />

production is thought to have exceeded $20 million. However, put <strong>in</strong> <strong>the</strong> perspective <strong>of</strong> a true giant like<br />

<strong>the</strong> Comstock Lode (total production = $396 million) (Smith, 1943), <strong>the</strong> Calico District rema<strong>in</strong>s quite<br />

small. Dur<strong>in</strong>g <strong>the</strong> 1950s an economic boom <strong>and</strong> a renewed <strong>in</strong>terest <strong>in</strong> silver resulted <strong>in</strong> <strong>the</strong> reopen<strong>in</strong>g <strong>of</strong><br />

several <strong>of</strong> <strong>the</strong> district's m<strong>in</strong>es, but production dur<strong>in</strong>g that era was small.<br />

Petroleum exploration <strong>and</strong> development <strong>in</strong> California made barite an economically attractive<br />

commodity <strong>in</strong> <strong>the</strong> 1950s. From 1957 to 1961 <strong>the</strong> Leviathan M<strong>in</strong>e, northwest <strong>of</strong> Wall Street Canyon, was<br />

<strong>the</strong> largest barite producer on <strong>the</strong> west coast. Substantial barite reserves rema<strong>in</strong>, but discovery <strong>of</strong> <strong>the</strong><br />

much larger Battle Mounta<strong>in</strong>, Nevada deposits severely impacted <strong>the</strong> economic viability <strong>of</strong> Calico barite.<br />

In <strong>the</strong> early 1960s, ASARCO Inc. <strong>and</strong> Superior Oil Corp. began exploration <strong>and</strong> limited development <strong>of</strong><br />

dissem<strong>in</strong>ated silver deposits along <strong>the</strong> southwest flank <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s; <strong>the</strong> Waterloo <strong>and</strong><br />

Langtry. Development was hampered by environmental concerns <strong>and</strong> <strong>the</strong> low silver ore grade. The<br />

properties have been largely <strong>in</strong>active for nearly two decades, but recent spikes <strong>in</strong> precious metal prices<br />

have caused renewed <strong>in</strong>terest <strong>in</strong> both properties.<br />

\


Stratigraphy<br />

General <strong>Geology</strong><br />

Portions <strong>of</strong> <strong>the</strong> central Mojave Desert have been mapped by DeLeen (1950), McCulloh (1952, 1965),<br />

Weber (1965), Dibblee (1967, 1970), Mero (1972), Fletcher (1986), Payne <strong>and</strong> Glass (1987), Jessey <strong>and</strong><br />

Yamashiro (!988), Cox <strong>and</strong> Wilshire (1993), Fletcher et al. (1995) <strong>and</strong> S<strong>in</strong>gleton <strong>and</strong> Gans (2008) .<br />

Basement rocks fall <strong>in</strong>to one <strong>of</strong> three categories; (1) <strong>the</strong> Waterman Gneiss, an assemblage <strong>of</strong><br />

Precambrian/Paleozoic meta-igneous <strong>and</strong> meta-sedimentary rocks, (2) <strong>the</strong> Coyote Group, a sequence <strong>of</strong><br />

weakly metamorphosed, Paleozoic sedimentary rocks, <strong>and</strong> (3) Mesozoic <strong>in</strong>trusive <strong>and</strong> extrusive rocks<br />

(Fig. 2).<br />

Figure 2. Generalized stratigraphic column for <strong>the</strong> central<br />

Mojave (after Jessey <strong>and</strong> Tarman, 1988).<br />

The Waterman Gneiss is exposed <strong>in</strong> <strong>the</strong><br />

Waterman Hills <strong>and</strong> <strong>the</strong> Mitchell Range north<br />

<strong>of</strong> Barstow, as well as <strong>in</strong> isolated outcrops <strong>in</strong><br />

<strong>the</strong> H<strong>in</strong>kley Hills <strong>and</strong> <strong>in</strong> <strong>the</strong> low hills west <strong>of</strong><br />

Harper Lake. Lithologically, <strong>the</strong> Waterman<br />

Gneiss varies from dioritic gneiss, to impure<br />

marble <strong>and</strong> quartzite, to various types <strong>of</strong><br />

mylonite. When not affected by later<br />

retrograde events, Waterman Gneiss lies<br />

with<strong>in</strong> <strong>the</strong> amphibolite facies <strong>of</strong> regional<br />

metamorphism. Subsequent retrograde<br />

metamorphism associated with regional<br />

detachment (see below) has locally<br />

superimposed a chlorite-grade greenschist<br />

facies (Glazner et. al. 1988). The age <strong>of</strong> <strong>the</strong><br />

Waterman gneiss is conjectural. Dibblee (1967)<br />

assigned it to <strong>the</strong> Precambrian, while Glazner<br />

et al. (1988) suggest late Precambrian–<br />

Paleozoic.<br />

A sequence <strong>of</strong> sedimentary <strong>and</strong><br />

metamorphosed volcanic rocks lies along <strong>the</strong><br />

north flank <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s (McCulloh,<br />

1952). It consists <strong>of</strong> marble, schist,<br />

conglomerate, quartzite, hornfels,<br />

metamorphosed <strong>and</strong>esite <strong>and</strong> m<strong>in</strong>or metamorphosed basalt. McCulloh termed <strong>the</strong> rocks <strong>the</strong> Coyote<br />

Group for Coyote Dry Lake to <strong>the</strong> nor<strong>the</strong>ast <strong>of</strong> <strong>the</strong> outcrop area. Poorly preserved Paleozoic fossils were<br />

found near <strong>the</strong> middle <strong>of</strong> <strong>the</strong> sequence, but McCuIIoh (1952) believed it possible that <strong>the</strong> upper half <strong>of</strong><br />

<strong>the</strong> Coyote Group is <strong>of</strong> Mesozoic age. Actual stratigraphic relationships are difficult to determ<strong>in</strong>e as both<br />

<strong>the</strong> top <strong>and</strong> bottom <strong>of</strong> <strong>the</strong> Coyote Group are truncated by Mesozoic <strong>in</strong>trusive rocks.<br />

Small, scattered exposures <strong>of</strong> porphyritic volcanic rocks <strong>of</strong> uncerta<strong>in</strong> age crop out at <strong>the</strong> sou<strong>the</strong>ast end<br />

<strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s <strong>and</strong> south <strong>of</strong> I-15. These lithologically heterogeneous rocks have been<br />

correlated with several different rock units across <strong>the</strong> Mojave. Perhaps <strong>the</strong> closest match is <strong>the</strong> Jurassic<br />

Sidew<strong>in</strong>der Volcanic series (Bowen, 1954) near Victorville.


Plutonic rocks crop out at <strong>the</strong> east <strong>and</strong> nor<strong>the</strong>ast end <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s, as well as locally <strong>in</strong> <strong>the</strong><br />

Waterman Hills, Mitchel Range <strong>and</strong> near Mt. General. Most <strong>in</strong>trusions are middle to late Mesozoic <strong>in</strong><br />

age, yield<strong>in</strong>g radiometric dates that cluster around 90 Ma (Payne <strong>and</strong> Glass, 1987). However, Walker et<br />

al., (1995) report an age <strong>of</strong> 22-23 Ma for a pluton from <strong>the</strong> Waterman Hills (Walker et al., 1995).<br />

Compositionally, <strong>the</strong> <strong>in</strong>trusives range from diorite <strong>and</strong> quartz diorite to granodiorite <strong>and</strong> quartz<br />

monzonite. Characteristically, <strong>the</strong> <strong>in</strong>trusive rocks wea<strong>the</strong>r to form subdued terra<strong>in</strong>s result<strong>in</strong>g <strong>in</strong> low hills,<br />

<strong>in</strong> direct contrast to <strong>the</strong> more rugged topography <strong>of</strong> Tertiary volcanic rocks.<br />

McCulloh (1952) mapped a major unconformity separat<strong>in</strong>g basement rocks from overly<strong>in</strong>g Tertiary<br />

units. Dokka (1986), Glazner, et al. (1988) <strong>and</strong> Jessey <strong>and</strong> Tarman (1988) re<strong>in</strong>terpreted <strong>the</strong> unconformity<br />

as a regional detachment fault: a low angle normal fault separat<strong>in</strong>g lower plate basement from upper<br />

plate Tertiary volcanic <strong>and</strong> sedimentary rocks. The basal unit above <strong>the</strong> discont<strong>in</strong>uity is <strong>the</strong> Jackhammer<br />

Formation (McCulloh, 1952). At its type section <strong>in</strong> Jackhammer Gap it consists <strong>of</strong> 700 feet <strong>of</strong> tuff, tuff<br />

breccia, volcanogenic sedimentary rock, arkosic conglomerate, <strong>and</strong> basalt. Dokka <strong>and</strong> Woodburne<br />

