07.03.2013 Views

Pharmaceutical antibiotic compounds in soils - a review - Susane.info

Pharmaceutical antibiotic compounds in soils - a review - Susane.info

Pharmaceutical antibiotic compounds in soils - a review - Susane.info

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Plant Nutr. Soil Sci. 2003, 166, 145±167 145<br />

<strong>Pharmaceutical</strong> <strong>antibiotic</strong> <strong>compounds</strong> <strong>in</strong> <strong>soils</strong> ± a <strong>review</strong><br />

Sören Thiele-Bruhn<br />

Institute of Soil Science and Plant Nutrition, University of Rostock, D-18051 Rostock, Germany<br />

Accepted 11 February 2003<br />

Summary ± Zusammenfassung<br />

Antibiotics are highly effective, bioactive substances. As a result of their consumption, excretion, and persistence, they are dissem<strong>in</strong>ated mostly<br />

via excrements and enter the <strong>soils</strong> and other environmental compartments. Result<strong>in</strong>g residual concentrations <strong>in</strong> <strong>soils</strong> range from a few lg upto<br />

gkg ±1 and correspond to those found for pesticides. Numerous <strong>antibiotic</strong> molecules comprise of a non-polar core comb<strong>in</strong>ed with polar<br />

functional moieties. Many <strong>antibiotic</strong>s are amphiphilic or amphoteric and ionize. However, physicochemical properties vary widely among<br />

<strong>compounds</strong> from the various structural classes. Exist<strong>in</strong>g analytical methods for environmental samples often comb<strong>in</strong>e an extraction with acidic<br />

buffered solvents and the use of LC-MS for determ<strong>in</strong>ation. In <strong>soils</strong>, adsorption of <strong>antibiotic</strong>s to the organic and m<strong>in</strong>eral exchange sites is mostly<br />

due to charge transfer and ion <strong>in</strong>teractions and not to hydrophobic partition<strong>in</strong>g. Sorption is strongly <strong>in</strong>fluenced by the pH of the medium and<br />

governs the mobility and transport of the <strong>antibiotic</strong>s. In particular for the strongly adsorbed <strong>antibiotic</strong>s, fast leach<strong>in</strong>g through <strong>soils</strong> by macropore<br />

or preferential transport facilitated by dissolved soil colloids seems to be the major transport process. Antibiotics of numerous classes are<br />

photodegraded. However, on soil surfaces this process if of m<strong>in</strong>or <strong>in</strong>fluence. Compared to this, biotransformation yields a more effective<br />

degradation and <strong>in</strong>activation of <strong>antibiotic</strong>s. However, some metabolites still comprise of an <strong>antibiotic</strong> potency. Degradation of <strong>antibiotic</strong>s is<br />

hampered by fixation to the soil matrix; persist<strong>in</strong>g <strong>antibiotic</strong>s were already determ<strong>in</strong>ed <strong>in</strong> <strong>soils</strong>. Effects on soil organisms are very diverse,<br />

although all <strong>antibiotic</strong>s are highly bioactive. The absence of effects might <strong>in</strong> parts be due to a lack of suitable test methods. However, dose and<br />

persistence time related effects especially on soil microorganisms are often observed that might cause shifts of the microbial community.<br />

Significant effects on soil fauna were only determ<strong>in</strong>ed for anthelm<strong>in</strong>tics. Due to the <strong>antibiotic</strong> effect, resistance <strong>in</strong> soil microorganisms can be<br />

provoked by <strong>antibiotic</strong>s. Additionally, the adm<strong>in</strong>istration of <strong>antibiotic</strong>s mostly causes the formation of resistant microorganisms with<strong>in</strong> the treated<br />

body. Hence, resistant microorganisms reach directly the <strong>soils</strong> with contam<strong>in</strong>ated excrements. When pathogens are resistant or acquire<br />

resistance from commensal microorganisms via gene transfer, humans and animals are endangered to suffer from <strong>in</strong>fections that cannot be<br />

treated with pharmacotherapy. The uptake <strong>in</strong>to plants even of mobile <strong>antibiotic</strong>s is small. However, effects on plant growth were determ<strong>in</strong>ed for<br />

some species and <strong>antibiotic</strong>s.<br />

Pharmazeutische Antibiotika <strong>in</strong> Böden ± e<strong>in</strong> Überblick<br />

Antibiotika s<strong>in</strong>d hochgradig wirksame, bioaktive Substanzen. Infolge ihrer Anwendung, Ausscheidung und Persistenz werden sie meist über die<br />

Exkremente <strong>in</strong> Böden und andere Umweltkompartimente e<strong>in</strong>getragen. Die resultierenden Rückstandskonzentrationen <strong>in</strong> Böden im Bereich von<br />

wenigen lg bis zu g kg ±1 entsprechen <strong>in</strong> etwa denen von Pflanzenschutzmitteln. Die Molekülstruktur von Antibiotika besteht häufig aus e<strong>in</strong>em<br />

unpolaren Kern und polaren Randgruppen. Viele Antibiotika s<strong>in</strong>d amphiphil oder amphoter und bilden Ionen, jedoch weisen die zahlreichen<br />

Antibiotika unterschiedlicher Strukturklassen stark divergierende physikochemische Eigenschaften auf. In den vorliegenden Nachweismethoden<br />

für Umweltproben werden häufig sauer gepufferte Lösungsmittel zur Extraktion und e<strong>in</strong>e Bestimmung mittels LC-MS komb<strong>in</strong>iert. Die<br />

Adsorption der Antibiotika an den organischen als auch an den m<strong>in</strong>eralischen Bodenaustauschern erfolgt zumeist durch Ladungs- und<br />

Ionenwechselwirkungen und weniger durch hydrophobe B<strong>in</strong>dungen. Das Verteilungsverhalten hängt dabei entscheidend vom pH-Wert des<br />

Mediums ab und bee<strong>in</strong>flusst die Mobilität und Verlagerung der Antibiotika. Bei vielen, <strong>in</strong>sbesondere stark adsorbierten Antibiotika s<strong>in</strong>d v. a.<br />

schnelle Flieûvorgänge wie durch präferenziellen und Makroporenfluss sowie der Cotransport mit gelösten Bodenkolloiden von besonderer<br />

Bedeutung. Antibiotika vieler Strukturklassen können durch Licht abgebaut werden. Dieser Abbaupfad spielt auf Bodenoberflächen jedoch nur<br />

e<strong>in</strong>e untergeordnete Rolle. H<strong>in</strong>gegen kommt es <strong>in</strong>sbesondere durch biologische Transformationsprozesse zu e<strong>in</strong>er <strong>in</strong>tensiven Degradation und<br />

Inaktivierung der Antibiotika. Verschiedene Metaboliten weisen jedoch ebenfalls e<strong>in</strong> antibiotisches Potential auf. Der Abbau der Antibiotika wird<br />

durch die Festlegung <strong>in</strong> Böden gehemmt; dementsprechend wurde e<strong>in</strong>e Persistenz verschiedener Antibiotika nachgewiesen. Trotz der starken<br />

bioaktiven Wirkung aller Antibiotika s<strong>in</strong>d die festgestellten Effekte auf Bodenorganismen sehr unterschiedlich. Dies liegt nicht zuletzt an e<strong>in</strong>em<br />

Mangel an geeigneten Testmethoden. In der Regel s<strong>in</strong>d jedoch von Dosis und Wirkungsdauer abhängige Effekte <strong>in</strong>sbesondere auf Mikroorganismen<br />

festzustellen, die zu Veränderungen der Mikroorganismenpopulation führen können. Lediglich durch Anthelm<strong>in</strong>tika wurden deutliche Wirkungen auf<br />

Vertreter der Bodenfauna hervorgerufen. Infolge der antibiotischen Wirkung der Pharmazeutika kann e<strong>in</strong>e Resistenzbildung bei Bodenorganismen<br />

ausgelöst werden. Zudem hat die Medikation von Antibiotika die Bildung resistenter Mikroorganismen bereits im behandelten Organismus zur Folge.<br />

DurchderenanschlieûendeAusscheidunggelangenresistenteKeimeauchdirekt<strong>in</strong>dieBöden.HandeltessichumresistentePathogeneoderkommtes<br />

zur Übertragung der Resistenzgene zwischen kommensalen und pathogenen Mikroorganismen, so besteht das erhebliche Risiko e<strong>in</strong>er nicht<br />

therapierbaren Infektion von Mensch und Tier. Die Aufnahme selbst mobiler Antibiotika <strong>in</strong> die Pflanzen ist sehr ger<strong>in</strong>g. Dennoch wurden bei e<strong>in</strong>igen<br />

Pflanzenarten Wirkungen von Antibiotika auf das Wachstum nachgewiesen.<br />

PNSS P02/01P<br />

1 Introduction<br />

Antibiosis is a natural chemical regulation mechanism among<br />

organisms, especially microorganisms. Consequently, biosynthesis<br />

of <strong>antibiotic</strong>s also occurs <strong>in</strong> <strong>soils</strong> (Gottlieb, 1976).<br />

Today, a wide range of naturally occurr<strong>in</strong>g and of synthetic<br />

Correspondence: Dr. S. Thiele-Bruhn; E-mail: soeren.thiele@auf.unirostock.de<br />

<strong>antibiotic</strong>s is frequently used for the therapy of <strong>in</strong>fectious<br />

diseases <strong>in</strong> human and veter<strong>in</strong>ary medic<strong>in</strong>e (Gräfe, 1992).<br />

For this purpose, <strong>antibiotic</strong>s are designed to act very<br />

effectively even at low doses and, <strong>in</strong> case of <strong>in</strong>tra-corporal<br />

adm<strong>in</strong>istration, to be completely excreted from the body after<br />

a short time of residence. Consequently, these substances<br />

are released to the environment. Therefore, residual<br />

concentrations of pharmaceutical <strong>antibiotic</strong>s are found <strong>in</strong><br />

ã 2003 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 1436-8730/03/0204-145 $17.50+.50/0


146 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

the environment. Contam<strong>in</strong>ation of surface, ground and<br />

dr<strong>in</strong>k<strong>in</strong>g water, of aquatic sediments and <strong>soils</strong> with<br />

pharmaceuticals have been reported (Richardson and Bowron,<br />

1985; Heberer and Stan, 1998; Hirsch et al., 1999;<br />

Kümmerer, 2001a; Hamscher et al., 2002a). Soil residues<br />

result mostly from the use of contam<strong>in</strong>ated excrements as<br />

fertilizer on agricultural land. It has been estimated that loads<br />

of up to kilograms per hectare may enter agricultural <strong>soils</strong> and<br />

that a concentration level of <strong>antibiotic</strong>s similar to pesticides is<br />

easily reached (van Gool, 1993; W<strong>in</strong>ckler and Grafe, 2000).<br />

Due to surface runoff and leach<strong>in</strong>g, <strong>soils</strong> can even act as a<br />

source of <strong>antibiotic</strong> contam<strong>in</strong>ants for the aqueous environment<br />

(Alder et al., 2001). Residues of pharmaceutical<br />

<strong>antibiotic</strong>s can provoke resistance <strong>in</strong> pathogens either directly<br />

or <strong>in</strong>directly by transfer of plasmids from non-pathogens to<br />

pathogenic microorganisms (Wegener et al., 1998). The<br />

result<strong>in</strong>g <strong>antibiotic</strong> residues and resistant microorganisms<br />

can affect the natural soil microbial community and soil<br />

functions and may even harm animals and humans via the<br />

food cha<strong>in</strong> (Richter et al., 1996; Kennedy et al., 2000). In<br />

addition, <strong>in</strong>fections by resistant pathogens lower the<br />

efficiency of pharmacotherapies for humans and animals<br />

(Richter et al., 1996).<br />

However, no regulations exist for concentration limits of<br />

<strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong> or soil water. Follow<strong>in</strong>g the lead of the USA,<br />

an environmental risk assessment of veter<strong>in</strong>ary pharmaceuticals<br />

was prescribed <strong>in</strong> the EU <strong>in</strong> 1998 with the EU directives<br />

81/852/EEC and 92/18/EEC (EMEA, 1997). Thereby, predicted<br />

environmental concentrations (PEC) are calculated<br />

with the help of a balanc<strong>in</strong>g model (Spaepen et al., 1997).<br />

The PEC are compared with predicted, biologically noneffective<br />

concentrations (PNEC). First, the exposition is<br />

evaluated and PEC are compared with trigger values. These<br />

trigger values have been set at 10 lg kg ±1 for the faeces of<br />

graz<strong>in</strong>g livestock, at 100 lg kg ±1 for dung and <strong>soils</strong> and at 0.1<br />

lg l ±1 for groundwater. When PEC exceed these trigger<br />

values or <strong>antibiotic</strong>s are directly applied to surface water for<br />

the treatment of fish, experimental test<strong>in</strong>g <strong>in</strong> the tiered second<br />

phase becomes necessary. Legislation and methods for an<br />

environmental risk assessment of pharmaceuticals are dealt<br />

with <strong>in</strong> detail <strong>in</strong> the book edited by Kümmerer (2001b). There,<br />

alternative concepts to the model by Spaepen et al. (1997)<br />

are also presented. Therefore, this topic is not addressed <strong>in</strong><br />

this <strong>review</strong>.<br />

The occurrence and effects of pharmaceuticals <strong>in</strong> different<br />

environmental compartments, especially water, were<br />

<strong>review</strong>ed by Hall<strong>in</strong>g-Sùrensen et al. (1998), Daughton and<br />

Ternes (1999), and Kümmerer (2000). Another <strong>review</strong> deals<br />

with the adsorption of veter<strong>in</strong>ary pharmaceuticals <strong>in</strong> <strong>soils</strong><br />

(Tolls, 2001), while Richardson and Bowron (1985) and<br />

Hirsch et al. (1999) comb<strong>in</strong>ed overviews on <strong>antibiotic</strong>s <strong>in</strong><br />

water with results from their own <strong>in</strong>vestigations. However,<br />

research and publications on these topics have <strong>in</strong>creased<br />

remarkably <strong>in</strong> the last few years, justify<strong>in</strong>g a <strong>review</strong> focus<strong>in</strong>g<br />

on the <strong>in</strong>put and fate of pharmaceutical <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong>.<br />

2 Consumption and physicochemical<br />

properties of <strong>antibiotic</strong>s<br />

Antibiotics are def<strong>in</strong>ed as chemical <strong>compounds</strong> that are<br />

synthesized through the secondary metabolism of liv<strong>in</strong>g<br />

organisms, with exceptions for semi- or completely synthetic<br />

substances. Antibiotics <strong>in</strong>hibit the activity of microorganisms,<br />

viruses, and eucaryotic cells, respectively (Lanc<strong>in</strong>i and<br />

Parenti, 1982). In human medic<strong>in</strong>e, <strong>antibiotic</strong>s pose the third<br />

biggest group among all pharmaceuticals mak<strong>in</strong>g up more<br />

than 6 % of all prescriptions (Schwabe and Paffrath, 2001). In<br />

veter<strong>in</strong>ary medic<strong>in</strong>e, more than 70 % of all consumed<br />

pharmaceuticals are <strong>antibiotic</strong> agents (Hall<strong>in</strong>g-Sùrensen et<br />

al., 1998). In Europe, two thirds of all pharmaceutical<br />

Table 1: Annual consumption of <strong>antibiotic</strong>s for veter<strong>in</strong>ary medic<strong>in</strong>e, especially livestock, <strong>in</strong> the European Union, European countries and<br />

regions of Germany (without coccidiostatics).<br />

Tabelle 1: Jährlicher Verbrauch an Antibiotika <strong>in</strong> der Veter<strong>in</strong>ärmediz<strong>in</strong>, v.a. für landwirtschaftliche Nutztiere, <strong>in</strong> der Europäischen Union,<br />

europäischen Staaten und Regionen <strong>in</strong> Deutschland (ohne Kokzidiostatika).<br />

EU<br />

1999 a<br />

France<br />

1980 b<br />

Sweden<br />

1996 c<br />

Denmark<br />

1997 d<br />

Switzerland<br />

1997 e<br />

UK<br />

2000 f<br />

Weser-Ems<br />

1997 g<br />

Brandenburg<br />

1998/99 h<br />

t % t % t % t % t % t % t % t % t %<br />

Therapeutics 3902 625 20 57 14 437 88 j 6.6 j 10 j<br />

Mecklenburg-<br />

Vorpommern<br />

2001 i<br />

Tetracycl<strong>in</strong>es 2575 66 117 19 2.7 13 13 23 1.0 7 228 52 40 57 4.6 69 6.4 41<br />

Sulfonamidesk 78 2 139 22 2.2 11 13 23 n.a. 94 22 14 21 0.9 14 2.5 16<br />

Am<strong>in</strong>oglycosides 1564 57 9 1.1 5 7.7 14 n.a. 12 3 7.1 10 0.2 3 0.2 2<br />

b-Lactams 351 9 50 8 n.a. 15 26 9.2 64 49 11 3.8 5 0.2 3 0.1 1<br />

Macrolides 468 12 37 6 1.5 7 1.7 3 0.3 2 41 9 0.2 0.3 0.01 0.1 0.1 1<br />

others 234 6 226 36 n.a. 6.5 11 3.8 27 12 3 4.5 6 0.7 10 0.8 8<br />

Ergotropics 786 n.a. n.a. 107 36 24 18 0.1 n.a.<br />

a FEDESA (2001), data for percentages of compound classes from 1997; b Esp<strong>in</strong>asse (1993); c Mudd et al. (1998); d Hall<strong>in</strong>g-Sùrensen et al.<br />

(2002a); e Swiss Importers of Antibiotics (1998) cited <strong>in</strong> Alder et al. 2001; f NOAH (2002); g W<strong>in</strong>ckler and Grafe (2000); h L<strong>in</strong>ke and Kratz<br />

(2001); i Thiele-Bruhn et al. (2003a); j veter<strong>in</strong>ary prescriptions for feed <strong>antibiotic</strong>s only; k <strong>in</strong>cl. trimethoprim; n.a. = no data available


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 147<br />

<strong>antibiotic</strong>s are used <strong>in</strong> human medic<strong>in</strong>e and one third for<br />

veter<strong>in</strong>ary purposes (FEDESA, 2001). Consequently, tons of<br />

<strong>antibiotic</strong> substances are consumed per year <strong>in</strong> <strong>in</strong>dustrialized<br />

countries (Tab. 1). Agricultural livestock, especially poultry<br />

and pigs, are treated with the majority of <strong>antibiotic</strong>s while all<br />

other domestic animals receive only ca. 1 % of prescriptions<br />

with<strong>in</strong> the EU (Ungemach, 2000). To date, the nontherapeutic<br />

use of <strong>antibiotic</strong>s as growth promoters is almost<br />

completely restricted <strong>in</strong> the EU and consequently, the<br />

consumption of ergotropics is strongly decl<strong>in</strong><strong>in</strong>g. On the<br />

other hand, the annual application of therapeutic <strong>antibiotic</strong>s <strong>in</strong><br />

the EU <strong>in</strong>creased from 1997 to 1999 by 12 %, i.e. to 3900 t<br />

(FEDESA, 2001). The <strong>antibiotic</strong> compound classes primarily<br />

adm<strong>in</strong>istered <strong>in</strong> veter<strong>in</strong>ary medic<strong>in</strong>e are tetracycl<strong>in</strong>es,<br />

sulfonamides, am<strong>in</strong>oglycosides, b-lactams, and macrolides<br />

(Tab. 1). In human medic<strong>in</strong>e b-lactams, tetracycl<strong>in</strong>es and<br />

macrolides are mostly prescribed (Schwabe and Paffrath,<br />

2001). In Germany, 250 different <strong>antibiotic</strong> and antimycotic<br />

agents are currently approved for use (Kümmerer, 2001b), a<br />

number which might be representative of other countries as<br />

well.<br />

Antibiotics def<strong>in</strong>e a multitude of heterogeneous <strong>compounds</strong><br />

that are classified with regard to different fields of usage (e.g.<br />

antimycotics, anti<strong>in</strong>fectives, anthelm<strong>in</strong>tics), <strong>in</strong> different struc-<br />

tural classes (e.g. nucleosides, tetracycl<strong>in</strong>es) and exhibit<br />

different molecular structures and diverse chemical and<br />

physical properties (Gräfe, 1992). Most <strong>antibiotic</strong>s tend to<br />

ionize depend<strong>in</strong>g on the pH of the medium; pK a values are<br />

associated with the different functional groups of the<br />

<strong>compounds</strong>. Ranges of physicochemical properties of<br />

important <strong>antibiotic</strong> compound classes are listed <strong>in</strong> Tab. 2.<br />

In the follow<strong>in</strong>g section, their physicochemical properties are<br />

briefly described with <strong>in</strong>formation taken from Booth and<br />

McDonald (1988), Gräfe (1992), and Schadew<strong>in</strong>kel-Scherkl<br />

and Scherkl (1995), if not <strong>in</strong>dicated otherwise.<br />

Tetracycl<strong>in</strong>es<br />

Tetracycl<strong>in</strong>es (TCs) are polyketides and comprise of a<br />

naphthacene r<strong>in</strong>g structure. The TCs are amphoteric<br />

<strong>compounds</strong> as characterized by three pK a values. They are<br />

relatively stable <strong>in</strong> acids, but not <strong>in</strong> bases, and form salts <strong>in</strong><br />

both media (Hall<strong>in</strong>g-Sùrensen et al., 2002b). The TCs form<br />

chelate complexes with divalent metal ions and b-diketones<br />

and strongly b<strong>in</strong>d to prote<strong>in</strong>s and silanolic groups (Oka et al.,<br />

2000). Most TCs are spar<strong>in</strong>gly water soluble, while the<br />

solubility of the correspond<strong>in</strong>g hydrochlorides is much higher.<br />

Table 2: Representative pharmaceutical <strong>antibiotic</strong>s and typical ranges of physicochemical properties from selected classes of <strong>antibiotic</strong>s (Osol,<br />

1980; Gruber et al., 1990; Asuquo and Piddock, 1993; Nowara et al., 1997; Escribano et al., 1997; National Institutes of Health, 1999; Rabùlle<br />

and Spliid, 2000; Syracuse Research Corporation, 2001).<br />

Tabelle 2: Beispiele pharmazeutischer Antibiotika und typische Bereiche physikochemischer Eigenschaften von ausgewählten Strukturklassen<br />

der Antibiotika.<br />

Compound class Molar mass<br />

g mol ±1<br />

Water solubility<br />

mg l ±1<br />

log K ow pK a Henry¢s constant<br />

Pa l mol ±1<br />

Tetracycl<strong>in</strong>es 444.5 ± 527.6 230 ± 52000 ±1.3 ± 0.05 3.3 / 7.7 / 9.3 1.7”10 ±23 ± 4.8”10 ±22<br />

chlortetracycl<strong>in</strong>e, oxytetracycl<strong>in</strong>e, tetracycl<strong>in</strong>e<br />

