07.03.2013 Views

Pharmaceutical antibiotic compounds in soils - a review - Susane.info

Pharmaceutical antibiotic compounds in soils - a review - Susane.info

Pharmaceutical antibiotic compounds in soils - a review - Susane.info

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

146 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

the environment. Contam<strong>in</strong>ation of surface, ground and<br />

dr<strong>in</strong>k<strong>in</strong>g water, of aquatic sediments and <strong>soils</strong> with<br />

pharmaceuticals have been reported (Richardson and Bowron,<br />

1985; Heberer and Stan, 1998; Hirsch et al., 1999;<br />

Kümmerer, 2001a; Hamscher et al., 2002a). Soil residues<br />

result mostly from the use of contam<strong>in</strong>ated excrements as<br />

fertilizer on agricultural land. It has been estimated that loads<br />

of up to kilograms per hectare may enter agricultural <strong>soils</strong> and<br />

that a concentration level of <strong>antibiotic</strong>s similar to pesticides is<br />

easily reached (van Gool, 1993; W<strong>in</strong>ckler and Grafe, 2000).<br />

Due to surface runoff and leach<strong>in</strong>g, <strong>soils</strong> can even act as a<br />

source of <strong>antibiotic</strong> contam<strong>in</strong>ants for the aqueous environment<br />

(Alder et al., 2001). Residues of pharmaceutical<br />

<strong>antibiotic</strong>s can provoke resistance <strong>in</strong> pathogens either directly<br />

or <strong>in</strong>directly by transfer of plasmids from non-pathogens to<br />

pathogenic microorganisms (Wegener et al., 1998). The<br />

result<strong>in</strong>g <strong>antibiotic</strong> residues and resistant microorganisms<br />

can affect the natural soil microbial community and soil<br />

functions and may even harm animals and humans via the<br />

food cha<strong>in</strong> (Richter et al., 1996; Kennedy et al., 2000). In<br />

addition, <strong>in</strong>fections by resistant pathogens lower the<br />

efficiency of pharmacotherapies for humans and animals<br />

(Richter et al., 1996).<br />

However, no regulations exist for concentration limits of<br />

<strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong> or soil water. Follow<strong>in</strong>g the lead of the USA,<br />

an environmental risk assessment of veter<strong>in</strong>ary pharmaceuticals<br />

was prescribed <strong>in</strong> the EU <strong>in</strong> 1998 with the EU directives<br />

81/852/EEC and 92/18/EEC (EMEA, 1997). Thereby, predicted<br />

environmental concentrations (PEC) are calculated<br />

with the help of a balanc<strong>in</strong>g model (Spaepen et al., 1997).<br />

The PEC are compared with predicted, biologically noneffective<br />

concentrations (PNEC). First, the exposition is<br />

evaluated and PEC are compared with trigger values. These<br />

trigger values have been set at 10 lg kg ±1 for the faeces of<br />

graz<strong>in</strong>g livestock, at 100 lg kg ±1 for dung and <strong>soils</strong> and at 0.1<br />

lg l ±1 for groundwater. When PEC exceed these trigger<br />

values or <strong>antibiotic</strong>s are directly applied to surface water for<br />

the treatment of fish, experimental test<strong>in</strong>g <strong>in</strong> the tiered second<br />

phase becomes necessary. Legislation and methods for an<br />

environmental risk assessment of pharmaceuticals are dealt<br />

with <strong>in</strong> detail <strong>in</strong> the book edited by Kümmerer (2001b). There,<br />

alternative concepts to the model by Spaepen et al. (1997)<br />

are also presented. Therefore, this topic is not addressed <strong>in</strong><br />

this <strong>review</strong>.<br />

The occurrence and effects of pharmaceuticals <strong>in</strong> different<br />

environmental compartments, especially water, were<br />

<strong>review</strong>ed by Hall<strong>in</strong>g-Sùrensen et al. (1998), Daughton and<br />

Ternes (1999), and Kümmerer (2000). Another <strong>review</strong> deals<br />

with the adsorption of veter<strong>in</strong>ary pharmaceuticals <strong>in</strong> <strong>soils</strong><br />