(1986) report an age date <strong>of</strong> 25.6 Ma (Oligocene) for a basalt near <strong>the</strong> top <strong>of</strong> <strong>the</strong> Jackhammer.<br />

Subsequent research has questioned <strong>the</strong> need to separate <strong>the</strong> Jackhammer from <strong>the</strong> overly<strong>in</strong>g<br />

Pickh<strong>and</strong>le Formation. The Pickh<strong>and</strong>le is generally regarded to be Miocene <strong>in</strong> age (24–18 Ma, Burke<br />

et.al., 1982), however, <strong>the</strong> contact with <strong>the</strong> Jackhammer appears conformable <strong>and</strong> lithologically <strong>the</strong> two<br />

units are similar. This led S<strong>in</strong>gleton <strong>and</strong> Gans (2008) to comb<strong>in</strong>e <strong>the</strong> Jackhammer <strong>and</strong> Pickh<strong>and</strong>le (Fig. 3).<br />

The Early Miocene Pickh<strong>and</strong>le Formation (McCuIIoh, 1952) is named for exposures <strong>in</strong> Pickh<strong>and</strong>le Pass <strong>of</strong><br />

<strong>the</strong> nor<strong>the</strong>rn Calico Mounta<strong>in</strong>s. The Pickh<strong>and</strong>le is one <strong>of</strong> two major ore-bear<strong>in</strong>g units <strong>in</strong> <strong>the</strong> Calico<br />

district, host<strong>in</strong>g much <strong>of</strong> <strong>the</strong> ve<strong>in</strong>-type barite–silver m<strong>in</strong>eralization. In general <strong>the</strong> Pickh<strong>and</strong>le is a series<br />

<strong>of</strong> <strong>in</strong>tercalated pyroclastic rocks <strong>and</strong> volcanic flows, <strong>the</strong> latter predom<strong>in</strong>antly <strong>of</strong> rhyodacitic to dacitic<br />

composition. M<strong>in</strong>or volcaniclastic sedimentary units occur throughout <strong>the</strong> sequence, but are more<br />

common near <strong>the</strong> contact with <strong>the</strong> overly<strong>in</strong>g Barstow Formation. Age dates by various authors suggest<br />

<strong>the</strong> bulk <strong>of</strong> <strong>the</strong> Pickh<strong>and</strong>le Formation was deposited by 19 Ma (S<strong>in</strong>gleton <strong>and</strong> Gans, 2008); however a<br />

series <strong>of</strong> dacite domes near <strong>the</strong> sou<strong>the</strong>ast end <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s have yielded ages as young as<br />

16.8 Ma (S<strong>in</strong>gleton <strong>and</strong> Gans, 2008) <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> wan<strong>in</strong>g stages <strong>of</strong> Pickh<strong>and</strong>le volcanism may be<br />

coeval with deposition <strong>of</strong> <strong>the</strong> overly<strong>in</strong>g Barstow Formation.<br />

The Middle Miocene Barstow Formation overlies <strong>the</strong> Pickh<strong>and</strong>le volcanics, <strong>the</strong> basal contact marked by<br />

transition from volcanics to sedimentary rocks. While many researchers have argued that Barstow<br />

sedimentation began at 17 Ma (Woodburne, et. al., 1990, Glazner et. al., 2002), field relationships<br />

suggest <strong>the</strong>re is overlap between Pickh<strong>and</strong>le volcanism <strong>and</strong> Barstow deposition; <strong>the</strong> latter beg<strong>in</strong>n<strong>in</strong>g,<br />

perhaps, as early as 18 Ma (Leslie, 2009). The Barstow Formation was deposited <strong>in</strong> <strong>the</strong> east-trend<strong>in</strong>g,<br />

fault-controlled bas<strong>in</strong> (Dokka, 1979). Thickness ranges from 2400 feet <strong>in</strong> <strong>the</strong> northwest part <strong>of</strong> <strong>the</strong> bas<strong>in</strong><br />

to 1200 feet <strong>in</strong> <strong>the</strong> Alvord Mounta<strong>in</strong>s (Byers, 1960; Dibblee, 1980). Lithologically, <strong>the</strong> Barstow consists <strong>of</strong><br />

a wide array <strong>of</strong> sediment types reflect<strong>in</strong>g deposition <strong>in</strong> a shallow lake, tributary stream systems, <strong>and</strong><br />

alluvial fans. In <strong>the</strong> Calico Mounta<strong>in</strong>s, a gradual upward coarsen<strong>in</strong>g can be observed with rocks grad<strong>in</strong>g<br />

from calcareous mudstones <strong>and</strong> s<strong>and</strong>stones to conglomerates. Impure limestones with thicknesses<br />

rang<strong>in</strong>g from fractions <strong>of</strong> <strong>in</strong>ches to a few feet are locally present at <strong>the</strong> base <strong>of</strong> <strong>the</strong> Barstow Formation <strong>in</strong><br />

<strong>the</strong> Calico Mounta<strong>in</strong>s. The Barstow is <strong>the</strong> second major ore host <strong>in</strong> <strong>the</strong> region. The ore occurs as<br />

dissem<strong>in</strong>ated gra<strong>in</strong>s <strong>and</strong> r<strong>and</strong>omly-oriented stockwork ve<strong>in</strong>lets <strong>in</strong> permeable siltstones <strong>and</strong> porous<br />

s<strong>and</strong>stones.


Widespread gravels <strong>in</strong> <strong>the</strong> Yermo Hills, east <strong>of</strong> <strong>the</strong> Calicos <strong>and</strong> <strong>in</strong> canyons <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn Calico<br />

Mounta<strong>in</strong> have been termed <strong>the</strong> Yermo Formation (McCulloh, 1952) The gravels are Plio-Pleistocene <strong>in</strong><br />

age.<br />

Structure<br />

Rocks <strong>of</strong> <strong>the</strong> central Mojave Desert have been complexly deformed. Pre-Cenozoic structures have been<br />

largely overpr<strong>in</strong>ted by Cenozoic extension <strong>and</strong> dextral shear. Early Miocene detachment <strong>and</strong> extension<br />

generally preceded <strong>the</strong> right-slip tectonics related to <strong>the</strong> North AmericanPacific plate boundary.<br />

However, Glazner et. al. (2002) po<strong>in</strong>t out that tim<strong>in</strong>g <strong>and</strong> magnitude <strong>of</strong> both events are controversial.<br />

Emplacement <strong>of</strong> silver-barite m<strong>in</strong>eralization is directly related to at least one, <strong>and</strong> perhaps both, <strong>of</strong><br />

<strong>the</strong>se episodes <strong>of</strong> deformation.<br />

The Waterman Hills detachment fault (Fig. 3) juxtaposes Cenozoic volcanic <strong>and</strong> sedimentary rocks <strong>in</strong> <strong>the</strong><br />

hang<strong>in</strong>g wall over mylonitic basement rocks <strong>in</strong> <strong>the</strong> footwall. Tim<strong>in</strong>g <strong>and</strong> extent <strong>of</strong> extension is open to<br />

question. Dokka (1989) argues that extension occurred along an east–west zone across <strong>the</strong> entire<br />

Mojave Desert, while Glazner et al. (2002) suggest that extension was conf<strong>in</strong>ed to a 25-km-wide belt<br />

centered with<strong>in</strong> <strong>the</strong> central Mojave Desert. Glazner et al. (1989) propose 40–60 km <strong>of</strong> nor<strong>the</strong>ast<br />

transport for upper plate rocks; field observations do not tend to support this magnitude <strong>of</strong> movement.<br />

Available evidence <strong>in</strong>dicates that <strong>the</strong> majority <strong>of</strong> detachment occurred between 25 <strong>and</strong> 19 Ma<br />

(S<strong>in</strong>gleton <strong>and</strong> Gans, 2008). However, emplacement <strong>of</strong> a series <strong>of</strong> dacite domes at <strong>the</strong> sou<strong>the</strong>ast edge <strong>of</strong><br />

<strong>the</strong> Calico Mounta<strong>in</strong>s suggests that volcanism <strong>and</strong> extension may have cont<strong>in</strong>ued until as recently as<br />

16.5 Ma.<br />

Figure 3. Generalized geologic map <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s area (modified from S<strong>in</strong>gleton <strong>and</strong> Gans, 2008).


