22.03.2013 Views

link to Problem Set 3.1d Solutions - UT-H GSBS Medical Physics ...

link to Problem Set 3.1d Solutions - UT-H GSBS Medical Physics ...

link to Problem Set 3.1d Solutions - UT-H GSBS Medical Physics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GS02-1093 - Introduction <strong>to</strong> <strong>Medical</strong> <strong>Physics</strong> I<br />

Basic Interactions<br />

<strong>Problem</strong> <strong>Set</strong> <strong>3.1d</strong> <strong>Solutions</strong><br />

1. (J & C 5.7) Aluminum has a density of 2699 kg/m 3 . The Comp<strong>to</strong>n coefficient per<br />

a<strong>to</strong>m is given in Table A-4e for 1.5 MeV pho<strong>to</strong>ns as 2.232 10 -28 m 2 /a<strong>to</strong>m. Express<br />

this coefficient in m 2 /electron, cm 2 /g, m -1 . (Use Table 5-3 or the <strong>to</strong>p of Table A-4e.)<br />

To convert from a<strong>to</strong>mic Comp<strong>to</strong>n coefficient <strong>to</strong> electronic Comp<strong>to</strong>n coefficient,<br />

we must divide the a<strong>to</strong>mic Comp<strong>to</strong>n coefficient by the number of electrons per<br />

a<strong>to</strong>m, Z, which, for aluminum, is 13.<br />

<br />

13 electron a<strong>to</strong>m<br />

28<br />

2 -1<br />

2. 232 10 m a<strong>to</strong>m<br />

29<br />

1.<br />

7210<br />

-1<br />

m<br />

2<br />

electron<br />

To convert <strong>to</strong> mass Comp<strong>to</strong>n coefficient, we must multiply the electronic<br />

Comp<strong>to</strong>n coefficient by the electron density, which, according <strong>to</strong> Table A-4e, is<br />

2.902 10 26 electrons kg -1 . We must then convert m 2 <strong>to</strong> cm 2 and kg <strong>to</strong> g with<br />

appropriate conversion fac<strong>to</strong>rs.<br />

1.<br />

7210<br />

29<br />

m<br />

2<br />

electron<br />

-1<br />

2.<br />

90210<br />

26<br />

4.<br />

9810<br />

2<br />

electron kg<br />

cm<br />

2<br />

g<br />

-1<br />

-1<br />

10<br />

3<br />

kg g<br />

-1<br />

-1<br />

10<br />

To convert <strong>to</strong> linear Comp<strong>to</strong>n coefficient, we must multiply the mass Comp<strong>to</strong>n<br />

coefficient by the mass density, which is 2699 kg m -3 . We must convert cm 2 back<br />

<strong>to</strong> m 2 , and g <strong>to</strong> kg as well.<br />

0.<br />

0498 cm<br />

2<br />

g<br />

-1<br />

2699 kg m<br />

-1<br />

13.<br />

45 m<br />

-1<br />

10<br />

3<br />

g kg<br />

-1<br />

10<br />

4<br />

m<br />

2<br />

cm<br />

-2<br />

4<br />

cm<br />

2<br />

m<br />

-2


2. (J & C 5.10) A beam of pho<strong>to</strong>ns with energy 100 keV suffers Comp<strong>to</strong>n collisions.<br />

Find the minimum energy of the scattered radiation, the maximum energy the recoil<br />

electron may acquire, and the mean energy of the recoil electron.<br />

The maximum energy transfer <strong>to</strong> the electron will occur when the electron is<br />

scattered in a forward direction and the pho<strong>to</strong>n is scattered backward. The<br />

minimum pho<strong>to</strong>n energy is given by<br />

1<br />

h<br />

min h<br />

1<br />

2<br />

1<br />

100 keV<br />

100<br />

1<br />

2<br />

511<br />

100<br />

keV<br />

1.<br />

391<br />

71.9 keV<br />

The maximum energy of the recoil electron is given by<br />

2<br />

h<br />

max h<br />

1<br />

2<br />

100<br />

2<br />

100 keV 511<br />

100<br />

1<br />

2<br />

511<br />

100<br />

0.<br />

391<br />

keV<br />

1.<br />

391<br />

28.1<br />

keV<br />

(We note that if we add the two energies, we get 100 keV, which is the energy of<br />

the incident pho<strong>to</strong>n beam.)<br />

To obtain the mean energy of the recoil electron, we use J & C equation 6-15.<br />