Sulfonamides 172.2 ± 300.3 7.5 ± 1500 ±0.1 ± 1.7 2 ± 3 / 4.5 ± 10.6 1.3”10 ±12 ± 1.8”10 ±8<br />

sulfanilamide, sulfadiaz<strong>in</strong>e, sulfadimid<strong>in</strong>e, sulfadimethox<strong>in</strong>e, sulfapyrid<strong>in</strong>e, sulfamethoxazole<br />

Am<strong>in</strong>oglycosides 332.4 ± 615.6 10 ± 500 a ±8.1 ± ±0.8 6.9 ± 8.5 8.5”10 ±12 ± 4.1”10 ±8<br />

kanamyc<strong>in</strong>, neomyc<strong>in</strong>, streptomyc<strong>in</strong><br />

b-Lactams 334.4 ± 470.3 22 ± 10100 0.9 ± 2.9 2.7 2.5”10 ±19 ± 1.2”10 ±12<br />

penicill<strong>in</strong>s: ampicill<strong>in</strong>, meropenem, penicill<strong>in</strong> G; cephalospor<strong>in</strong>s: ceftiofur, cefotiam<br />

Macrolides 687.9 ± 916.1 0.45 ± 15 1.6 ± 3.1 7.7 ± 8.9 7.8”10 ±36 ± 2.0”10 ±26<br />

erythromyc<strong>in</strong>, oleandomyc<strong>in</strong>, tylos<strong>in</strong><br />

Fluorqu<strong>in</strong>olones 229.5 ± 417.6 3.2 ± 17790 ±1.0 ± 1.6 8.6 5.2”10 ±17 ± 3.2”10 ±8<br />

ciprofloxac<strong>in</strong>, enrofloxac<strong>in</strong>, flumequ<strong>in</strong>, sarafloxac<strong>in</strong>, oxol<strong>in</strong>ic acid<br />

Imidazoles 171.5 ± 315.3 6.3 ± 407 ±0.02 ± 3.9 2.4 2.3”10 ±13 ± 2.7”10 ±10<br />

fenbendazole, metronidazole, oxfendazole<br />

Polypeptides 499.6 ± 1038 not ± completely ±1.0 ± 3.2 negligible ± 2.8”10 ±23<br />

avermect<strong>in</strong>, bacitrac<strong>in</strong>, ivermect<strong>in</strong>, virg<strong>in</strong>iamyc<strong>in</strong><br />

Polyethers 670.9 ± 751.0 2.2”10 ±6 ± 3.1”10 ±3 5.4 ± 8.5 6.4 2.1”10 ±18 ± 1.5”10 ±18<br />

monens<strong>in</strong>, sal<strong>in</strong>omyc<strong>in</strong><br />

Glycopeptides<br />

vancomyc<strong>in</strong><br />

1450.7 > 1000 not soluble <strong>in</strong> octanol 5.0 negligible<br />

Qu<strong>in</strong>oxal<strong>in</strong>ederivatives<br />

263.3 1.0”106 ±2.2 10 1.1”10 ±18<br />

olaqu<strong>in</strong>dox<br />

a gl ±1


148 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

The TCs strongly absorb light and thus, are susceptible to<br />

photodegradation (Mitscher, 1978).<br />

Sulfonamides<br />

Sulfonamides (SAs) are relatively <strong>in</strong>soluble <strong>in</strong> water. They are<br />

characterized by two pK a values <strong>in</strong>dicat<strong>in</strong>g protonation of the<br />

am<strong>in</strong>o group at a pH of 2 to 3 and deprotonation of the<br />

R 1 SO 2 NHR 2 moiety at a pH of 5 to 11 (Ingerslev and Hall<strong>in</strong>g-<br />

Sùrensen, 2000). In general, the amphoteric SAs behave as<br />

weak acids and form salts <strong>in</strong> strongly acidic or basic<br />

solutions. Mostly, SAs, substituted at the am<strong>in</strong>o-N, have<br />

greatly reduced antibacterial activity.<br />

Am<strong>in</strong>oglycosides<br />

Antibiotics from the class of am<strong>in</strong>oglycosides are basic,<br />

strongly polar polycationic <strong>compounds</strong>. Their molecular<br />

structure is characterized by two or more am<strong>in</strong>o sugars that<br />

are glycosidically bound to am<strong>in</strong>ocyclitol. They are water<br />

soluble, mostly hydrophilic, and susceptible to photodegradation.<br />

b-Lactams<br />

Penicill<strong>in</strong>s and cephalospor<strong>in</strong>s are the two major sub-classes<br />

of the b-lactams. The <strong>antibiotic</strong> effect of penicill<strong>in</strong>s is directly<br />

connected to the b-lactam r<strong>in</strong>g. This r<strong>in</strong>g is easily cleaved <strong>in</strong><br />

acidic and basic media. Cephalospor<strong>in</strong>s are derivatives of 7am<strong>in</strong>o-cephalosporanic<br />

acid, condensed with a six-membered<br />

heterocycle <strong>in</strong> contrast to the five-membered heterocycle<br />

of penicill<strong>in</strong>s.<br />

Macrolides<br />

Macrolides are def<strong>in</strong>ed as lactone structures with cycles of<br />

more than 10 C-atoms. Many macrolides are weak bases and<br />

are unstable <strong>in</strong> acids. Their water solubility varies considerably<br />

between the different derivatives.<br />

Fluorqu<strong>in</strong>olones<br />

Most fluorqu<strong>in</strong>olones (FQs), also known as qu<strong>in</strong>olones,<br />

exhibit large chemical stability. They are <strong>in</strong>sensitive to<br />

hydrolysis and <strong>in</strong>creased temperatures, but are degraded<br />

by UV light. Their <strong>antibiotic</strong> potency depends mostly on the<br />

aromatic fluor<strong>in</strong>e substituent at the C-6 position (Wetzste<strong>in</strong>,<br />

2001).<br />

3 Extraction and determ<strong>in</strong>ation<br />

Numerous <strong>antibiotic</strong>s are comprised of a non-polar core and<br />

polar functional groups (Juhel-Gauga<strong>in</strong> et al., 2000). They are<br />

sensitive to bases and strong acids and dissociate or<br />

protonate depend<strong>in</strong>g on the pH of the medium. Thereby,<br />

their distribution behavior changes considerably (Holten<br />

Lützhùft et al., 2000). Consequently, <strong>in</strong>complete extraction<br />

of <strong>antibiotic</strong>s with very polar and non-polar extractants and<br />

strong adsorption to polar and non-polar solid phase<br />

extractants (SPE) pose serious analytical problems. Thus,<br />

for the extraction of most <strong>antibiotic</strong>s, the use of weakly acidic<br />

buffers <strong>in</strong> comb<strong>in</strong>ation with organic solvents is recommended<br />

(Tab. 3). In food analysis, a 0.1 M EDTA-McIlva<strong>in</strong>e buffer (pH<br />

4.0) is often used (Weimann and Bojesen, 1999; Juhel-<br />

Gauga<strong>in</strong> et al., 2000). Cooper et al. (1998) and Kühne et al.<br />

(2000) suggested citric ethylacetate (pH 5.0) for the<br />

extraction of TCs. This method was adopted for soil samples<br />

by Hamscher et al. (2002a). At least <strong>in</strong> the case of TCs, this<br />

extractant yields better recovery rates from soil samples,<br />

although the solubility of numerous <strong>antibiotic</strong>s of different<br />

structural classes is considerably smaller <strong>in</strong> pure ethylacetate<br />

as compared to methanol or DMSO (Salvatore and Katz,<br />

1993). Oka et al. (2000) <strong>review</strong>ed techniques for the<br />

extraction and analysis of TCs and a compilation of methods<br />

can be found <strong>in</strong> Juhel-Gauga<strong>in</strong> et al. (2000). The use of 0.01<br />

M CaCl 2 to extract the mobile, non-adsorbed fraction of<br />

xenobiotics as prescribed by OECD (1997), cannot be<br />

recommended for TCs. These <strong>compounds</strong> form spar<strong>in</strong>gly<br />

soluble complexes with Ca 2+ (Wessels et al., 1998). As an<br />

alternative to CaCl 2 , 0.1 M NH 4 NO 3 was successfully used<br />

(Thiele-Bruhn, unpublished data).<br />

In general, the sample clean-up is done by SPE or 0.45 lm<br />

filtration; extracts from centrifugation and liquid/liquid separation<br />

are usually concentrated by evaporation (Tab. 3). For<br />

SPE of SAs, reversed phases are very effective. In contrast,<br />

the usage of reversed phase materials for SPE of TCs<br />

requires pre-treatment of the solid phase with EDTAor<br />

silylat<strong>in</strong>g agents whereas for condition<strong>in</strong>g and elution, acidic<br />

buffered solvents are recommended (Oka et al., 1991; Zhu et<br />

al., 2001; Loke et al., 2002). The TCs b<strong>in</strong>d so strongly to free<br />

silanol groups that they cannot be eluted by the usual organic<br />

solvents. L<strong>in</strong>dsey et al. (2001) suggested a macroporous<br />

copolymer comb<strong>in</strong>ed with Na 2 EDTAas the chelat<strong>in</strong>g agent.<br />

To overcome the problems result<strong>in</strong>g from the amphoteric<br />

character of many <strong>antibiotic</strong>s, new functionalized SPE<br />

materials that separate analytes by their hydrophobic as<br />

well as polar properties, e.g. hydrophilic-lipophilic balance<br />

cartridges (HLB) and mixed-mode HLB-cation exchange<br />

cartridges (MCX), appear to be advantageous (e.g. Kolp<strong>in</strong><br />

et al., 2002). Golet et al. (2001) extracted FQs from<br />

wastewater with a mixed-mode silica based sorbent consist<strong>in</strong>g<br />

of a non-polar phase and a strong cation exchanger<br />

<strong>in</strong>teract<strong>in</strong>g with the aromatic moiety of the core and the<br />

charged am<strong>in</strong>o groups of the substituents.<br />

Antibiotics are usually separated by chromatographic techniques<br />

and subsequently detected. To avoid dissociation of<br />

the <strong>compounds</strong> or b<strong>in</strong>d<strong>in</strong>g to free silanol groups from the<br />

widely used silica based chromatographic columns, dilute<br />

acids or weakly acidic buffers, e.g. phosphoric, citric, formic,<br />

and oxalic acid or EDTA, are commonly used (Oka et al.,<br />

2000). Alternatively ion pair-chromatography is applied.<br />

Currently, the time and solvent consum<strong>in</strong>g th<strong>in</strong> layer<br />

chromatography has been mostly replaced by high performance<br />

liquid chromatography comb<strong>in</strong>ed with UV and Diode-<br />

Array Detection (HPLC-UV, -DAD). Increas<strong>in</strong>gly, liquid<br />

chromatography with mass spectrometry (LC-MS) or tandem<br />

mass spectrometry (LC-MS/MS) (Thomashow et al., 1997;<br />

Oka et al., 2000; Hamscher et al., 2002a) with chemical


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 149<br />

Table 3: Selected examples for extraction, separation and detection of <strong>antibiotic</strong> pharmaceuticals <strong>in</strong> environmental and food samples.<br />

Tabelle 3: Ausgewählte Beispiele zur Extraktion, Trennung und Bestimmung antibiotischer Pharmazeutika <strong>in</strong> Umweltproben und Lebensmitteln.<br />

further details a Reference<br />

Sample Extractant Clean-up Column type Eluent Detection<br />

& -limits<br />

Class/<br />

compound<br />

Hirsch et al., 1998<br />

Campagnolo et<br />

al., 2002<br />

chloramphenicol:<br />

ESI-e MS/MS ESI+ d ;<br />


150 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

Table 3: Cont<strong>in</strong>ued.<br />

Tabelle 3: Fortsetzung.<br />

further details a Reference<br />

Sample Extractant Clean-up Column type Eluent Detection<br />

& -limits<br />

Class/<br />

compound<br />

Johannsen, 1991<br />

100 ll, post column<br />

derivat.: DMA/H SO 2 4<br />

UV 320 nm;<br />

10 lg kg ±1<br />

MeOH:phosphate<br />

buffer (pH 4)(9:1),<br />

0.7 ml m<strong>in</strong> ±1<br />

Hypersil ODS 250”4;<br />

5 lm<br />

liquid/liquid MeCl 2<br />

animal feed MeOH/phosphate buffer<br />

(pH 4)(9:1)<br />

Polyethers<br />

(Sal<strong>in</strong>omyc<strong>in</strong>,<br />

Monens<strong>in</strong>,<br />

Lasalocid)<br />

Asukabe et al.,<br />

1994<br />

pre column derivat.:<br />

1-(bromoacetyl)<br />

pyrene<br />

FLD ex 360<br />

em 420 nm<br />

MeOH:H O 97:3,<br />

2<br />

isocratic<br />

animal feed ACN SPE: Silica Develosil 5 C18<br />

250”4.6; 100 lm<br />

UV 270 nm Samuelsen et al.,<br />

1994<br />

0.1 N NaOH centrifugation C18, 100”4.6; 3 lm 0.05 M H PO /ACN,<br />

3 4<br />

gradient<br />

mar<strong>in</strong>e<br />

sediment<br />

Sulfonamides<br />

UV 280 nm 40 C, 50 ll Ingerslev and<br />

Hall<strong>in</strong>g-Sùrensen,<br />

2000<br />

ACN:16.7 mM acetic<br />

acid/ (pH 5 with 4M<br />

NaOH) (17.5:82.5 ),<br />

1mlm<strong>in</strong> ±1<br />

Phenomenex ODS2<br />

C18 125”4.6; 5lm<br />

H O centrifugation,<br />

2<br />

0.45 lm filtration<br />

sewage<br />

sludge<br />

UV 265 nm 22 C, 10 ll Thiele, 2000<br />

0.01 M H PO / 3 4<br />

MeOH, 1 ml m<strong>in</strong> ±1 ,<br />

gradient<br />

soil MeOH SPE: C18 Nucleosil C18 250”4.6;<br />

100±5 lm<br />

25 C, 50 ll Haller et al., 2002<br />

H O:1mM NH OAc+10 %<br />

2 4<br />

ACN/ACN, 0.25 ml<br />

m<strong>in</strong> ±1 UV;<br />

MS/MS ESI+<br />

, gradient<br />

Nucleosil C18 125”3;<br />

100±5 lm<br />

pH 9 with KOH, EtOAc separation of EtOAc,<br />

0.45 lm filtration<br />

animal<br />

manure<br />

+Trimethoprim<br />

L<strong>in</strong>dsey et al.,<br />

2001<br />

MS ESI+;<br />


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 151<br />

ionization at atmospheric pressure (APCI) or electrospray<br />

ionization (ESI) is used (Oka et al., 1997; Carson et al.,<br />

1998). Niessen (1998) <strong>review</strong>ed the analysis of <strong>antibiotic</strong>s by<br />

LC-MS and stated that this detection method is most<br />

sensitive for a multitude of <strong>compounds</strong>. Numerous applications<br />

already exist for LC-MS. Kamel et al. (1999) detected<br />

the highest sensitivity for TCs with LC-ESI-MS/MS <strong>in</strong> the<br />

positive ion mode and by addition of 1 % acetic acid <strong>in</strong> the<br />

mobile phase. In comparison, L<strong>in</strong>dsey et al. (2001) used<br />

ammonia formiate/formic acid <strong>in</strong> comb<strong>in</strong>ation with a water/<br />

methanol gradient. However, for FQs, fluorescence detection<br />

after derivatization and liquid chromatography was superior to<br />

LC-MS/MS (Golet et al., 2001).<br />

To date, the traditional, semi-quantitative detection of<br />

<strong>antibiotic</strong>s by microbial <strong>in</strong>hibition tests such as agardiffusion<br />

and bioautography (Katz and Katz, 1983; Süûmuth et al.,<br />

1987) is carried out only to supplement chemical analysis.<br />

However, for a complete assessment of <strong>antibiotic</strong>s, not only<br />

their quantity, but also their <strong>antibiotic</strong> potential must be<br />

determ<strong>in</strong>ed. For this purpose, new techniques that comb<strong>in</strong>e<br />

chemical extraction, chromatographic separation and determ<strong>in</strong>ation<br />

by microbial assays have been developed (e.g.<br />

Sczesny et al., 2003). Hestbjerg Hansen et al. (2001)<br />

developed a biosensor for the selective detection of<br />

bioavailable and bioactive trace residues of TCs <strong>in</strong> soil.<br />

4 Input and concentrations <strong>in</strong> the soil<br />

environment<br />

Soils are a habitat and source of <strong>in</strong>digenous, <strong>antibiotic</strong>s<br />

produc<strong>in</strong>g microorganisms (Gottlieb, 1976; Thomashow et<br />

al., 1997). Among numerous other soil microorganisms, 30 to<br />

50 % of act<strong>in</strong>omycetes isolated from soil are able to<br />

synthesize <strong>antibiotic</strong>s (Topp, 1981). Such <strong>antibiotic</strong>s, biosynthesized<br />

<strong>in</strong> situ, are found especially <strong>in</strong> the soil rhizosphere<br />

with concentrations of up to 5 lg g ±1 (Soulides, 1965;<br />

Lumsden et al., 1992; Shanahan et al., 1992).<br />

However, f<strong>in</strong>d<strong>in</strong>gs of pharmaceutical <strong>antibiotic</strong>s <strong>in</strong> the<br />

environment <strong>in</strong>crease. Like other pharmaceuticals, these<br />

<strong>compounds</strong> are optimized <strong>in</strong> their pharmacok<strong>in</strong>etics <strong>in</strong> such a<br />

way that they do not accumulate <strong>in</strong> the organism. After<br />

medication, they are mostly excreted as parent <strong>compounds</strong>,<br />

whereas metabolites might be also bioactive (Bouwman and<br />

Reus, 1994; Schadew<strong>in</strong>kel-Scherkl and Scherkl, 1995;<br />

Kümmerer et al., 2000). Excretion rates follow<strong>in</strong>g the passage<br />

throughthegastro-<strong>in</strong>test<strong>in</strong>altractare<strong>in</strong>therangeof40to90 %for<br />

SAs and TCs (Berger et al., 1986; W<strong>in</strong>ckler and Grafe, 2001).<br />

Compilations of excretion rates were published by Zuccato et<br />

al. (2001), Hall<strong>in</strong>g-Sùrensen et al. (2001), and Jjemba (2002).<br />

Rates vary among the s<strong>in</strong>gle <strong>antibiotic</strong> substances, the<br />

treated species and depend on the mode of application, as<br />

it was shown for SAadm<strong>in</strong>istered to pigs (Haller et al., 2002).<br />

4.1 Anthropogenic <strong>in</strong>put<br />

Major portions of <strong>antibiotic</strong>s are excreted after <strong>in</strong>tra-corporal<br />

medication or are r<strong>in</strong>sed from the sk<strong>in</strong> after dermal<br />

application. Consequently, <strong>antibiotic</strong>s reach agricultural <strong>soils</strong><br />

directly through graz<strong>in</strong>g livestock or <strong>in</strong>directly through the use<br />

of manure and sewage sludge as fertilizer (Jùrgensen and<br />

Hall<strong>in</strong>g-Sùrensen, 2000). In addition, wastewater and runoff<br />

from agricultural land are ma<strong>in</strong>ly responsible for the<br />

contam<strong>in</strong>ation of aquatic systems (Hirsch et al., 1999; Alder<br />

et al., 2001). Afurther significant source of <strong>antibiotic</strong>s <strong>in</strong> the<br />

environment is their use <strong>in</strong> aquaculture for fish production.<br />

Here they are directly <strong>in</strong>troduced <strong>in</strong>to surface water (Römbke<br />

et al., 1996). Among other <strong>compounds</strong>, TCs, nitrofurans, and<br />

SAs are used ma<strong>in</strong>ly for this purpose (Löscher et al., 1994)<br />

and result <strong>in</strong> residual concentrations of several hundred mg<br />

kg ±1 <strong>in</strong> aquatic sediments (Jacobsen and Bergl<strong>in</strong>d, 1988;<br />

Samuelsen et al., 1992; Coyne et al., 1994). Flood<strong>in</strong>g of<br />

shore <strong>soils</strong> with contam<strong>in</strong>ated surface water may possibly<br />

yield an <strong>in</strong>put of <strong>antibiotic</strong>s. In contrast, environmental<br />

contam<strong>in</strong>ation due to the production and distribution of<br />

pharmaceuticals can mostly be excluded. However, severe<br />

ground water contam<strong>in</strong>ation follow<strong>in</strong>g the deposition of<br />

pharmaceutical wastes from <strong>antibiotic</strong> production was<br />

reported by Holm et al. (1995). S<strong>in</strong>ce the 1950s, <strong>antibiotic</strong>s<br />

have been used as pesticides, especially oxytetracycl<strong>in</strong>e and<br />

streptomyc<strong>in</strong>, which are commonly used <strong>in</strong> fruit, vegetable,<br />

and ornamental plant production. In the USA, 0.5 % of the<br />

total <strong>antibiotic</strong> consumption of approximately 10,000 t is from<br />

the application to plants (McManus et al., 2002). In the vic<strong>in</strong>ity<br />

of animal houses used for pig and poultry breed<strong>in</strong>g,<br />

<strong>antibiotic</strong>s were detected <strong>in</strong> dust from the exhaust air of the<br />

stable ventilation (Hamscher et al., 2002b; Thiele-Bruhn et<br />

al., 2003a).<br />

Intra-corporal degradation processes usually proceed <strong>in</strong> the<br />

faeces (Langhammer, 1989; Loke et al., 2000). In contrast,<br />

<strong>antibiotic</strong>s not metabolized <strong>in</strong> the organism are often found as<br />

recalcitrant after excretion (Bouwman and Reus, 1994;<br />

Schadew<strong>in</strong>kel-Scherkl and Scherkl, 1995). Thus, several<br />

<strong>antibiotic</strong> <strong>compounds</strong> persist <strong>in</strong> the environment (Gavalch<strong>in</strong><br />

and Katz, 1994; Kümmerer et al., 2000; Kühne et al., 2000)<br />

and are not transformed, e.g. by aeration of manure even at<br />

<strong>in</strong>creased ambient temperature (W<strong>in</strong>ckler and Grafe, 2001)<br />

or sewage water treatment (Richardson and Bowron, 1985).<br />

These substances are likely to reach aquatic sediments<br />

through waste water or agricultural <strong>soils</strong> after fertilization with<br />

manure and sewage sludge, respectively.<br />

4.2 Environmental concentrations<br />

The discussed sources of pharmaceuticals result <strong>in</strong> detectable<br />

residual concentrations <strong>in</strong> diverse environmental<br />

compartments and even <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water (Heberer and<br />