Neogene strike-slip fault<strong>in</strong>g along <strong>the</strong> Calico <strong>and</strong> Harper Lake faults appears to postdate extension <strong>in</strong> <strong>the</strong><br />

central Mojave Desert. These faults are a part <strong>of</strong> a larger set <strong>of</strong> northwest-trend<strong>in</strong>g right-lateral faults<br />

that accommodate plate motion between <strong>the</strong> Pacific <strong>and</strong> North American plates (Dokka <strong>and</strong> Travis,<br />

1990b). While <strong>the</strong> cumulative dextral shear across <strong>the</strong> region is on <strong>the</strong> order <strong>of</strong> 50–75 km (Dokka <strong>and</strong><br />

Travis, 1990a), <strong>the</strong> total shear across <strong>the</strong> Calico <strong>and</strong> Harper Lake faults is probably much less. Early<br />

studies proposed tens <strong>of</strong> kilometers <strong>of</strong> right slip along <strong>the</strong> Calico fault (Dibblee, 1980, Dokka, 1983), but<br />

Fletcher (1986) <strong>and</strong> more recently S<strong>in</strong>gleton <strong>and</strong> Gans (2008) suggest no more than three kilometers <strong>of</strong><br />

right-slip. The onset <strong>of</strong> strike-slip fault<strong>in</strong>g is uncerta<strong>in</strong>, but Bartley et al. (1990) believe it may have begun<br />

as early as 19 Ma. If so, this would necessitate some overlap with detachment. Right-slip motion<br />

cont<strong>in</strong>ues to <strong>the</strong> present.<br />

Local Neogene shorten<strong>in</strong>g <strong>in</strong> <strong>the</strong> central Mojave has been attributed to zones <strong>of</strong> transpression along<br />

northwest-strik<strong>in</strong>g dextral faults (e.g., Dibblee, 1980b, 1994), or regional north–south contraction<br />

(Bartley et al., 1990). The shorten<strong>in</strong>g commonly manifests itself as a series <strong>of</strong> east–west trend<strong>in</strong>g folds <strong>in</strong><br />

lacustr<strong>in</strong>e/fluvial sedimentary rocks <strong>of</strong> <strong>the</strong> Miocene Barstow Formation, such as those exposed <strong>in</strong> <strong>the</strong><br />

Calico Ghost Town park<strong>in</strong>g lot (Tarman, 1988). The magnitude <strong>of</strong> shorten<strong>in</strong>g represented by <strong>the</strong>se folds<br />

is not well documented, <strong>and</strong> <strong>the</strong> tim<strong>in</strong>g is uncerta<strong>in</strong>. Tarman <strong>and</strong> Thompson (1988) argue that much <strong>of</strong><br />

<strong>the</strong> fold<strong>in</strong>g occurred as a consequence <strong>of</strong> transpression, <strong>and</strong> S<strong>in</strong>gleton <strong>and</strong> Gans (2008) state that a<br />

constra<strong>in</strong><strong>in</strong>g bend <strong>in</strong> <strong>the</strong> Calico fault has caused <strong>the</strong> fold<strong>in</strong>g. Jessey <strong>and</strong> Yamashiro (1988) suggest that<br />

transpression was also responsible for a reverse fault mapped <strong>in</strong> <strong>the</strong> northwestern Calico Mounta<strong>in</strong>s.<br />

S<strong>in</strong>gleton <strong>and</strong> Gans (2008) support <strong>the</strong> hypo<strong>the</strong>sized thrust<strong>in</strong>g <strong>and</strong> suggest <strong>the</strong> Calico fault may have<br />

undergone at least one kilometer <strong>of</strong> reverse movement (north side up).<br />

Occurrence<br />

Silver-Barite <strong>M<strong>in</strong>eralization</strong><br />

Calico District<br />

The bulk <strong>of</strong> silver production from <strong>the</strong> central Mojave Desert has come from <strong>the</strong> Calico District <strong>and</strong><br />

much <strong>of</strong> that from m<strong>in</strong>es with<strong>in</strong> or near Wall Street Canyon. Epigenetic silver–barite ve<strong>in</strong>s occur with<strong>in</strong><br />

<strong>the</strong> Early Miocene Pickh<strong>and</strong>le Formation (upper plate Waterman Hills detachment fault). The Pickh<strong>and</strong>le<br />

Formation is composed <strong>of</strong> flows <strong>of</strong> dacite to rhyodacite composition, associated tuffs, <strong>and</strong> volcanic<br />

breccias. All barite m<strong>in</strong>eralization is localized with<strong>in</strong> northwest trend<strong>in</strong>g (N25-75°W) faults which<br />

crosscut <strong>the</strong> gently dipp<strong>in</strong>g volcanic rocks at steep angles. Offset along fault planes is small, generally<br />

less than a few meters. Ve<strong>in</strong>s dip generally to <strong>the</strong> southwest, but those <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn portion <strong>of</strong> <strong>the</strong><br />

district commonly dip to <strong>the</strong> nor<strong>the</strong>ast. These structural attitudes led Dibblee (1970) to propose that <strong>the</strong><br />

Calico Mounta<strong>in</strong> block is a northwest-trend<strong>in</strong>g anticl<strong>in</strong>e. <strong>Ore</strong> m<strong>in</strong>erals have been deposited with<strong>in</strong> open<br />

space <strong>and</strong> fill cavities <strong>in</strong> breccia. Barite crystals are euhedral, <strong>and</strong> <strong>of</strong>ten one centimeter or more <strong>in</strong><br />

length. In many ve<strong>in</strong>s <strong>the</strong> barite has been brecciated <strong>and</strong> <strong>the</strong> <strong>in</strong>terstices filled by iron oxides (magnetite<br />

<strong>and</strong> hematite) <strong>and</strong> sulfides. The near surface, oxidized portion <strong>of</strong> <strong>the</strong> ve<strong>in</strong>s yielded embolite (Ag (Br, Cl))<br />

with lesser chlorargyrite, cerargyrite <strong>and</strong> native silver. Primary sulfides encountered at depth were<br />

below cut<strong>of</strong>f grade <strong>and</strong> rarely m<strong>in</strong>ed.<br />

Three ve<strong>in</strong> types have been recognized with gradations between all types (Jessey, 1986). Monom<strong>in</strong>eralic<br />

ve<strong>in</strong>s <strong>of</strong> white barite (Fig. 4a) lack<strong>in</strong>g any alteration are rare, occurr<strong>in</strong>g generally to <strong>the</strong> northwest <strong>of</strong><br />

Wall Street Canyon. These ve<strong>in</strong>s represent <strong>the</strong> earliest stage <strong>of</strong> m<strong>in</strong>eralization.


Ve<strong>in</strong>s with comb-textured barite l<strong>in</strong><strong>in</strong>g <strong>the</strong> walls <strong>and</strong> a mixture <strong>of</strong> jasperoid <strong>and</strong> rarer magnetite,<br />

hematite, <strong>and</strong> magnesium oxides fill<strong>in</strong>g <strong>the</strong> <strong>in</strong>terstices are more common (Fig. 4b). These ve<strong>in</strong>s<br />

represent <strong>the</strong> second stage <strong>of</strong> m<strong>in</strong>eralization. Although silver is present, <strong>the</strong> ve<strong>in</strong>s generally assay at less<br />

than 1 oz/ton.<br />

Also common are "black-matrix" ve<strong>in</strong>s comprised <strong>of</strong> brecciated <strong>and</strong> partially replaced barite fragments<br />

<strong>in</strong> a matrix <strong>of</strong> iron <strong>and</strong> manganese oxides <strong>and</strong> sulfides (Fig. 4c <strong>and</strong> 4d). Magnetite occurs locally, with<br />

partial to total alteration to hematite. A variety <strong>of</strong> undifferentiated manganese oxide species are also<br />

present. Sulfides are rarer. They consist <strong>of</strong> pyrite <strong>and</strong> galena with trace chalcopyrite <strong>and</strong> tennantite.<br />

Silver assays as high as 1100 ounces per ton have been reported, but 3–5 oz/ton is closer to <strong>the</strong> norm.<br />

The silver-bear<strong>in</strong>g species is uncerta<strong>in</strong>. Samples <strong>of</strong> high grade silver ore were exam<strong>in</strong>ed <strong>and</strong> found to<br />

conta<strong>in</strong> a high proportion <strong>of</strong> galena suggest<strong>in</strong>g argentiferous galena; however, o<strong>the</strong>r samples conta<strong>in</strong>ed<br />

acanthite (silver sulfide) <strong>and</strong> native silver.<br />

(a) (b)<br />

(c) (d)<br />

Figure 4. (a) Barite ve<strong>in</strong> lack<strong>in</strong>g sulfides or oxides; (b) comb-structured barite (white) with younger iron <strong>and</strong> Mg<br />

oxides (dark) l<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> ve<strong>in</strong>; (c) sulfide/oxide m<strong>in</strong>erals (dark) brecciat<strong>in</strong>g <strong>and</strong> replac<strong>in</strong>g barite<br />

(white); <strong>and</strong> (d) photomicrograph <strong>of</strong> barite (gray) ve<strong>in</strong>ed <strong>and</strong> partially replaced by iron oxides <strong>and</strong> sulfides<br />

(white).


