03.04.2013 Views

Molecular phylogeny of the mycorrhizal desert truffles ... - Mycologia

Molecular phylogeny of the mycorrhizal desert truffles ... - Mycologia

Molecular phylogeny of the mycorrhizal desert truffles ... - Mycologia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mycologia</strong>, 94(2), 2002, pp. 247–259.<br />

2002 by The Mycological Society <strong>of</strong> America, Lawrence, KS 66044-8897<br />

Jesús Díez 1<br />

<strong>Molecular</strong> <strong>phylogeny</strong> <strong>of</strong> <strong>the</strong> <strong>mycorrhizal</strong> <strong>desert</strong> <strong>truffles</strong> (Terfezia and<br />

Tirmania), host specificity and edaphic tolerance<br />

UMR 1136 INRA-UHP ‘‘Interactions Arbres/<br />

Micro-organismes’’, INRA-Nancy, F-54280<br />

Champenoux, France<br />

José Luis Manjón<br />

Dpto. de Biología Vegetal, Universidad de Alcalá, E-<br />

28871 Alcalá de Henares (Madrid), Spain<br />

Francis Martin<br />

UMR 1136 INRA-UHP ‘‘Interactions Arbres/<br />

Micro-organismes’’, INRA -Nancy, F-54280<br />

Champenoux, France<br />

Abstract: Terfezia and Tirmania, so called <strong>desert</strong><br />

<strong>truffles</strong>, are <strong>mycorrhizal</strong> fungi mostly endemic to arid<br />

and semi-arid areas <strong>of</strong> <strong>the</strong> Mediterranean Region,<br />

where <strong>the</strong>y are associated with Helian<strong>the</strong>mum species.<br />

The aim <strong>of</strong> this work was to study <strong>the</strong> phylogenetic<br />

relationships in <strong>the</strong>se pezizalean hypogeous fungi.<br />

The restriction fragment length polymorphism<br />

(RFLP) and DNA sequences <strong>of</strong> internal transcribed<br />

spacers (ITS) <strong>of</strong> <strong>the</strong> nuclear rDNA were studied for<br />

several morphological species, Terfezia arenaria, T.<br />

boudieri, T. claveryi, T. leptoderma, T. terfezioides<br />

(Mattirolomyces terfezioides), Tirmania nivea and T.<br />

pinoyi. The sequences were analyzed with distance<br />

and parsimony methods. Phylogenetic analyses indicated<br />

a close genetic relationship between Tirmania<br />

and Terfezia. They may have arisen from a single evolutionary<br />

lineage <strong>of</strong> pezizalean fungi that developed<br />

<strong>the</strong> hypogeous habit as an adaptation to heat and<br />

drought in Mediterranean ecosystems. This analysis<br />

also supports <strong>the</strong> re-establishment <strong>of</strong> <strong>the</strong> genus Mattirolomyces.<br />

The genera Tirmania and Terfezia were<br />

monophyletic, and morphological species corresponded<br />

to phylogenetic species. The Tirmania clade<br />

comprises <strong>desert</strong> <strong>truffles</strong> with smooth spores and amyloid<br />

asci, which were found in <strong>desert</strong>s. The Terfezia<br />

clade grouped species found in semi-arid habitats<br />

having ornamented and spherical spores. These species<br />

are adapted to exploit different types <strong>of</strong> soil (ei<strong>the</strong>r<br />

acid or basic soils) in association with specific<br />

hosts (ei<strong>the</strong>r basophilous or acidophilous species).<br />

Although o<strong>the</strong>r factors might also play a role, host<br />

specialization and edaphic tolerances (fungus and/<br />

Accepted for publication August 7, 2001.<br />

1 Corresponding author, Email: diezmuriel@yahoo.com<br />

247<br />

or host tolerances) might be <strong>the</strong> key in <strong>the</strong> species<br />

diversity <strong>of</strong> <strong>the</strong>se genera.<br />

Key Words: fungal evolution, Helian<strong>the</strong>mum, internal<br />

transcribed spacer, <strong>mycorrhizal</strong> fungi<br />

INTRODUCTION<br />

Pezizales are widespread Ascomycetes with ei<strong>the</strong>r enclosed<br />

underground (hypogeous) or exposed (epigeous)<br />

fruit bodies (Trappe 1979). The hypogeous<br />

ascocarps <strong>of</strong> <strong>the</strong>se fungi are known as <strong>truffles</strong><br />