(Tolls, 2001), while Richardson and Bowron (1985) and<br />

Hirsch et al. (1999) comb<strong>in</strong>ed overviews on <strong>antibiotic</strong>s <strong>in</strong><br />

water with results from their own <strong>in</strong>vestigations. However,<br />

research and publications on these topics have <strong>in</strong>creased<br />

remarkably <strong>in</strong> the last few years, justify<strong>in</strong>g a <strong>review</strong> focus<strong>in</strong>g<br />

on the <strong>in</strong>put and fate of pharmaceutical <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong>.<br />

2 Consumption and physicochemical<br />

properties of <strong>antibiotic</strong>s<br />

Antibiotics are def<strong>in</strong>ed as chemical <strong>compounds</strong> that are<br />

synthesized through the secondary metabolism of liv<strong>in</strong>g<br />

organisms, with exceptions for semi- or completely synthetic<br />

substances. Antibiotics <strong>in</strong>hibit the activity of microorganisms,<br />

viruses, and eucaryotic cells, respectively (Lanc<strong>in</strong>i and<br />

Parenti, 1982). In human medic<strong>in</strong>e, <strong>antibiotic</strong>s pose the third<br />

biggest group among all pharmaceuticals mak<strong>in</strong>g up more<br />

than 6 % of all prescriptions (Schwabe and Paffrath, 2001). In<br />

veter<strong>in</strong>ary medic<strong>in</strong>e, more than 70 % of all consumed<br />

pharmaceuticals are <strong>antibiotic</strong> agents (Hall<strong>in</strong>g-Sùrensen et<br />

al., 1998). In Europe, two thirds of all pharmaceutical<br />

Table 1: Annual consumption of <strong>antibiotic</strong>s for veter<strong>in</strong>ary medic<strong>in</strong>e, especially livestock, <strong>in</strong> the European Union, European countries and<br />

regions of Germany (without coccidiostatics).<br />

Tabelle 1: Jährlicher Verbrauch an Antibiotika <strong>in</strong> der Veter<strong>in</strong>ärmediz<strong>in</strong>, v.a. für landwirtschaftliche Nutztiere, <strong>in</strong> der Europäischen Union,<br />

europäischen Staaten und Regionen <strong>in</strong> Deutschland (ohne Kokzidiostatika).<br />

EU<br />

1999 a<br />

France<br />

1980 b<br />

Sweden<br />

1996 c<br />

Denmark<br />

1997 d<br />

Switzerland<br />

1997 e<br />

UK<br />

2000 f<br />

Weser-Ems<br />

1997 g<br />

Brandenburg<br />

1998/99 h<br />

t % t % t % t % t % t % t % t % t %<br />

Therapeutics 3902 625 20 57 14 437 88 j 6.6 j 10 j<br />

Mecklenburg-<br />

Vorpommern<br />

2001 i<br />

Tetracycl<strong>in</strong>es 2575 66 117 19 2.7 13 13 23 1.0 7 228 52 40 57 4.6 69 6.4 41<br />

Sulfonamidesk 78 2 139 22 2.2 11 13 23 n.a. 94 22 14 21 0.9 14 2.5 16<br />

Am<strong>in</strong>oglycosides 1564 57 9 1.1 5 7.7 14 n.a. 12 3 7.1 10 0.2 3 0.2 2<br />

b-Lactams 351 9 50 8 n.a. 15 26 9.2 64 49 11 3.8 5 0.2 3 0.1 1<br />

Macrolides 468 12 37 6 1.5 7 1.7 3 0.3 2 41 9 0.2 0.3 0.01 0.1 0.1 1<br />

others 234 6 226 36 n.a. 6.5 11 3.8 27 12 3 4.5 6 0.7 10 0.8 8<br />

Ergotropics 786 n.a. n.a. 107 36 24 18 0.1 n.a.<br />

a FEDESA (2001), data for percentages of compound classes from 1997; b Esp<strong>in</strong>asse (1993); c Mudd et al. (1998); d Hall<strong>in</strong>g-Sùrensen et al.<br />

(2002a); e Swiss Importers of Antibiotics (1998) cited <strong>in</strong> Alder et al. 2001; f NOAH (2002); g W<strong>in</strong>ckler and Grafe (2000); h L<strong>in</strong>ke and Kratz<br />

(2001); i Thiele-Bruhn et al. (2003a); j veter<strong>in</strong>ary prescriptions for feed <strong>antibiotic</strong>s only; k <strong>in</strong>cl. trimethoprim; n.a. = no data available

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!