07.03.2013 Views

Description of Gibberella sacchari and neotypification of ... - Mycologia

Description of Gibberella sacchari and neotypification of ... - Mycologia

Description of Gibberella sacchari and neotypification of ... - Mycologia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mycologia</strong>, 97(3), 2005, pp. 718–724.<br />

2005 by The Mycological Society <strong>of</strong> America, Lawrence, KS 66044-8897<br />

<strong>Description</strong> <strong>of</strong> <strong>Gibberella</strong> <strong>sacchari</strong> <strong>and</strong> <strong>neotypification</strong> <strong>of</strong> its anamorph<br />

Fusarium <strong>sacchari</strong><br />

John F. Leslie 1<br />

Department <strong>of</strong> Plant Pathology, Throckmorton Plant<br />

Sciences Center, Kansas State University, Manhattan,<br />

Kansas 66506-5502<br />

Brett A. Summerell<br />

Suzanne Bullock<br />

Royal Botanic Gardens <strong>and</strong> Domain Trust, Mrs.<br />

Macquaries Road, Sydney, New South Wales 2000,<br />

Australia<br />

Frank J. Doe<br />

Department <strong>of</strong> Biology, University <strong>of</strong> Dallas, Irving,<br />

Texas 75061<br />

Abstract: We described the teleomorph <strong>of</strong> Fusarium<br />

<strong>sacchari</strong> as <strong>Gibberella</strong> <strong>sacchari</strong>, sp. nov. This species<br />

can be separated from other species <strong>of</strong> <strong>Gibberella</strong> on<br />

the basis <strong>of</strong> the longer, narrower ascospores found in<br />

G. <strong>sacchari</strong> <strong>and</strong> by sexual cross fertility. Female-fertile<br />

mating type tester strains were developed that can be<br />

used for making sexual crosses with this heterothallic<br />

fungus under laboratory conditions. The anamorph,<br />

Fusarium <strong>sacchari</strong>, was neotypified.<br />

Key words: biological species, Fusarium neoceras,<br />

Fusarium subglutinans sensu lato, <strong>Gibberella</strong> fujikuroi<br />

mating population B, maize, sorghum, sugarcane<br />

INTRODUCTION<br />

Nine mating populations or biological species, denoted<br />

by the letters A–I, have been identified within<br />

the <strong>Gibberella</strong> fujikuroi species complex (Britz et al<br />

2002, Samuels et al 2001, Zeller et al 2003). The anamorphs<br />

<strong>of</strong> all nine have unique Latin binomials as<br />

do eight <strong>of</strong> the nine teleomorphs. Our objective in<br />

this report is to provide a name <strong>and</strong> formal description<br />

for the teleomorph <strong>of</strong> the ninth biological species<br />

<strong>and</strong> to describe the mating-type tester strains that<br />

are commonly used for identification purposes. To<br />

clarify the nomenclature <strong>and</strong> taxonomy <strong>of</strong> this taxon<br />

we neotypify the anamorph, Fusarium <strong>sacchari</strong>.<br />

Accepted for publication 6 Jan 2005.<br />

1 Corresponding author. Department <strong>of</strong> Plant Pathology, 4002<br />

Throckmorton Plant Sciences Center, Kansas State University, Manhattan,<br />

Kansas 66506-5502; Phone: 785-532-1363; Fax: 785-532-<br />

2414; E-mail: jfl@plantpath.ksu.edu<br />

718<br />

MATERIALS AND METHODS<br />

Cultures <strong>and</strong> culturing conditions.—Cultures examined were<br />

recovered from sugarcane <strong>and</strong> sorghum <strong>and</strong> either provided<br />

to us or collected by us as indicated in the list below.<br />

Strain numbers from other collections are given where<br />

known, <strong>and</strong> are: ATCC—American Type Culture Collection,<br />

Manassas, Virginia; BBA—Biologische Bundesanstalt für<br />

L<strong>and</strong>- und Forstwirtschaft, Berlin, Germany; FGSC—Fungal<br />

Genetics Stock Center, University <strong>of</strong> Missouri-Kansas City,<br />

Kansas City, Missouri; FRC—Pennsylvania State University,<br />

University Park, Pennsylvania; SNS—University <strong>of</strong> California,<br />

Davis, California; KSU—Kansas State University, Manhattan,<br />

Kansas; PTS—University <strong>of</strong> California, Berkeley, California.<br />

FGSC <strong>and</strong> KSU numbers are used preferentially.<br />

When isolates were recovered from plant material, they<br />

were plated onto semiselective peptone-PCNB media (Nash<br />

<strong>and</strong> Snyder 1962). After 4–7 d incubation at 25 C, we selected<br />