(Trappe 1992). In <strong>the</strong> Mediterranean region, hypogeous<br />

fungi colonize a variety <strong>of</strong> forests and semi-arid<br />

ecosystems. These fungi frequently establish mutualistic<br />

associations with vascular plants via specialized<br />

nutrient-ga<strong>the</strong>ring organs called mycorrhizas (Trappe<br />

1992).<br />

Many hypogeous fungi occurring in semi-arid ecosystems<br />

<strong>of</strong> <strong>the</strong> Mediterranean Basin belong to <strong>the</strong><br />

genera Tirmania, Terfezia and Picoa (Alsheikh and<br />

Trappe 1983a, b, Moreno et al 1986, 1991, 2000,<br />

2001). Most <strong>of</strong> <strong>the</strong>m are endemic to <strong>the</strong> Mediterranean<br />

region and establish <strong>mycorrhizal</strong> symbioses with<br />

members <strong>of</strong> <strong>the</strong> Cistaceae, mainly with Helian<strong>the</strong>mum<br />

species (FIG. 1) (Dexheimer et al 1985, Fortas and<br />

Chevalier 1992). These plants and <strong>the</strong>ir associated<br />

mycota may play a major role in <strong>the</strong> maintenance <strong>of</strong><br />

Mediterranean shrublands and xerophytic grasslands,<br />

and thus in preventing erosion and <strong>desert</strong>ification<br />

(Honrubia et al 1992).<br />

Morphological characters have been used to describe<br />

different species <strong>of</strong> <strong>desert</strong> <strong>truffles</strong>; i.e., spore<br />

and peridium morphology, gleba colour, odor and<br />

o<strong>the</strong>r organoleptic characters. These fungi, however,<br />

are difficult to identify at <strong>the</strong> species level. Regarding<br />

<strong>the</strong> systematics <strong>of</strong> <strong>desert</strong> <strong>truffles</strong>, <strong>the</strong> use <strong>of</strong> morphological<br />

features is problematic, because <strong>of</strong> <strong>the</strong> reduced<br />

set <strong>of</strong> morphological characters and <strong>the</strong>ir homoplasy.<br />

Ascocarp features are homoplastic as a result<br />

<strong>of</strong> parallel evolution <strong>of</strong> independent lineages <strong>of</strong><br />

epigeous/hypogeous fruit bodies during <strong>the</strong> evolutionary<br />

history <strong>of</strong> <strong>the</strong> Pezizales (Trappe 1979). This<br />

accounts for <strong>the</strong> early artificial classifications <strong>of</strong> hypogeous<br />

fungi in <strong>the</strong> order Tuberales. Tuberales included<br />

several hypogeous families with similar morphology<br />

originating by parallel or convergent evolution<br />

(O’Donnell et al 1997). Realizing that <strong>the</strong> Tub-


248 MYCOLOGIA<br />

erales artificially grouped many Pezizales, Trappe<br />

(1979) transferred some <strong>of</strong> families from Tuberales<br />

to Pezizales and amended some families in Pezizales<br />

to include related hypogeous fungi. He also amended<br />

<strong>the</strong> Pezizaceae Fries sensu Korf to accommodate<br />

several related hypogeous taxa lacking forcible spore<br />

discharge, such as Tirmania. In addition, based on a<br />

comparative morphological study, Trappe (1979) included<br />

Terfezia in <strong>the</strong> Terfeziaceae and Picoa in <strong>the</strong><br />

