06.03.2013 Views

link to Problem Set 1.2 Solutions - uthgsbsmedphys.org

link to Problem Set 1.2 Solutions - uthgsbsmedphys.org

link to Problem Set 1.2 Solutions - uthgsbsmedphys.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GS02-1093 - Introduction <strong>to</strong> Medical Physics I<br />

Basic Interactions<br />

<strong>Problem</strong> <strong>Set</strong> <strong>1.2</strong> <strong>Solutions</strong><br />

1. (<strong>Problem</strong> 1.7 in Attix) A point source, isotropically emitting 10 8 fast neutrons (n o )<br />

per second, falls out of its shield on<strong>to</strong> a railroad platform, 3 meters (horizontally)<br />

from the track. A train goes by at 60 mi h -1 . Ignoring scatter and attenuation, what is<br />

the fluence of neutrons that would strike a passenger at the same height above the<br />

track as the source?<br />

<br />

d<br />

The fluence is given by the integral dt . The fluence rate is the number of<br />

dt <br />

particles per unit area per unit time, or<br />

d<br />

1 dN<br />

. 2<br />

dt 4r<br />

dt<br />

We can write<br />

dx<br />

dt ,<br />

v<br />

where v is the speed of the train, and r, the distance from the source <strong>to</strong> a point on<br />

the train is given by<br />

r <br />

Putting it all <strong>to</strong>gether, we can write<br />

Making use of the integral 1<br />

we write<br />

2 2 2<br />

x h .<br />

x<br />

1<br />

<br />

2<br />

4<br />

x<br />

dx<br />

dN<br />

dt<br />

dx<br />

.<br />

2 xh v<br />

1<br />

x <br />

,<br />

<br />

arctan<br />

2 2 <br />

xh h h<br />

1 dN x <br />

arctan<br />

<br />

4vh<br />

dt h <br />

Evaluating the arctan function between the two endpoints gives us a fac<strong>to</strong>r , so<br />

the fluence is given by<br />

1 dN<br />

.<br />

4vh<br />

dt<br />

1 See, for example the URL, http://integrals.wolfram.com/index.jsp<br />

<br />

<br />

.


We have<br />

dN<br />

dt<br />

8 -1<br />

10<br />

sec<br />

, v = 60 mi h -1 , and h = 3 m, so<br />

hr<br />

8 -1<br />

<br />

10<br />

sec<br />

4<br />

60 mi<br />

3 m<br />

8<br />

10 hr 60<br />

min 60<br />

sec<br />

mi<br />

ft<br />

<br />

4<br />

60 mi<br />

3 m sec<br />

hr min<br />

5280<br />

ft 0.3048 m<br />

5 -2<br />

3.<br />

1110<br />

m<br />

2. Show that absorbed dose has the same units as velocity squared. What, if anything,<br />

does this imply about the relation of dose <strong>to</strong> velocity?<br />

Units for absorbed dose are [energy mass -1 ]. Because the units for energy are<br />

[mass velocity 2 ], the units for absorbed dose are [velocity 2 ]. This implied nothing<br />

about the relation of dose <strong>to</strong> velocity because dose and velocity are two<br />

completely different quantities; they just have the same units.<br />

3. (<strong>Problem</strong> 1-5 in Attix) A point source of 60 Co emits equal numbers of pho<strong>to</strong>ns of 1.17<br />

and 1.33 MeV giving a flux density (ICRU #60 calls it “fluence rate”) of 5.7 10 9<br />

pho<strong>to</strong>n cm -2 s -1 at a specified location. What is the energy flux density (ICRU # 60<br />

now calls it “energy fluence rate”) expressed in MeV cm -2 s -1 and in J m -2 min -1 ?<br />