Propylitic alteration (chlorite+calcite±epidote) is <strong>the</strong> most pervasive <strong>and</strong> readily recognizable form <strong>of</strong><br />

alteration <strong>in</strong> <strong>the</strong> district. The alteration is widespread <strong>and</strong> commonly not proximal to barite ve<strong>in</strong>s.<br />

Silicification, consist<strong>in</strong>g <strong>of</strong> f<strong>in</strong>e-gra<strong>in</strong>ed chalcedony <strong>and</strong> jasperoid is more closely associated with <strong>the</strong><br />

silver-barite m<strong>in</strong>eralization. Payne <strong>and</strong> Glass (1987) also report hydro<strong>the</strong>rmal alteration <strong>of</strong> amphibole to<br />

celadonite. Local kaol<strong>in</strong>ization is present <strong>in</strong> host rocks conta<strong>in</strong><strong>in</strong>g phenocrysts <strong>of</strong> plagioclase.<br />

Oxidized barite ve<strong>in</strong>s are thought to represent <strong>the</strong> supergene equivalent <strong>of</strong> <strong>the</strong> black matrix barite ve<strong>in</strong>s.<br />

They are easily recognized by <strong>the</strong> brick red alteration adjacent to <strong>and</strong> <strong>in</strong>timately associated with <strong>the</strong><br />

barite. The alteration consists <strong>of</strong> jasperoid <strong>and</strong> secondary, f<strong>in</strong>e-gra<strong>in</strong>ed hematite. Most primary sulfides<br />

have been replaced, with only occasional, heavily corroded, pyrite rema<strong>in</strong><strong>in</strong>g. Galena has altered to<br />

cerrusite. Magnetite has been replaced by hematite, leav<strong>in</strong>g pseudomorphs <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al magnetite<br />

crystals. Secondary silver m<strong>in</strong>erals, particularly embolite <strong>and</strong> cerargyrite, are present <strong>in</strong> some ve<strong>in</strong>s but<br />

absent <strong>in</strong> o<strong>the</strong>rs. Silver grades for <strong>the</strong> oxidized ve<strong>in</strong>s <strong>of</strong> Wall Street Canyon are quite high, exceed<strong>in</strong>g 10<br />

oz/ton.<br />

Barstow Formation<br />

Fletcher (1986) studied <strong>the</strong> silver–barite<br />

m<strong>in</strong>eralization <strong>of</strong> <strong>the</strong> Middle Miocene Barstow<br />

Formation. He identified two separate tabular ore<br />

bodies: <strong>the</strong> Waterloo deposit, north <strong>of</strong> <strong>the</strong> Calico<br />

fault, <strong>and</strong> <strong>the</strong> Langtry, 2.5 kilometers to <strong>the</strong> west <strong>and</strong><br />

on <strong>the</strong> south side <strong>of</strong> <strong>the</strong> Calico fault. He argued that<br />

<strong>the</strong> deposits were once part <strong>of</strong> a s<strong>in</strong>gle ore body that<br />

was subsequently <strong>of</strong>fset by right slip along <strong>the</strong> Calico<br />

fault. The Barstow Formation <strong>in</strong> this area is<br />

composed <strong>of</strong> lacustr<strong>in</strong>e s<strong>and</strong>stones, siltstones <strong>and</strong><br />

mudstones with m<strong>in</strong>or <strong>in</strong>terbedded volcaniclastic<br />

s<strong>and</strong>stones. Fletcher reports that barite occurs as<br />

dissem<strong>in</strong>ated gra<strong>in</strong>s <strong>and</strong> cement<strong>in</strong>g material with<strong>in</strong><br />

siltstone (99%) (Fig. 5) <strong>and</strong> more rarely as ve<strong>in</strong>lets (1%). The ve<strong>in</strong>lets have a r<strong>and</strong>om orientation <strong>in</strong><br />

contrast to <strong>the</strong> northwest strike <strong>of</strong> those <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g Pickh<strong>and</strong>le volcanics.<br />

Alteration consists <strong>of</strong> bleach<strong>in</strong>g that most commonly manifests itself as K-feldspar replacement <strong>of</strong><br />

detrital feldspar gra<strong>in</strong>s. Although not termed as such by Fletcher, this alteration appears similar to <strong>the</strong><br />

pervasive potassic alteration associated with many epi<strong>the</strong>rmal precious metal deposits. The alteration is<br />

correlative with an early stage <strong>of</strong> barite-quartz m<strong>in</strong>eralization. Intense silicification, most commonly as<br />

coll<strong>of</strong>orm b<strong>and</strong>s <strong>of</strong> jasperoidal chalcedony with m<strong>in</strong>or recrystallized quartz is also present. For a more<br />

detailed discussion <strong>of</strong> <strong>the</strong> deposits see Fletcher (1986).<br />

Waterman Hills<br />

Figure 5. Photomicrograph <strong>of</strong> dissem<strong>in</strong>ated barite<br />

(white) <strong>in</strong> siltstone (from Fletcher, 1986).<br />

Silver ore <strong>in</strong> <strong>the</strong> Waterman Hills occurs <strong>in</strong> two northwest-strik<strong>in</strong>g ve<strong>in</strong>s that can be traced for a distance<br />

<strong>of</strong> over 500 meters along strike (Irel<strong>and</strong>, 1993). The ve<strong>in</strong>s lie with<strong>in</strong> a sequence <strong>of</strong> volcaniclastic<br />

sedimentary rocks <strong>and</strong> volcanics <strong>of</strong> uncerta<strong>in</strong> age. Dibblee (1952) correlated <strong>the</strong> rocks with <strong>the</strong> Miocene<br />

Pickh<strong>and</strong>le Formation. However, <strong>the</strong> more silicic nature <strong>of</strong> <strong>the</strong> volcanics (rhyolites) <strong>and</strong> <strong>the</strong> dist<strong>in</strong>ct<br />

northwest strike <strong>of</strong> <strong>the</strong> sedimentary units suggest that correlation is tentative. The ve<strong>in</strong>s, while


concordant to bedd<strong>in</strong>g <strong>of</strong> <strong>the</strong> volcaniclastic sedimentary rocks at <strong>the</strong> surface, crosscut <strong>the</strong> strata <strong>in</strong><br />

underground work<strong>in</strong>gs. The Waterman Hills detachment fault crops out less than one kilometer north<br />

<strong>and</strong> south <strong>of</strong> <strong>the</strong> barite ve<strong>in</strong>s. Projections from surface outcrops <strong>in</strong>dicate <strong>the</strong> fault contact should lie less<br />

than 150 meters below <strong>the</strong> present erosional surface. <strong>M<strong>in</strong>eralization</strong> resembles that <strong>of</strong> <strong>the</strong> Calico<br />

District where<strong>in</strong> coarse-gra<strong>in</strong>ed barite has been brecciated <strong>and</strong> replaced by a matrix <strong>of</strong> iron oxides. Little<br />

is known about <strong>the</strong> silver occurrence <strong>and</strong> no sulfides were observed ei<strong>the</strong>r on <strong>the</strong> dumps or <strong>in</strong><br />

underground work<strong>in</strong>gs.<br />

Mitchel Range<br />

The Waterman Gneiss (lower plate <strong>of</strong> <strong>the</strong> Waterman Hills detachment fault) hosts a group <strong>of</strong> northwest<br />

trend<strong>in</strong>g barite ve<strong>in</strong>s at <strong>the</strong> sou<strong>the</strong>ast end <strong>of</strong> <strong>the</strong> Mitchel Range. The ve<strong>in</strong>s crosscut <strong>the</strong> Waterman<br />

Gneiss at steep angles <strong>and</strong> postdate a prom<strong>in</strong>ent mylonitic fabric. Ve<strong>in</strong> marg<strong>in</strong>s are slickensided,<br />

suggest<strong>in</strong>g emplacement with<strong>in</strong> fault zones. Barite occurs as coarse-gra<strong>in</strong>ed rosette-shaped aggregates,<br />

<strong>of</strong>ten heavily iron sta<strong>in</strong>ed. M<strong>in</strong>or iron oxides are present, as are trace amounts <strong>of</strong> galena. No silver<br />

m<strong>in</strong>eralization was observed <strong>and</strong> <strong>the</strong> limited extent <strong>of</strong> <strong>the</strong> work<strong>in</strong>gs suggests ore grades were subeconomic.<br />

Mt. General<br />

The silver–barite m<strong>in</strong>eralization <strong>of</strong> <strong>the</strong> Mt. General area rema<strong>in</strong>s <strong>the</strong> most enigmatic feature <strong>of</strong> <strong>the</strong><br />