Balsamiaceae.<br />

The increasing amount <strong>of</strong> molecular phylogenetic<br />

data now available has led to a continuing revision <strong>of</strong><br />

<strong>the</strong> hypogeous Ascomycetes (Gargas and Taylor 1995,<br />

Spatafora 1995, Landvik et al 1997, O’Donnell et al<br />

1997, Harrington et al 1999). O’Donnell et al (1997)<br />

provided support for <strong>the</strong> occurrence <strong>of</strong> independent<br />

lines <strong>of</strong> epigeous/hypogeous fruit body evolution in<br />

<strong>the</strong> Pezizales. This has affected classification <strong>of</strong> <strong>the</strong><br />

<strong>desert</strong> <strong>truffles</strong>. Moreover, analysis <strong>of</strong> <strong>the</strong> 18S rDNA<br />

sequences has revealed a close relationship between<br />

Terfezia and <strong>the</strong> Pezizaceae (Percudani et al 1999,<br />

Norman and Egger 1999). Picoa is not closely related<br />

to <strong>the</strong> Pezizaceae (see O’Donnell et al 1997), where<br />

Picoa carthusiana Tul. & Tul. is referred to by <strong>the</strong><br />

synonym Leucangium carthusianum (Tul.) Paol.<br />

Hence, it will be not studied in <strong>the</strong> present work.<br />

Subgeneric relationships within <strong>the</strong> Pezizales have<br />

been subjected to molecular analysis in few cases<br />

(Harrington and Potter 1997, Roux et al 1999, Norman<br />

and Egger 1996, 1999). Apart from studies <strong>of</strong><br />

<strong>the</strong> genus Tuber (Roux et al 1999), no recent work<br />

has addressed subgeneric relationships within <strong>the</strong> hypogeous<br />

genera. In particular, no work has been published<br />

on <strong>the</strong> evolutionary history <strong>of</strong> <strong>desert</strong> <strong>truffles</strong>.<br />

The phylogenetic concept <strong>of</strong> species requires that<br />

species represent a monophyletic set <strong>of</strong> organisms. In<br />

<strong>the</strong> case <strong>of</strong> <strong>desert</strong> <strong>truffles</strong>, species delimitation by<br />

morphological characters seems to be consistent.<br />

However, molecular phylogenetic analyses are needed,<br />

in order to verify whe<strong>the</strong>r morphological species<br />

<strong>of</strong> <strong>desert</strong> <strong>truffles</strong> also represent phylogenetic species.<br />

The present work focuses on two major genera <strong>of</strong><br />

pezizalean hypogeous fungi (Tirmania and Terfezia),<br />

and deals with <strong>the</strong> main morphological species that<br />

occur in <strong>the</strong> Mediterranean region. Because <strong>of</strong> <strong>the</strong><br />

limited capacity <strong>of</strong> <strong>the</strong> 18S rDNA to resolve intrageneric<br />

relationships in hypogeous ascomycetes (Percudani<br />

et al 1999), we used <strong>the</strong> faster-evolving internal<br />

transcribed spacer (ITS) <strong>of</strong> <strong>the</strong> nuclear rDNA.<br />

Restriction fragment length polymorphism (RFLP)<br />

analysis was supplemented by sequence analysis. Phylogenic<br />

analysis, toge<strong>the</strong>r with <strong>the</strong> morphological and<br />

ecological data, allowed us to propose an evolutionary<br />

history for <strong>the</strong>se genera.<br />

MATERIALS AND METHODS<br />

Fungal collections. Most specimens studied in this work<br />

were collected by <strong>the</strong> authors. Several collections deposited<br />

at <strong>the</strong> Herbarium <strong>of</strong> Alcalá University (AH) were also studied.<br />

Specimens were harvested in xerophilous shrublands<br />

and grasslands dominated by Helian<strong>the</strong>mum spp. Host and<br />

soil data are mainly based on our observations and on notes<br />

accompanying herbarium specimens. Voucher specimens <strong>of</strong><br />

new collections were deposited in AH (Alcalá University<br />

Herbarium, Spain). Specimen collections are listed in TA-<br />

BLE I.<br />

We studied a wide collection <strong>of</strong> <strong>desert</strong> <strong>truffles</strong> from <strong>the</strong><br />