Fusarium colonies that emerged from this material.<br />

We purified all cultures, including those received from other<br />

investigators, by subculturing single conidia separated by<br />

micromanipulation. Isolates were cultured routinely on carnation<br />

leaf agar (CLA) (Fisher et al 1982), or on modified<br />

Czapek’s complete medium (Correll et al 1987).<br />

All strains are maintained as spore suspensions in 15%<br />

glycerol at 70 C. We have deposited a dried culture <strong>of</strong><br />

FGSC 7610 FGSC 7611, representing G. <strong>sacchari</strong> with the<br />

National Fungus Collection, Beltsville, Maryl<strong>and</strong>, as BPI<br />

843974. Female-fertile mating-type tester strains (strain<br />

numbers KSU B-03853 [ FGSC 7611] <strong>and</strong> KSU B-03852<br />

[ FGSC 7610]) were deposited as isotypes with the Fungal<br />

Genetics Stock Center.<br />

We used this st<strong>and</strong>ard <strong>Gibberella</strong> fujikuroi mating population<br />

mating-type tester strains in all mating tests (G. fujikuroi<br />

mating population, <strong>Gibberella</strong> teleomorph, FGSC strain<br />

numbers <strong>and</strong> mating types): G. fujikuroi mating population<br />

A, <strong>Gibberella</strong> moniliformis, FGSC 7600 (MATA-1), FGSC<br />

7603 (MATA-2); G. fujikuroi mating population B, <strong>Gibberella</strong><br />

<strong>sacchari</strong>, FGSC 7611 (MATB-1), FGSC 7610 (MATB-2);<br />

G. fujikuroi mating population C, <strong>Gibberella</strong> fujikuroi, FGSC<br />

8931 (MATC-1), FGSC 8932 (MATC-2); G. fujikuroi mating<br />

population D, <strong>Gibberella</strong> intermedia, FGSC 7615 (MATD-1),<br />

FGSC 7614 (MATD-2); G. fujikuroi mating population E,<br />

<strong>Gibberella</strong> subglutinans, FGSC 7616 (MATE-1), FGSC 7617<br />

(MATE-2); G. fujikuroi mating population F, <strong>Gibberella</strong> thapsina,<br />

FGSC 7057 (MATF-1), FGSC 7056 (MATF-2); G. fujikuroi<br />

mating population G, <strong>Gibberella</strong> nygamai, FGSC 8934<br />

(MATG-1), FGSC 8933 (MATG-2); G. fujikuroi mating population<br />

H, <strong>Gibberella</strong> circinata, FGSC 9022 (MATH-1), FGSC<br />

9023 (MATH-2); G. fujikuroi mating population I, <strong>Gibberella</strong><br />

konza, FGSC 8910 (MATI-1), <strong>and</strong> FGSC 8911 (MATI-2).


Microscopy.—The description <strong>of</strong> <strong>Gibberella</strong> <strong>sacchari</strong> is based<br />

on crosses (FGSC 7610 FGSC 7611) produced on carrot<br />

agar. Perithecia were treated with 3% KOH <strong>and</strong> 100% lactic<br />

acid to observe any color reaction, <strong>and</strong> measured in situ.<br />

Asci <strong>and</strong> ascospores were mounted in water for measurement<br />

<strong>and</strong> photography. Measurements were taken <strong>of</strong> 20<br />

each <strong>of</strong> perithecia, asci <strong>and</strong> ascospores. Whole perithecia<br />

were fixed in 6.5% glutaraldehyde in 100 mM sodium cacodylate<br />

buffer at pH 7.6 for 4 h at room temperature (Bullock<br />

et al 1980), dehydrated in a graded ethanol series <strong>and</strong><br />

infiltrated <strong>and</strong> embedded in LR White resin. Sections 1.5<br />

m thick were cut with a Reichert ultramicrotome, dried<br />

onto poly-L-lysine-coated glass slides <strong>and</strong> stained with 0.5%<br />

toluidine blue O for 10 s (Feder <strong>and</strong> O’Brien 1968). Sections<br />

were mounted in immersion oil. Morphological features<br />

<strong>of</strong> the anamorph (F. <strong>sacchari</strong>) were photographed in<br />

situ on carnation leaf agar. Macro- <strong>and</strong> microconidia were<br />

mounted in water on glass slides <strong>and</strong> photographed with<br />

DIC optics.<br />

Mating-type specific PCR <strong>and</strong> crossing procedures.—We identified<br />

mating-type idiomorphs (MAT-1 or MAT-2) for the F.<br />

<strong>sacchari</strong> isolates with PCR-based assays, as described in either<br />

Kerényi et al (1999) or Steenkamp et al (2000), <strong>and</strong><br />

in crosses to the female-fertile tester isolates (FGSC 7610<br />

MAT-2 or FGSC 7611 MAT-1) developed as a part <strong>of</strong> this<br />

study. We made crosses on carrot agar as described in Klittich<br />

<strong>and</strong> Leslie (1988).<br />

RESULTS<br />

The initial mating-type testers used for this species<br />

were the field isolates FGSC 7608 <strong>and</strong> FGSC 7609.<br />

These strains are both highly fertile but are subject<br />

to strain degeneration, in which a tough, dense, mycelium<br />

with fingerlike projections is produced, with<br />

a thinner, wispier mycelium between the denser mycelial<br />

fingers. If these colonies are subcultured, then<br />

the amount <strong>of</strong> dense mycelia continues to increase<br />

at the expense <strong>of</strong> the thinner mycelium. The thinner<br />

mycelium eventually disappears <strong>and</strong> only the denser<br />

mycelium can be found. Spores from such colonies<br />

have an apparently normal ability to serve as a male<br />

parent in a sexual cross. When used as a female parent,<br />

however, the only portion <strong>of</strong> the colony on which<br />

perithecia form is that with the thinner mycelium.<br />

Once the strain produces only the denser mycelium,<br />

the colony no longer is useable as a female parent.<br />

The frequency with which the dense sectors appear<br />

is irregular, but once the process has begun we have<br />

not been able to recover a colony that has only the<br />

thin phenotype. Instead we begin a new culture from<br />

the frozen stock <strong>and</strong> discard the degenerating culture.<br />

We crossed FGSC 7608 <strong>and</strong> FGSC 7609 <strong>and</strong> collected<br />