Stan, 1998; Hirsch et al., 1999). In the USA, a nationwide<br />

survey of pharmaceutical <strong>compounds</strong> revealed that among<br />

numerous other pharmaceuticals, a number of veter<strong>in</strong>ary and<br />

human <strong>antibiotic</strong>s were detected <strong>in</strong> 27 % of 139 river water<br />

samples at concentrations of up to 0.7 lg l ±1 (Kolp<strong>in</strong> et al.,<br />

2002). In England, representative s<strong>in</strong>gle substances from the<br />

classes of macrolides, SAs, and TCs were determ<strong>in</strong>ed <strong>in</strong> river<br />

water <strong>in</strong> concentrations of ca. 1 lg l ±1 (Watts et al., 1982), a<br />

concentration that reduced aqueous microbial activity <strong>in</strong><br />

biotests (Backhaus and Grimme, 1999). In mar<strong>in</strong>e sediment<br />

underneath fish farms, residual oxytetracycl<strong>in</strong>e concentrations<br />

of 500 to 4000 lg kg ±1 were commonly observed and


152 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

ca. 50 % of red rock crab (Cancer productus) collected after<br />

oxytetracycl<strong>in</strong>e application exceeded the US FDAlimit of 0.1<br />

lg g ±1 for seafood (Capone et al., 1996).<br />

The <strong>in</strong>tra-corporal adm<strong>in</strong>istration of <strong>antibiotic</strong>s <strong>in</strong>evitably<br />

leads to residual concentrations <strong>in</strong> excrements. Consequently,<br />

<strong>antibiotic</strong>s are frequently found <strong>in</strong> dung and manure.<br />

Manure samples from pigs conta<strong>in</strong>ed up to 3.5 mg kg ±1 of<br />

SAs and up to 4 mg kg ±1 of TCs (Höper et al., 2002;<br />

Hamscher et al., 2002a; Sengelùv et al., 2003). Even larger<br />

concentrations of TCs were determ<strong>in</strong>ed <strong>in</strong> dung from beef<br />

cattle and calves (Patten et al., 1980; Höper et al., 2002).<br />

Campagnolo et al. (2002) detected antimicrobial <strong>compounds</strong><br />

from a multitude of different classes <strong>in</strong> all manure samples<br />

taken from eight pig farms, with the s<strong>in</strong>gle substances often<br />

exceed<strong>in</strong>g 100 lg l ±1 and the sum of all <strong>antibiotic</strong>s<br />

approach<strong>in</strong>g 1000 lg l ±1 . Additionally, surface and groundwater<br />

samples nearby the storage lagoons were often<br />

contam<strong>in</strong>ated with <strong>antibiotic</strong>s. Residual concentrations of<br />

<strong>antibiotic</strong>s were estimated for agricultural <strong>soils</strong>, rang<strong>in</strong>g for<br />

TCs from 450 to 900 lg kg ±1 (W<strong>in</strong>ckler and Grafe, 2000), for<br />

macrolides from 13 to 67 lg kg ±1 and for FQs from 6 to 52 lg<br />

kg ±1 (Schüller, 1998). In <strong>soils</strong> under conventional landfarm<strong>in</strong>g<br />

fertilized with manure and monitored for two years, average<br />

concentrations of up to 199 lg kg ±1 tetracycl<strong>in</strong>e, 7 lg kg ±1<br />

chlortetracycl<strong>in</strong>e (Hamscher et al., 2002a), and 11 lg kg ±1<br />

sulfadimid<strong>in</strong>e (Höper et al., 2002) were detected. Contam<strong>in</strong>ation<br />

of Swiss river water with veter<strong>in</strong>ary <strong>antibiotic</strong>s po<strong>in</strong>ted to<br />

a runoff or leach<strong>in</strong>g of <strong>antibiotic</strong>s from soil to surface water<br />

(Alder et al., 2001). In contrast, Runsey et al. (1977) detected<br />

no <strong>antibiotic</strong>s <strong>in</strong> weathered manure on pasture and soil and <strong>in</strong><br />

runoff water. Additionally, b-lactams were rarely found <strong>in</strong> the<br />

environment, most probably due to the fast degradation of the<br />

chemically unstable lactam r<strong>in</strong>g (Alder et al., 2001).<br />

5 Fate of <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong><br />

5.1 Sorption and fixation<br />

The <strong>antibiotic</strong>s of different structural classes vary considerably<br />

<strong>in</strong> their molecular structures and physicochemical<br />

properties (Tab. 2). Some substances are hydrophobic or<br />

non-polar, whereas others are completely water soluble or<br />

dissociate at pH values typical for <strong>soils</strong>. Thus, distribution<br />

coefficients (K d ) for the adsorption of <strong>antibiotic</strong>s to soil<br />

material and aquatic sediments, e.g. as summarized by Tolls<br />

(2001), vary for SAs from 0.6 to 4.9, for TCs from 290 to<br />

1620, and for FQs from 310 to 6310 (Tab. 4). From the<br />

extractability, Katz and Katz (1983) deduced that the strength<br />

of sorption to soil <strong>in</strong>creases <strong>in</strong> the follow<strong>in</strong>g sequence:<br />

oxytetracycl<strong>in</strong>e = chlortetracycl<strong>in</strong>e £ bacitrac<strong>in</strong> < tylos<strong>in</strong> <<br />

erythromyc<strong>in</strong> < streptomyc<strong>in</strong>. For most of the <strong>antibiotic</strong>s,<br />

especially the stronger adsorbed TCs and FQs, desorption<br />

hysteresis is strong, and partition coefficients multiply <strong>in</strong><br />

desorption experiments (Nowara et al., 1997; Rabùlle and<br />

Spliid, 2000). Yeager and Halley (1990) found that only 50 %<br />

of the adsorbed efrotomyc<strong>in</strong> could be extracted, even with<br />

harsh solvents. However, sorption of <strong>antibiotic</strong>s to soil<br />

m<strong>in</strong>erals is weaker than to soil organic matter (SOM).<br />

Although adsorption of various SAs was stronger to the clay<br />

than to the sand size fraction of a soil, the opposite was true<br />

for the <strong>in</strong>crease of the partition coefficients at the desorption<br />

step (Thiele et al., 2002). As shown for chlortetracycl<strong>in</strong>e, the<br />

adsorption of epimers and metabolites of an <strong>antibiotic</strong> may be<br />

considerably different from that of the parent compound and<br />

<strong>in</strong> the case of anhydro-chlortetracycl<strong>in</strong>e may be even lower<br />

(Tjùrnelund et al., 2000). This is of special importance when<br />

the more mobile metabolite still exhibits antimicrobial activity.<br />

Sorption of pharmaceutical <strong>antibiotic</strong>s is especially <strong>in</strong>fluenced<br />

by soil pH (Holten Lützhùft et al., 2000), SOM (Langhammer,<br />

1989; Gruber et al., 1990), and soil m<strong>in</strong>erals (Batchelder,<br />

1982). P<strong>in</strong>ck et al. (1961a) and Bewick (1979) reported a<br />

much stronger adsorption of am<strong>in</strong>oglycosides, TCs, and<br />

tylos<strong>in</strong> to expandable three layer clay m<strong>in</strong>erals than to illite<br />

and kaol<strong>in</strong>ite. Correspond<strong>in</strong>gly, nearly the opposite sequence<br />

was found for the desorption of these <strong>antibiotic</strong>s, while no<br />

release of am<strong>in</strong>oglycosides was determ<strong>in</strong>ed (P<strong>in</strong>ck et al.,<br />

1961b). Similar results were obta<strong>in</strong>ed for the adsorption of<br />

these pharmaceuticals and of streptomyc<strong>in</strong> <strong>in</strong> <strong>soils</strong> characterized<br />

by the <strong>in</strong>vestigated different clay m<strong>in</strong>erals (P<strong>in</strong>ck et<br />

al., 1961a; Soulides et al., 1962). It is assumed that besides<br />

adsorption, diffusion <strong>in</strong>to porous soil particles also contributed<br />

to the fixation. An <strong>in</strong>terlayer adsorption of <strong>antibiotic</strong>s from<br />

various classes <strong>in</strong> the presence of montmorillonite was first<br />

described by P<strong>in</strong>ck et al. (1962). Correspond<strong>in</strong>gly, the strong<br />

adsorption of FQs to <strong>soils</strong>, especially to clay m<strong>in</strong>erals, was<br />

accompanied by an expansion of the spac<strong>in</strong>g of montmorillonite<br />

(Nowara et al., 1997). The authors proposed<br />

coulombic <strong>in</strong>teractions and the adsorption of anionic<br />

<strong>antibiotic</strong>s via cation bridg<strong>in</strong>g to clay m<strong>in</strong>erals as the ma<strong>in</strong><br />

mechanism for FQ adsorption. Thereby, the deprotonated<br />

carboxylic group of FQ-carboxylic acids is fixed to the clay<br />

m<strong>in</strong>erals while the sorption of the decarboxylated derivative is<br />

much smaller.<br />

The sorption and fixation of <strong>antibiotic</strong>s is strongly governed by<br />

the property of numerous <strong>compounds</strong> to ionize depend<strong>in</strong>g on<br />

the pH of the medium (Yeager and Halley, 1990). Octanol/<br />

water coefficients of ioniz<strong>in</strong>g <strong>compounds</strong> change considerably<br />

<strong>in</strong> a pH range around the acid dissociation constant<br />

(Holten Lützhùft et al., 2000). Electrostatic forces mostly<br />

drive the sorption of these derivatives to charged surfaces of<br />

m<strong>in</strong>eral and organic exchange sites (Williams, 1982; Holten<br />

Lützhùft et al., 2000). The adsorption coefficients (K d )ofSAs<br />

<strong>in</strong>creased from < 1 up to 30 when the soil pH decreased <strong>in</strong> the<br />

range of 8 to 4 (Boxall et al., 2002; Tolls et al., 2002). This<br />

was related to the ionization of the amphoteric sulfonamides.<br />

Correspond<strong>in</strong>gly, the adsorption of TCs to humic substances<br />

and clay m<strong>in</strong>erals was not only <strong>in</strong>fluenced by the pH, but also<br />

by the ionic strength of the medium (Sithole and Guy, 1987a,<br />

b). Oxytetracycl<strong>in</strong>e adsorption was 2.5 times greater when<br />

Ca 2+ was sorbed to clay m<strong>in</strong>erals as compared to Na +<br />

(Sithole and Guy, 1987a), because TCs form reversible<br />

complexes with multivalent cations (Wessels et al., 1998).<br />

Chelate complexes of TCs preferentially <strong>in</strong>volve the<br />

tautomeric C-11-C-12 b-diketone system that is formed under<br />

alkal<strong>in</strong>ic conditions from the keto-enol molecule, while with<br />

decreas<strong>in</strong>g pH, the dimethylam<strong>in</strong>o group at C-4 position<br />

becomes <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>volved (Loke et al., 2002). Sithole<br />

and Guy (1987a, b) proposed three major sorption mechan-


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 153<br />

Table 4: Sorption coefficients of pharmaceutical <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong>, sediments and slurry.<br />

Tabelle 4: Adsorptionskoeffizienten pharmazeutischer Antibiotika <strong>in</strong> Böden, Sedimenten und Wirtschaftsdüngern.<br />

Antibiotic<br />

Class<br />

Antibiotic<br />

Compound<br />

Concentration<br />

±1 a lg g<br />

Sample<br />

soil: texture / pH / OC%<br />

K d<br />

lkg ±1<br />

K oc<br />

lkg ±1<br />

Kclay lkg ±1<br />

Reference<br />

Tetracycl<strong>in</strong>es oxytetracycl<strong>in</strong>e sewage sludge / 6.5 / 37 b 3020 8160 a Holten-Lützhoft c<br />

33 ± 2000 mg g ±1 pig manure 6 h / 24 hd 83.2 / 77.6 195 Loke et al., 2002<br />

2.5 ± 50 loamy sand / 6.1 / 1.6 680 42500 Rabùlle and<br />

2.5 ± 50 sand / 5.6 / 1.4 670 47880 Spliid, 2000<br />

2.5 ± 50 sandy loam / 5.6 / 1.1 1026 93320<br />

2.5 ± 50 sand / 6.3 / 1.5 417 27790<br />

285 organic mar<strong>in</strong>e sediment 2590 Smith and<br />

10.9 organic mar<strong>in</strong>e sediment 663 Samuelsen, 1996<br />

Sulfonamides sulfachloropyridaz<strong>in</strong>e 0.05 ± 20 clay loam / 6.5 / 1.8 Boxall et al., 2002<br />

0.05 ± 20 sandy loam / 6.8 / 0.9<br />

sulfadimid<strong>in</strong>e 0.2 ± 25 sand / 5.2 / 0.9 1.3e 139 Langhammer and<br />

0.2 ± 25 loamy sand / 5.6 / 2.3 3.5e 151 Bün<strong>in</strong>g-Pfaue,<br />

0.2 ± 25 sandy loam / 6.3 / 1.2 2.0e 170 1989<br />

0.2 ± 25 clay silt / 6.9 / 1.1 0.9e 80<br />

sulfamethaz<strong>in</strong>e 0.2 ± 25 sand / 5.2 / 0.9 1.2 174 Langhammer,<br />

0.2 ± 25 loamy sand / 5.6 / 2.3 3.1 125 1989<br />

0.2 ± 25 sandy loam / 6.3 / 1.2 2.0 208<br />

0.2 ± 25 clay silt / 6.9 / 1.1 1.0 82<br />

sulfapyrid<strong>in</strong>e 0.1 ± 500 silt loam / 7.0 / 1.6 1.6 101 Thiele, 2000<br />

0.1 ± 500 silt loam / 6.9 / 2.4 7.4 308<br />

1.0 ± 10 silt loam / 7.0 / 1.6 3.5 217 Thiele et al., 2002<br />

sulfadiaz<strong>in</strong>e 1.0 ± 10 silt loam / 7.0 / 1.6 2.0 124<br />

sulfadimid<strong>in</strong>e 1.0 ± 10 silt loam / 7.0 / 1.6 2.4 149<br />

sulfanilamide 1.0 ± 10 silt loam / 7.0 / 1.6 1.7 106<br />

sulfadimethox<strong>in</strong>e 1.0 ± 10 silt loam / 7.0 / 1.6 2.3 143<br />

clay-loam / 6.2 / 3.1 10e 323 Tolls et al., 2002<br />

sulfachloropyridaz<strong>in</strong>e clay-loam / 6.2 / 3.1 4e 129<br />

sulfadiaz<strong>in</strong>e clay-loam / 6.2 / 3.1 2.5e 81<br />

sulfadimid<strong>in</strong>e clay-loam / 6.2 / 3.1 3e 97<br />

sulfaisoxazole clay-loam / 6.2 / 3.1 1.5e 48<br />

sulfathiazole clay-loam / 6.2 / 3.1 3e 97<br />

Macrolides tylos<strong>in</strong> 50 mg g ±1 kaol<strong>in</strong>ite 0.7 Bewick, 1979<br />

50 mg g ±1 illite 3.9<br />

500 mg g ±1 montmorillonite 0.7<br />

500 mg g ±1 bentonite 3.1<br />

100 ± 2000 mg g ±1 pig manure 6 h / 24 hd 45.7 / 240 110 Loke et al., 2002<br />

Macrolides tylos<strong>in</strong> 1.25 ± 25 loamy sand / 6.1 / 1.6 128 7990 Rabùlle and<br />

1.25 ± 25 sand / 5.6 / 1.4 10.8 771 Spliid, 2000<br />

1.25 ± 25 sandy loam / 5.6 / 1.1 62.3 5660<br />

1.25 ± 25 sand / 6.3 / 1.5 8.3 553<br />

Fluorqu<strong>in</strong>olones ciprofloxac<strong>in</strong> 250 lg l ±1 sewage sludge / 6.5 / 37b 417 1127b Hall<strong>in</strong>g-<br />

Sùrensen, 2000<br />

2 ± 200 loamy sand / 5.3 / 0.70 427 61000 Nowara et al.,<br />

enrofloxac<strong>in</strong> 2 ± 200 clay / 4.9 / 1.63 3037 186340 330 1997<br />

2 ± 200 loam / 5.3 / 0.73 5612 768740 2240


154 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

Table 4: Cont<strong>in</strong>ued.<br />

Tabelle 4: Fortsetzung.<br />

Antibiotic<br />

Class<br />

Antibiotic<br />

Compound<br />

Concentration<br />

±1 a lg g<br />

isms for TCs: complexation by divalent cations, ion<br />

exchange, and hydrogen bridg<strong>in</strong>g from acidic groups of<br />

humic acids to polar groups of the TCs.<br />

Adsorption of <strong>antibiotic</strong>s to SOM is strong and depends on<br />

the quantity and the composition of SOM as well, as it was<br />

shown for sulfapyrid<strong>in</strong>e (Thiele, 2000). When a Chernozem<br />

was physically dispersed and separated <strong>in</strong>to particle size<br />

fractions, the adsorption of SAs to the clay size fraction with<br />

stable organo-m<strong>in</strong>eral complexes was about two times<br />

greater than to the sand size fraction, which was mostly<br />

characterized by particulate organic matter of plant orig<strong>in</strong><br />

(Thiele et al., 2002). The adsorption of sulfapyrid<strong>in</strong>e was<br />

significantly correlated with the concentration of lipids and<br />

lign<strong>in</strong> dimers <strong>in</strong> the SOM of the particle fractions.<br />

Correspond<strong>in</strong>gly, the adsorption of oxytetracycl<strong>in</strong>e <strong>in</strong>creased<br />

with <strong>in</strong>creas<strong>in</strong>g aromaticity of organic soil components (Suan<br />

and Dmitrenko, 1994a). As for soil m<strong>in</strong>erals, the adsorption of<br />

oxytetracycl<strong>in</strong>e to humic acid varies significantly with pH<br />

Sample<br />

soil: texture / pH / OC%<br />

K d<br />

lkg ±1<br />

K oc<br />

lkg ±1<br />

Kclay lkg ±1<br />

Reference<br />

2 ± 200 loamy sand / 6.0 / 1.23 1230 99980 2276<br />

2 ± 200 loam / 7.5 / 1.58 260 16510 140<br />

2 ± 200 loamy sand / 5.3 / 0.70 496 70910 2480<br />

decarboxylated<br />

enrofloxac<strong>in</strong><br />

2 ± 200 loamy sand / 5.3 / 0.70 7.7 1100<br />

ofloxac<strong>in</strong> 2 ± 200 loamy sand / 5.3 / 0.70 309 44140<br />

Imidazoles metronidazole 100 ± 2000 mg g ±1 pig manure 6 h / 24 hd n.d. n.d. Loke et al., 2002<br />

1.25 ± 25 loamy sand / 6.1 / 1.6 0.67 42 Rabùlle and<br />

1.25 ± 25 sand / 5.6 / 1.4 0.54 39 Spliid, 2000<br />

1.25 ± 25 sandy loam / 5.6 / 1.1 0.62 56<br />

1.25 ± 25 sand / 6.3 / 1.5 0.57 38<br />

fenbendazole 0.5 ± 100 silt loam / 7.0 / 1.6 0.91 57 Thiele and<br />

0.5 ± 100 silt loam / 6.9 / 2.4 0.84 35 Le<strong>in</strong>weber, 2000<br />

Polypeptides avermect<strong>in</strong> 0.006 ± 2.17 clay loam / 6.6 / 4.8 147 5300 Gruber et al.,<br />

0.006 ± 2.17 sand / 7.5 / 0.1 17.4 30000 1990<br />

0.006 ± 2.17 silt loam / 7.5 / 2.1 80.2 6600<br />

Qu<strong>in</strong>oxal<strong>in</strong>e- olaqu<strong>in</strong>dox 100 ± 2000 mg g ±1 pig manure 6 h / 24 hd 20.4 / 9.77 50 Loke et al., 2002<br />

derivatives 1.25 ± 25 loamy sand / 6.1 / 1.6 1.67 104 Rabùlle and<br />

1.25 ± 25 sand / 5.6 / 1.4 1.21 86 Spliid, 2000<br />

1.25 ± 25 sandy loam / 5.6 / 1.1 1.27 116<br />

1.25 ± 25 sand / 6.3 / 1.5 0.69 46<br />

Lipoglycosides efrotomyc<strong>in</strong> silt loam / 7.5 / 2.1 18 1460 Yeager and<br />

loam / 6.7 / 2.5 8.3 580 Halley, 1990<br />

1.0 ± 135 sandy loam / 7.5 / 1.1 51 8000<br />

1.0 ± 135 clay loam / 5.0 / 4.6 290 11000<br />

Diam<strong>in</strong>o- trimethoprim 500 lg l<br />

pyrimid<strong>in</strong>es<br />

±1 sewage sludge / 6.5 / 37b 76 205b Hall<strong>in</strong>g-Sùrensen<br />

et al., 2002b<br />

a if not <strong>in</strong>dicated otherwise b Koc estimates for OC <strong>in</strong> dry matter from own data; c Holten-Lützhùft and Hall<strong>in</strong>g-Sùrensen cited <strong>in</strong> Stuer-Lauridsen<br />

et al. (2000); d adsorption time; e data derived from figures; n.d. = not detectable<br />

(Sithole and Guy, 1987b). The TCs b<strong>in</strong>d to humic acids and<br />

prote<strong>in</strong>s especially via anionic functional groups (Loke et al.,<br />

2002). In mildly alkal<strong>in</strong>ic manure (pH 7.8), tylos<strong>in</strong> Ais partly<br />

positively charged thus, the result<strong>in</strong>g sorption is likely due to<br />

ion b<strong>in</strong>d<strong>in</strong>g to negative groups of the manure particles, but not<br />

to complexation with metal ions (Loke et al., 2002). S<strong>in</strong>ce K oc<br />

was sufficiently estimated from K ow , a major contribution of<br />

hydrophobic partition<strong>in</strong>g was concluded. However, the K oc<br />

concept is not valid for the majority of polar <strong>antibiotic</strong>s (Thiele<br />

et al., 2002). The much stronger sorption of TCs to dissolved<br />

organic matter (DOM) than expected from K ow clearly<br />

stresses that sorption is not attributable to hydrophobic<br />

partition<strong>in</strong>g, but ionic <strong>in</strong>teractions and hydrogen bonds (Tolls,<br />

2001). In general, the adsorption of <strong>antibiotic</strong>s like FQs and<br />

SAs to faeces that are rich <strong>in</strong> organic matter is strong<br />

(Marengo et al., 1997; Thiele-Bruhn and Aust, 2003).<br />

However, distribution coefficients for oxytetracycl<strong>in</strong>e and<br />

tylos<strong>in</strong> are smaller <strong>in</strong> manure than <strong>in</strong> <strong>soils</strong> (Loke et al.,<br />