Iberian Peninsula (Spain and Portugal), Morocco, Tunisia,<br />

Algeria, Israel and Kuwait. Specimens were identified as:<br />

Tirmania nivea (Des. : Fr.) Trappe, T. pinoyi (Maire) Malençon,<br />

Terfezia arenaria (Moris) Trappe, T. boudieri Chatin,<br />

T. claveryi Chatin, or T. leptoderma (described in detail in<br />

Moreno et al 1986, 1999, 2000, 2001). Variability in spore<br />

ornamentation was <strong>the</strong> most important morphological feature<br />

for discriminating between <strong>the</strong>se species. A comparative<br />

table <strong>of</strong> major morphological features is provided (TA-<br />

BLE II).<br />

Mycelial cultures. Isolates were obtained from ascomata on<br />

modified Melin-Norkrans (MMN) agar medium (Marx<br />

1969). All cultures were maintained on MMN agar medium<br />

at 25 C in <strong>the</strong> dark. Isolates were deposited at <strong>the</strong> Collection<br />

<strong>of</strong> Ecto<strong>mycorrhizal</strong> Fungi <strong>of</strong> <strong>the</strong> Plant Biology Department<br />

<strong>of</strong> <strong>the</strong> University <strong>of</strong> Alcalá.<br />

DNA extraction and ITS amplification. DNA was extracted<br />

from specimens belonging to collections <strong>of</strong> <strong>desert</strong> <strong>truffles</strong><br />

from <strong>the</strong> Iberian Peninsula, Morocco, Tunisia, Algeria, Israel,<br />

and Kuwait and two collections <strong>of</strong> Mattirolomyces terfezioides.<br />

Samples for DNA were excised ei<strong>the</strong>r from <strong>the</strong><br />

edge <strong>of</strong> a mycelial colony or from <strong>the</strong> inner part <strong>of</strong> <strong>the</strong><br />

ascocarp to avoid contamination by o<strong>the</strong>r microorganisms.<br />

Mycelial samples were preserved at 20 C pending DNA<br />

extraction. Approximately 20–50 mg <strong>of</strong> tissue was used for<br />

each DNA extraction, performed using <strong>the</strong> cetyl-trimethylammonium<br />

bromide (CTAB) protocol (Gardes et al 1991).<br />

The ITS regions <strong>of</strong> nuclear rDNA were amplified with ITS1<br />

and ITS4 primers (White 1990) as described by Henrion et<br />

al (1992) on a GeneAmp 9600 PCR <strong>the</strong>rmocycler (Perkin<br />

Elmer, Inc.). Controls with no DNA were included in every<br />

set <strong>of</strong> amplifications to test for DNA contamination in reagents<br />

and reaction buffers.<br />

RFLP analysis and DNA electrophoresis. Variation in ITS<br />

sequences was assessed among at least three specimens <strong>of</strong><br />

each collection by restriction fragment length polymorphism<br />

(RFLP) with <strong>the</strong> following enzymes: AluI, Hinf I,<br />

HhaI, and RsaI. Six to 10 L <strong>of</strong> <strong>the</strong> amplified ITS was digested<br />

with 2.5 units <strong>of</strong> each enzyme for 1 h at 37 C, according<br />

to <strong>the</strong> manufacturer’s instructions (GIBCO-BRL,<br />

Pasley, UK). The amplification and digestion products were<br />

fractionated with 1.5% regular agarose gels or 6% polyacrylamide<br />

gels in a 1 Tris-borate-EDTA buffer. The gels were<br />

stained with ethidium bromide and photographed under<br />

ultraviolet light. 174 phage DNA digested with HaeIII<br />

was included in <strong>the</strong> gels as a molecular size marker.