The energy fluence rate <br />

can be obtained from the pho<strong>to</strong>n fluence rate <br />

by<br />

multiplying the pho<strong>to</strong>n fluence rate by the energy. When we have a polyenergetic<br />

spectrum, we can sum over the energy components.<br />

<br />

<br />

EEE f i i i ,<br />

i<br />

where f(Ei) is the fraction of pho<strong>to</strong>ns with energy Ei. In this example, the fraction<br />

of pho<strong>to</strong>ns with each of the two energies is 0.5. Thus<br />

<br />

<br />

9<br />

9<br />

0. 51.<br />

17<br />

5.<br />

710<br />

0.<br />

51.<br />

33<br />

5.<br />

710<br />

<br />

9<br />

-2<br />

7.<br />

1310<br />

MeV cm sec<br />

-1<br />

<br />

MeV cm<br />

6<br />

19<br />

4<br />

9 MeV 10 eV 1.<br />

610<br />

J 10 cm<br />

7.<br />

1310<br />

2<br />

2<br />

cm sec MeV eV m<br />

-2<br />

-1<br />

684 J m min<br />

2<br />

-2<br />

sec<br />

60 sec<br />

min<br />

-1


4. (<strong>Problem</strong> 1-8 in Attix) An x-ray field at a point P contains 7.5 x 10 8 m -2 s -1 keV -1 ,<br />

uniformly distributed from 10 <strong>to</strong> 100 keV. (We might symbolize this, using ICRU#60<br />

notation, as d<br />

<br />

<br />

d d d d dN<br />

E <br />

dt dE ).<br />

dE dE dt da <br />

a. What is the pho<strong>to</strong>n fluence rate at P?<br />

The pho<strong>to</strong>n fluence rate is found by integrating E<br />

over the energy<br />

spectrum of the pho<strong>to</strong>ns, so we write<br />

100 keV<br />

<br />

dE<br />

10 keV<br />

E<br />

8<br />

90 keV 7.510<br />

m<br />

10<br />

6.<br />

7510<br />

m<br />

-2<br />

b. What would be the pho<strong>to</strong>n fluence in one hour?<br />

Because the pho<strong>to</strong>n fluence rate is constant the pho<strong>to</strong>n fluence is found by<br />

multiplying the pho<strong>to</strong>n fluence rate by the time, so we write<br />

<br />

t<br />

sec<br />

10<br />

6.<br />

7510<br />

m<br />

1<br />

-2<br />

-2<br />

sec<br />

sec<br />

1<br />

1<br />

1hr<br />

keV<br />

10 hr 3600<br />

sec<br />

6.7510<br />

2<br />

m sec<br />

hr<br />

14 -2<br />

2.<br />

4310<br />

m<br />

c. What is the corresponding energy fluence in J m -2 ?<br />

The energy fluence is determined by first integrating E<br />

E over the<br />

energy spectrum of the pho<strong>to</strong>ns <strong>to</strong> get the energy fluence rate.<br />

<br />

100 keV<br />

E<br />

EdE<br />

<br />

10 keV<br />

1<br />

2<br />

<br />

E<br />

E<br />

2<br />

3.<br />

7110<br />

100 keV<br />

10 keV<br />

8<br />

0.<br />

5<br />

7.510<br />

m<br />

12<br />

-2<br />

keV m<br />

sec<br />

-2<br />

1<br />

sec<br />

keV<br />

1<br />

1<br />

<br />

1<br />

2 2 2 2<br />

100 keV 10<br />

keV


We now multiply the energy fluence rate by the time <strong>to</strong> get the energy<br />

fluence.<br />

t<br />

3.<br />

7110<br />

3.7110<br />

<br />

<br />

<br />

<br />

2.<br />

14 J<br />

m<br />

12<br />

12<br />

1.<br />

3410<br />

16<br />

1.<br />

3410<br />

16<br />

-2<br />

keV m<br />

keVm<br />

-2<br />

-2<br />

sec<br />

1<br />

1hr<br />

keV hr<br />

3600<br />

sec<br />

2<br />

m sec<br />

hr<br />

-2<br />

keV m<br />

1.<br />

610<br />

19<br />

J eV<br />

-1<br />

10<br />

3<br />

eV keV<br />

-1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!