2002). Accord<strong>in</strong>gly, Boxall et al. (2002) determ<strong>in</strong>ed decreas-


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 155<br />

<strong>in</strong>g K d values for sulfachloropyridaz<strong>in</strong>e with an <strong>in</strong>creas<strong>in</strong>g<br />

proportion of manure <strong>in</strong> soil. This was not related to the<br />

mobiliz<strong>in</strong>g effect of DOM, but to the pH effect of the alkal<strong>in</strong>ic<br />

manure. Similar effects of manure additions to soil were<br />

found for other SAs (Thiele-Bruhn and Aust, 2003). However,<br />

the slurry used <strong>in</strong> the latter <strong>in</strong>vestigation was acidic and<br />

above a manure to soil ratio of 1:10, K d values strongly<br />

<strong>in</strong>creased.<br />

Adsorption of most <strong>antibiotic</strong>s to <strong>soils</strong> is fast. Efrotomyc<strong>in</strong>, a<br />

lipoglycoside, and SAs reach sorption equilibrium <strong>in</strong> soil after<br />

several hours (Langhammer and Bün<strong>in</strong>g-Pfaue, 1989; Yeager<br />

and Halley, 1990; Thiele, 2000). The adsorption of TCs to<br />

various exchange sites is characterized by two processes of<br />

different k<strong>in</strong>etics (Sithole and Guy, 1987b; Suan and<br />

Dmitrenko, 1994b) that can be <strong>in</strong>terpreted as a fast <strong>in</strong>itial<br />

adsorption to outer surfaces, followed by a penetration <strong>in</strong>to<br />

<strong>in</strong>terlayers of clay m<strong>in</strong>erals and micropores. In contrast, for<br />

sal<strong>in</strong>omyc<strong>in</strong> surface adsorption to SOM is energetically<br />

preferred to <strong>in</strong>corporation <strong>in</strong>to the humic substance as was<br />

revealed from molecular modell<strong>in</strong>g by computational chemistry<br />

(Schulten, 2002).<br />

Adsorption mostly reduces the <strong>antibiotic</strong> potency of the<br />

<strong>compounds</strong> (Ingerslev and Hall<strong>in</strong>g-Sùrensen, 2000). It is<br />

assumed that this is especially the case when the bioactive<br />

functionality associates with the exchange sites (Wessels et<br />

al., 1998; Thiele, 2000). Correspond<strong>in</strong>gly, desorption yields a<br />

reactivation of the antimicrobial potency (Samuelsen et al.,<br />

1994; Hall<strong>in</strong>g-Sùrensen et al., 2002b). However, sorption or<br />

fixation does not necessarily result <strong>in</strong> a complete elim<strong>in</strong>ation<br />

of the antimicrobial activity (Hall<strong>in</strong>g-Sùrensen et al., 2003).<br />

5.2 Mobility and transport<br />

Field <strong>in</strong>vestigations revealed that po<strong>in</strong>t sources caused<br />

ground water contam<strong>in</strong>ation result<strong>in</strong>g from transport of<br />

<strong>antibiotic</strong>s through soil as determ<strong>in</strong>ed <strong>in</strong> the vic<strong>in</strong>ity of manure<br />

lagoons (Campagnolo et al., 2002) and at a disposal site of a<br />

pharmaceutical plant (Holm et al., 1995). Adiffuse contam<strong>in</strong>ation<br />

of surface water by <strong>antibiotic</strong> leach<strong>in</strong>g from<br />

agricultural <strong>soils</strong> has also been reported (Alder et al., 2001).<br />

In contrast, <strong>antibiotic</strong>s were only detected <strong>in</strong> a small number<br />

of ground water samples from regions with <strong>in</strong>tensive livestock<br />

production (Hirsch et al., 1999). However, to date, only a few<br />

systematic <strong>in</strong>vestigations related to the mobility and transport<br />

of <strong>antibiotic</strong>s <strong>in</strong> soil exist. Numerous <strong>antibiotic</strong>s have a low<br />

water solubility, they are relatively polar, and strongly retarded<br />

<strong>in</strong> <strong>soils</strong> (Tab. 2, Tab. 4). It is assumed that significant transport<br />

of such <strong>antibiotic</strong>s like TCs is restricted to fast preferential<br />

and macropore flow or is facilitated by co-transport with<br />

mobile colloids like DOM. In submerged mar<strong>in</strong>e sediment,<br />

oxytetracycl<strong>in</strong>e transport with<strong>in</strong> 220 days was restricted to 2 to<br />

4cm(Samuelsen et al., 1992). Also, leach<strong>in</strong>g of avermect<strong>in</strong> <strong>in</strong><br />

soil columns was small but <strong>in</strong>creased significantly with<br />

preferential flow with<strong>in</strong> the cracks of a structured silt loam<br />

(Gruber et al., 1990). In accordance with results from sorption<br />

experiments, the weakly adsorb<strong>in</strong>g olaqu<strong>in</strong>dox completely<br />

leached through soil columns, while the stronger adsorb<strong>in</strong>g<br />

tylos<strong>in</strong> was reta<strong>in</strong>ed <strong>in</strong> different depths depend<strong>in</strong>g on the soil<br />

properties (Rabùlle and Spliid, 2000). No transport was found<br />

for oxytetracycl<strong>in</strong>e. Soil sorptive properties also governed the<br />

extent of sulfadimid<strong>in</strong>e translocation <strong>in</strong> 30 cm soil columns<br />

filled with three soil materials of different properties<br />

(Langhammer and Bün<strong>in</strong>g-Pfaue, 1989). In contrast, sulfachloropyridaz<strong>in</strong>e<br />

was not leached through a sandy soil, while<br />

for a structured clay soil, rapid preferential transport of the SA<br />

<strong>in</strong>to dra<strong>in</strong>age water was observed with<strong>in</strong> seven days (Boxall<br />

et al., 2002).<br />

5.3 Degradation and <strong>in</strong>activation<br />

Numerous <strong>antibiotic</strong> <strong>compounds</strong> such as FQs, SAs, and TCs<br />

are susceptible to photodegradation (e.g. Burhenne et al.,<br />

1997; Hall<strong>in</strong>g-Sùrensen et al., 2003). Accord<strong>in</strong>gly, chlortetracycl<strong>in</strong>e<br />

was degraded on the surface of a Chernozem at a<br />

DT 50 of 5.8 days (Thiele-Bruhn et al., 2003b). However, under<br />

similar conditions no significant abiotic degradation of<br />

fenbendazole and sulfapyrid<strong>in</strong>e was determ<strong>in</strong>ed. It is well<br />

known that photodecomposition <strong>in</strong> water already decl<strong>in</strong>es<br />

with <strong>in</strong>creas<strong>in</strong>g water depth and turbidity (Lunestad et al.,<br />

1995). Thus, it was assumed that photodegradation has no<br />

significant effect on the concentration of <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong>,<br />

especially when they are spread onto <strong>soils</strong> as contam<strong>in</strong>ants<br />

<strong>in</strong> sludge or slurry. As compet<strong>in</strong>g processes, fixation to and<br />

penetration <strong>in</strong>to voids of the soil solids protect <strong>antibiotic</strong>s from<br />

photodecomposition. Hydrolysis, another major abiotic process,<br />

also yields transformation of <strong>antibiotic</strong>s (Hall<strong>in</strong>g-<br />

Sùrensen, 2000). The concentration of chlortetracycl<strong>in</strong>e<br />

aged <strong>in</strong> sterile soil possibly decl<strong>in</strong>ed due to this process,<br />

while the extractable concentrations of fenbendazole and<br />

sulfapyrid<strong>in</strong>e did not change after an <strong>in</strong>itial strong fixation<br />

(Thiele-Bruhn et al., 2003b).<br />

The degradation of xenobiotics <strong>in</strong> <strong>soils</strong> is ma<strong>in</strong>ly driven by<br />

microbial processes and numerous <strong>antibiotic</strong>s are susceptible<br />

to enzymatic transformation reactions like oxidative decarboxylation<br />

and hydroxylation (Chen et al., 1997; McGrath et<br />

al., 1998; Al-Ahmad et al., 1999). Biodegradation was shown<br />

for ceftiofur-Na from the class of cephalospor<strong>in</strong>s (Gilbertson<br />

et al., 1990). The <strong>antibiotic</strong> was quickly degraded <strong>in</strong> fortified<br />

cattle faeces, whereas no degradation was determ<strong>in</strong>ed <strong>in</strong><br />

sterile excrements. Thereby, <strong>in</strong>tra-corporal metabolism<br />

proceeds <strong>in</strong> the environment. In mammals, <strong>antibiotic</strong>s are<br />

mostly metabolized by a biphasic mechanism. First, functional<br />

groups are coupled to the molecule by monooxygenases,<br />

reductases, and hydrolases, followed by a covalent<br />

conjugation <strong>in</strong> the second phase, render<strong>in</strong>g the molecule<br />

more hydrophilic, excretable (Daughton and Ternes, 1999)<br />

and mostly <strong>antibiotic</strong> <strong>in</strong>active (Hall<strong>in</strong>g-Sùrensen et al., 1998).<br />

The conjugation reactions are reversible though, and<br />

reactions back to the parent compound have been observed<br />

<strong>in</strong> the environment (Hussar et al., 1968; Langhammer, 1989;<br />

Hall<strong>in</strong>g-Sùrensen et al., 2002b). However, <strong>antibiotic</strong>s usually<br />

further degrade <strong>in</strong> dung, manure, and soil (Hall<strong>in</strong>g-Sùrensen,<br />

2000; Ingerslev and Hall<strong>in</strong>g-Sùrensen, 2000;Wetzste<strong>in</strong> et al.,<br />

2002).Additionsofmanureorsludge,conta<strong>in</strong><strong>in</strong>ghighnumbersof<br />

microorganisms, mostly result <strong>in</strong> <strong>in</strong>creased biodegradation of<br />

<strong>antibiotic</strong>s <strong>in</strong> soil (Ingerslev and Hall<strong>in</strong>g-Sùrensen, 2001;<br />

Ingerslev et al., 2001). Examples for degradation rates of<br />

<strong>antibiotic</strong>s <strong>in</strong> manure and <strong>soils</strong> are listed <strong>in</strong> Tab. 5.


156 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

Degradation of <strong>antibiotic</strong>s is governed by their molecular<br />

composition. Macrolides and penicill<strong>in</strong>s are targets for fast<br />

degradation <strong>in</strong> soil (Gavalch<strong>in</strong> and Katz, 1994; Midtvedt,<br />

2001). The <strong>in</strong>tense transformation of sarafloxac<strong>in</strong> (Marengo<br />

et al., 1997) and virg<strong>in</strong>iamyc<strong>in</strong> (Weeras<strong>in</strong>ghe and Towner,<br />

1997) yielded numerous metabolites of m<strong>in</strong>or concentration<br />

(< 10 %) and followed first order k<strong>in</strong>etics. In the presence of<br />

wood rott<strong>in</strong>g fungi, FQs are <strong>in</strong>activated through metabolism at<br />

the am<strong>in</strong>e-position of the molecule while the heterocyclic r<strong>in</strong>g<br />

is very persistent (Wetzste<strong>in</strong>, 2001). Thus, the xenobiotic<br />

fluor<strong>in</strong>e moiety of FQs is quickly elim<strong>in</strong>ated and the result<strong>in</strong>g<br />

metabolites exhibit no or strongly reduced <strong>antibiotic</strong> potential<br />

(Wetzste<strong>in</strong> et al., 1997). From the group of SAs, sulfadimethox<strong>in</strong>e<br />

is possibly demethylated <strong>in</strong> sediments (Samuelsen<br />

et al., 1994).<br />

However, fixation of <strong>antibiotic</strong> <strong>compounds</strong> to surfaces or <strong>in</strong><br />

pores of the soil matrix may effectively protect them from<br />

biodegradation (Samuelsen et al., 1992; Gavalch<strong>in</strong> and Katz,<br />

1994) without alterations to their molecular structure (Hall<strong>in</strong>g-<br />

Sùrensen et al., 2002b). Consequently, bioavailable concentrations<br />

possibly decl<strong>in</strong>e below a threshold concentration<br />

for the <strong>in</strong>itiation of biological degradation (Alexander, 1999).<br />

Thus, even <strong>compounds</strong> like TCs, which are reactive <strong>in</strong><br />

standard solutions, persist <strong>in</strong> the soil for several months (van<br />

Gool, 1993; Höper et al., 2002). In aquatic sediments, no or<br />

only m<strong>in</strong>or degradation of FQs, TCs, and SAs was<br />

determ<strong>in</strong>ed over a period of 180 days (Samuelsen et al.,<br />

1994; Hektoen et al., 1995). Besides of the physicochemical<br />

properties of the <strong>antibiotic</strong>s, the extent and k<strong>in</strong>etics of<br />

degradation are also considerably affected by temperature<br />

(Gavalch<strong>in</strong> and Katz, 1994) and adsorption to soil (Weeras<strong>in</strong>ghe<br />

and Towner, 1997) (Tab. 4). For the FQ enrofloxac<strong>in</strong>,<br />

it was shown that unspecific adsorption to SOM reduced<br />

degradation, although it was not completely stopped (Martens<br />

et al., 1996; Wetzste<strong>in</strong> et al., 1997).<br />

The products of biodegradation may still exhibit antimicrobial<br />

potential, as it was found for several metabolites of FQs<br />

(Weeras<strong>in</strong>ghe and Towner, 1997; Marengo et al., 1997;<br />

Wetzste<strong>in</strong> et al., 2000). Furthermore, the decl<strong>in</strong>e <strong>in</strong><br />

concentration of TCs and various <strong>antibiotic</strong>s of other<br />

structural classes was not always mirrored by a decl<strong>in</strong>e <strong>in</strong><br />

microbial toxicity (Hall<strong>in</strong>g-Sùrensen et al., 2002b, 2003). For<br />

example, tylos<strong>in</strong> Awas converted to the <strong>antibiotic</strong> tylos<strong>in</strong> B <strong>in</strong><br />

acidic medium, whereas <strong>in</strong> neutral and alkal<strong>in</strong>e medium,<br />

tylos<strong>in</strong> Aaldol was detected along with a number of polar<br />

decomposition products which were less bioactive (Hall<strong>in</strong>g-<br />

Sùrensen et al., 2003).<br />

Generally, the degradation of most xenobiotics is faster and<br />

more complete under aerobic as compared to anaerobic<br />

conditions. Correspond<strong>in</strong>gly, degradation of oxytetracycl<strong>in</strong>e,<br />

tylos<strong>in</strong>, sulfadiaz<strong>in</strong>e, streptomyc<strong>in</strong>, metronidazole, and olaqu<strong>in</strong>dox<br />

<strong>in</strong> activated sludge, soil and surface water was<br />

similar or slightly lower under anaerobic as compared to<br />

aerobic conditions, while ciprofloxac<strong>in</strong> was not degraded<br />

under anaerobic conditions (Ingerslev et al., 2001; Hall<strong>in</strong>g-<br />

Sùrensen et al., 2003; Tab. 5). Additionally, Ingerslev and<br />

Hall<strong>in</strong>g-Sùrensen (2000) demonstrated that acclimation of<br />

degrad<strong>in</strong>g organisms occurs <strong>in</strong> soil, when degradation times<br />

for SAs decl<strong>in</strong>ed dramatically after respik<strong>in</strong>g the soil with the<br />

same or a similar <strong>antibiotic</strong>.<br />

5.4 Effects on soil organisms and plants<br />

<strong>Pharmaceutical</strong> <strong>antibiotic</strong>s are designed to affect ma<strong>in</strong>ly<br />

microorganisms. Hence, the toxic dose for microorganisms is<br />

often several magnitudes smaller than for higher organisms<br />

(Wollenberger et al., 2000). Accord<strong>in</strong>gly, dose related effects<br />

on soil microorganisms were determ<strong>in</strong>ed (Herron et al., 1998;<br />

Pfeiffer et al., 1998). Selected results are listed <strong>in</strong> Tab. 6.<br />

Effects and effective doses vary with time (Thiele and Beck,<br />

2001). When a Gleyic Podzol was <strong>in</strong>cubated with tetracycl<strong>in</strong>e,<br />

the metabolic quotient was significantly affected by a<br />

concentration of 10 lg kg ±1 after 8 weeks (Höper et al.,<br />

2002). After 16 weeks, effects were significant only at an<br />

<strong>in</strong>itial concentration of 10 mg kg ±1 . Some <strong>antibiotic</strong>s <strong>in</strong>hibit<br />

microorganisms (Col<strong>in</strong>as et al., 1994; Thiele and Beck,<br />

2001), while others promote their growth and activity (Patten<br />

et al., 1980; Hossa<strong>in</strong> and Alexander, 1984). Antibiotics like<br />

streptomyc<strong>in</strong> and cycloheximide are generally used to<br />

selectively <strong>in</strong>hibit growth of bacteria and fungi <strong>in</strong> soil<br />

experiments. Consequently, other pharmaceutical <strong>antibiotic</strong>s<br />

cause changes <strong>in</strong> the composition of the <strong>in</strong>digenous soil<br />

microbial population as well (Ingham and Coleman, 1984; Mc<br />

Cracken and Foster, 1993). In this manner, even small<br />

extractable concentrations of oxytetracycl<strong>in</strong>e and sulfapyrid<strong>in</strong>e<br />

produced longer last<strong>in</strong>g significant effects (Thiele and<br />

Beck, 2001).<br />

In contrast, species of soil fauna were not affected by even<br />

excessive doses of <strong>antibiotic</strong>s (Gomez et al., 1996; Herron et<br />

al., 1998; Baguer et al., 2000). While no effects of selected<br />

<strong>antibiotic</strong>s on enchytreids and spr<strong>in</strong>gtails were observed at<br />

environmentally relevant concentrations, the anthelm<strong>in</strong>tic<br />

ivermect<strong>in</strong> significantly <strong>in</strong>creased the mortality of spr<strong>in</strong>gtails<br />

(Jensen et al., 2001b). Also, anthelm<strong>in</strong>tics can change the<br />

fauna <strong>in</strong> and underneath cow-pats and hamper the dung<br />

decomposition (Madsen et al., 1988; McCracken and Foster,<br />

1993) and <strong>in</strong>hibit nematodes (Toml<strong>in</strong>son et al., 1985) and<br />

earthworms (Gunn and Sadd, 1994; Tab. 6)<br />

The effects of <strong>antibiotic</strong>s on organisms are essentially<br />

<strong>in</strong>fluenced by their bioavailability that depends on the soil<br />

properties, the availability of nutrients, and the presence of<br />

root exudates (da Gloria Britto de Oliveira et al., 1995; Herron<br />

et al., 1998). Multivalent cations <strong>in</strong>hibit the <strong>antibiotic</strong> potential<br />

of TCs and FQs (Froehner et al., 2000). First results<br />

confirm<strong>in</strong>g the reduction of <strong>antibiotic</strong> potency due to sorption<br />

and degradation <strong>in</strong> <strong>soils</strong> were published by Jefferys (1952).<br />

Degradation products of tylos<strong>in</strong>, sulfadiaz<strong>in</strong>e, streptomyc<strong>in</strong>,<br />

ciprofloxac<strong>in</strong>, and olaqu<strong>in</strong>dox showed no significant potency<br />

<strong>in</strong> a soil bacterial assay (Hall<strong>in</strong>g-Sùrensen et al., 2003).<br />

However, a transformation of pharmaceuticals does not<br />

necessarily yield a decl<strong>in</strong>e <strong>in</strong> their <strong>antibiotic</strong> potential. Various<br />

metabolites of TCs still exhibited bacterial toxicity <strong>in</strong> sewage<br />

sludge and soil (Hall<strong>in</strong>g-Sùrensen et al., 2002b).<br />

The period over which <strong>antibiotic</strong>s are effective depends on<br />

their persistence (Samuelsen et al., 1994). The <strong>antibiotic</strong><br />

potential can <strong>in</strong>crease with time (Dojmi di Delupis et al., 1992)


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 157<br />

Table 5: Degradation of pharmaceutical <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong> and manure.<br />

Tabelle 5: Abbau pharmazeutischer Antibiotika <strong>in</strong> Böden und Wirtschaftsdüngern.<br />

Class Compound Concentration<br />

±1 a lg g<br />

Sample<br />

soil: texture / pH / OC%<br />

Degradation<br />

%<br />

Time<br />

d<br />

Reference<br />

Tetracycl<strong>in</strong>es chlortetracycl<strong>in</strong>e cattle manure 24 84 Runsey et al., 1977<br />

5.6 sandy loam / 6.1+ manure 88 30 Gavalch<strong>in</strong> and Katz,<br />

1994<br />

4.7 lg kg ±1 soil 0 ca. 180 Hamscher et al.,<br />

tetracycl<strong>in</strong>e 50±300 lg kg ±1 soil 0 ca. 180 2001<br />

10 poultry manure 65b 84 Jagnow, 1977<br />

10 manure + soil 100b 14<br />

pig manure, aerated 50 4.5 Kühne et al., 2000<br />

pig manure, non aerated 50 9<br />

20 ± 100 lg l ±1 pig manure 50 55±105 W<strong>in</strong>ckler and Grafe,<br />

2001<br />

oxytetracycl<strong>in</strong>e soil + contam. manure 0 180 van Gool, 1993<br />

sediment slurry, aerobic 50 43.8 Ingerslev et al.,<br />

2001<br />

Sulfonamides sulfanilamide various <strong>soils</strong> 0 14 Frankenberger and<br />

Tabatabai, 1982<br />

sulfabenzamide 250±1000 lg l ±1 manure / sludge 0 / 50c 28 / 0.4c Ingerslev and<br />

sulfadiaz<strong>in</strong>e ± º ± manure / sludge 0 / 50c 28 / 1.6c Hall<strong>in</strong>g-Sùrensen,<br />

sulfameter ± º ± manure / sludge 0 / 50c 28 / 0.4 2000<br />

sulfanilamide ± º ± manure / sludge 0 / 50c 28 / 3.8c sulfadimid<strong>in</strong>e 1.0 loamy sand / 5.6 / 2.3 0.2 / 0.3d,e 64 Langhammer et al.,<br />

1.0 clay silt / 6.9 / 1.1 0.3 / 0.7d,e 64 1990<br />

trimethoprim 500 lg l ±1 sewage sludge 50 22 ± 41 Hall<strong>in</strong>g-Sùrensen,<br />