Sequencing <strong>of</strong> <strong>the</strong> amplified ITS regions. ITS regions from<br />

18 specimens displaying different RFLP patterns were sequenced<br />

(TABLE III). Amplified DNA was purified with<br />

GeneClean Kit (Bio101, Carlsbad, California, USA). DNA<br />

concentrations were quantified on agarose gels with a Low<br />

DNA Mass ladder (GIBCO-BRL, Pasley, UK) and sizes calculated<br />

with a 100-bp ladder (GIBCO-BRL). Sequencing reactions<br />

were performed directly on purified PCR products<br />

with ITS1 or ITS4 primers (White et al 1990). Both strands<br />

were sequenced with <strong>the</strong> Taq DyeDeoxy Terminator Cycle<br />

Sequencing Kit (Perkin Elmer, Norwalk, Connecticut,<br />

USA). The sequence products were analyzed with an ABI<br />

model 373 DNA fluorescent sequencer (Perkin Elmer). The<br />

sequences obtained were deposited in <strong>the</strong> National Center<br />

for Biotechnology Information (NCBI) GenBank (TABLE<br />

III).<br />

Sequence alignment and analysis. The search for sequence<br />

identity in <strong>the</strong> GenBank DNA database was conducted by<br />

Gapped BLAST (NCBI) (Altschul et al 1997). Three ITS<br />

sequences <strong>of</strong> T. boudieri were retrieved from GenBank and<br />

added to <strong>the</strong> alignment data set. The ITS sequences <strong>of</strong> <strong>the</strong><br />

closely related species <strong>of</strong> Peziza (Norman and Egger 1999)<br />

were also retrieved from GenBank in order to verify whe<strong>the</strong>r<br />

<strong>the</strong> Tirmania/Terfezia clade is monophyletic after introduction<br />

<strong>of</strong> Peziza species. Sequences were aligned with<br />

MultAlin (Corpet 1988) at <strong>the</strong> ProDom web site (http://<br />

www.toulouse.inra.fr/multalin.html) (INRA-CNRS, Toulouse).<br />

The sequence alignment was hand-edited and deposited<br />

in TreeBASE (accession number SN908) (http://<br />

www.herbaria.harvard.edu/treebase/).<br />

Aligned sequences were analyzed by means <strong>of</strong> distance<br />

and parsimony methods. Tuber melanosporum was used as<br />

outgroup (GenBank accession no. U89359). Distances were<br />

calculated according to <strong>the</strong> Junkes and Cantor model, as<br />

D AB (3/4)ln[1 4/3(Su/I Su)][1 G/T] G/T.<br />

D AB is <strong>the</strong> distance between sequences A and B, I <strong>the</strong> number<br />

<strong>of</strong> identical nucleotides, Su <strong>the</strong> number <strong>of</strong> positions<br />

showing a substitution, G <strong>the</strong> number <strong>of</strong> gaps in one sequence<br />

with respect to <strong>the</strong> o<strong>the</strong>r, and T <strong>the</strong> sum <strong>of</strong> I, S and<br />

G. Insertions and deletions were taken into account. Tree<br />

topology was inferred by <strong>the</strong> Neighbor-Joining (NJ) method<br />

(Saitou and Nei 1987). The Bootstrap method (Felsenstein<br />

1985) was performed with 1000 replications to evaluate <strong>the</strong><br />

reliability <strong>of</strong> tree topologies. Distance analysis and tree<br />

drawing were carried out with TreeCon (Van de Peer and<br />

De Wachter 1993).<br />

Maximum parsimony (MP) trees were inferred with <strong>the</strong><br />

heuristic method with <strong>the</strong> aid <strong>of</strong> PAUP 3.1.1 (Sw<strong>of</strong>ford<br />

1993). Validity <strong>of</strong> <strong>the</strong> clades was tested by bootstrap analysis<br />

(Felsenstein 1985). The analysis was conducted with 1000<br />

bootstrap replications, retaining groups compatible with <strong>the</strong><br />

50% majority-rule in <strong>the</strong> bootstrap consensus tree, with <strong>the</strong><br />

Nearest-Neighbor Interchange (NNI) branch-swapping option,<br />

and no more than 600 trees (700 length) saved each<br />

replication. The 50% majority rule consensus tree is available<br />

on line at TreeBASE (SN908). Parsimony trees were<br />

drawn with <strong>the</strong> aid <strong>of</strong> TreeView (Page 1996).<br />