78 r<strong>and</strong>om ascospore progeny. We used these<br />

progeny as the female parents in crosses with the pa-<br />

LESLIE ET AL: DESCRIPTION OF G. SACCHARI<br />

719<br />

rental strains <strong>and</strong> identified strains that repeatedly<br />

produced, at least qualitatively, a large number <strong>of</strong> mature<br />

perithecia. Mating type in all <strong>of</strong> the progeny was<br />

identified on the basis <strong>of</strong> these crosses. We also identified<br />

progeny that retained exclusively the thin phenotype<br />

<strong>and</strong> did not produce sectors with the dense<br />

mycelial phenotype in at least three successive subcultures.<br />

We selected two progeny (FGSC 7610 <strong>and</strong><br />

FGSC 7611) based on these criteria <strong>and</strong> have been<br />

using them as the st<strong>and</strong>ard testers for this mating<br />

population since 1990. We have never seen these testers<br />

develop the dense, female-sterile mycelial sectors<br />

that can occur in their parents <strong>and</strong> have not noticed<br />

any appreciable reduction in female fertility <strong>of</strong> these<br />

strains over this time.<br />

Members <strong>of</strong> the B mating population are distinct<br />

from other mating populations in the G. fujikuroi<br />

species complex in that they do not cross with the<br />

testers from any <strong>of</strong> the other eight described mating<br />

populations. Strains listed are cross-fertile with either<br />

FGSC 7610 or FGSC 7611 but not with testers for the<br />

other known biological species in the G. fujikuroi species<br />

complex. In most cases no perithecia are made<br />

in the crosses between strains from the different mating<br />

populations. On rare occasions a few perithecia<br />

may be produced, presumably due to homothallism<br />

such as that observed with these testers <strong>and</strong> a few<br />

other strains <strong>of</strong> mating population B (Britz et al<br />

1999). Thus any crosses in which only a few perithecia<br />

are produced on a plate must be viewed as suspect<br />

until the progeny produced are shown to have a biparental<br />

origin.<br />

TAXONOMY<br />

<strong>Gibberella</strong> <strong>sacchari</strong> Summerell et Leslie sp. nov.<br />

FIGS. 1–7<br />

Perithecia superficialia, livida, 270–390 m alta, 250–390<br />

m diam. Asci fusiformes, dehiscentes, octospori. Ascosporae<br />

exudatae in cirrhis, laeves, hyalinae, ellipsoideae vel<br />

obovoideae, 0–1 septatae, plerumque 1-septatae et ad septum<br />

leviter constrictae, 3–4.5 7.0–8.0 m. Anamorphosis:<br />

Fusarium <strong>sacchari</strong> (E.J. Butler) W. Gams.<br />

HOLOTY PUS. Cultura exsiccata in agaro ex FGSC 7610<br />

FGSC 7611.<br />

Etymology.—Taken from the anamorph, referring to<br />

the original host plant, sugarcane.<br />

Teleomorph.—Perithecia superficial, solitary to aggregated<br />

in groups <strong>of</strong> a few <strong>and</strong> seated on a minute<br />

stromatic base, obovoidal <strong>and</strong> warty (FIGS. 1–2); 270–<br />

390 (mean 325) m, 250–390 (mean 310) m<br />

diam; blue-black, color not changing in 3% KOH,<br />

turning red in 100% lactic acid. Perithecial wall 23–<br />

39 (mean 30.6) m thick laterally, formed <strong>of</strong> two


720 MYCOLOGIA<br />

FIGS. 1–7. <strong>Gibberella</strong> <strong>sacchari</strong>, characteristics <strong>of</strong> perithecia, asci <strong>and</strong> ascospores produced from a cross <strong>of</strong> strains FGSC<br />

7610 FGSC 7611 on carrot agar. 1–2. Perithecia. 3. Transverse section <strong>of</strong> a perithecium stained with toluidine blue O. 4.<br />

Detail <strong>of</strong> transverse section <strong>of</strong> perithecial wall. 5–6. Asci. 7. Ascospores. Bars: 1 <strong>and</strong> 2 200 m; 3 <strong>and</strong> 5 50 m; 4, 6 <strong>and</strong><br />

7 25 m.<br />

obvious regions (FIGS. 3–4). Outer wall region 18–33<br />

(mean 25.6) m thick; outer cells angular to<br />

elliptic in transverse section, 5.3–12 (mean 8.4)<br />

m length 3.1–5.9 (mean 4.3) m thick, with<br />

the largest cells at the exterior <strong>and</strong> the smallest cells<br />

toward the interior <strong>of</strong> the wall, walls <strong>of</strong> cells 0.5–1.2<br />