2000<br />

Am<strong>in</strong>oglycosides streptomyc<strong>in</strong> 5.6 sandy loam / 6.1+ manure 0 30 Gavalch<strong>in</strong> and Katz,<br />

b-Lactams penicill<strong>in</strong> 5.6 sandy loam / 6.1+ manure 0 30 1994<br />

ceftiotur clay loam 50e 22.2 Gilbertson et al.,<br />

sand 50e 49.0 1990<br />

silty clay loam 50e 41.4<br />

mecill<strong>in</strong>am 500 lg l ±1 sewage sludge 50 0.5 ± 0.7 Hall<strong>in</strong>g-Sùrensen,<br />

2000<br />

Macrolides erythromec<strong>in</strong> 5.6 sandy loam / 6.1+ manure 25 30 Gavalch<strong>in</strong> and Katz,<br />

1994<br />

spiramyc<strong>in</strong> poultry manure 70b 28 Jagnow, 1977<br />

tylos<strong>in</strong> 5.6 sandy loam / 6.1+ manure 0 30 Gavalch<strong>in</strong> and Katz,<br />

1994<br />

100 slurry + sand / 6.3 / 1.4 50 4.2 Ingerslev and<br />

Hall<strong>in</strong>g-Sùrensen,<br />

100 slurry+sandy loam /6.8/1.6 50 5.7 2001<br />

25 mg l ±1 pig manure, anaerobic 50 > 2.5 Loke et al., 2000<br />

Fluorqu<strong>in</strong>olones sarafloxac<strong>in</strong> 3.4 loam / 7.9 0.58e 80 Marengo et al.,<br />

3.4 sandy loam / 7.6 0.57e 80 1997<br />

3.4 silt loam / 7.6 0.49e 80<br />

enrofloxac<strong>in</strong> 10 sandy loam / 5.4 / 1.3 30.3e 56 Martens et al., 1996<br />

10 cattle manure +<br />

0.1-0.7 /<br />

basidiomycetes<br />

0.7±12.8e 56 Wetzste<strong>in</strong> et al.,<br />

1997


158 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

Table 5: Cont<strong>in</strong>ued.<br />

Tabelle 5: Fortsetzung.<br />

Class Compound Concentration<br />

±1 a lg g<br />

from what may be due to bioaccumulation (Lo and Hayton,<br />

1981; Migliore et al., 1993). Bioaccumulation of 15 FQs was<br />

determ<strong>in</strong>ed <strong>in</strong> E. coli, S. aureus and P. aerug<strong>in</strong>osa. However,<br />

the result<strong>in</strong>g <strong>in</strong>tra-corporal concentrations were not correlated<br />

with the <strong>antibiotic</strong> effects of the pharmaceuticals (Asuquo and<br />

Piddock, 1993).<br />

In total, the knowledge about the ecotoxicity of <strong>antibiotic</strong>s is<br />

still scarce, while their effects on humans and other mammals<br />

are well documented. There is a lack of special test methods<br />

and the adoption of unsuited methods produces erroneous<br />

results. No toxicity of <strong>antibiotic</strong>s was observed with the<br />

biolum<strong>in</strong>escence test follow<strong>in</strong>g the usual procedure, while<br />

after an extension of the duration of the assay, clear effects<br />

were determ<strong>in</strong>ed (Backhaus and Grimme, 1999). Also, an<br />

Sample<br />

soil: texture / pH / OC%<br />

ciprofloxac<strong>in</strong> 10 m<strong>in</strong>eral. media +<br />

wood rott<strong>in</strong>g fungi<br />

Degradation<br />

%<br />

elongation of the substrate <strong>in</strong>duced respiration test from 24 to<br />

48 hours was necessary to obta<strong>in</strong> dose response relationships<br />

from <strong>antibiotic</strong>s <strong>in</strong> selected soil samples (Thiele and<br />

Beck, 2001). The nitrification <strong>in</strong>hibition test proved not to be<br />

suitable for <strong>antibiotic</strong> test<strong>in</strong>g <strong>in</strong> wastewater (Alexy et al.,<br />

2001). This might also expla<strong>in</strong> for the nitrification rate <strong>in</strong><br />

sewage sludge, manure, and soil, which was not affected by<br />

numerous <strong>antibiotic</strong>s <strong>in</strong> various concentrations (Warman,<br />

1980; Patten et al., 1980; Gomez et al., 1996).<br />

5.4.1 Antibiotic resistance<br />

Time<br />

d<br />

Reference<br />

2.2 ± 35.3 e 56 Wetzste<strong>in</strong> et al.,<br />

1999<br />

250 lg l ±1 sewage sludge 50 1.6 ± 2.5 Hall<strong>in</strong>g-Sùrensen,<br />

2000<br />

Imidazoles metronidazole 10 slurry + sand / 6.3 / 1.4 50 14.2 Ingerslev and<br />

10 slurry+sandy loam /6.8/1.6 50 15.0 Hall<strong>in</strong>g-Sùrensen,<br />

2001<br />

sediment slurry, aerobic 50 14 ± 75 Ingerslev et al.,<br />

sediment slurry, anaerobic 50 74.5 2001<br />

Polypeptides bacitrac<strong>in</strong> 5.6 sandy loam / 6.1+ manure 33 30 Gavalch<strong>in</strong> and Katz,<br />

1994<br />

Zn-bacitrac<strong>in</strong> 25 poultry manure 90b 2 Jagnow, 1977<br />

25 manure + soil 100b 7<br />

virg<strong>in</strong>iamyc<strong>in</strong> 1.0 sandy silt / 8.2 50 87 Weeras<strong>in</strong>ghe and<br />

1.0 silty sand / 6.3 50 116 Towner, 1997<br />

1.0 silty sand / 5.7 50 173<br />

1.0 silty clay loam / 6.1 21 64<br />

1.0 silty clay loam / 5.6 12 64<br />

1.0 clay loam / 5.4 18 64<br />

Polyethers monens<strong>in</strong> manure, anaerobic 30 ± 40 70 Donoho, 1984<br />

Phospholipoglycosides<br />

Qu<strong>in</strong>oxal<strong>in</strong>ederivatives<br />

flavomyc<strong>in</strong> 5.6 sandy loam / 6.1+ manure 0 30 Gavalch<strong>in</strong> and Katz,<br />

1994<br />

flavophospholipol 10 poultry manure, aerobic 100b 119 Jagnow, 1977<br />

10 poultry manure, anaerobic 0b 119<br />

olaqu<strong>in</strong>dox 10 slurry + sand / 6.3 / 1.4 50 6.1 Ingerslev and<br />

10 slurry+sandy loam /6.8/1.6 50 5.8 Hall<strong>in</strong>g-Sùrensen,<br />

2001<br />

sediment slurry, aerobic 50 4.0 ± 7.0 Ingerslev et al.,<br />

sediment slurry, anaerobic 50 21.5 2001<br />

Siderophores cyclospor<strong>in</strong> A200 ± 250 compost soil 50 60 Hübener et al., 1992<br />

a if not <strong>in</strong>dicated otherwise; b concentration determ<strong>in</strong>ed from <strong>antibiotic</strong> activity; c second values after respik<strong>in</strong>g the <strong>antibiotic</strong> to the sample;<br />

d determ<strong>in</strong>ed at 10 and 20 C, respectively; e14 CO2 determ<strong>in</strong>ed from radio-labelled <strong>antibiotic</strong>s<br />

Antibiotics released <strong>in</strong>to the environment can provoke the<br />

formation of resistance, and even cross- and multiple<br />

resistance, <strong>in</strong> organisms (Nygaard et al., 1992; Wegener et


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 159<br />

al., 1998; Al-Ahmad et al., 1999). Pathogens as well as<br />

commensal bacteria are affected, the latter constitut<strong>in</strong>g a<br />

potential reservoir of resistance genes for pathogenic<br />

bacteria. The transfer of such pathogens through the food<br />

cha<strong>in</strong> is possible and consequently lowers the success of<br />

pharmacotherapies for cur<strong>in</strong>g humans and animals (Richter<br />

et al., 1996). The <strong>in</strong>itiation of resistance is promoted by<br />

cont<strong>in</strong>u<strong>in</strong>g a sublethal dosage of <strong>antibiotic</strong>s (Gavalch<strong>in</strong> and<br />

Katz, 1994). This is put <strong>in</strong>to effect by the repeated spread<strong>in</strong>g<br />

of contam<strong>in</strong>ated faeces onto agricultural <strong>soils</strong> (van Gool,<br />

Table 6: Effects of pharmaceutical <strong>antibiotic</strong>s on soil organisms and plants.<br />

Tabelle 6: Wirkungen pharmazeutischer Antibiotika auf Bodenorganismen und Pflanzen.<br />

1993). The application of tetracycl<strong>in</strong>e contam<strong>in</strong>ated manure<br />

<strong>in</strong>duced <strong>antibiotic</strong> resistance <strong>in</strong> soil microorganisms that<br />

lasted for weeks (Fründ et al., 2000). Accord<strong>in</strong>gly, tetracycl<strong>in</strong>e<br />

and oleandomyc<strong>in</strong> resistant clostridia were significantly<br />

accumulated <strong>in</strong> manure, manure fertilized <strong>soils</strong>, and the<br />

ground water below (Huysman et al., 1993). However,<br />

survival of microorganisms <strong>in</strong> the presence of <strong>antibiotic</strong>s is<br />

not necessarily due to acquired resistance. Many <strong>in</strong>vestigations<br />

revealed that numerous soil microorganisms have a<br />

natural tolerance towards <strong>antibiotic</strong>s (Esiobu et al., 2002).<br />

Class Compound Habitat / Organism Effect / Inhibition Concentration<br />

±1 a lg g<br />

Reference<br />

Tetracycl<strong>in</strong>es chlortetracycl<strong>in</strong>e Phaseolus vulgaris 70 % 10 mg l ±1 Batchelder, 1981<br />

oxytetracycl<strong>in</strong>e ± biomass 85 % 10 mg l ±1<br />

chlortetracycl<strong>in</strong>e ± biomass <strong>in</strong> sandy loam 51 % 160<br />

oxytetracycl<strong>in</strong>e ± biomass <strong>in</strong> sandy loam 56 % 160<br />

oxytetra. + penicill<strong>in</strong> hyphae of fungi: length and activity 48 % 10 Col<strong>in</strong>as et al., 1994<br />

oxytetracycl<strong>in</strong>e bacteria <strong>in</strong> sand soil 71 % 10<br />

chlortetracycl<strong>in</strong>e methane production <strong>in</strong> manure 100 % 18 mg l ±1 Fedler and Day,<br />

2002<br />

oxytetracycl<strong>in</strong>e silty sand / loamy sand ED SIR 10 0.81 / 0.93 Thiele and Beck,<br />

±ª± ED SIR 10 19.1 / 31.2 2001<br />

Sulfonamides sulfapyrid<strong>in</strong>e ± ª ± ED SIR 10 1.17 / 11.5<br />

±ª± ED SIR 10 0.05 / 6.20<br />

Tetracycl<strong>in</strong>es tetracycl<strong>in</strong>e 13 microorg. stra<strong>in</strong>s MIC < 1 ± 1000 lg l ±1 van Dijck and van<br />

de Voorde, 1976<br />

8 soil microorg. stra<strong>in</strong>s MIC 10 lg l ±1 van Gool, 1993<br />

oxytetracycl<strong>in</strong>e spr<strong>in</strong>gtails F. fimetaria LC /EC 10 10 >5000/>5000 Baguer et al., 2000<br />

earthworms A. calig<strong>in</strong>osa LC /EC 10 10 >5000 / 1954<br />

enchytreids E. crypticus LC /EC 10 10 >5000 / 3000<br />

Macrolides tylos<strong>in</strong> spr<strong>in</strong>gtails F. fimetaria LC /EC 10 10 >5000 / 149<br />

earthworms A. calig<strong>in</strong>osa LC /EC 10 10 >5000 / 3306<br />

enchytreids E. crypticus LC /EC 10 10 2501 / 632<br />

Fluorqu<strong>in</strong>olones ciprofloxac<strong>in</strong> sewage sludge bacteria EC50 0.61 mg l ±1 Hall<strong>in</strong>g-Sùrensen,<br />

Sulfonamides trimethoprim ± ª ± EC50 17.8 mg l ±1 2000<br />

mecill<strong>in</strong>am ± ª ± EC50 62.1 mg l ±1<br />

Am<strong>in</strong>oglycosides streptomyc<strong>in</strong> ± ª ± EC50 0.47 mg l ±1 Hall<strong>in</strong>g-Sùrensen,<br />

Imidazoles metronidazole ± ª ± NOEC 100 mg l ±1 2001<br />

Macrolides tylos<strong>in</strong> ± ª ± EC50 54.7 mg l ±1<br />

Pleuromutil<strong>in</strong> tiamul<strong>in</strong> ± ª ± EC50 14.3 mg l ±1<br />

Fluorqu<strong>in</strong>olones oxol<strong>in</strong>ic acid ± ª ± EC50 0.10 mg l ±1<br />

Qu<strong>in</strong>oxal<strong>in</strong>es olaqu<strong>in</strong>dox ± ª ± EC50 95.7 mg l ±1<br />

û-Lactam penicill<strong>in</strong> G ± ª ± EC50 84.6 mg l ±1<br />

Sulfonamides sulfadiaz<strong>in</strong>e ± ª ± NOEC 60 mg l ±1<br />

Tetracycl<strong>in</strong>es chlortetracycl<strong>in</strong>e ± ª ± EC50 0.4 mg l ±1<br />

oxytetracycl<strong>in</strong>e ± ª ± EC50 1.2 mg l ±1<br />

tetracycl<strong>in</strong>e ± ª ± EC50 2.2 mg l ±1


160 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

Table 6: Cont<strong>in</strong>ued.<br />

Tabelle 6: Fortsetzung.<br />

Class Compound Habitat / Organism Effect / Inhibition Concentration<br />

±1 a lg g<br />

Out of 36 stra<strong>in</strong>s of microorganisms from uncontam<strong>in</strong>ated soil<br />

and water only seven were susceptible to 21 diverse<br />

<strong>antibiotic</strong>s (van Dijck and van de Voorde, 1976). In particular,<br />

pseudomonads are often <strong>in</strong>tr<strong>in</strong>sically resistant to <strong>antibiotic</strong>s<br />

(Hall<strong>in</strong>g-Sùrensen et al., 2003).<br />

5.4.2 Input of resistant microorganisms <strong>in</strong>to <strong>soils</strong><br />

Resistance of soil microorganisms is not only provoked by the<br />

<strong>in</strong>put of <strong>antibiotic</strong>s <strong>in</strong>to the environment. It appears to be even<br />

more important that resistant microorganisms are directly<br />

<strong>in</strong>troduced with faeces <strong>in</strong>to <strong>soils</strong> (Ali-Shtayeh et al., 1998). By<br />

dairy farm manure, resistance aga<strong>in</strong>st ampicill<strong>in</strong>, penicill<strong>in</strong>,<br />

Reference<br />

Am<strong>in</strong>oglycosides streptomyc<strong>in</strong> sewage sludge bacteria EC 0/10 h 50 0.42 / 0.61 mg l ±1 Hall<strong>in</strong>g-Sùrensen et<br />

Fluorqu<strong>in</strong>dones ciprofloxac<strong>in</strong> ± ª ± EC 0/10 h 50 0.025 / 0.008 mg l ±1 al., 2003<br />

Macrolides tylos<strong>in</strong> ± ª ± EC 0/10 h 50 17.5 / 24.9 mg l ±1<br />

Sulfonamides sulfadiaz<strong>in</strong>e ± ª ± EC 0/10 h 50 15.9 / 16.8 mg l ±1<br />

Tetracycl<strong>in</strong>es oxytetracycl<strong>in</strong>es ± ª ± EC 0/10 h 50 0.12 / 0.27 mg l ±1<br />

Am<strong>in</strong>oglycosides streptomyc<strong>in</strong> soil fungi/bacteria/protozoa ±/0/+ b 3 Ingham et al., 1986<br />

± ª ± +/±/± b 30<br />

± ª ± no effect 1 Ingham and Colecycloheximid<br />

soil fungi/bacteria/protozoa no effect 1 man, 1984<br />

Anthelm<strong>in</strong>tics ivermect<strong>in</strong> spr<strong>in</strong>gtails LD50 10 Jensen et al., 2000<br />

spr<strong>in</strong>gtails reproduction EC10 0.5<br />

soil respiration + b 11 Pfeiffer et al., 1998<br />

substrate <strong>in</strong>duced respiration 0 b 11<br />

DMSO-reduction 0 b 11<br />

Polyether monens<strong>in</strong> soil respiration EC50 176<br />

substrate <strong>in</strong>duced respiration + b 176<br />

DMSO-reduction + b 176<br />

various oxytetracycl<strong>in</strong>e, tylos<strong>in</strong>, tiamul<strong>in</strong>, metronidazole, olaqu<strong>in</strong>dox Jensen et al., 2001a<br />

enchytreids LD10 > 1000<br />

spr<strong>in</strong>gtails LD10 > 1000<br />

spr<strong>in</strong>gtails reproduction EC10 100<br />

Sulfonam<strong>in</strong>des sulfadimethox<strong>in</strong>e Panicum miliaceum roots plant 2071 Migliore et al., 1995<br />

Panicum miliaceum stems concentrations 110<br />

Pisum sativum roots from 178<br />

Pisum sativum stems bioaccumulation 60.2<br />

Zea mays roots 269<br />

Zea mays stems 12.5<br />

carrot root / stem / leaf ± / ± / ± b 1mM Migliore et al., 1996<br />

corn root / stem / leaf ± / ± / ± b 1mM<br />

millet root / stem / leaf 0 / 0 / 0 b 1mM<br />

pea root / stem / leaf ± / ± / ± b 1mM<br />

a b if not <strong>in</strong>dicated otherwise; ± = <strong>in</strong>hibiton, 0 = no effect, + = promotion<br />

tetracycl<strong>in</strong>e, vancomyc<strong>in</strong>, and streptomyc<strong>in</strong> was significantly<br />

<strong>in</strong>creased <strong>in</strong> a garden soil to a frequency of 70 % (Esiobu et<br />

al., 2002). The medication of pigs with chlortetracycl<strong>in</strong>e was<br />

followed by the excretion of microorganisms resistant<br />

towards chlortetracycl<strong>in</strong>e and a multitude of other <strong>antibiotic</strong>s<br />

(Langlois et al., 1978). Ahigh prevalence of resistance<br />

aga<strong>in</strong>st various <strong>antibiotic</strong>s was determ<strong>in</strong>ed <strong>in</strong> numerous<br />

faeces samples from pigs <strong>in</strong> the Netherlands and Sweden<br />

(van den Bogaard et al., 2000). Differences <strong>in</strong> the extent of<br />

resistance were related to the different <strong>in</strong>tensity of <strong>antibiotic</strong><br />

application <strong>in</strong> the two countries. Of special concern is the<br />

possible <strong>in</strong>duction of <strong>antibiotic</strong> resistance <strong>in</strong> pathogens either<br />

directly or <strong>in</strong>directly after transfer of genes encod<strong>in</strong>g <strong>antibiotic</strong><br />

resistance from non-pathogenic to pathogenic microorgan-


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 161<br />

isms (Wegener et al., 1998). Transfer of resistance genes <strong>in</strong><br />

soil was <strong>review</strong>ed by Seveno et al. (2002). Mobile genetic<br />

elements conferr<strong>in</strong>g <strong>antibiotic</strong> resistance were readily<br />

obta<strong>in</strong>ed from microbial communities of environmental<br />

habitats (Smalla and Sobecky, 2002). As the major<br />

dissem<strong>in</strong>at<strong>in</strong>g <strong>antibiotic</strong> resistance genes, bacterial IncQ<br />

plasmids were identified <strong>in</strong> pig manure (Smalla et al.,<br />

2000). Additionally, genetic transfer <strong>in</strong> soil was shown to<br />

<strong>in</strong>crease by fertilization with pig manure, s<strong>in</strong>ce it consisted of<br />

plasmids with high mobility (Götz and Smalla, 1997).<br />

Accord<strong>in</strong>gly, the extent of the <strong>in</strong>crease of TC resistance <strong>in</strong><br />

soil follow<strong>in</strong>g manure fertilization was related to the amount of<br />

applied manure (Sengelùv et al., 2003). However, the<br />

result<strong>in</strong>g <strong>in</strong>creased resistance level <strong>in</strong> <strong>soils</strong> and water was<br />

lower than <strong>in</strong> faeces (Langlois et al., 1978) and vanished<br />

with<strong>in</strong> one month (Sengelùv et al., 2003).<br />

5.4.3 Uptake <strong>in</strong> and effects on plants<br />

The uptake and effects on plants varies considerably<br />

between reports and depends on the <strong>antibiotic</strong> substance<br />

and plant species (Patten et al., 1980; Langhammer, 1989;<br />

Migliore et al., 1995; Tab. 6). Yields and nutrient uptake by<br />

radish, wheat, and corn were <strong>in</strong>creased <strong>in</strong> the presence of<br />

160 mg kg ±1 of TCs (Batchelder, 1982). In contrast,<br />

performance of p<strong>in</strong>to beans (Phaseolus vulgaris) was<br />

significantly reduced <strong>in</strong> a sandy loam, but not clay loam that<br />

is most likely due to the <strong>in</strong>hibition of root nodulation by<br />

rhizobia (Batchelder, 1982). The effects of <strong>antibiotic</strong>s on<br />

plants were <strong>review</strong>ed by Jjemba (2002). The author stated<br />

that negative impacts of therapeutic <strong>compounds</strong> on plants<br />

were mostly determ<strong>in</strong>ed by <strong>in</strong> vitro experiments at concentrations<br />

that are unlikely to occur <strong>in</strong> field <strong>soils</strong>. Negative impacts<br />

of contam<strong>in</strong>ated manure on field <strong>soils</strong> were most likely related<br />

to excessive nitrogen or heavy metals, but not <strong>antibiotic</strong>s.<br />

Accord<strong>in</strong>gly, the plant growth <strong>in</strong>hibit<strong>in</strong>g effect of sulfadimethox<strong>in</strong>e<br />

was smaller <strong>in</strong> vivo than <strong>in</strong> vitro (Migliore et al.,<br />

1996). This was related to a slow bioaccumulation of the<br />

<strong>antibiotic</strong> from the nutrient solution <strong>in</strong>to the plant (Migliore et<br />

al., 1998) that may have been suppressed <strong>in</strong> soil by the ag<strong>in</strong>g<br />

of <strong>antibiotic</strong>s. The translocation of 14 C-sulfadimid<strong>in</strong>e from soil<br />