DíEZ ET AL: DESERT TRUFFLES PHYLOGENY<br />

RESULTS<br />

249<br />

RFLP pr<strong>of</strong>iles <strong>of</strong> amplified ITS. The ITS region was<br />

successfully amplified for 34 collections. In contrast,<br />

four old herbarium collections (nos. 6, 21, 26, and<br />

27) did not amplify, probably as a result <strong>of</strong> DNA degradation.<br />

Each species produced a characteristic<br />

RFLP pattern (A to G, TABLE IV), except for Terfezia<br />

arenaria and T. leptoderma. Terfezia arenaria was polymorphic<br />

for AluI and produced two RFLP pr<strong>of</strong>iles.<br />

Terfezia leptoderma was polymorphic for Hinf I and<br />

RsaI. Three sequences <strong>of</strong> T. boudieri retrieved from<br />

GenBank (AF092096–AF092098; strain type-1, type-2<br />

and type-3; Western Negev, Israel) gave predicted<br />

RFLP patterns for this species.<br />

Sequence comparisons. Search for similar sequences<br />

in <strong>the</strong> GenBank DNA database produced significant<br />

alignments with <strong>the</strong> ITS sequences <strong>of</strong> Terfezia boudieri<br />

(AF092096–AF092098) and Mattirolomyces terfezioides<br />

(AJ272442–AJ272445). The Genbank sequences <strong>of</strong><br />

M. terfezioides showed 99% similarity with <strong>the</strong> sequence<br />

AF276681 <strong>of</strong> Mattirolomyces terfezioides (collection<br />

38, present study). Surprisingly, a search for<br />

sequence similarity using <strong>the</strong> BLASTn algorithm did<br />

not produce significant alignments with <strong>the</strong> Peziza/<br />

Plicaria sequences reported by Norman and Egger<br />

(1999). In addition, <strong>the</strong> ITS sequences <strong>of</strong> P. badia<br />

and P. griseo-rosea (U40475 and U4047) were shorter<br />

and very different from those <strong>of</strong> Terfezia and Tirmania.<br />

This finding was unexpected, because <strong>the</strong>y have<br />

been suggested to be closely related species to Terfezia<br />

arenaria (Norman and Egger 1999). Fur<strong>the</strong>rmore,<br />

no unambiguous alignment was achieved after<br />

<strong>the</strong> addition <strong>of</strong> <strong>the</strong>se sequences <strong>of</strong> Peziza to <strong>the</strong> set<br />

<strong>of</strong> Terfezia and Tirmania ITS sequences.<br />

The variations in <strong>the</strong> length <strong>of</strong> <strong>the</strong> ITS sequences<br />

were <strong>of</strong>ten attributable to deletions and insertions.<br />

Gaps were <strong>the</strong>refore introduced in order to align <strong>the</strong><br />

sequences. The total length <strong>of</strong> <strong>the</strong> alignment was 660<br />

positions. They comprised a small portion <strong>of</strong> <strong>the</strong><br />

flanking 18S and 28S rDNA genes (11 and 36 bp<br />

respectively), <strong>the</strong> ITS1 region (nucleotides 12–247),<br />

<strong>the</strong> 5.8S rDNA (nucleotides 248–403), and <strong>the</strong> ITS2<br />

sequence (nucleotides 404–624). Sequence variability<br />

was most prominent within <strong>the</strong> ITS regions, which<br />

had several indels (e.g., all Terfezia and Tirmania species<br />

contained a 6-bp deletion between <strong>the</strong> nucleotide<br />

positions 33 and 39). O<strong>the</strong>r deletions were specific<br />

to a set <strong>of</strong> species or just one species; e.g., <strong>the</strong><br />

ITS1 sequence <strong>of</strong> Terfezia arenaria had a large deletion<br />

between positions 101–114 in <strong>the</strong> consensus.<br />

Phylogenetic inferred trees. The phylogenetic trees inferred<br />

by both distance-based (FIG. 2) and cladistic<br />

methods (FIG. 3) showed <strong>the</strong> same topology, in spite


250 MYCOLOGIA<br />

TABLE I. Collections <strong>of</strong> <strong>desert</strong> <strong>truffles</strong> used in <strong>the</strong> present work<br />