(mean 0.9) m thick <strong>and</strong> pigmented. Inner wall<br />

region 4.0–5.9 (mean 4.9) m thick; cells angular<br />

to elliptic, 7.2–16 (mean 10.6) m length <br />

1.1–3.2 (mean 2.2) m thick. Inner wall cells fu-


siform, thin-walled <strong>and</strong> irregular, walls <strong>of</strong> inner cells<br />

0.3–0.6 (mean 0.4) m thick <strong>and</strong> pigmented (FIG.<br />

4). Outer <strong>and</strong> the inner wall regions merging imperceptibly;<br />

cells <strong>of</strong> the outer region more pigmented.<br />

Perithecial apex continuous with the outer <strong>and</strong> inner<br />

wall layers; cells at the apex smaller appearing as a<br />

reticulum; cells forming the ostiolar opening clavate<br />

<strong>and</strong> thick-walled at the cell tips; nonpigmented<br />

merging periphyses. Cells <strong>of</strong> the apex attaining the<br />

same length to form an apical disk.<br />

Asci fusiform (FIGS. 5–6), regularly dehiscing during<br />

slide preparation <strong>and</strong> 8-spored. Ascospores exuded<br />

in a cirrus (FIGS. 1–2), ellipsoidal to obovoid<br />

with both ends rounded, 0–1-septate <strong>and</strong> slightly constricted<br />

at the septum, 7.0–8.0 3–4.5 (mean 7.6 <br />

4.2) m (FIGS. 5–7). Heterothallic species, reproductively<br />

isolated from previously described species <strong>of</strong><br />

<strong>Gibberella</strong>.<br />

Isolates examined.—BRAZIL: culture isolated from sorghum<br />

by Shirley Nash Smith <strong>and</strong> received from J. Puhalla <strong>and</strong> P.T.<br />

Spieth 1984, MAT-2, KSU B-00205 (PTS F-1178, SNS<br />

Br19a). CHINA: Taiwan, Hsingying; cultures isolated from<br />

sugarcane plants by Shirley Nash Smith in 1981 <strong>and</strong> received<br />

from J. Puhalla <strong>and</strong> P.T. Spieth 1984, MAT-1, KSU<br />

B-00281 (ATCC 201263, FGSC 7609, FRC M3128, SNS HY-<br />

7, PTS F-1254); MAT-2, KSU B-00278 (ATCC 201262, FGSC<br />

7608, FRC M3127, SNS HY-4, PTS F-1251). EL SALVADOR:<br />

La Libertad; cultures isolated from diseased (stalk rot) sorghum<br />

plants by L.E. Claflin 2002; all MAT-1, KSU B-12751,<br />

KSU B-12752, KSU B-12753, KSU B-12754, KSU B-12755 &<br />

KSU B-12756. GERMANY: from Cattleya <strong>and</strong> received from<br />

H. Nirenberg via P.E. Nelson; MAT-2 KSU B-03828 (FRC<br />

1217, BBA 62260). INDIA: all from sugarcane <strong>and</strong> received<br />

from H. Nirenberg via P.E. Nelson; MAT-1, KSU B-03819<br />

(FRC M941, BBA 63340), KSU B-03820 (FRC M942, BBA<br />

63342); MAT-2, KSU B-03821 (FRC M943, BBA 63448).<br />

MEXICO: Guadalajara; cultures isolated from diseased<br />

(stalk rot) maize plants by L.E. Claflin 2002; MAT-1, KSU<br />

B-12747; MAT-2, KSU B-12748, KSU B-12749 & KSU B-<br />

12750. PHILIPPINES: Pioneer Overseas Corporation Research<br />

Station, Banbic, Calruyao, Laguna; all cultures isolated<br />

by J.F. Leslie 1988; from diseased sorghum leaf, MAT-<br />

1, KSU B-01722 (FRC M5476), KSU B-01724 (FRC M5478),<br />

KSU B-01725 (FRC M5479), KSU B-01726 (FRC M5480);<br />

from diseased sorghum stalk, MAT-2, KSU B-01721 (FRC<br />

M5467); from sorghum seed, MAT-1, KSU B-01730 (FRC<br />

M5484), KSU B-01732 (FRC M5486), KSU B-01735 (FRC<br />

M5489); MAT-2, KSU B-01727 (FRC M5481), KSU B-01728<br />

(FRC M5482). USA: Kansas, Manhattan; cultures recovered<br />

from a laboratory cross <strong>of</strong> FGSC 7608 (KSU B-00278) <strong>and</strong><br />

FGSC 7609 (KSU B-00281) by J.F. Leslie 1989; MAT-1 KSU<br />

B-03853 (ISOTY PE, ATCC 201265, FRC M6866, FGSC<br />

7611); MAT-2 KSU B-03852 (ISOTY PE, ATCC 201264, FRC<br />

M6865, FGSC 7610).<br />

NEOTY PIFICATION OF FUSARIUM SACCHARI<br />

Fusarium <strong>sacchari</strong> (E.J. Butler) W. Gams first was described<br />