<strong>in</strong>to maize plants decl<strong>in</strong>ed from 15 to 3 % after 32 days of<br />

ag<strong>in</strong>g <strong>in</strong> soil (Langhammer et al., 1990). Additionally, the<br />

transfer from roots to shoots was less than 0.04 % of the total<br />

radiolabel. No uptake of TCs <strong>in</strong>to p<strong>in</strong>to beans and coconut<br />

trees was observed even after direct application (McCoy,<br />

1976; Batchelder, 1981), although growth of beans <strong>in</strong> liquid<br />

cultures was significantly reduced at a concentration of<br />

10 mg l ±1 chlortetracycl<strong>in</strong>e and oxytetracycl<strong>in</strong>e (Batchelder,<br />

1981). However, endangerment of humans via the food cha<strong>in</strong><br />

is possible (Kennedy et al., 2000).<br />

6 Conclusions<br />

Residues of pharmaceutical <strong>antibiotic</strong>s occur quiet often <strong>in</strong><br />

<strong>soils</strong>. Hence, environmental risk assessment of pharmaceutical<br />

<strong>antibiotic</strong>s is necessary and legally prescribed. However,<br />

there is still a considerable lack of knowledge, although the<br />

number of <strong>in</strong>vestigations on the <strong>in</strong>put and fate of <strong>antibiotic</strong>s <strong>in</strong><br />

<strong>soils</strong> strongly <strong>in</strong>creased <strong>in</strong> the last years. Especially little is<br />

known about the numerous <strong>antibiotic</strong>s from classes less often<br />

adm<strong>in</strong>istered to humans and animals. Only a few <strong>in</strong>vestigations<br />

exist on the mobility and result<strong>in</strong>g transport and<br />

bioavailability of <strong>antibiotic</strong>s. Degradation pathways and<br />

k<strong>in</strong>etics and on the other hand the degree and causes for<br />

persistence of <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong> need further elucidation.<br />

Ecotoxicity result<strong>in</strong>g from long-term exposure to low doses<br />

and mixtures of <strong>compounds</strong> are a special problem associated<br />

with <strong>antibiotic</strong>s <strong>in</strong> the environment. Additionally, the <strong>in</strong>troduction<br />

of resistance as opposed to exist<strong>in</strong>g <strong>in</strong>tr<strong>in</strong>sic resistance<br />

of soil microorganisms is not completely understood. Hence,<br />

a comprehensive evaluation of residual concentrations <strong>in</strong> the<br />

soil environment is not possible. Exist<strong>in</strong>g arbitrary trigger<br />

values are not scientifically based, while limit values are<br />

miss<strong>in</strong>g. Effective and harmonized analytical methods exist<br />

for food, but not for <strong>soils</strong>. Also, methods to evaluate<br />

ecotoxicity need to be adapted or developed. The actual<br />

used methods accord<strong>in</strong>g to OECD guidel<strong>in</strong>es were developed<br />

for the test<strong>in</strong>g of pesticides and are often not suitable for the<br />

chemically different <strong>antibiotic</strong>s. To reduce the risk of<br />

environmental contam<strong>in</strong>ation and to save the <strong>in</strong>dispensable<br />

<strong>antibiotic</strong>s as effective drugs aga<strong>in</strong>st <strong>in</strong>fectious diseases, a<br />

responsible use and reduction of the consumption is needed.<br />

Especially <strong>in</strong> agriculture, <strong>antibiotic</strong>s must not be abused to<br />

compensate for <strong>in</strong>sufficient hygiene <strong>in</strong> stables and for not<br />

species appropriate animal husbandry.<br />

Acknowledgments<br />

The help of S. L. Foran for language edit<strong>in</strong>g and of G. Jandl<br />

and M.-O. Aust for proof read<strong>in</strong>g of the manuscript is<br />

gratefully acknowledged.<br />

Abbreviations<br />

Antibiotics: FQs fluoroqu<strong>in</strong>olones; SAs sulfonamides; TCs<br />

tetracycl<strong>in</strong>es<br />

Extraction: ACN acetonitrile; EtOAc ethylacetate; MeCl 2<br />

dichloromethane; MeOH methanol; NH 4 OAc ammonia<br />

oxalate; SPE solid phase extraction; C8/C18 reversed octyl/<br />

octadecyl silica phases; HLB hydrophilic-lipophilic balance<br />

cartridges; MCX mixed-mode HLB-cation exchange cartridges<br />

Detection: HPLC high performance liquid chromatography;<br />

DAD diode array detector; FLD fluorescence light detector;<br />

UV ultraviolet light absorption detector; LC-MS liquid<br />

chromatography-mass spectrometry; MS/MS tandem mass<br />

spectrometer; APCI chemical ionisation at atmospheric<br />

pressure ; ESI electrospray ionization<br />

Soil: DOM dissolved organic matter; OC organic carbon;<br />

SOM soil organic matter<br />

Effects on organisms: EC/ED effective concentration/dose;<br />

EC 10 /EC 50 ± 10 %/50 % difference from control; LC/LD lethal<br />

concentration/dose; MIC m<strong>in</strong>imal <strong>in</strong>hibit<strong>in</strong>g concentration;<br />

NOEC no observable effect concentration


162 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

References<br />

Al-Ahmad, A., Daschner, F. D., and Kümmerer, K. (1999):<br />

Biodegradability of cefotiam, ciprofloxac<strong>in</strong>, meropenem, penicill<strong>in</strong><br />

G, and sulfamethoxazole and <strong>in</strong>hibition of waste water bacteria.<br />

Arch. Environ. Contam. Toxicol. 37, 158±163.<br />

Alder, A. C., McArdell, C. S., Golet, E. M., Ibric, S., Molnar, E.,<br />

Nipales, N. S., and Giger, W. (2001): Occurrence and fate of<br />

fluoroqu<strong>in</strong>olone, macrolide, and sulfonamide <strong>antibiotic</strong>s dur<strong>in</strong>g<br />

wastewater treatment and <strong>in</strong> ambient waters <strong>in</strong> Switzerland. In C.<br />

G. Daughton and T. Jones-Lepp: <strong>Pharmaceutical</strong>s and Personal<br />

Care Products <strong>in</strong> the Environment: Scientific and Regulatory<br />

Issues, pp. 56±69. American Chemical Society, Wash<strong>in</strong>gton, D.C.<br />

Alexander, M. (1999): Biodegradation and Bioremediation. Academic<br />

Press, San Diego, CA, p. 453.<br />

Alexy, R., Kümpel, T., Dörner, M., and Kümmerer, K. (2001): Effects<br />

of <strong>antibiotic</strong>s aga<strong>in</strong>st environmental bacteria studied with simple<br />

tests. SETAC Europe 11th Annual Meet<strong>in</strong>g, 6±10 May, Madrid.<br />

Ali-Shtayeh, M. S., Jamous, R. M., and Abu-Ghdeib, S. I. (1998):<br />

Ecology of cycloheximide-resistant fungi <strong>in</strong> field <strong>soils</strong> receiv<strong>in</strong>g raw<br />

city wastewater or normal irrigation water. Mycopathologia 144,<br />

39±54.<br />

Asukabe, H., Murata, H., Harada, K., Suzuki, M., Oka, H., and Ikai, Y.<br />

(1994): Improvement of chemical-analysis of <strong>antibiotic</strong>s. 21.<br />

Simultaneous determ<strong>in</strong>ation of three polyether <strong>antibiotic</strong>s <strong>in</strong> feeds<br />

us<strong>in</strong>g high-performance liquid-chromatography with fluorescence<br />

detection. J. Agric. Food Chem. 42, 112±117.<br />

Asuquo, A. E., and Piddock, L. J. (1993): Accumulation and kill<strong>in</strong>g<br />

k<strong>in</strong>etics of fifteen qu<strong>in</strong>olones for Escherichia coli, Staphylococcus<br />

aureus and Pseudomonas aerug<strong>in</strong>osa. J. Antimicrob. Chemother.<br />

31, 865±880.<br />

Backhaus, T., and Grimme, L. H. (1999): The toxicity of <strong>antibiotic</strong><br />

agents to the lum<strong>in</strong>escent bacterium Vibrio fischeri. Chemosphere<br />

38, 3291±3301.<br />

Baguer, A. J., Jensen, J., and Krogh, P. H. (2000): Effects of the<br />

<strong>antibiotic</strong>s oxytetracycl<strong>in</strong>e and tylos<strong>in</strong> on soil fauna. Chemosphere<br />

40, 751±757.<br />

Batchelder, A. R. (1981): Chlortetracycl<strong>in</strong>e and oxytetracycl<strong>in</strong>e<br />

effects on plant growth and development <strong>in</strong> liquid cultures. J.<br />

Environ. Qual. 10, 515±518.<br />

Batchelder, A. R. (1982): Chlortetracycl<strong>in</strong>e and oxytetracycl<strong>in</strong>e<br />

effects on plant growth and development <strong>in</strong> soil systems. J.<br />

Environ. Qual. 11, 675±678.<br />

Berger, K., Petersen, B., and Bün<strong>in</strong>g-Pfaue, H. (1986): Persistenz<br />

von Gülle-Arzneistoffen <strong>in</strong> der Nahrungskette. Arch. Lebensmittelhyg.<br />

37, 99±102.<br />

Bewick, M. W. M. (1979): The adsorption and release of tylos<strong>in</strong> by<br />

clays and <strong>soils</strong>. Plant Soil 51, 363±372.<br />

Booth, N. H., and McDonald, L. E. (1988): Veter<strong>in</strong>ary Pharmacology<br />

and Therapeutics. Iowa State University Press, Ames, p. 1227.<br />

Bouwman, G. M., and Reus, J. A. W. A. (1994): Persistence of<br />

Medic<strong>in</strong>es <strong>in</strong> Manure. Centre for Agriculture & Environment, CLM,<br />

163, p. 26.<br />

Boxall, A. B. A., Blackwell, P., Cavallo, R., Kay, P., and Tolls, J.<br />

(2002): The sorption and transport of a sulphonamide <strong>antibiotic</strong> <strong>in</strong><br />

soil systems. Toxicol. Lett. 131, 19±28.<br />

Burhenne, J., Ludwig, M., Nikoloudis, P., and Spiteller, M. (1997):<br />

Photolytic degradation of fluoroqu<strong>in</strong>olone carboxylic acids <strong>in</strong><br />

aqueous solution. 1. Primary photoproducts and half-lives.<br />

Environ. Sci. Pollut. Res. 4, 10±15.<br />

Campagnolo, E. R., Johnson, K. R., Karpati, A., Rub<strong>in</strong>, C. S., Kolp<strong>in</strong>,<br />

D. W., Meyer, M. T., Esteban, J. E., Currier, R. W., Smith, K., Thug,<br />

K. M., and McGeeh<strong>in</strong>, M. (2002): Antimicrobial residues <strong>in</strong> animal<br />

waste and water resources proximal to large-scale sw<strong>in</strong>e and<br />

poultry feed<strong>in</strong>g operations. Sci. Total Environ. 299, 89±95.<br />

Capone, D. G., Weston, D. P., Miller, V., and Shoemaker, C. (1996):<br />

Antibacterial residues <strong>in</strong> mar<strong>in</strong>e sediments and <strong>in</strong>vertebrates<br />

follow<strong>in</strong>g chemotherapy <strong>in</strong> aquaculture. Aquaculture 145, 55±75.<br />

Carson, M. C., Ngoh, M. A., and Hadley, S. W. (1998): Confirmation<br />

of multiple tetracycl<strong>in</strong>e residues <strong>in</strong> milk and oxytetracycl<strong>in</strong>e <strong>in</strong><br />

shrimp by liquid chromatography-particle beam mass spectrometry.<br />

J. Chromatogr. B 712, 113±128.<br />

Chen, Y., Rosazza, J. P., Reese, C. P., Chang, H. Y., Nowakowski, M.<br />

A., and Kipl<strong>in</strong>ger, J. P. (1997): Microbial models of soil metabolism:<br />

biotransformations of danofloxac<strong>in</strong>. J. Ind. Microbiol. Biotechnol.<br />

19, 378±384.<br />

Col<strong>in</strong>as, C., Ingham, E., and Mol<strong>in</strong>a, R. (1994): Population responses<br />

of target and non-target forest soil-organisms to selected biocides.<br />

Soil Biol. Biochem. 26, 41±47.<br />

Cooper, A. D., Stubb<strong>in</strong>gs, G. W., Kelly, M., Tarb<strong>in</strong>, J. A., Farr<strong>in</strong>gton,<br />

W. H., and Shearer, G. (1998): Improved method for the on-l<strong>in</strong>e<br />

metal chelate aff<strong>in</strong>ity chromatography-high-performance liquid<br />

chromatographic determ<strong>in</strong>ation of tetracycl<strong>in</strong>e <strong>antibiotic</strong>s <strong>in</strong> animal<br />

products. J. Chromatogr. A812, 321±326.<br />

Coyne, R., H<strong>in</strong>ey, M., O¢Connor, B., Kerry, J., Cazabon, D., and<br />

Smith, P. (1994): Concentration and persistence of oxytetracycl<strong>in</strong>e<br />

<strong>in</strong> sediments under a mar<strong>in</strong>e salmon farm. Aquaculture 123,<br />

31±42.<br />

da Gloria Britto de Oliveira, R., Wolters, A. C., and van Elsas, J. D.<br />

(1995): Effects of <strong>antibiotic</strong>s <strong>in</strong> soil on the population dynamics of<br />

transposon Tn5 carry<strong>in</strong>g Pseudomonas fluorescens. Plant Soil<br />

175, 323±334.<br />

Daughton, C. G., and Ternes, T. A. (1999): <strong>Pharmaceutical</strong>s and<br />

personal care products <strong>in</strong> the environment: agents of subtle<br />

change? Environ. Health Perspect. 107, 907±938.<br />

Dojmi di Delupis, G., Macri, A., Civitareale, C., and Migliore, L.<br />

(1992): Antibiotics of zootechnical use: Effects of high and low<br />

dose contam<strong>in</strong>ation on Daphnia magna. Aquatic. Toxicol. 22,<br />

53±60.<br />

Donoho, A. L. (1984): Biochemical studies on the fate of monens<strong>in</strong> <strong>in</strong><br />

animals and <strong>in</strong> the environment. J. Anim. Sci. 58, 1528±1539.<br />

EMEA (1997): Note for guidance: Environmental risk assessment for<br />

veter<strong>in</strong>ary medic<strong>in</strong>al products other than GMO-conta<strong>in</strong><strong>in</strong>g and<br />

immunological products. Committee for Veter<strong>in</strong>ary and Medic<strong>in</strong>al<br />

Products, London, p. 42.<br />

Escribano, E., Calpena, A. C., Garrigues, T. M., Freixas, J.,<br />

Domenech, J., and Moreno, J. (1997): Structure-absorption<br />

relationships of a series of 6-fluoroqu<strong>in</strong>olones. Antimicrob. Agents<br />

Chemother. 41, 1996±2000.<br />

Esiobu, N., Armenta, L., and Ike, J. (2002): Antibiotic resistance <strong>in</strong><br />

soil and water environments. Int. J. Environ. Health Res. 12,<br />

133±144.<br />

Esp<strong>in</strong>asse, J. (1993): Responsible use of antimicrobials <strong>in</strong> veter<strong>in</strong>ary<br />

medic<strong>in</strong>e: perspective <strong>in</strong> France. Vet. Microbiol. 35, 289±301.<br />

FEDESA (2001): Antibiotic use <strong>in</strong> farm animals does not threaten<br />

human health. Press release, Visby, Sweden. 13.06.2001.<br />

Fedler, C. B., and Day, D. L. (2002): Anaerobic digestion of sw<strong>in</strong>e<br />

manure conta<strong>in</strong><strong>in</strong>g an <strong>antibiotic</strong> <strong>in</strong>hibitor. Agric. Waste Utiliz.<br />

Manag. 523±530.<br />

Frankenberger, W. T., and Tabatabai, M. A. (1982): Transformations<br />

of amide nitrogen <strong>in</strong> <strong>soils</strong>. Soil Sci. Soc. Am. J. 46, 280±284.<br />

Froehner, K., Backhaus, T., and Grimme, L. H. (2000): Bioassays<br />

with Vibrio fischeri for the assessment of delayed toxicity.<br />

Chemosphere 40, 821±828.


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 163<br />

Fründ, H.-C., Schlösser, A., and Westendarp, H. (2000): Effects of<br />

tetracycl<strong>in</strong>e on the soil microflora determ<strong>in</strong>ed with microtiter plates<br />

and respiration measurement. Mitteilgn. Dtsch. Bodenkundl.<br />

Gesellsch. 93, 244±247.<br />

Gavalch<strong>in</strong>, J., and Katz, S. E. (1994): The persistence of fecal-borne<br />

<strong>antibiotic</strong>s <strong>in</strong> soil. J. Assoc. Off. Anal. Chem. Int. 77, 481±485.<br />

Gilbertson, T. J., Hornish, R. E., Jaglan, P. S., Koshy, K. T., Nappier,<br />

J. L., Stahl, G. L., Cazers, A. R., Nappier, J. M., Kubicek, M. F.,<br />

Hoffman, G. A., and Hamlow, P. J. (1990): Environmental fate of<br />

ceftiofur sodium, a cephalospor<strong>in</strong> <strong>antibiotic</strong> ± role of animal excreta<br />

<strong>in</strong> its decomposition. J. Agric. Food Chem. 38, 890±894.<br />

Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A., and Giger, W.<br />

(2001): Trace determ<strong>in</strong>ation of fluoroqu<strong>in</strong>olone antibacterial agents<br />

<strong>in</strong> urban wastewater by solid-phase extraction and liquid<br />

chromatography with fluorescence detection. Anal. Chem. 73,<br />

3632±3638.<br />

Gomez, J., Mendez, R., and Lema, J. M. (1996): The effect of<br />

<strong>antibiotic</strong>s on nitrification processes. Batch assays. Appl. Biochem.<br />

Biotechnol. 57±58, 869±876.<br />

Gottlieb, D. (1976): The production and role of <strong>antibiotic</strong>s <strong>in</strong> soil. J.<br />

Antibiot. 29, 987±1000.<br />

Götz, A., and Smalla, K. (1997): Manure enhances plasmid<br />

mobilization and survival of Pseudomonas putida <strong>in</strong>troduced <strong>in</strong>to<br />

field soil. Appl. Environ. Microbiol. 63, 1980±1986.<br />

Gräfe, U. (1992): Biochemie der Antibiotika: Struktur ± Biosynthese ±<br />

Wirkmechanismus. Spektrum Akademischer Verlag, Heidelberg, p.<br />

389.<br />

Gruber, V. F., Halley, B. A., Hwang, S.-C., and Ku, C. C. (1990):<br />

Mobility of avermect<strong>in</strong> B <strong>in</strong> soil. J. Agric. Food Chem. 38,<br />

1a<br />

886±890.<br />

Gunn, A., and Sadd, J. W. (1994): The effect of ivermect<strong>in</strong> on the<br />

survival, behavior and cocoon production of the earthworm Eisenia<br />

fetida. Pedobiologia 38, 327±333.<br />

Haller, M. Y., Muller, S. R., McArdell, C. S., Alder, A. C., and Suter, M.<br />

J. F. (2002): Quantification of veter<strong>in</strong>ary <strong>antibiotic</strong>s (sulfonamides<br />

and trimethoprim) <strong>in</strong> animal manure by liquid chromatographymass<br />

spectrometry. J. Chromatogr. A952, 111±120.<br />

Hall<strong>in</strong>g-Sùrensen, B. (2000): Algal toxicity of antibacterial agents<br />

used <strong>in</strong> <strong>in</strong>tensive farm<strong>in</strong>g. Chemosphere 40, 731±739.<br />

Hall<strong>in</strong>g-Sùrensen, B. (2001): Inhibition of aerobic growth and<br />

nitrification of bacteria <strong>in</strong> sewage sludge by antibacterial agents.<br />

Arch. Environ. Contam. Toxicol. 40, 451±460.<br />

Hall<strong>in</strong>g-Sùrensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F.,<br />

Holten Lützhùft, H. C., and Jùrgensen, S. E. (1998): Occurrence,<br />

fate and effects of pharmaceutical substances <strong>in</strong> the environment ±<br />

a <strong>review</strong>. Chemosphere 36, 357±393.<br />

Hall<strong>in</strong>g-Sùrensen, B., Jensen, J., Tjùrnelund, J., and Montforts, M. H.<br />

M. M. (2001): Worst-case estimations of predicted environmental<br />

soil concentrations (PEC) of selected veter<strong>in</strong>ary <strong>antibiotic</strong>s and<br />

residues used <strong>in</strong> Danish agriculture. In K. Kümmerer: <strong>Pharmaceutical</strong>s<br />

<strong>in</strong> the Environment: Sources, Fate, Effects and Risks.<br />

Spr<strong>in</strong>ger, Berl<strong>in</strong>, pp. 143±157.<br />

Hall<strong>in</strong>g-Sùrensen, B., Nors Nielsen, S., and Jensen, J. (2002a):<br />

Environmental Assessment of Veter<strong>in</strong>ary Medic<strong>in</strong>al Products <strong>in</strong><br />

Denmark. Environmental Project No. 659 2002. Danish Environmental<br />

Protection Agency, Copenhagen, p. 97.<br />

Hall<strong>in</strong>g-Sùrensen, B., Sengelùv, G., and Tjùrnelund, J. (2002b):<br />

Toxicity of tetracycl<strong>in</strong>es and tetracycl<strong>in</strong>e degradation products to<br />

environmentally relevant bacteria, <strong>in</strong>clud<strong>in</strong>g selected tetracycl<strong>in</strong>eresistant<br />

bacteria. Arch. Environ. Contam. Toxicol. 42, 263±271.<br />

Hall<strong>in</strong>g-Sùrensen, B., Sengelùv, G., Ingerslev, F., and Jensen, L. B.<br />

(2003): Reduced antimicrobial potencies of oxytetracycl<strong>in</strong>e, tylos<strong>in</strong>,<br />

sulfadiaz<strong>in</strong>, streptomyc<strong>in</strong>, ciprofloxac<strong>in</strong>, and olaqu<strong>in</strong>dox due to<br />

environmental processes. Arch. Environ. Contam. Toxicol. 44,<br />

7±16.<br />

Hamscher, G., Sczesny, S., Höper, H., and Nau, H. (2001):<br />

Tierarzneimittel als persistente organische Kontam<strong>in</strong>anten <strong>in</strong><br />

Böden. In Niedersächsisches Landesamt für Bodenforschung: 10<br />

Jahre Boden-Dauerbeobachtung <strong>in</strong> Niedersachsen. Hannover.<br />

Hamscher, G., Sczesny, S., Höper, H., and Nau, H. (2002a):<br />

Determ<strong>in</strong>ation of persistent tetracycl<strong>in</strong>e residues <strong>in</strong> soil fertilized<br />

with liquid manure by high-performance liquid chromatography with<br />

electrospray ionization tandem mass spectrometry. Anal. Chem.<br />

74, 1509±1518.<br />

Hamscher, G., Pawelzick, H. T., Nau, H., and Hartung, J. (2002b):<br />

Detection of <strong>antibiotic</strong>s <strong>in</strong> dust orig<strong>in</strong>at<strong>in</strong>g from a pig fatten<strong>in</strong>g farm.<br />