Calico District. Mapp<strong>in</strong>g suggests host rocks are similar to those <strong>in</strong> <strong>the</strong> Waterman Hills. Stratigraphic<br />

position <strong>of</strong> <strong>the</strong>se rocks is uncerta<strong>in</strong>. Perhaps <strong>the</strong> most unusual aspect <strong>of</strong> <strong>the</strong> Mt. General occurrence is<br />

<strong>the</strong> barite. The barite occurs with<strong>in</strong> <strong>in</strong>dist<strong>in</strong>ct northwest-trend<strong>in</strong>g shear zones, which lack cont<strong>in</strong>uity<br />

along strike. <strong>M<strong>in</strong>eralization</strong> has been extensively sheared <strong>and</strong> brecciated. Barite is dark <strong>and</strong> cloudy,<br />

commonly with <strong>in</strong>clusions <strong>of</strong> particulate matter. Microscopic exam<strong>in</strong>ation <strong>in</strong>dicates <strong>the</strong> barite <strong>and</strong> m<strong>in</strong>or<br />

associated calcite have undergone extensive recrystallization. Iron sta<strong>in</strong><strong>in</strong>g is common <strong>in</strong> underground<br />

work<strong>in</strong>gs, but iron oxides occur <strong>in</strong> only trace amounts. The very limited underground work<strong>in</strong>gs <strong>and</strong><br />

scattered prospect pits suggest low silver grades.<br />

Paragenesis<br />

Detailed paragenetic studies <strong>of</strong> <strong>the</strong> Calico ve<strong>in</strong> m<strong>in</strong>eralization (Jessey, 1992) <strong>and</strong> dissem<strong>in</strong>ated ores <strong>in</strong><br />

<strong>the</strong> Barstow Formation (Fletcher, 1986) have shown only m<strong>in</strong>or differences <strong>in</strong> <strong>the</strong> sequence <strong>of</strong> ore<br />

m<strong>in</strong>eral deposition (Fig. 6). Less detailed studies <strong>of</strong> m<strong>in</strong>eralization <strong>in</strong> <strong>the</strong> Waterman Hills, Mitchell Range<br />

<strong>and</strong> Mt. General <strong>in</strong>dicate a similar, albeit less complex, paragenesis.<br />

To generalize, barite <strong>and</strong> chalcedony/quartz were deposited early (Early Barite stage). This was followed<br />

by an episode <strong>of</strong> pervasive silicification (<strong>in</strong>itial stage <strong>of</strong> Silver–Silicification) <strong>and</strong> subsequently by<br />

hematite, magnetite <strong>and</strong> manganese oxides. A variety <strong>of</strong> sulfides followed <strong>the</strong> oxides (late stage Silver–<br />

Silicification). The Late Stage Alteration <strong>in</strong>cluded secondary iron oxides, silver chlorides, <strong>and</strong> calcite<br />

deposited by supergene fluids.<br />

Fletcher (1986) <strong>and</strong> Rosso (1992) attribute <strong>the</strong> observed paragenetic sequence to changes <strong>in</strong> fluid pH.<br />

However, <strong>the</strong> elevated sal<strong>in</strong>ity <strong>of</strong> ore fluids (see Fluid Inclusion Geo<strong>the</strong>rmometry) makes this difficult to<br />

rationalize, as sal<strong>in</strong>e fluids typically buffer reactions <strong>and</strong> resist pH change. Ano<strong>the</strong>r explanation would be<br />

a change <strong>in</strong> Eh. Early oxidiz<strong>in</strong>g ore fluids would deposit sulfates (barite) <strong>and</strong> oxides<br />

(magnetite/hematite). As conditions became more reduc<strong>in</strong>g, pyrite, galena <strong>and</strong> acanthite would form.


The overall similarity <strong>of</strong> paragenesis for <strong>the</strong> Pickh<strong>and</strong>le ve<strong>in</strong>s <strong>and</strong> Barstow dissem<strong>in</strong>ated ores is<br />

supported by <strong>the</strong> atypical nature <strong>of</strong> <strong>the</strong> paragenetic sequence (oxides early—sulfides late). Most<br />

epi<strong>the</strong>rmal deposits are characterized by early sulfide m<strong>in</strong>eralization with later deposition <strong>of</strong> oxides <strong>and</strong><br />

carbonates. As both <strong>the</strong> Calico ve<strong>in</strong>s <strong>and</strong> Waterloo/Langtry deposits are paragenetically atypical, it<br />

seems more likely <strong>the</strong>re was a s<strong>in</strong>gle evolv<strong>in</strong>g fluid responsible for ore deposition <strong>and</strong> not two unrelated<br />

events.<br />

Figure 6. Detailed paragenesis for <strong>the</strong> ve<strong>in</strong> m<strong>in</strong>eralization <strong>of</strong> <strong>the</strong> Calico District <strong>and</strong> dissem<strong>in</strong>ated ores <strong>of</strong> <strong>the</strong><br />

Barstow Formation (Waterloo/Langtry paragenesis after Fletcher, 1986).<br />

Fluid Inclusion Geo<strong>the</strong>rmometry<br />

Fluid <strong>in</strong>clusion data are summarized <strong>in</strong> Figure 7. Homogenization temperatures for barite range from<br />

160° to 310° C. Calico District barite fluid <strong>in</strong>clusions are <strong>of</strong>ten large (>50 microns) <strong>and</strong> are restricted to<br />

Type I, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> fluids were not boil<strong>in</strong>g at <strong>the</strong> time <strong>of</strong> barite crystallization. Homogenization<br />

temperatures range from 240° to 310° C <strong>and</strong> sal<strong>in</strong>ities from 2–4 wt% NaCl. Utiliz<strong>in</strong>g paragenesis, barite<br />

geo<strong>the</strong>rmometry <strong>and</strong> sal<strong>in</strong>ity, <strong>and</strong> Eh-pH relationships, Rosso (1992) calculated depth <strong>of</strong> barite<br />

emplacement at one to 1.5 kilometers. Limited analysis <strong>of</strong> quartz (not shown) has yielded<br />

homogenization temperatures similar to but slightly higher than those for barite (average 290°C).<br />

Fletcher (1986) analyzed both barite <strong>and</strong> quartz from <strong>the</strong> Waterloo <strong>and</strong> Langtry deposits with<strong>in</strong> <strong>the</strong><br />

Barstow Formation. He reported homogenization temperatures from 140° to 230°C with sal<strong>in</strong>ities <strong>of</strong> 4–6<br />

wt% NaCl. Barite <strong>in</strong>clusions were generally smaller than those from <strong>the</strong> Pickh<strong>and</strong>le ve<strong>in</strong>s <strong>and</strong> Type II<br />

<strong>in</strong>clusions, <strong>in</strong>dicative <strong>of</strong> boil<strong>in</strong>g, were common. Utiliz<strong>in</strong>g similar data <strong>and</strong> logic to that <strong>of</strong> Rosso, Fletcher<br />

(1986) calculated depth <strong>of</strong> emplacement <strong>of</strong> Barstow m<strong>in</strong>eralization at no greater than a few hundred<br />

meters.<br />

Figure 7 comb<strong>in</strong>es data for <strong>the</strong> Waterman Hills <strong>and</strong> Mitchel Range. While homogenization temperatures<br />

show considerable overlap (Waterman Hills 180° to 220° C <strong>and</strong> Mitchel Range 180-270°C) <strong>the</strong>re are<br />

significant differences between <strong>the</strong> two localities (Jessey <strong>and</strong> Tarman, 1994). Waterman Hills barite


ve<strong>in</strong>s are hosted by upper plate rocks correlative to <strong>the</strong> Miocene Pickh<strong>and</strong>le Formation (upper plate<br />

WHDF). Inclusions were <strong>the</strong> smallest observed <strong>in</strong> <strong>the</strong> central Mojave Desert (average diameter 10-15<br />

microns) <strong>and</strong> evidence for boil<strong>in</strong>g <strong>the</strong> most widespread. Although sal<strong>in</strong>ity could not be determ<strong>in</strong>ed, field<br />

observation suggests barite was emplaced at shallow depths. Mitchel Range barite was deposited <strong>in</strong><br />

ve<strong>in</strong>s cutt<strong>in</strong>g basement rocks (Waterman Gneiss) <strong>in</strong> <strong>the</strong> lower plate <strong>of</strong> <strong>the</strong> WHDF. Barite occurs as<br />

coarse-gra<strong>in</strong>ed rosette-shaped aggregates, <strong>of</strong>ten heavily iron sta<strong>in</strong>ed. Crystals are water-clear <strong>and</strong><br />

conta<strong>in</strong> large <strong>in</strong>clusions (>100 microns). There is no evidence <strong>of</strong> fluid boil<strong>in</strong>g.<br />