as Cephalosporium <strong>sacchari</strong> Butler from sug-<br />

LESLIE ET AL: DESCRIPTION OF G. SACCHARI<br />

721<br />

arcane in India in 1913 (Butler <strong>and</strong> Khan 1913) but<br />

did not include a description <strong>of</strong> macroconidia. Cultures<br />

with macroconidia were described by Wollenweber<br />

<strong>and</strong> Reinking (1925) as Fusarium neoceras Wollenweber<br />

& Reinking. Gams (1971) synonymized the<br />

two names to the present form. Because the original<br />

type specimen no longer is available we have chosen<br />

isolate KSU B-03852 (ATCC 201264, FGSC 7610, FRC<br />

M6865) to neotypify the anamorph. Because this isolate<br />

is a single ascospore isolate from two parents isolated<br />

from sugarcane, has been shown to be conspecific<br />

with isolates KSU B-03819 (FRC M941, BBA<br />

63340), KSU B-03820 (FRC M942, BBA 63342); KSU<br />

B-03821 (FRC M943, BBA 63448) from sugarcane in<br />

India by sequencing <strong>and</strong> AFLPs (data not shown)<br />

<strong>and</strong> is one <strong>of</strong> the two parental strains used to create<br />

the teleomorph we have chosen it to neotypify.<br />

Neotype, designated here Fusarium <strong>sacchari</strong> (E.J.<br />

Butler) W. Gams. KSU B-03852 (ATCC 201264, FRC<br />

M6865, FGSC 7610). A dried culture <strong>of</strong> this strain is<br />

deposited as DAR 76835 at the Plant Pathology Herbarium,<br />

Orange Agricultural Institute, Department<br />

<strong>of</strong> Primary Industries, New South Wales, Australia.<br />

Anamorph features (FIGS. 8–13) are similar to<br />

those described by Nirenberg (1976) <strong>and</strong> Gerlach<br />

<strong>and</strong> Nirenberg (1982). Key features are 3–4-septate<br />

macroconidia (FIGS. 8–9) <strong>and</strong> oval microconidia<br />

(FIGS. 10–11) borne in false heads on monophialides<br />

<strong>and</strong> polyphialides (FIGS. 12–13).<br />

DISCUSSION<br />

Fusarium <strong>sacchari</strong> (E.J. Butler) W. Gams first was described<br />

as Cephalosporium <strong>sacchari</strong> Butler from sugarcane<br />

in India (Butler <strong>and</strong> Khan 1913). The original<br />

description did not include a description <strong>of</strong> macroconidia,<br />

which is not surprising given the scarcity <strong>of</strong><br />

macroconidia formed by this species in in vitro culture.<br />

Wollenweber <strong>and</strong> Reinking (1925) described<br />

cultures with macroconidia as Fusarium neoceras Wollenweber<br />

& Reinking. Gams (1971) synonymized the<br />

two names to the present form. Kuhlman (1982) described<br />

four varieties <strong>of</strong> G. fujikuroi—moniliformis,<br />

subglutinans, fujikuroi <strong>and</strong> intermedia. He used the<br />

name G. fujikuroi var. subglutinans for the teleomorph<br />

<strong>of</strong> F. <strong>sacchari</strong> because these strains at that time<br />

were identified as F. subglutinans. The name <strong>Gibberella</strong><br />

subglutinans now is associated with the former<br />

<strong>Gibberella</strong> fujikuroi mating population E (Samuels et<br />

al 2001), which reflects its initial usage for a fungal<br />

pathogen <strong>of</strong> maize (Edwards 1935). Thus we selected<br />

<strong>sacchari</strong> as the species epithet to maintain similarity<br />

between the anamorphic <strong>and</strong> teleomorphic names.<br />

Relative to other <strong>Gibberella</strong> species, the ascospores<br />

<strong>of</strong> G. <strong>sacchari</strong> are large. In this study the sizes that


722 MYCOLOGIA<br />

FIGS. 8–13. Characteristics <strong>of</strong> Fusarium <strong>sacchari</strong>. 8–9. Macroconidia. 10–11. Oval to obovoid microconidia. 12–13. Microconidia<br />

on monophialides <strong>and</strong> polyphialides produced in carnation leaf agar cultures. Bars 25 m.<br />

we measured were 28–32 3.0–4.5 (mean 30.4 <br />

4.2) m, which is somewhat shorter <strong>and</strong> narrower<br />

than the values observed by Kuhlman (1982) (16–32<br />

4–8 [mean 22.4 5.6] m) wide. Kuhlman (1982)<br />

found the mean values for the ascospore sizes to be<br />

significantly different from the means for G. moniliformis<br />

(17.5 4.8 m), G. fujikuroi (12.5 4.7 m),<br />

<strong>and</strong> G. intermedia (14.6 4.8 m). Our observations<br />

are consistent with his conclusions. In addition G.<br />

<strong>sacchari</strong> probably can be distinguished from G. nygamai<br />

(13.9 5.3 m), G. subglutinans (19.6 5.9<br />

m), G. thapsina (17.0 6.0 m) <strong>and</strong> G. circinata<br />

(12.7 5.2 m) on the basis <strong>of</strong> the generally longer<br />

<strong>and</strong> narrower ascospores found in G. <strong>sacchari</strong>. This<br />

trait could be especially useful for distinguishing G.<br />

<strong>sacchari</strong> from other species in Fusarium subglutinans<br />

sensu lato, which generally are similar morphologically.<br />

With respect to perithecial diameter, the values we<br />

obtained (250–390 m [mean 310 m]) are somewhat<br />

narrower in the range but similar in the mean<br />

(240–420 m [mean 307 m]) to those reported by<br />

Kuhlman (1982). Perithecial diameter could be used<br />

to differentiate perithecia <strong>of</strong> G. <strong>sacchari</strong> from those<br />