SETAC Europe 12th annual meet<strong>in</strong>g. 12 ± 16 May 2002, Vienna.<br />

Heberer, T., and Stan, H.-J. (1998): Arzneimittelrückstände im<br />

aquatischen System. Wasser Boden 50, 20±25.<br />

Hektoen, H., Berge, J. A., Hormazabal, V., and Ynestad, M. (1995):<br />

Persistence of antibacterial agents <strong>in</strong> mar<strong>in</strong>e sediments. Aquaculture<br />

133, 175±184.<br />

Herron, P. R., Toth, I. K., Heilig, G. H. J., Akkermans, A. D. L.,<br />

Karagouni, A., and Well<strong>in</strong>gton, E. M. H. (1998): Selective effect of<br />

<strong>antibiotic</strong>s on survival and gene transfer of streptomycetes <strong>in</strong> soil.<br />

Soil Biol. Biochem. 30, 673±677.<br />

Hestbjerg Hansen, L. H., Ferrari, B., Sùrensen, A. H., Veal, D., and<br />

Sùrensen, S. J. (2001): Detection of oxytetracycl<strong>in</strong>e production by<br />

Streptomyces rimosus <strong>in</strong> soil microcosms by comb<strong>in</strong><strong>in</strong>g whole-cell<br />

biosensors and flow cytometry. Appl. Environ. Microbiol. 67,<br />

239±244.<br />

Hirsch, R., Ternes, T., Haberer, K., and Kratz, K. L. (1999):<br />

Occurrence of <strong>antibiotic</strong>s <strong>in</strong> the aquatic environment. Sci. Total<br />

Environ. 225, 109±118.<br />

Holm, J. V., Rugge, K., Bjerg, P. L., and Christensen, T. H. (1995):<br />

Occurrence and distribution of pharmaceutical organic-<strong>compounds</strong><br />

<strong>in</strong> the groundwater downgradient of a landfill (Gr<strong>in</strong>dsted,<br />

Denmark). Environ. Sci. Technol. 29, 1415±1420.<br />

Holten Lützhùft, H. C., Vaes, W. H., Freidig, A. P., Hall<strong>in</strong>g-Sùrensen,<br />

B., and Hermens, J. L. (2000): 1-Octanol/water distribution<br />

coefficient of oxol<strong>in</strong>ic acid: <strong>in</strong>fluence of pH and its relation to the<br />

<strong>in</strong>teraction with dissolved organic carbon. Chemosphere 40,<br />

711±714.<br />

Höper, H., Kues, J., Nau, H., and Hamscher, G. (2002): E<strong>in</strong>trag und<br />

Verbleib von Tierarzneimittelwirkstoffen <strong>in</strong> Böden. Bodenschutz 4,<br />

141±148.<br />

Hossa<strong>in</strong>, A. K. M., and Alexander, M. (1984): Enhanz<strong>in</strong>g soybean<br />

rhizosphere colonization by Rhizobium japonicum. Appl. Envir.<br />

Microbiol. 48, 468±472.<br />

Hübener, R., Dornberger, K., Zielke, R., and Gräfe, U. (1992): Abbau<br />

von Cyclospor<strong>in</strong> Adurch Bodenmikroorganismen. UWSF ± Z.<br />

Umweltchem. Ökotox. 4, 227±230.<br />

Hussar, D. A., Niebergall, P. J., Sugita, E. T., and Doluisio, J. T.<br />

(1968): Aspects of the epimerization of certa<strong>in</strong> tetracycl<strong>in</strong>e<br />

derivatives. J. Pharm. Pharmacol. 20, 539±546.<br />

Huysman, E., van Renterghem, B., and Verstraete, W. (1993):<br />

Antibiotic resistant sulphite-reduc<strong>in</strong>g Clostridia <strong>in</strong> soil and groundwater<br />

as <strong>in</strong>dicator of manur<strong>in</strong>g practices. Water Air Soil Pollut. 69,<br />

243±255.<br />

Ingerslev, F., and Hall<strong>in</strong>g-Sùrensen, B. (2000): Biodegradability<br />

properties of sulfonamides <strong>in</strong> activated sludge. Environ. Toxicol.<br />

Chem. 19, 2467±2473.<br />

Ingerslev, F., and Hall<strong>in</strong>g-Sùrensen, B. (2001): Biodegradability of<br />

metronidazole, olaqu<strong>in</strong>dox, and tylos<strong>in</strong> and formation of tylos<strong>in</strong>


164 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

degradation products <strong>in</strong> aerobic soil-manure slurries. Ecotoxicol.<br />

Environ. Saf 48, 311±320.<br />

Ingerslev, F., Torang, L., Loke, M. L., Hall<strong>in</strong>g-Sùrensen, B., and<br />

Nyholm, N. (2001): Primary biodegradation of veter<strong>in</strong>ary <strong>antibiotic</strong>s<br />

<strong>in</strong> aerobic and anaerobic surface water simulation systems.<br />

Chemosphere 44, 865±872.<br />

Ingham, E. R., and Coleman, D. C. (1984): Effects of streptomyc<strong>in</strong>e,<br />

cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB<br />

on soil microorganisms. Microb. Ecol. 10, 345±358.<br />

Ingham, E. R., Cambardella, C., and Coleman, D. C. (1986):<br />

Manipulation of bacteria, fungi and protozoa by biocides <strong>in</strong><br />

lodgepole p<strong>in</strong>e forest soil microcosms ± effects on organism<br />

<strong>in</strong>teractions and nitrogen m<strong>in</strong>eralization. Can. J. Soil Sci. 66,<br />

261±272.<br />

Jacobsen, P., and Bergl<strong>in</strong>d, L. (1988): Persistence of oxytetracycl<strong>in</strong>e<br />

<strong>in</strong> sediment from fish farms. Aquaculture 70, 365±370.<br />

Jagnow, G. (1977): Mikrobieller Abbau der Futtermittelantibiotika<br />

Z<strong>in</strong>k-Bacitrac<strong>in</strong>, Flavophospholipol, Spiramyc<strong>in</strong> und von Tetracycl<strong>in</strong><br />

<strong>in</strong> feucht gelagertem und <strong>in</strong> mit Boden vermischtem Hühnerkot.<br />

Landwirtsch. Forsch.1, 227±234.<br />

Jefferys, E. G. (1952): The stability of <strong>antibiotic</strong>s <strong>in</strong> <strong>soils</strong>. J. Gen.<br />

Microbiol. 7, 295±312.<br />

Jensen, J., Krogh, P. H., and Sverdrup, L. (2001a): Environmental<br />

risk of veter<strong>in</strong>ary medic<strong>in</strong>es to soil fauna. SETAC Europe 11th Annual Meet<strong>in</strong>g, 6±10 May, Madrid.<br />

Jensen, L. B., Baloda, S., Boye, M., and Aarestrup, F. M. (2001b):<br />

Antimicrobial resistance among Pseudomonas spp. and the<br />

Bacillus cereus group isolated from Danish agricultural soil.<br />

Environ. Int. 26, 581±587.<br />

Jjemba, P. K. (2002): The potential impact of veter<strong>in</strong>ary and human<br />

therapeutic agents <strong>in</strong> manure and biosolids on plants grown on<br />

arable land: a <strong>review</strong>. Agric. Ecosyst. Environ. 93, 267±278.<br />

Johannsen, F. H. (1991): Zur Analytik von Wirkstoffen. 2.<br />

Bestimmung von Ionophor-Antibiotika <strong>in</strong> Futtermitteln und Lebensmitteln<br />

mittels Hochleistungsflüssigchromatographie und Nachsäulenderivatisierung.<br />

Agribiol. Res. 44, 79±89.<br />

Jùrgensen, S. E., and Hall<strong>in</strong>g-Sùrensen, B. (2000): Drugs <strong>in</strong> the<br />

environment. Chemosphere 40, 691±699.<br />

Juhel-Gauga<strong>in</strong>, M., McEvoy, J. D., and van G<strong>in</strong>kel, L. A. (2000):<br />

Measurements for certification of chlortetracycl<strong>in</strong>e reference<br />

materials with<strong>in</strong> the European Union: Standards, measurements<br />

and test<strong>in</strong>g programme. Fres. J. Anal. Chem. 368, 656±663.<br />

Kamel, A. M., Brown, P. R., and Munson, B. (1999): Electrospray<br />

ionization mass spectrometry of tetracycl<strong>in</strong>e, oxytetracycl<strong>in</strong>e,<br />

chlorotetracycl<strong>in</strong>e, m<strong>in</strong>ocycl<strong>in</strong>e, and methacycl<strong>in</strong>e. Anal. Chem.<br />

71, 968±977.<br />

Katz, J. M., and Katz, S. E. (1983): Microbial assay systems for<br />

determ<strong>in</strong><strong>in</strong>g <strong>antibiotic</strong> residues <strong>in</strong> <strong>soils</strong>. J. Assoc. Anal. Chem. 66,<br />

640±645.<br />

Kennedy, D. G., Cannavan, A., and McCracken, R. J. (2000):<br />

Regulatory problems caused by contam<strong>in</strong>ation, a frequently<br />

overlooked cause of veter<strong>in</strong>ary drug residues. J. Chromatogr. A<br />

882, 37±52.<br />

Kolp<strong>in</strong>, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S.<br />

D., Barber, L. B., and Buxton, H. T. (2002): <strong>Pharmaceutical</strong>s,<br />

hormones, and other organic wastewater contam<strong>in</strong>ants <strong>in</strong> US<br />

streams, 1999±2000: Anational reconnaissance. Environ. Sci.<br />

Technol. 36, 1202±1211.<br />

Kühne, M., Ihnen, D., Möller, G., and Agthe, O. (2000): Stability of<br />

tetracycl<strong>in</strong>e <strong>in</strong> water and liquid manure. J. Vet. Med. A47,<br />

379±384.<br />

Kümmerer, K. (2000): Drugs, diagnostic agents and dis<strong>in</strong>fectants <strong>in</strong><br />

wastewater and water ± a <strong>review</strong>. Schriftenr. Ver. Wasser Boden<br />

Lufthyg. 105, 59±71.<br />

Kümmerer, K. (2001a): Drugs <strong>in</strong> the environment: emission of drugs,<br />

diagnostic aids and dis<strong>in</strong>fectants <strong>in</strong>to wastewater by hospitals <strong>in</strong><br />

relation to other sources ± a <strong>review</strong>. Chemosphere 45, 957±969.<br />

Kümmerer, K. (2001b): <strong>Pharmaceutical</strong>s <strong>in</strong> the environment ±<br />

sources, fate, effects and risks. Spr<strong>in</strong>ger, Berl<strong>in</strong>, p. 265.<br />

Kümmerer, K., Al Ahmad, A., and Mersch-Sundermann, V. (2000):<br />

Biodegradability of some <strong>antibiotic</strong>s, elim<strong>in</strong>ation of the genotoxicity<br />

and affection of wastewater bacteria <strong>in</strong> a simple test. Chemosphere<br />

40, 701±710.<br />

Lanc<strong>in</strong>i, G., and Parenti, F. (1982): Antibiotics: An <strong>in</strong>tegrated View.<br />

Spr<strong>in</strong>ger, New York, Heidelberg, p. 253.<br />

Langhammer, J.-P. (1989): Untersuchungen zum Verbleib antimikrobiell<br />

wirksamer Arzneistoffe als Rückstände <strong>in</strong> Gülle und im<br />

landwirtschaftlichen Umfeld. PhD thesis, Univ. Bonn, p. 138.<br />

Langhammer, J.-P., and Bün<strong>in</strong>g-Pfaue, H. (1989): Bewertung von<br />

Arzneistoff-Rückständen aus der Gülle im Boden. Lebensmittelchem.<br />

Gerichtl. Chem. 43, 103±113.<br />

Langhammer, J.-P., Führ, F., and Bün<strong>in</strong>g-Pfaue, H. (1990): Verbleib<br />

von Sulfonamid-Rückständen aus der Gülle <strong>in</strong> Boden und<br />

Nutzpflanze. Lebensmittelchemie 44, 93.<br />

Langlois, B. E., Cromwell, G. L., and Hays, V. W. (1978): Influence of<br />

chlortetracycl<strong>in</strong>e <strong>in</strong> sw<strong>in</strong>e feed on reproductive-performance and<br />

on <strong>in</strong>cidence and persistence of <strong>antibiotic</strong> resistant enteric<br />

bacteria. J. Animal Sci. 46, 1369±1382.<br />

L<strong>in</strong>dsey, M. E., Meyer, T. M., and Thurman, E. M. (2001): Analysis of<br />

trace levels of sulfonamide and tetracycl<strong>in</strong>e antimicrobials <strong>in</strong><br />

groundwater and surface water us<strong>in</strong>g solid-phase extraction and<br />

liquid chromatography/mass spectrometry. Anal. Chem. 73,<br />

4640±4646.<br />

L<strong>in</strong>ke, I., and Kratz, W. (2001): Tierarzneimittel <strong>in</strong> der Umwelt ±<br />

Erhebung von Tierarzneimittelmengen im Land Brandenburg für<br />

den Zeitraum von Juli 1998 bis Juni 1999. LUABrandenburg,<br />

Potsdam, p. 34.<br />

Lo, I. H., and Hayton, W. L. (1981): Effects of pH on the accumulation<br />

of sulfonamides by fish. J. Pharmacok<strong>in</strong>. Biopharm. 9, 443±459.<br />

Loke, M. L., Ingerslev, F., Hall<strong>in</strong>g-Sùrensen, B., and Tjùrnelund, J.<br />

(2000): Stability of tylos<strong>in</strong> A<strong>in</strong> manure conta<strong>in</strong><strong>in</strong>g test systems<br />

determ<strong>in</strong>ed by high performance liquid chromatography. Chemosphere<br />

40, 759±765.<br />

Loke, M. L., Tjùrnelund, J., and Hall<strong>in</strong>g-Sùrensen, B. (2002):<br />

Determ<strong>in</strong>ation of the distribution coefficient (log K ) of oxytetracy-<br />

d<br />

cl<strong>in</strong>e, tylos<strong>in</strong> A, olaqu<strong>in</strong>dox and metronidazole <strong>in</strong> manure. Chemosphere<br />

48, 351±361.<br />

Loke, M.-L., Jespersen, S., Vreeken, R., Hall<strong>in</strong>g-Sùrensen, B., and<br />

Tjùrnelund, J. (2003): Determ<strong>in</strong>ation of oxytetracycl<strong>in</strong>e and its<br />

degradation products by high-performance liquid chromatographytandem<br />

mass spectrometry <strong>in</strong> manure conta<strong>in</strong><strong>in</strong>g anaerobic test<br />

systems. J. Chromatogr. B 783, 11±23.<br />

Löscher, W., Ungemach, F. R., and Kroker, R. (1994): Grundlagen<br />

der Pharmakotherapie bei Haus- und Nutztieren. P. Parey, Berl<strong>in</strong>,<br />

p. 437.<br />

Lumsden, R. D., Locke, J. C., Adk<strong>in</strong>s, S. T., Walter, J. F., and Rideout,<br />

C. J. (1992): Isolation and localization of the <strong>antibiotic</strong> gliotox<strong>in</strong><br />

produced by Gliocladium virens from alg<strong>in</strong>ate prill <strong>in</strong> soil and<br />

soilless media. Phytopathol. 82, 230±235.<br />

Lunestad, B. T., Tore, B., Samuelsen, O. B., Fjelde, S., and Ervik, A.<br />

(1995): Photostability of eight antibacterial agents <strong>in</strong> seawater.<br />

Aquaculture 134, 217±225.


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 165<br />

Madsen, E. L., Francis, A. J., and Bollag, J. M. (1988): Environmental<br />

factors affect<strong>in</strong>g <strong>in</strong>dole metabolism under anaerobic conditions.<br />

Appl. Environ. Microbiol. 54, 74±78.<br />

Marengo, J. R., Kok, R. A., OBrien, K., Velagaleti, R. R., and Stamm,<br />

J. M. (1997): Aerobic biodegradation of ( 14C)-sarafloxac<strong>in</strong> hydrochloride <strong>in</strong> soil. Environ. Toxicol. Chem. 16, 462±471.<br />

Martens, R., Wetzste<strong>in</strong>, H. G., Zadrazil, F., Capelari, M., Hoffmann,<br />

P., and Schmeer, N. (1996): Degradation of the fluoroqu<strong>in</strong>olone<br />

enrofloxac<strong>in</strong> by wood-rott<strong>in</strong>g fungi. Appl. Environ. Microbiol. 62,<br />

4206±4209.<br />

McCoy, R. E. (1976): Uptake, translocation, and persistence of<br />

oxytetracycl<strong>in</strong>e <strong>in</strong> coconut palm. Phytopathol. 66, 1038±1042.<br />

McCracken, D. I., and Foster, G. N. (1993): The effect of ivermect<strong>in</strong><br />

on the <strong>in</strong>vertebrate fauna associated with cow dung. Environ.<br />

Toxicol. Chem. 12, 73±84.<br />

McGrath, J. W., Hammerschmidt, F., and Qu<strong>in</strong>n, J. P. (1998):<br />

Biodegradation of phosphonomyc<strong>in</strong> by Rhizobium huakuii PMY1.<br />

Appl. Environ. Microbiol. 64, 356±358.<br />

McManus, P. S., Stockwell, V. O., Sund<strong>in</strong>, G. W., and Jones, A. L.<br />

(2002): Antibiotic use <strong>in</strong> plant agriculture. Annu. Rev. Phytopathol.<br />

40, 443±465.<br />

Midtvedt, T. (2001): Antibiotics <strong>in</strong> the Environment: Z<strong>in</strong>c bacitrac<strong>in</strong> ±<br />

environmental toxicity and breakdown. In K. Kümmerer: <strong>Pharmaceutical</strong>s<br />

<strong>in</strong> the Environment: Sources, Fate, Effects and Risks.<br />

Spr<strong>in</strong>ger, Berl<strong>in</strong>, pp. 77±79.<br />

Migliore, L., Brambilla, G., Grassitellis, A., and Dojmi di Delupis, G.<br />

(1993): Toxicity and bioaccumulation of sulphadimethox<strong>in</strong>e <strong>in</strong><br />

Artemia (Crustacea, Anostraca). Int. J. Salt Lake Res. 2, 141±152.<br />

Migliore, L., Brambilla, G., Cozzol<strong>in</strong>o, S., and Gaudio, L. (1995):<br />

Effect on plants of sulphadimethox<strong>in</strong>e used <strong>in</strong> <strong>in</strong>tensive farm<strong>in</strong>g<br />

(Panicum miliaceum, Pisum sativum and Zea mays). Agric.<br />

Ecosyst. Environ. 52, 103±110.<br />

Migliore, L., Brambilla, G., Casoria, P., Civitareale, C., Cozzol<strong>in</strong>o, S.,<br />

and Gaudio, L. (1996): Effects of antimicrobials for agriculture as<br />

environmental pollutants. Fres. Envir. Bull. 5, 735±739.<br />

Migliore, L., Civitareale, C., Cozzol<strong>in</strong>o, S., Casoria, P., Brambilla, G.,<br />

and Gaudio, L. (1998): Laboratory models to evaluate phytotoxicity<br />

of sulphadimethox<strong>in</strong>e on terrestrial plants. Chemosphere 37,<br />

2957±2961.<br />

Mitscher, L. A. (1978): The Chemistry of the Tetracycl<strong>in</strong>e Antibiotics.<br />

Marcel Dekker, Basel, p. 330.<br />

Mudd, A. J., Lawrence, K., and Walton, J. (1998): Study of Sweden¢s<br />

model on antimicrobial use shows usage has <strong>in</strong>creased s<strong>in</strong>ce 1986<br />

ban. Feedstuffs 10.<br />

National Institutes of Health (1999): U.S. National Library of<br />

Medic<strong>in</strong>e. Toxnet ± Toxicology Data Network. http://www.toxnet.nlm.nih.gov.<br />

Niessen, W. M. A. (1998): Analysis of <strong>antibiotic</strong>s by liquid<br />

chromatography mass spectrometry. J. Chromatogr. A812, 53±75.<br />

NOAH (2002): Sales of antimicrobial Products used as veter<strong>in</strong>ary<br />

Medic<strong>in</strong>es, Growth Promoters and Coccidiostats <strong>in</strong> the UK <strong>in</strong> 2000.<br />

National Office of Animal Health, UK.<br />

Nowara, A., Burhenne, J., and Spiteller, M. (1997): B<strong>in</strong>d<strong>in</strong>g of<br />

fluoroqu<strong>in</strong>olone carboxylic acid derivatives to clay m<strong>in</strong>erals. J.<br />

Agric. Food Chem. 45, 1459±1463.<br />

Nygaard, K., Lunestad, B. T., Hektoen, H., Berge, J. A., and<br />

Hormazabal, V. (1992): Resistance to oxytetracycl<strong>in</strong>e, oxol<strong>in</strong>ic<br />

acid and furazolidone <strong>in</strong> bacteria from mar<strong>in</strong>e sediments.<br />

Aquaculture 104, 31±36.<br />

OECD (1997): Adsorption/desorption us<strong>in</strong>g a batch equilibrium<br />

method. OECD guidel<strong>in</strong>es for test<strong>in</strong>g of chemicals, test guidel<strong>in</strong>e<br />

106, revised Draft Document. Organization for Economic Cooperation<br />

and Development, Paris.<br />

Oka, H., Ikai, Y., Kawamura, N., and Hayakawa, J. (1991): Limited<br />

survey of residual tetracycl<strong>in</strong>es <strong>in</strong> tissues collected from diseased<br />

animals <strong>in</strong> Aichi prefecture, Japan. J. Assoc. Off. Anal. Chem. Int.<br />

74, 894±896.<br />

Oka, H., Ikai, Y., Ito, Y., Hayakawa, J., Harada, K., Suzuki, M., Odani,<br />

H., and Maeda, K. (1997): Improvement of chemical analysis of<br />

<strong>antibiotic</strong>s. XXIII. Identification of residual tetracycl<strong>in</strong>es <strong>in</strong> bov<strong>in</strong>e<br />

tissues by electrospray high-performance liquid chromatographytandem<br />

mass spectrometry. J. Chromatogr. B 693, 337±344.<br />

Oka, H., Ito, Y., and Matsumoto, H. (2000): Chromatographic analysis<br />

of tetracycl<strong>in</strong>e <strong>antibiotic</strong>s <strong>in</strong> foods. J. Chromatogr. A882, 109±133.<br />