Figure 7. Fluid <strong>in</strong>clusion homogenization temperatures for central Mojave Desert barite occurrences (data for<br />

Waterloo/Langtry from Fletcher, 1986).<br />

Mt. General barite (not shown <strong>in</strong> Figure 7) is dark, cloudy, <strong>and</strong> yields few usable <strong>in</strong>clusions. Fur<strong>the</strong>rmore,<br />

upon heat<strong>in</strong>g <strong>the</strong> <strong>in</strong>clusions <strong>of</strong>ten fracture mak<strong>in</strong>g homogenization temperature difficult to measure.<br />

Data from a small number <strong>of</strong> observations (12) suggests <strong>the</strong> average homogenization temperature is<br />

approximately 210°C.<br />

Discussion<br />

Any model for <strong>the</strong> genesis <strong>of</strong> silver–barite m<strong>in</strong>eralization must take <strong>in</strong>to account structural <strong>and</strong><br />

stratigraphic relationships, as well as m<strong>in</strong>eral paragenesis <strong>and</strong> fluid <strong>in</strong>clusion geo<strong>the</strong>rmometry <strong>and</strong><br />

geobarometry. The first question that must be addressed is <strong>the</strong> age <strong>of</strong> m<strong>in</strong>eralization. Fletcher (1986)<br />

states that two samples <strong>of</strong> potassically altered Barstow Formation yielded K/Ar dates <strong>of</strong> 17.1 <strong>and</strong> 17.5<br />

Ma respectively. This is consistent with tim<strong>in</strong>g <strong>of</strong> deposition <strong>of</strong> <strong>the</strong> Barstow Formation.<br />

The relationship <strong>of</strong> <strong>the</strong> m<strong>in</strong>eralization to structural evolution is more problematic. S<strong>in</strong>gleton <strong>and</strong> Gans<br />

(2008) argue that unro<strong>of</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> Waterman Hills core complex occurred between 25 Ma <strong>and</strong> 19 Ma.<br />

Bartley et al. (1990) place <strong>the</strong> onset <strong>of</strong> dextral shear <strong>in</strong> <strong>the</strong> central Mojave at 19 Ma, although it is<br />

unclear if this <strong>in</strong>cludes <strong>the</strong> Calico fault. S<strong>in</strong>gleton <strong>and</strong> Gans (2008) state, however, that active dacitic


volcanism was occurr<strong>in</strong>g at <strong>the</strong> sou<strong>the</strong>ast end <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s as recently as 16. 5 Ma. This is<br />

difficult to reconcile with a transpressive environment. Such a sett<strong>in</strong>g would result <strong>in</strong> compressional<br />

stress <strong>in</strong>hibit<strong>in</strong>g <strong>the</strong> rise <strong>of</strong> silicic magmas to <strong>the</strong> surface. It seems more likely that dacitic volcanism was<br />

related to extension dur<strong>in</strong>g <strong>the</strong> wan<strong>in</strong>g stages <strong>of</strong> detachment. Fur<strong>the</strong>rmore, <strong>the</strong> Waterloo <strong>and</strong> Langtry<br />

deposits are cleanly <strong>of</strong>fset 2–3 kilometers by <strong>the</strong> Calico fault (Fletcher, 1986). This must have occurred<br />

after <strong>the</strong> ore was emplaced at 17–17.5 Ma. Had dextral shear been contemporaneous with ore<br />

emplacement it is expected <strong>the</strong> ore bodies would be elongated or “strung out” parallel to that fault, or<br />

that at least pods <strong>of</strong> m<strong>in</strong>eralization would be found scattered between <strong>the</strong> two ore bodies. Nei<strong>the</strong>r is<br />

<strong>the</strong> case; field evidence supports <strong>the</strong> emplacement <strong>of</strong> m<strong>in</strong>eralization before <strong>the</strong> Calico fault underwent<br />

right-slip motion.<br />

Figure 8. Cartoon model for silver-barite m<strong>in</strong>eralization<br />

<strong>in</strong> <strong>the</strong> central Mojave.<br />

Figure 8 is a suggested model for silver-barite<br />

m<strong>in</strong>eralization <strong>in</strong> <strong>the</strong> central Mojave. Nor<strong>the</strong>ast<br />

transport <strong>of</strong> <strong>the</strong> detached block from 25 to 19 Ma<br />

created a l<strong>in</strong>ear northwest–sou<strong>the</strong>ast-trend<strong>in</strong>g<br />

bas<strong>in</strong>. Extension resulted <strong>in</strong> volcanism (Pickh<strong>and</strong>le<br />

Formation) followed by erosion <strong>and</strong> deposition <strong>of</strong><br />

<strong>the</strong> Barstow Formation. Extension resumed around<br />

17.5 Ma <strong>and</strong> cont<strong>in</strong>ued until 16.5 Ma (S<strong>in</strong>gleton <strong>and</strong><br />

Gans, 2008. Volcanism occurred <strong>in</strong> <strong>the</strong> eastern<br />

Calico Mounta<strong>in</strong>s <strong>and</strong> heat from <strong>the</strong> pluton(s) drove<br />

a convective geo<strong>the</strong>rmal system to <strong>the</strong> west.<br />

Meteoric water moved downward along <strong>the</strong><br />

detachment fault surface, was heated, <strong>and</strong> moved<br />

convectively upward along listric faults <strong>in</strong> <strong>the</strong><br />

overly<strong>in</strong>g plate. As <strong>the</strong> fluid cooled or was diluted,<br />

ore deposition occurred with<strong>in</strong> <strong>the</strong> Pickh<strong>and</strong>le<br />

Formation. Evidence suggests ore deposition <strong>in</strong> <strong>the</strong><br />

overly<strong>in</strong>g Barstow Formation was<br />

contemporaneous. This requires that fluids rose locally along faults <strong>in</strong>to <strong>the</strong> Barstow Formation.<br />

Impermeable horizons (shales?) would have prevented fluid migration unless <strong>the</strong>y were breached by<br />

fault<strong>in</strong>g. The nature <strong>of</strong> fault<strong>in</strong>g <strong>in</strong> <strong>the</strong> Barstow Formation is uncerta<strong>in</strong>. Fletcher (1986) states that 1% <strong>of</strong><br />

all Barstow m<strong>in</strong>eralization is ve<strong>in</strong> controlled, but that <strong>the</strong> ve<strong>in</strong>s have a r<strong>and</strong>om orientation, unlike <strong>the</strong><br />

northwest strike <strong>of</strong> all Pickh<strong>and</strong>le ve<strong>in</strong>s. Perhaps extension occurred when <strong>the</strong> lower Barstow was only<br />

poorly <strong>in</strong>durated <strong>and</strong> hosts for m<strong>in</strong>eralization were porous <strong>and</strong> brecciated sediments <strong>of</strong> <strong>the</strong> Barstow<br />

Formation.<br />

Right oblique-slip on <strong>the</strong> Calico fault <strong>the</strong>n <strong>of</strong>fset m<strong>in</strong>eral zones developed <strong>in</strong> <strong>the</strong> Barstow Formation 2–3<br />

kilometers. In addition, transpression caused reverse fault<strong>in</strong>g <strong>of</strong> <strong>the</strong> block north <strong>of</strong> <strong>the</strong> Calico fault<br />

result<strong>in</strong>g <strong>in</strong> uplift <strong>and</strong> anticl<strong>in</strong>al arch<strong>in</strong>g <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s (Dibblee, 1980; S<strong>in</strong>gleton <strong>and</strong> Gans,<br />

2008). This model agrees with Rosso et al. (1992) <strong>and</strong> Fletcher (1986) who argue that Pickh<strong>and</strong>le<br />

m<strong>in</strong>eralization was emplaced at depths <strong>of</strong> one–1.5 kilometers while m<strong>in</strong>eralization <strong>in</strong> <strong>the</strong> Barstow<br />

Formation was deposited at depths <strong>of</strong> less than a few hundred meters. The present topographic<br />

relationship requires at least a kilometer <strong>of</strong> uplift to account for Pickh<strong>and</strong>le silver–barite ve<strong>in</strong>s at <strong>the</strong><br />

head <strong>of</strong> Wall St Canyon situated 300 meters above dissem<strong>in</strong>ated m<strong>in</strong>eralization <strong>of</strong> <strong>the</strong> Waterloo deposit<br />

<strong>in</strong> <strong>the</strong> Barstow Formation.