<strong>of</strong> G. fujikuroi (mean perithecial diameter 231 m),<br />

G. thapsina (250 m), <strong>and</strong> G. intermedia (389 m)<br />

but not from those <strong>of</strong> G. moniliformis (321 m) or<br />

G. nygamai (309 m) <strong>and</strong> probably not from those<br />

<strong>of</strong> G. subglutinans (336 m) or G. circinata (337 m)<br />

(Klassen <strong>and</strong> Nelson 1996, Klittich et al 1997, Kuhlman<br />

1982). The comparative measurements <strong>of</strong> these<br />

different species must be evaluated with caution however<br />

because the perithecia <strong>and</strong> ascospores they contain<br />

were grown on several different substrates (e.g.<br />

carrot agar, V-8 juice agar <strong>and</strong> carnation leaf agar)<br />

<strong>and</strong> differences in nutrition could alter the values<br />

observed. The degree <strong>of</strong> maturity <strong>of</strong> both the peri-<br />

thecia <strong>and</strong> the spores that they contain similarly<br />

could alter the observed sizes <strong>of</strong> the asci, ascospores<br />

<strong>and</strong> perithecia. Other described Fusarium species to<br />

which F. <strong>sacchari</strong> shows morphological similarity <strong>and</strong><br />

is closely related (e.g. F. acutatum, F. bulbicola, F. concentricum,<br />

F. denticulatum, F. guttiforme, F. pseudocircinatum,<br />

F. pseudonygamai <strong>and</strong> F. ramigenum [Nirenberg<br />

<strong>and</strong> O’Donnell 1998]), have as yet no reported<br />

sexual stage, <strong>and</strong> the utility <strong>of</strong> ascospore size or perithecial<br />

diameter as distinguishing characters for<br />

these species remains unknown.<br />

Representative isolates now assigned to G. <strong>sacchari</strong><br />

<strong>of</strong>ten have been included in studies <strong>of</strong> variation in<br />

physiological traits or molecular characters. Differences<br />

that separate G. <strong>sacchari</strong> from the other members<br />

<strong>of</strong> the G. fujikuroi species complex include sensitivity<br />

to hygromycin <strong>and</strong> benomyl (Yan et al 1993),<br />

polymorphism in isozyme b<strong>and</strong>ing patterns (Huss et<br />

al 1996), chromosome length (Xu et al 1995), AFLP<br />

b<strong>and</strong>ing pattern (Marasas et al 2001) <strong>and</strong> DNA sequences<br />

<strong>of</strong> representative genes (O’Donnell et al<br />

1998). The only unique isozyme b<strong>and</strong> for G. saccahara<br />

is a pattern observed for esterase (Huss et al<br />

1996). However the pattern for glucose-4-phosphate<br />

isomerase is found only in G. moniliformis <strong>and</strong><br />

G. <strong>sacchari</strong> <strong>and</strong> these two species can be distinguished<br />

easily on the basis <strong>of</strong> the pattern for triose<br />

phosphate isomerase, which is unique to G. moniliformis.<br />

O’Donnell et al (1998) concluded that G. <strong>sacchari</strong><br />

was related most closely to F. fujikuroi, F. proliferatum,<br />

F. globosum <strong>and</strong> F. concentricum based on the<br />

sequence <strong>of</strong> the -tubulin, mitochondrial small subunit<br />

rDNA, <strong>and</strong> 28S rDNA genes. Species to which<br />

G. <strong>sacchari</strong> is more similar morphologically (e.g. G.<br />

subglutinans <strong>and</strong> G. circinatum) were not closely related<br />

to G. <strong>sacchari</strong> when these DNA sequences were<br />

used to estimate relatedness. Marasas et al (2001)


showed that G. <strong>sacchari</strong> was distinct from F. <strong>and</strong>iyazi,<br />

F. nygamai, F. pseudocircinatum, F. ramigenum, F. thapsinum<br />

<strong>and</strong> F. verticillioides on the basis <strong>of</strong> AFLP fingerprinting<br />

patterns. Strains <strong>of</strong> G. <strong>sacchari</strong> are not<br />

known to produce fumonisins (Leslie et al 1992).<br />

The strains examined for this study were from Taiwan,<br />

the Philippines, Germany (greenhouse), India,<br />

Mexico <strong>and</strong> El Salvador, but other strains have been<br />

reported from Brazil, India, Malaysia, South Africa<br />

<strong>and</strong> Thail<strong>and</strong> (Leslie 1995). In crosses with the tester<br />

strains, however, many <strong>of</strong> the isolates not included in<br />

this study were reported to produce relatively few<br />

perithecia, <strong>and</strong> thus their identity as G. <strong>sacchari</strong><br />

should be regarded as tentative due to the potential<br />

problems associated with selfing by the testers. The<br />

host range similarly should be considered limited to<br />

maize, sugarcane, orchids <strong>and</strong> sorghum until the isolates<br />

reported from banana, peanut <strong>and</strong> rice have<br />

been examined more closely.<br />

Identification <strong>of</strong> G. <strong>sacchari</strong> can be accomplished<br />

in many ways. The size <strong>of</strong> the ascospores <strong>and</strong> the fertility<br />