Osol, A. (1980): Rem<strong>in</strong>gton¢s <strong>Pharmaceutical</strong> Sciences. Mack<br />

Publish<strong>in</strong>g Co., Easton, PA, p. 1928.<br />

Patten, D. K., Wolf, D. C., Kunkle, W. E., and Douglass, L. W. (1980):<br />

Effect of <strong>antibiotic</strong>s <strong>in</strong> beef cattle feces on nitrogen and carbon<br />

m<strong>in</strong>eralization <strong>in</strong> soil and on plant growth and composition. J.<br />

Environ. Qual. 9, 167±172.<br />

Pfeiffer, C., Emmerl<strong>in</strong>g, C., Schröder, D., and Niemeyer, J. (1998):<br />

Antibiotika (Ivermect<strong>in</strong>, Monens<strong>in</strong>) und endokr<strong>in</strong>e Umweltchemikalien<br />

(Nonylphenol, Eth<strong>in</strong>ylöstradiol) im Boden: Mögliche Auswirkungen<br />

von synthetischen Umweltchemikalien auf mikrobielle<br />

Eigenschaften e<strong>in</strong>es landwirtschaftlich genutzten Bodens.<br />

Umweltwiss. Schadst. Forsch. 10, 147±153.<br />

P<strong>in</strong>ck, L. A., Holton, W. F., and Allison, F. E. (1961a): Antibiotics <strong>in</strong><br />

<strong>soils</strong>: 1. Physico-chemical studies of <strong>antibiotic</strong>-clay complexes. Soil<br />

Sci. 91, 22±28.<br />

P<strong>in</strong>ck, L. A., Soulides, D. A., and Allison, F. E. (1961b): Antibiotics <strong>in</strong><br />

<strong>soils</strong>: II. Extent and mechanisms of release. Soil Sci. 91, 94±99.<br />

P<strong>in</strong>ck, L. A., Soulides, D. A., and Allison, F. E. (1962): Antibiotics <strong>in</strong><br />

<strong>soils</strong>: 4. Polypeptides and macrolides. Soil Sci. 94, 129±131.<br />

Rabùlle, M,. and Spliid, N. H. (2000): Sorption and mobility of<br />

metronidazole, olaqu<strong>in</strong>dox, oxytetracycl<strong>in</strong>e and tylos<strong>in</strong> <strong>in</strong> soil.<br />

Chemosphere 40, 715±722.<br />

Richardson, M. L., and Bowron, J. M. (1985): The fate of<br />

pharmaceutical chemicals <strong>in</strong> the aquatic environment. J. Pharm.<br />

Pharmacol. 37, 1±12.<br />

Richter, A., Löscher, W., and Witte, W. (1996): Leistungsförderer mit<br />

antibakterieller Wirkung: Probleme aus pharmakologisch-toxikologischer<br />

und mikrobiologischer Sicht. Prakt.Tierarzt 7, 603±624.<br />

Römbke, J., Knacker, T., and Stahlschmidt-Allner, P. (1996):<br />

Umweltprobleme durch Arzneimittel ± Literaturstudie. UBA Texte,<br />

Berl<strong>in</strong>, p. 341.<br />

Runsey, T. S., Miller, R. W., and D<strong>in</strong>ius, D. A. (1977): Residue content<br />

of beef feedlot manure after feed<strong>in</strong>g diethylstilbestrol, chlortetracycl<strong>in</strong>e<br />

and Ronnel and the use of stirofos to reduce population of fly<br />

larvae <strong>in</strong> feedlot manure. Arch. Environ. Contam. Toxicol. 6,<br />

203±212.<br />

Salvatore, M. J., and Katz, S. E. (1993): Solubility of <strong>antibiotic</strong>s used<br />

<strong>in</strong> animal feeds <strong>in</strong> selected solvents. J. Assoc. Off. Anal. Chem. Int.<br />

76, 952±956.<br />

Samuelsen, O. B. (1994): Simultaneous determ<strong>in</strong>ation of<br />

ormethoprim and sulphadimethox<strong>in</strong>e <strong>in</strong> plasma and muscle of<br />

Atlantic salmon (Salmo salar). J. Chromatogr. B 660, 412±417.<br />

Samuelsen, O. B., Torsvik, V, and Ervik, A. (1992): Long-range<br />

changes <strong>in</strong> oxytetracycl<strong>in</strong>e concentration and bacterial resistance<br />

toward oxytetracycl<strong>in</strong>e <strong>in</strong> a fish farm sediment after medication.<br />

Sci. Total Environ. 114, 25±36.<br />

Samuelsen, O. B., Lunestad, B. T., Ervik, A., and Fjelde, S. (1994):<br />

Stability of antibacterial agents <strong>in</strong> an artificial mar<strong>in</strong>e aquaculture


166 Thiele-Bruhn J. Plant Nutr. Soil Sci. 2003, 166, 145±167<br />

sediment studied under laboratory conditions. Aquaculture 126,<br />

283±290.<br />

Schadew<strong>in</strong>kel-Scherkl, A.-M., and Scherkl, R. (1995): Antibiotika und<br />

Chemotherapeutika <strong>in</strong> der tierärztlichen Praxis. Gustav Fischer,<br />

Jena, Stuttgart, p. 153.<br />

Schüller, S. (1998): Anwendung antibiotisch wirksamer Substanzen<br />

beim Tier und Beurteilung der Umweltsicherheit entsprechender<br />

Produkte. 3. Statuskolloquium ökotoxikologischer Forschungen <strong>in</strong><br />

der Euregio Bodensee, 3 ± 4 December 1998.<br />

Schulten, H. R. (2002): New approaches to the molecular structure<br />

and properties of soil organic matter: humic-, xenobiotic-,<br />

biological-, and m<strong>in</strong>eral-bonds. In Violante, A., Huang, P. M.,<br />

Bollag, J.-M., and Gianfreda, L.: Developments <strong>in</strong> Soil Science.<br />

Soil M<strong>in</strong>eral-Organic Matter-Microorganisms Interactions and<br />

Ecosystem Health 28A, Elsevier, Amsterdam, pp. 351±381.<br />

Schwabe, U., and Paffrath, D. (2001): Arzneiverordnungs-Report<br />

2001. Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>, Heidelberg, p. 982.<br />

Sczesny, S., Nau, H., and Hamscher, G. (2003): Residue analysis of<br />

tetracycl<strong>in</strong>es and their metabolites <strong>in</strong> eggs and <strong>in</strong> the environment<br />

by HPLC coupled with a microbiological assay and tandem mass<br />

spectrometry. J. Agric. Food Chem. 51, 697±703.<br />

Sengelùv, G., Agerso, Y., Hall<strong>in</strong>g-Sùrensen, B., Baloda, S. B.,<br />

Andersen, J. S., and Jensen, L. B. (2003): Bacterial <strong>antibiotic</strong><br />

resistance levels <strong>in</strong> Danish farmland as a result of treatment with<br />

pig manure slurry. Environ. Int. 28, 587±595.<br />

Seveno, N. A., Kallifidas, D., Smalla, K., van Elsas, J. D., Collard, J.<br />

M., Karagouni, A. D., and Well<strong>in</strong>gton, E. M. H. (2002): Occurrence<br />

and reservoirs of <strong>antibiotic</strong> resistance genes <strong>in</strong> the environment.<br />

Rev. Med. Microbiol. 13, 15±27.<br />

Shanahan, P., Borro, A., O¢Gara, F., and Glennon, J. D. (1992):<br />

Isolation, trace enrichment and liquid chromatographic analysis of<br />

diacetylphlorogluc<strong>in</strong>ol <strong>in</strong> culture and soil samples us<strong>in</strong>g UV and<br />

amperometric detection. J. Chromatogr. A606, 171±177.<br />

Sithole, B. B., and Guy, R. D. (1987a): Models for oxytetracycl<strong>in</strong>e <strong>in</strong><br />

aquatic environments. I. Interaction with bentonite clay systems.<br />

Water Air Soil Pollut. 32, 303±314.<br />

Sithole, B. B., and Guy, R. D. (1987b): Models for oxytetracycl<strong>in</strong>e <strong>in</strong><br />

aquatic environments. II. Interactions with humic substances.<br />

Water Air Soil Pollut. 32, 315±321.<br />

Smalla, K., and Sobecky, P. A. (2002): The prevalence and diversity<br />

of mobile genetic elements <strong>in</strong> bacterial communities of different<br />

environmental habitats: <strong>in</strong>sights ga<strong>in</strong>ed from different methodological<br />

approaches. FEMS Microbiol. Ecol. 42, 165±175.<br />

Smalla, K., Heuer, H., Gotz, A., Niemeyer, D., Krogerrecklenfort, E.,<br />

and Tietze, E. (2000): Exogenous isolation of <strong>antibiotic</strong> resistance<br />

plasmids from piggery manure slurries reveals a high prevalence<br />

and diversity of IncQ-like plasmids. Appl. Environ. Microbiol. 66,<br />

4854±4862.<br />

Smith, P., and Samuelsen, O. B. (1996): Estimates of the significance<br />

of out-wash<strong>in</strong>g of oxytetracycl<strong>in</strong>e from sediments under Atlantic<br />

salmon sea-cages. Aquaculture 144, 17±26.<br />

Soulides, D. A. (1965): Antibiotics <strong>in</strong> <strong>soils</strong>. VII. Production of<br />

streptomyc<strong>in</strong> and tetracycl<strong>in</strong>es <strong>in</strong> <strong>soils</strong>. Soil Sci. 100, 200±206.<br />

Soulides, D. A., P<strong>in</strong>ck, L. A., and Allison, F. E. (1962): Antibiotics <strong>in</strong><br />

<strong>soils</strong>: V. Stability and release of soil-adsorbed <strong>antibiotic</strong>s. Soil Sci.<br />

4, 239±244.<br />

Spaepen, K. R. I., van Leemput, L. J. J., Wislocki, P. G., and<br />

Verschueren, C. (1997): Auniform procedure to estimate the<br />

predicted environmental concentration of the residues of veter<strong>in</strong>ary<br />

medic<strong>in</strong>es <strong>in</strong> soil. Environ. Toxicol. Chem. 16, 1977±1982.<br />

Stuer-Lauridsen, F., Birkved, M., Hansen, L. P., Lützhùft, H. C., and<br />

Hall<strong>in</strong>g-Sùrensen, B. (2000): Environmental risk assessment of<br />

human pharmaceuticals <strong>in</strong> Denmark after normal therapeutic use.<br />

Chemosphere 40, 783±793.<br />

Suan, D. T., and Dmitrenko, L. V. (1994a): Effect of the structure of<br />

sulfocationites on the sorption of the <strong>antibiotic</strong> tetracycl<strong>in</strong>e. Appl.<br />

Biochem. Microbiol. 30, 629±633.<br />

Suan, D. T., and Dmitrenko, L. V. (1994b): Sorption k<strong>in</strong>etics of the<br />

<strong>antibiotic</strong> oxytetracycl<strong>in</strong>e on ion exchange materials. Appl. Envir.<br />

Microbiol. 30, 634±636.<br />

Süûmuth, R., Eberspächer, J., Haag, R., and Spr<strong>in</strong>ger, W. (1987):<br />

Biochemisch-mikrobiologisches Praktikum. Georg Thieme Verlag,<br />

Stuttgart, p. 409.<br />

Syracuse Research Corporation (2001): Environmental Fate Data<br />

Base. http://esc.syrres.com/efdb.htm..<br />

Thiele, S. (2000): Adsorption of the <strong>antibiotic</strong> pharmaceutical<br />

compound sulfapyrid<strong>in</strong>e by a long-term differently fertilized loess<br />

Chernozem. J. Plant Nutr. Soil Sci. 163, 589±594.<br />

Thiele, S., and Beck, I.-C. (2001): Wirkungen pharmazeutischer<br />

Antibiotika auf die Bodenmikroflora ± Bestimmung mittels<br />

ausgewählter bodenbiologischer Testverfahren. Mitteilgn. Dtsch.<br />

Bodenkundl. Gesellsch. 96, 383±384.<br />

Thiele, S., and Le<strong>in</strong>weber, P. (2000): Bedeutung der Hum<strong>in</strong>stoffe für<br />

B<strong>in</strong>dung und Umsatz organischer Fremdstoffe ± am Beispiel<br />

ausgewählter Veter<strong>in</strong>ärantibiotika. Rostocker Agr. Umweltwiss.<br />

Beitr. 8, 265±273.<br />

Thiele, S., Seibicke, T., and Le<strong>in</strong>weber, P. (2002): Sorption of<br />

sulfonamide <strong>antibiotic</strong> pharmaceuticals <strong>in</strong> soil particle size<br />

fractions. SETAC Europe 12th Annual Meet<strong>in</strong>g, 12 ± 16 May<br />

2002, Vienna.<br />

Thiele-Bruhn, S., and Aust, M. O. (2003): Effects of slurry<br />

amendment on soil sorption of sulfonamide <strong>antibiotic</strong>s, <strong>in</strong><br />

preparation.<br />

Thiele-Bruhn, S., Mogk, A., and Freitag, D. (2003a): E<strong>in</strong>satz von<br />

Tierarzneimitteln zur Anwendung bei landwirtschaftlichen Nutztieren<br />

<strong>in</strong> Mecklenburg-Vorpommern. Ber. Landwirtsch., submitted.<br />

Thiele-Bruhn, S., Peters, D., Hall<strong>in</strong>g-Sùrensen, B., and Le<strong>in</strong>weber, P.<br />

(2003b): Photodegradation and age<strong>in</strong>g of <strong>antibiotic</strong> pharmaceuticals<br />

on soil surfaces. ENVIRPHARMA, European Conference on<br />

Human and Veter<strong>in</strong>ary Pharmaceuticlas <strong>in</strong> the Environment, 14 ±<br />

16 April 2003.<br />

Thomashow, L. S., Bonsall, R. F., and Weller, D. M. (1997): Antibiotic<br />

production by soil and rhizosphere microbes <strong>in</strong> situ. In C. J. Hurst,<br />

G. R. Knudson, M. J. McInerney, L. D. Stetzenbach and M. V.<br />

Walter: Manual of environmental microbiology. ASM Press,<br />

Wash<strong>in</strong>gton, D.C., pp. 493±499.<br />

Tjùrnelund, J., Jensen, R. B., Ma, H. P., and Hall<strong>in</strong>g-Sùrensen, B.<br />

(2000): Sorption of chlortetracycl<strong>in</strong>e and its decomposition<br />

products on soil. Dansk Kemi 81, 12±14.<br />

Tolls, J. (2001): Sorption of veter<strong>in</strong>ary pharmaceuticals <strong>in</strong> <strong>soils</strong>: a<br />

<strong>review</strong>. Environ. Sci. Technol. 35, 3397±3406.<br />

Tolls, J., Gebb<strong>in</strong>k, W., and Cavallo, R. (2002): pH-dependence of<br />

sulfonamide <strong>antibiotic</strong> sorption: data and model evaluation. SETAC<br />

Europe 12th Annual Meet<strong>in</strong>g 12 ± 16 May 2002, Vienna.<br />

Toml<strong>in</strong>son, G., Albuquerque, C. A., and Woods, R. A. (1985): The<br />

effects of amidantel (Bay D-8815) and its deacylated derivative<br />

(Bay D-9216) on Caenorhabditis-Elegans. Europ. J. Pharmacol.<br />

113, 255±262.<br />

Topp, W. (1981): Biologie der Bodenorganismen. Quelle & Meier ±<br />

UTB, Heidelberg, p. 224.<br />

Ungemach, F. R. (2000): Figures on quantities of antibacterials used<br />

for different purposes <strong>in</strong> the EU countries and <strong>in</strong>terpretation. Acta<br />

Vet. Scand. Suppl 93, 89±97.


J. Plant Nutr. Soil Sci. 2003, 166, 145±167 Antibiotic <strong>in</strong> <strong>soils</strong> 167<br />

van den Bogaard, A. E., London, N., and Stobber<strong>in</strong>gh, E. E. (2000):<br />

Antimicrobial resistance <strong>in</strong> pig faecal samples from the Netherlands<br />

(five abattoirs) and Sweden. J. Antimicrob. Chemother. 45,<br />

663±671.<br />

van Dijck, P., and van de Voorde, H. (1976): Sensitivity of<br />

environmental microorganisms to antimicrobial agents. Appl.<br />

Environ. Microbiol. 31, 332±336.<br />

van Gool, S. (1993): Possible effects on the environment of <strong>antibiotic</strong><br />

residues <strong>in</strong> animal manure. Tijdschr. Diergeneeskd. 118, 8±10.<br />

Warman, P. R. (1980): The effect of amprolium and aureomyc<strong>in</strong><br />

[<strong>antibiotic</strong>] on the nitrification of poultry manure-amended soil. Soil.<br />

Sci. Soc. Am. J. 44, 1333±1334.<br />

Watts, C. D., Crathorne, B., Field<strong>in</strong>g, M., and Killops, S. D. (1982):<br />

Non-volatile organic-<strong>compounds</strong> <strong>in</strong> treated waters. Environ. Health<br />

Persp. 46, 87±99.<br />

Weeras<strong>in</strong>ghe, C. A., and Towner, D. (1997): Aerobic biodegradation<br />

of virg<strong>in</strong>iamyc<strong>in</strong> <strong>in</strong> soil. Environ. Toxicol. Chem. 16, 1873±1876.<br />

Wegener, H. C., Aarestrup, F. M., Jensen, L. B., Hammerum, A. M.,<br />

and Bager, F. (1998): The association between the use of<br />

antimicrobial growth promoters and development of resistance <strong>in</strong><br />

pathogenic bacteria towards growth promot<strong>in</strong>g and therapeutic<br />

antimicrobials. J. Animal Feed Sci. 7, 7±14.<br />

Weimann, A., and Bojesen, G. (1999): Analysis of tetracycl<strong>in</strong>es <strong>in</strong> raw<br />

ur<strong>in</strong>e by column-switch<strong>in</strong>g high-performance liquid chromatography<br />

and tandem mass spectrometry. J. Chromatogr. B 721,<br />

47±54.<br />

Wessels, J. M., Ford, W. E., Szymczak, W., and Schneider, S. (1998):<br />

The complexation of tetracycl<strong>in</strong>e and anhydrotetracycl<strong>in</strong>e with<br />

Mg2+ and Ca2+ : a spectroscopic study. J. Phys. Chem. B 102,<br />

9323±9331.<br />

Wetzste<strong>in</strong>, H. G. (2001): Ch<strong>in</strong>olone <strong>in</strong> der Umwelt: Biologische<br />

Abbaubarkeit der Gyrasehemmer. Pharmazie <strong>in</strong> unserer Zeit 30,<br />

450±457.<br />

Wetzste<strong>in</strong>, H. G., Schmeer, N., and Karl, W. (1997): Degradation of<br />

the fluoroqu<strong>in</strong>olone enrofloxac<strong>in</strong> by the brown rot fungus<br />

Gloeophyllum striatum: identification of metabolites. Appl. Environ.<br />

Microbiol. 63, 4272±4281.<br />

Wetzste<strong>in</strong>, H. G., Stadler, M., Tichy, H. V., Dalhoff, A., and Karl, W.<br />

(1999): Degradation of ciprofloxac<strong>in</strong> by basidiomycetes and<br />

identification of metabolites generated by the brown rot fungus<br />

Gloeophyllum striatum. Appl. Environ. Microbiol. 65, 1556±1563.<br />

Wetzste<strong>in</strong>, H. G., Karl, W., Hallenbach, W., Himmler, T., and<br />

Petersen, U. (2000): Residual antibacterial activity of metabolites<br />

derived from the veter<strong>in</strong>ary fluroqu<strong>in</strong>olone enrofloxac<strong>in</strong>. 100th<br />

General Meet<strong>in</strong>g of the American Society for Microbiology, Los<br />

Angeles, CA.<br />

Wetzste<strong>in</strong>, H. G., Schneider, S., and Karl, W. (2002): K<strong>in</strong>etics of the<br />

biotransformation of enrofloxac<strong>in</strong> <strong>in</strong> ag<strong>in</strong>g cattle dung. 102nd<br />

General Meet<strong>in</strong>g of the American Society for Microbiology, Salt<br />

Lake City, UT.<br />

Williams, S. T. (1982): Are <strong>antibiotic</strong>s produced <strong>in</strong> soil? Pedobiologia<br />

23, 427±435.<br />

W<strong>in</strong>ckler, C., and Grafe, A. (2000): Stoffe<strong>in</strong>trag durch Tierarzneimittel<br />

und pharmakologisch wirksame Futterzusatzstoffe unter besonderer<br />

Berücksichtigung von Tetrazykl<strong>in</strong>en. UBA-Texte 44/00,<br />

Berl<strong>in</strong>, p. 145.<br />

W<strong>in</strong>ckler, C., and Grafe, A. (2001): Use of veter<strong>in</strong>ary drugs <strong>in</strong><br />

<strong>in</strong>tensive animal production: evidence for persistence of tetracycl<strong>in</strong>e<br />

<strong>in</strong> pig slurry. J. Soils Sed. 1, 66±70.<br />

Wollenberger, L., Hall<strong>in</strong>g-Sùrensen, B., and Kusk, K. O. (2000):<br />

Acute and chronic toxicity of veter<strong>in</strong>ary <strong>antibiotic</strong>s to Daphnia<br />

magna. Chemosphere 40, 723±730.<br />

Yeager, R. L., and Halley, B. A. (1990): Sorption/desorption of<br />

[ 14C]efrotomyc<strong>in</strong> with <strong>soils</strong>. J. Agric. Food Chem. 38, 883±886.<br />

Zhu, J., Snow, D. D., Cassada, D. A., Monson, S. J., and Spald<strong>in</strong>g, R.<br />

F. (2001): Analysis of oxytetracycl<strong>in</strong>e, tetracycl<strong>in</strong>e, and chlortetracycl<strong>in</strong>e<br />

<strong>in</strong> water us<strong>in</strong>g solid-phase extraction and liquid<br />

chromatography-tandem mass spectrometry. J. Chromatogr. A<br />

928, 177±186.<br />

Zuccato, E., Bagnati, R., Fioretti, F., Natangelo, M., Calamari, D., and<br />

Fanelli, R. (2001): Environmental loads and detection of<br />

pharmaceuticals <strong>in</strong> Italy, <strong>in</strong> K. Kümmerer: <strong>Pharmaceutical</strong>s <strong>in</strong> the<br />

Environment ± Sources, Fate, Effects and Risks. Spr<strong>in</strong>ger, Berl<strong>in</strong>,<br />

pp. 19±27.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!