<br />

tr Etr h<br />

<br />

For 100 keV pho<strong>to</strong>ns in a free-electron gas, we have<br />

tr<br />

E<br />

<br />

0.<br />

0680<br />

100 keV<br />

0.<br />

4927<br />

13.<br />

8 keV


3. (J & C 5.12) A slab of carbon of thickness 3 10 23 electrons per cm 2 is bombarded<br />

by 10 6 pho<strong>to</strong>ns of energy 1.0 MeV. Calculate the number of Comp<strong>to</strong>n interactions,<br />

the energy diverted from the beam, the energy transferred <strong>to</strong> kinetic energy of<br />

charged particles, and the energy scattered. Make an energy balance.<br />

The number of pho<strong>to</strong>ns undergoing no Comp<strong>to</strong>n interactions is given by N=N0e -x ,<br />

so the number of pho<strong>to</strong>ns undergoing a Comp<strong>to</strong>n interaction is given by NC =<br />

N0(1-e -x ). From Table A-2a, the Comp<strong>to</strong>n coefficient for 1 MeV pho<strong>to</strong>ns is<br />

0.2112 10 -28 m 2 electron -1 , so<br />

x<br />

0.<br />

2112 10<br />

N<br />

C<br />

<br />

0.<br />

0634<br />

10<br />

10<br />

6<br />

6<br />

28<br />

0.<br />

0634 1e 0. 0614<br />

4<br />

6.<br />

14 10<br />

<br />

<br />

2<br />

m<br />

310<br />

electron<br />

23<br />

electron<br />

10<br />

2<br />

cm<br />

4<br />

cm<br />

2<br />

m<br />

Note that the target is thick, so it is not completely correct <strong>to</strong> use a linear<br />

approximation.<br />

The energy diverted from the beam is the 1.0 MeV beam energy multiplied by the<br />

number of Comp<strong>to</strong>n interactions, or 6.14 10 4 MeV.<br />

The energy transferred <strong>to</strong> charged particles is the average energy transferred by a<br />

Comp<strong>to</strong>n interaction multiplied by the number of Comp<strong>to</strong>n interactions. The<br />

average energy transferred by a Comp<strong>to</strong>n interaction for 1.0 MeV pho<strong>to</strong>ns is<br />

given in Table A-2a as 0.440 MeV, so the energy transferred <strong>to</strong> charged particles<br />

is 2.70 10 4 MeV.<br />

The energy scattered is equal <strong>to</strong> the energy diverted that is not transferred <strong>to</strong><br />

charged particles, or (6.14 – 2.70) 10 4 MeV = 3.44 10 4 MeV.<br />

2


4. (J & C 6.10) A detec<strong>to</strong>r of area 2.5 cm 2 is placed 30 cm from a block of scattering<br />

material containing 10 23 electrons/cm 2 . A beam of 10 6 pho<strong>to</strong>ns with 1 MeV energy<br />

bombards the block. The detec<strong>to</strong>r is placed along a line making an angle of 45 with<br />

the direction of the pho<strong>to</strong>n beam. Find the number of scattered pho<strong>to</strong>ns that reach the<br />

detec<strong>to</strong>r (use Fig. 6-4)<br />

The number of scattered pho<strong>to</strong>ns reaching the detec<strong>to</strong>r, N, is the product of the<br />

number of incident pho<strong>to</strong>ns, , the number of electrons in the target, Ne, the<br />

differential scatter cross-section, and the solid angle subtended by the detec<strong>to</strong>r.<br />

The differential scatter cross-section, as taken from Fig 6-4, is 2.7510 -30 m 2<br />

electron -1 steradian -1 , for 1 MeV pho<strong>to</strong>ns scattered an angle of 45. So,<br />

d<br />

N<br />

<br />

d<br />

2<br />

6 23 electron<br />

30<br />

m 2.<br />

5<br />

4 cm<br />

10 10<br />

2.<br />

7510<br />

steradian 10<br />

2<br />

2<br />

2<br />

cm<br />

electron<br />

steradian 30<br />

m<br />

7.<br />

64<br />

N e<br />

5. (J & C 6.11) A beam of 10 6 pho<strong>to</strong>ns with 0.8 MeV energy bombards a block of<br />

scattering material containing 10 23 electrons/cm 2 . Find the number of electrons<br />

produced with energies in the range of 0.2 <strong>to</strong> 0.25 MeV (use Fig. 6-5)<br />

The number of electrons produced in an energy interval, N, is the product of the<br />

number of incident pho<strong>to</strong>ns, , the number of electrons in the target, Ne, the<br />

differential (energy) scatter cross-section, and the energy interval. The<br />

differential (energy) scatter cross section for 0.8 MeV pho<strong>to</strong>ns in the range of<br />

energies 0.2 MeV <strong>to</strong> 0.25 MeV, as taken from Fig 6-5, is approximately 38 10 -30<br />

m 2 electron -1 MeV -1 . So,<br />

d<br />

N<br />

T<br />

dT<br />

6 23 electron<br />

10 10<br />

3810<br />

2<br />

cm<br />

3<br />

1.<br />

910<br />

N e<br />

30<br />

2<br />

2<br />

m<br />

4 cm<br />

0.<br />

05 MeV 10<br />

2<br />

electron<br />

MeV<br />

m<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!