<strong>of</strong> the strain in crosses with st<strong>and</strong>ard tester isolates<br />

are the technically simplest means <strong>of</strong> distinguishing<br />

G. <strong>sacchari</strong> from other sibling species in the<br />

former F. subglutinans sensu lato. The species also can<br />

be distinguished based on AFLP patterns, isozymes<br />

<strong>and</strong> by differences in the DNA sequence <strong>of</strong> several<br />

commonly studied genes.<br />

<strong>Gibberella</strong> <strong>sacchari</strong> has yet to be reported under<br />

field conditions, but the anamorph, F. <strong>sacchari</strong>, has<br />

been recovered from a diverse, although small, set <strong>of</strong><br />

host plants. The fungus <strong>of</strong>ten has been associated<br />

with Fusarium sett <strong>and</strong> stem rot <strong>of</strong> sugarcane (Egan<br />

et al 1997); however no comprehensive studies <strong>of</strong><br />

host range or pathogenicity have been conducted.<br />

Given the recent increase in our knowledge <strong>of</strong> the<br />

taxonomy <strong>of</strong> this fungus <strong>and</strong> its close relatives, such<br />

studies would be both interesting <strong>and</strong> important.<br />

ACKNOWLEDGMENTS<br />

This research was supported in part by the Kansas Agricultural<br />

Experiment Station <strong>and</strong> by the Sorghum <strong>and</strong> Millet<br />

Collaborative Research Support Program (INTSORMIL)<br />

AID/DAN-1254-G-00-0021-00 from the U.S. Agency for International<br />

Development. We thank Larry E. Claflin, John<br />

Puhalla, Philip T. Spieth <strong>and</strong> the late Paul E. Nelson for<br />

providing some <strong>of</strong> the strains used in this study. JFL thanks<br />

the Australian-American Fulbright Commission <strong>and</strong> The<br />

Royal Botanic Gardens <strong>and</strong> Domain Trust, Sydney, for the<br />

award <strong>of</strong> fellowships to support his sabbatical leave in Australia.<br />

Contribution No. 03-20-J from the Kansas Agricultural<br />

Experiment Station, Manhattan.<br />

LESLIE ET AL: DESCRIPTION OF G. SACCHARI<br />

LITERATURE CITED<br />

723<br />

Britz H, Coutinho TA, Wingfield MJ, Marasas WFO. 2002.<br />

Emended description <strong>of</strong> <strong>Gibberella</strong> circinata, the cause<br />

<strong>of</strong> pitch canker <strong>of</strong> pines. Sydowia 54:9–22.<br />

, , , , Gordon TA, Leslie JF. 1999.<br />

Fusarium subglutinans f. sp. pini represents a distinct<br />

mating population in the <strong>Gibberella</strong> fujikuroi species<br />

complex. Appl Environ Microbiol 65:1198–1201.<br />

Bullock S, Willetts HJ, Ashford AE. 1980. The structure <strong>and</strong><br />

histochemistry <strong>of</strong> sclerotia <strong>of</strong> Sclerotinia minor Jagger 1.<br />

Light <strong>and</strong> electron microscope studies on sclerotial development.<br />

Protoplasma 104:315–331.<br />

Butler EJ, Khan AH. 1913. Some new sugarcane diseases.<br />

Mem Dept Ag in India, Bot Ser 6:185–190.<br />

Correll JC, Klittich CJR, Leslie JF. 1987. Nitrate non-utilizing<br />

mutants <strong>of</strong> Fusarium oxysporum <strong>and</strong> their use in vegetative<br />

compatibility tests. Phytopathology 77:1640–<br />

1646.<br />

Edwards ET. 1935. Studies on <strong>Gibberella</strong> fujikuroi var. subglutinans<br />

the hitherto undescribed ascigerous stage <strong>of</strong><br />

Fusarium moniliforme var. subglutinans <strong>and</strong> its pathogenicity<br />

on maize in New South Wales. Dept. Agric.<br />

New South Wales Sci Bull 49:1–68.<br />

Egan BT, Magarey RC, Cr<strong>of</strong>t BJ. 1997. Sugarcane. In: Hillocks<br />

RJ, Walker JM, eds. Soilborne diseases <strong>of</strong> tropical<br />

crops. CAB International: Wallingford, Oxon, U.K. p<br />

277–302.<br />

Feder N, O’Brien TP. 1968. Plant microtechnique: some<br />

principles <strong>and</strong> new methods. Am J Bot 55:123–142.<br />

Fisher NL, Burgess LW, Toussoun TA, Nelson PE. 1982. Carnation<br />

leaves as a substrate <strong>and</strong> for preserving cultures<br />

<strong>of</strong> Fusarium species. Phytopathology 72:151–153.<br />

Gams W. 1971. Cephalosporium-artige Schimmelpilze (Hyphomycetes).<br />

Stuttgart, Germany: Gustav Fischer Verlag.<br />

Gerlach W, Nirenberg HI. 1982. The genus Fusarium—a<br />

pictorial atlas. Mitt Bio Bundesanstalt für L<strong>and</strong>- u<br />

Forstw (Berlin-Dahlem) 209:1–406.<br />

Huss MJ, Campbell CL, Jennings DB, Leslie JF. 1996. Isozyme<br />

variation among biological species in the <strong>Gibberella</strong><br />

fujikuroi species complex (Fusarium section Liseola).<br />

Appl Environ Microbiol 62:3750–3756.<br />

Kerényi Z, Zeller KA, Hornok L, Leslie JF. 1999. Molecular<br />

st<strong>and</strong>ardization <strong>of</strong> mating type terminology in the <strong>Gibberella</strong><br />

fujikuroi species complex. Appl Environ Microbiol<br />

65:4071–4076.<br />

Klaasen JA, Nelson PE. 1996. Identification <strong>of</strong> a mating population,<br />