While <strong>the</strong> above model fits much <strong>of</strong> <strong>the</strong> analytical data <strong>and</strong> field observation, some questions<br />

none<strong>the</strong>less rema<strong>in</strong>. Barite m<strong>in</strong>eralization <strong>in</strong> <strong>the</strong> Mitchel Range occurs <strong>in</strong> northwest-trend<strong>in</strong>g ve<strong>in</strong>s<br />

with<strong>in</strong> Waterman Gneiss (lower plate <strong>of</strong> <strong>the</strong> Waterman Hills detachment fault). How can this be<br />

reconciled with <strong>the</strong> model? Fur<strong>the</strong>rmore, Dokka (1986) states that <strong>the</strong> Pickh<strong>and</strong>le Formation has<br />

undergone less than 5% extension, a conclusion that led him to exclude rocks north <strong>of</strong> <strong>the</strong> Calico fault<br />

from <strong>the</strong> extended terra<strong>in</strong> <strong>of</strong> <strong>the</strong> central Mojave Desert. If <strong>the</strong> Calico Mounta<strong>in</strong>s have undergone<br />

m<strong>in</strong>imal extension, how was <strong>the</strong> fault-controlled open space for <strong>the</strong> Pickh<strong>and</strong>le m<strong>in</strong>eralization created?<br />

The paragenetic sequence requires that ore fluids were <strong>in</strong>itially oxidiz<strong>in</strong>g (barite/hematite/magnetite),<br />

becom<strong>in</strong>g more reduced (pyrite, o<strong>the</strong>r sulfides) over time. What caused <strong>the</strong> Eh drop <strong>and</strong> why did it<br />

occur late <strong>in</strong> <strong>the</strong> ore fluid evolution?<br />

References Cited<br />

Bartley, J.M., Glazner, A.F., <strong>and</strong> Schermer, E.R., 1990, North-south contraction <strong>of</strong> <strong>the</strong> Mojave block <strong>and</strong><br />

strike-slip tectonics <strong>in</strong> sou<strong>the</strong>rn California: Science, v. 248, p. 1398-1401.<br />

Bowen, O.E., 1954, <strong>Geology</strong> <strong>and</strong> m<strong>in</strong>eral deposits <strong>of</strong> <strong>the</strong> Barstow Quadrangle, San Bernard<strong>in</strong>o County,<br />

CA: California Division <strong>of</strong> M<strong>in</strong>es <strong>and</strong> <strong>Geology</strong> Bullet<strong>in</strong> 165, p. 185.<br />

Burke, D.B., Hillhouse, J.W., McKee, E.H., Miller, S.T., <strong>and</strong> Morton, J.L., 1982, Cenozoic rocks <strong>in</strong> <strong>the</strong><br />

Barstow bas<strong>in</strong> area <strong>of</strong> sou<strong>the</strong>rn California—Stratigraphic relations, radiometric ages, <strong>and</strong> paleomagnetism:<br />

U.S. Geological Survey Bullet<strong>in</strong> 1529-E, p. 1-16.<br />

Byers, F.M., 1960, <strong>Geology</strong> <strong>of</strong> <strong>the</strong> Alvord Mounta<strong>in</strong> Quadrangle, San Bernard<strong>in</strong>o County, California:<br />

U.S. Geological Survey Bullet<strong>in</strong> 1089A, 71 p.<br />

Cox, B.F., <strong>and</strong> Wilshire, H.G., 1993, Geologic map <strong>of</strong> <strong>the</strong> area around <strong>the</strong> Nebo Annex, Mar<strong>in</strong>e Corps<br />

Logistics Base, Barstow, California: U.S. Geological Survey Open-File Report 93-568, 36 p.<br />

DeLeen, J., 1950, <strong>Geology</strong> <strong>and</strong> m<strong>in</strong>eral deposits <strong>of</strong> <strong>the</strong> Calico M<strong>in</strong><strong>in</strong>g District: Unpublished Master's<br />

Thesis, University <strong>of</strong> California-Berkeley, 86 p.<br />

Dibblee, T. W., Jr., 1967, Areal geology <strong>of</strong> <strong>the</strong> western Mojave Desert, California: U. S. Geological<br />

Survey Pr<strong>of</strong>. Paper 522, 153 p.<br />

Dibblee, T. W., Jr., 1970, Geologic map <strong>of</strong> <strong>the</strong> Daggett Quadrangle, San Bernard<strong>in</strong>o County, California:<br />

U. S. Geological Survey Misc. Geological Inv. Map I-592.<br />

Dibblee, T. W., Jr., 1980a, Cenozoic rock units <strong>of</strong> <strong>the</strong> Mojave Desert, <strong>in</strong> Fife, D.L., <strong>and</strong> Brown, A.R.,<br />

eds., <strong>Geology</strong> <strong>and</strong> m<strong>in</strong>eral wealth <strong>of</strong> <strong>the</strong> California desert: Dibblee Volume: Santa Ana, California,<br />

South Coast Geological Society, p. 41-68.<br />

Dibblee, T. W., Jr., 1980b , Geologic structure <strong>of</strong> <strong>the</strong> Mojave Desert, <strong>in</strong> Fife, D.L., <strong>and</strong> Brown, A.R., eds.,<br />

<strong>Geology</strong> <strong>and</strong> m<strong>in</strong>eral wealth <strong>of</strong> <strong>the</strong> California desert: Dibblee Volume: Santa Ana, California, South<br />

Coast Geological Society, p. 69-100.<br />

Dokka. R.K., 1979, Styles <strong>and</strong> tim<strong>in</strong>g <strong>of</strong> late Cenozoic fault<strong>in</strong>g, central Mojave Desert, California:<br />

Geological Society <strong>of</strong> America Abstracts with Programs, Annual Meet<strong>in</strong>g, p. 414.


Dokka. R.K., 1983, Displacements on late Cenozoic strike-slip faults <strong>of</strong> <strong>the</strong> central Mojave Desert,<br />

California: <strong>Geology</strong>, v. 11, p. 305-308.<br />

Dokka. R.K., 1986, Patterns <strong>and</strong> modes <strong>of</strong> early Miocene crustal extension, central Mojave Desert,<br />

California, <strong>in</strong> Mayer, L., ed., 1986, Extensional tectonics <strong>of</strong> <strong>the</strong> southwestern United States: A<br />

perspective <strong>in</strong> processes <strong>and</strong> k<strong>in</strong>ematics: Geological Society <strong>of</strong> America Special Paper 208, p. 75-95.<br />

Dokka. R.K., 1989, The Mojave extensional belt <strong>of</strong> sou<strong>the</strong>rn California: Tectonics, v. 8, p. 363-390.<br />

Dokka. R.K., <strong>and</strong> Travis, C.J., 1990a, Late Cenozoic strike- slip fault<strong>in</strong>g <strong>in</strong> <strong>the</strong> Mojave Desert, California:<br />

Tectonics, v. 9, p. 311-340.<br />

Dokka. R.K., <strong>and</strong> Travis, C.J., 1990b, Role <strong>of</strong> <strong>the</strong> Eastern California shear zone <strong>in</strong> accommodat<strong>in</strong>g<br />

Pacific–North American plate motion: Geophysical Research Letters, v. 17, p. 1323-1326.<br />

Dokka. R.K., <strong>and</strong> Woodburne, M.O., 1986, Mid-Tertiary extensional tectonics <strong>and</strong> sedimentation, central<br />

Mojave Desert, California: L.S.U. Publications <strong>in</strong> <strong>Geology</strong> <strong>and</strong> Geophysics-Tectonics <strong>and</strong><br />

Sedimentation, no. 1, 55p.<br />

Fletcher, D. I., 1986, <strong>Geology</strong> <strong>and</strong> genesis <strong>of</strong> <strong>the</strong> Waterloo <strong>and</strong> Langtry silver-barite deposits, California:<br />

Unpublished Ph.D. Dissertation, Stanford University, 158 p.<br />

Fletcher, J.M., Bartley, J.M., Mart<strong>in</strong>, M.W., Glazner, A.F., <strong>and</strong> Walker, J.D., 1995, Large-magnitude<br />

cont<strong>in</strong>ental extension: An example from <strong>the</strong> Central Mojave metamorphic core complex: Geological<br />

Society <strong>of</strong> America Bullet<strong>in</strong>, v. 107, p. 1468-1483.<br />

Glazner, A. F., Bartley, J. M., <strong>and</strong> Walker, J. D., 1988, <strong>Geology</strong> <strong>of</strong> <strong>the</strong> Waterman Hills detachment fault,<br />

central Mojave Desert, California <strong>in</strong> D.L. Weide <strong>and</strong> M.L. Faber eds., This Extended L<strong>and</strong> Fieldtrip<br />

Guidebook: Las Vegas, Nevada, Cordilleran Publishers, p. 225-237.<br />

Glazner, A. F., Bartley, J. M., <strong>and</strong> Walker, J. D., 1989, Magnitude <strong>and</strong> significance <strong>of</strong> Miocene crustal<br />

extension <strong>in</strong> <strong>the</strong> central Mojave Desert, California: <strong>Geology</strong>, v. 17, p. 50-53.<br />

Glazner, A.F., Walker, J.D., Bartley, J.M., <strong>and</strong> Fletcher, J.M., 2002, Cenozoic evolution <strong>of</strong> <strong>the</strong> Mojave<br />

block <strong>of</strong> sou<strong>the</strong>rn California, <strong>in</strong> Glazner, A.F., et al., eds., Geological evolution <strong>of</strong> <strong>the</strong> Mojave Desert<br />

<strong>and</strong> southwestern Bas<strong>in</strong> <strong>and</strong> Range: Geological Society <strong>of</strong> America Memoir 195, p. 19-41.<br />

Irel<strong>and</strong>, Mary C., 1993, Barite m<strong>in</strong>eralization, alteration <strong>and</strong> geochemistry <strong>of</strong> <strong>the</strong> Waterman M<strong>in</strong>e, San<br />

Bernard<strong>in</strong>o County, CA: Unpublished Senior Thesis, California Polytechnic Univ.-Pomona, 40 p.<br />

Jessey, D. R., 1986, A geologic <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> Leviathan-Silver Bow property, Calico m<strong>in</strong><strong>in</strong>g<br />

district, San Bernard<strong>in</strong>o County California: Geological Society <strong>of</strong> America Abstracts with Programs,<br />

Cordilleran Section, p. 121.<br />

Jessey, D. R., <strong>and</strong> Tarman, Donald W., 1988, <strong>Geology</strong> <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s <strong>in</strong> Geologic Excursions <strong>in</strong><br />

<strong>the</strong> Eastern Mojave Desert, Lori Gask<strong>in</strong> editor: National Association <strong>of</strong> <strong>Geology</strong> Teachers Far<br />

Western Section, Spr<strong>in</strong>g Conference, p 1-20.


Jessey, D. R., <strong>and</strong> Tarman, Donald W., 1994, Implications <strong>of</strong> fluid <strong>in</strong>clusion P/T data from Miocene<br />

hydro<strong>the</strong>rmal barite deposits, central Mojave Desert, San Bernard<strong>in</strong>o County, California: Quarterly<br />

<strong>of</strong> San Bernard<strong>in</strong>o County Museum Association, 1994, v. 41, p. 22-23.<br />

Jessey, D. R., <strong>and</strong> Yamashiro, J.A., 1988, Structure <strong>and</strong> stratigraphy <strong>of</strong> a portion <strong>of</strong> <strong>the</strong> western Calico<br />

Mounta<strong>in</strong>s <strong>in</strong> Geologic Excursions <strong>in</strong> <strong>the</strong> Eastern Mojave Desert, Lori Gask<strong>in</strong> editor: National<br />

Association <strong>of</strong> <strong>Geology</strong> Teachers Far Western Section, Spr<strong>in</strong>g Conference, p 57-68.<br />

McCulloh, T. H., 1952, <strong>Geology</strong> <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn half <strong>of</strong> <strong>the</strong> Lane Mounta<strong>in</strong> Quadrangle, California:<br />

Unpublished Ph.D. Dissertation, University <strong>of</strong> California-Los Angeles, 182 p.<br />

McCulloh, T. H., 1965, Geologic map <strong>of</strong> <strong>the</strong> Nebo <strong>and</strong> Yermo Quadrangles, San Bernard<strong>in</strong>o County,<br />

California: U. S. Geological Survey Open-File Map OFR-65-107.<br />

Mero, A. L., 1972, <strong>Geology</strong> <strong>and</strong> ore deposits <strong>of</strong> <strong>the</strong> south-central Calico Mounta<strong>in</strong>s: Unpublished<br />

Master's Thesis, Calif. State University-San Diego, 74 p.<br />

Payne, J. G., <strong>and</strong> Glass, J. R., 1987, <strong>Geology</strong> <strong>and</strong> silver deposits <strong>of</strong> <strong>the</strong> Calico district, San Bernard<strong>in</strong>o<br />

County, California: Guidebook for field trips to bulk m<strong>in</strong>eable precious metal deposits, Geological<br />

Society <strong>of</strong> Nevada, pp. 31-44.<br />

Rosso, K. M., 1992, Fluid <strong>in</strong>clusion micro<strong>the</strong>rmometry <strong>and</strong> geochemistry <strong>of</strong> <strong>the</strong> silver-barite<br />

m<strong>in</strong>eralization <strong>in</strong> <strong>the</strong> Calico m<strong>in</strong><strong>in</strong>g district, San Bernard<strong>in</strong>o County, CA: Unpublished Senior<br />

Thesis, California Polytechnic Univ.-Pomona, 32 p.<br />

Rosso, K. M., Jessey, D. R., <strong>and</strong> Tarman, D. W., 1992, Fluid <strong>in</strong>clusion geo<strong>the</strong>rmometry <strong>and</strong> geochemistry<br />

<strong>of</strong> silver-barite m<strong>in</strong>eralization <strong>in</strong> <strong>the</strong> Pickh<strong>and</strong>le Formation, Calico Mounta<strong>in</strong>s, San Bernard<strong>in</strong>o<br />

County, California: Geological Society <strong>of</strong> America Abstracts with Programs, Annual Meet<strong>in</strong>g, p. 79.<br />

S<strong>in</strong>gleton, J.S. <strong>and</strong> Gans, P.B., 2008, Structural <strong>and</strong> stratigraphic evolution <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s:<br />

Implications for early Miocene extension <strong>and</strong> Neogene transpression <strong>in</strong> <strong>the</strong> central Mojave Desert,<br />

California: Geosphere, v. 4, p. 459-479.<br />

Smith, G. H., 1943, The history <strong>of</strong> <strong>the</strong> Comstock Lode 1850-1920: Nevada Bureau <strong>of</strong> M<strong>in</strong>es Bullet<strong>in</strong> 37,<br />

305 p.<br />

Tarman, D. W., 1988, Synopsis <strong>of</strong> <strong>the</strong> stratigraphy <strong>and</strong> structure <strong>of</strong> <strong>the</strong> central Mojave Desert, <strong>in</strong> Geologic<br />

Excursions <strong>in</strong> <strong>the</strong> Eastern Mojave Desert, Lori Gask<strong>in</strong> editor: National Association <strong>of</strong> <strong>Geology</strong><br />

Teachers Far Western Section, Spr<strong>in</strong>g Conference, p 21-30.<br />

Tarman, D. W., <strong>and</strong> Thompson, D.M., 1988, Fold<strong>in</strong>g <strong>of</strong> <strong>the</strong> Barstow Formation <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn Calico<br />

Mounta<strong>in</strong>s, <strong>in</strong> Geologic Excursions <strong>in</strong> <strong>the</strong> Eastern Mojave Desert, Lori Gask<strong>in</strong> editor: National<br />

Association <strong>of</strong> <strong>Geology</strong> Teachers Far Western Section, Spr<strong>in</strong>g Conference, p 31-42.<br />

Walker, J.D., Fletcher, J.M., Fillmore, R.P., Mart<strong>in</strong>, M.W.,Taylor, W.J., Glazner, A.F., <strong>and</strong> Bartley, J.M.,<br />

1995, Connection between igneous activity <strong>and</strong> extension <strong>in</strong> <strong>the</strong> central Mojave metamorphic core<br />

complex: Journal <strong>of</strong> Geophysical Research, v. 100, p. 10,477–10,494<br />

Weber, F. H., 1965, Reconnaissance <strong>of</strong> silver-barite deposits <strong>of</strong> <strong>the</strong> Calico Mounta<strong>in</strong>s <strong>and</strong> vic<strong>in</strong>ity:<br />

California Division <strong>of</strong> M<strong>in</strong>es <strong>and</strong> <strong>Geology</strong> Open File Map, Los Angeles.


Weber, F. H., 1966, Silver m<strong>in</strong><strong>in</strong>g <strong>in</strong> Old Calico: Calif. Division <strong>of</strong> M<strong>in</strong>es <strong>and</strong> <strong>Geology</strong> M<strong>in</strong>eral Info.<br />

Service, v. 19, pp. 71-80.<br />

Woodburne, M.O., Tedford, R.H., <strong>and</strong> Swisher, C.C., 1990, Lithostratigraphy, biostratigraphy, <strong>and</strong><br />

geochronology <strong>of</strong> <strong>the</strong> Barstow Formation <strong>of</strong> <strong>the</strong> Mojave Desert, sou<strong>the</strong>rn California: Geological<br />

Society <strong>of</strong> America Bullet<strong>in</strong>, v. 102, p. 459–477.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!