<strong>Gibberella</strong> nygamai sp. nov., within the Fusarium<br />

nygamai anamorph. <strong>Mycologia</strong> 88:965–969.<br />

Klittich CJR, Leslie JF. 1988. Nitrate reduction mutants <strong>of</strong><br />

Fusarium moniliforme (<strong>Gibberella</strong> fujikuroi). Genetics<br />

118:417–423.<br />

, , Nelson PE, Marasas WFO. 1997. Fusarium<br />

thapsinum (<strong>Gibberella</strong> thapsina): a new species in section<br />

Liseola from sorghum. <strong>Mycologia</strong> 89:643–652.<br />

Kuhlman EG. 1982. Varieties <strong>of</strong> <strong>Gibberella</strong> fujikuroi with anamorphs<br />

in Fusarium section Liseola. <strong>Mycologia</strong> 74:<br />

759–768.<br />

Leslie JF. 1995. <strong>Gibberella</strong> fujikuroi: Available populations


724 MYCOLOGIA<br />

<strong>and</strong> variable traits. Can J Bot 73(Supplement 1):S282–<br />

S291.<br />

, Plattner RD, Desjardins AE, Klittich CJR. 1992. Fumonisin<br />

B 1 production by strains from different mating<br />

populations <strong>of</strong> <strong>Gibberella</strong> fujikuroi (Fusarium section<br />

Liseola). Phytopathology 82:341–345.<br />

Marasas WFO, Rheeder JP, Lamprecht SC, Zeller KA, Leslie<br />

JF. 2001. Fusarium <strong>and</strong>iyazi sp. nov., a new species from<br />

sorghum. <strong>Mycologia</strong> 93:1203–1210.<br />

Nash SM, Snyder WC. 1962. Quantitative estimations by<br />

plate counts <strong>of</strong> propagules <strong>of</strong> the bean root rot Fusarium<br />

in field soils. Phytopathology 52:567–572.<br />

Nirenberg HI. 1976. Untersuchungen über die morphologische<br />

und biologische Differenzierung in der Fusarium-Sektion<br />

Liseola. Mitt Biolog Bundesanstalt für<br />

L<strong>and</strong>-u Forstw (Berlin-Dahlem) 169:1–117.<br />

, O’Donnell K. 1998. New Fusarium species <strong>and</strong> combinations<br />

within the G. fujikuroi species complex. <strong>Mycologia</strong><br />

90:434–458.<br />

O’Donnell K, Cigelnik E, Nirenberg HI. 1998. Molecular<br />

systematics <strong>and</strong> phylogeography <strong>of</strong> the <strong>Gibberella</strong> fujikuroi<br />

species complex. <strong>Mycologia</strong> 90:465–493.<br />

Samuels GJ, Nirenberg HI, Seifert KA. 2001. Perithecial spe-<br />

cies <strong>of</strong> Fusarium. In: Summerell BA, Leslie JF, Backhouse<br />

D, Bryden WL, Burgess LW, eds. Fusarium: Paul<br />

E. Nelson memorial symposium. St Paul, Minnesota:<br />

APS Press. p 1–14.<br />

Steenkamp ET, Wingfield BD, Coutinho TA, Zeller KA,<br />

Wingfield MJ, Marasas WFO, Leslie JF. 2000. PCR-based<br />

identification <strong>of</strong> MAT-1 <strong>and</strong> MAT-2 in the <strong>Gibberella</strong><br />

fujikuroi species complex. Appl Environ Microb 66:<br />

4378–4382.<br />

Wollenweber HW, Reinking AO. (1925). Aliquot Fusaria tropicalia,<br />

nova vel revisa. Phytopathology 15:155–169.<br />

Xu J-R, Yan K, Dickman MB, Leslie JF. 1995. Electrophoretic<br />

karyotypes distinguish the biological species <strong>of</strong> <strong>Gibberella</strong><br />

fujikuroi (Fusarium section Liseola). Molec Plant-<br />

Microbe Interact 8:74–84.<br />

Yan K, Dickman MB, Xu J-R, Leslie JF. 1993. Sensitivity <strong>of</strong><br />

field strains <strong>of</strong> <strong>Gibberella</strong> fujikuroi (Fusarium section<br />

Liseola) to benomyl <strong>and</strong> hygromycin B. <strong>Mycologia</strong> 85:<br />

206–213.<br />

Zeller KA, Summerell BA, Bullock S, Leslie JF. 2003. <strong>Gibberella</strong><br />

konza (Fusarium konzum) sp. nov. from prairie<br />

grasses, a new species in the <strong>Gibberella</strong> fujikuroi species<br />

complex. <strong>Mycologia</strong> 95:943–954.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!