Collection<br />

no. a Origin Habitat b Host<br />

Spore<br />

morphology Phenetic species<br />

1* Kuwait Basic soil, AR Helian<strong>the</strong>mum salici- Smooth Tirmania nivea<br />

folium (L.) Mill.<br />

Chatin<br />

2** Spain, <strong>the</strong> Tabernas Sandy basic soil,<br />

— Smooth T. nivea (Des. : Fr)<br />

Desert, Almeria AR<br />

Trappe<br />

3** Tunisia, market <strong>of</strong><br />

Tunis<br />

— — Smooth T. nivea<br />

4* Tunisia, market <strong>of</strong><br />

Tunis<br />

— — Smooth T. nivea<br />

5* Algeria Acid soil, AR H. guttatum (L.) Mill. Subsmooth T. pinoyi (Maire)<br />

Malençon<br />

6** Morocco Acid soil, AR H. guttatum Subsmooth T. pinoyi<br />

7* Spain, Navalmoral, Sandy acid soils, H. guttatum Warty Terfezia arenaria<br />

Cáceres<br />

SAR<br />

(Moris) Trappe<br />

8* Spain, Navalmoral, Sandy acid soils, H. guttatum Warty Terfezia arenaria<br />

Cáceres<br />

SAR<br />

(Moris) Trappe<br />

9** Spain, Navalmoral, Sandy acid soils, H. guttatum Warty Terfezia arenaria<br />

Cáceres<br />

SAR<br />

(Moris) Trappe<br />

10* Spain, Campo Ar- Sandy acid soil, H. guttatum Warty T. arenaria<br />

añuelo, Cáceres SAR<br />

11** Spain, Campo Ar- Sandy acid soil, H. guttatum Warty T. arenaria<br />

añuelo, Cáceres SAR<br />

12* Spain, Albuquerque,<br />

Cáceres<br />

Acid soil, SAR H. guttatum Warty T. arenaria<br />

13* Morocco, Mamora Acid soil, SAR H. macrosepalum (L.)<br />

Mill.<br />

Warty T. arenaria<br />

14* Morocco, Mamora,<br />

bought in a local<br />

market<br />

— — Warty T. arenaria<br />

15** Morocco, Mamora,<br />

bought in a local<br />

market<br />

— — Warty T. arenaria<br />

16* Portugal Acid soils, SAR H. guttatum Warty T. arenaria<br />

17** Algeria Basic soil, SAR H. salicifolium Reticulate<br />

and warty<br />

T. boudieri Chatin<br />

18* Kuwait Basic soil, SAR H. salicifolium Reticulate<br />

and warty<br />

T. boudieri<br />

19* Spain, Fuentidueña, Gypsiferous H. squamatum (L.) Reticulate T. boudieri<br />

Madrid<br />

shrubland,<br />

SAR<br />

Dum. Cours.<br />

and warty<br />

20** Spain, Valdeguerra, Calcareous soil, H. salicifolium Reticulate T. boudieri<br />

Madrid<br />

SAR<br />

and Warty<br />

21* Spain, Cabezamesa- Basic soil, SAR H. ledifolium and H. Reticulate T. boudieri<br />

da, Toledo<br />

salicifolium<br />

and warty<br />

22** Spain, The Toledo Basic soil, SAR H. salicifolium Reticulate T. boudieri<br />

Mountains<br />

and warty<br />

23* Morocco, market <strong>of</strong><br />

— — Reticulate T. boudieri<br />

Tangier<br />

and warty<br />

24** Morocco, market <strong>of</strong><br />

— — Reticulate T. boudieri<br />

Casablanca<br />

and warty<br />

25** Spain, Torres de la Calcareous soils Helian<strong>the</strong>mum spp. Reticulate T. claveryi Chatin<br />

Alameda, Madrid SAR<br />

basphilous<br />

26** Spain, Guadix, Gra- Basic soil, SAR Helian<strong>the</strong>mum spp. Reticulate T. claveryi<br />

nada<br />

basophilous<br />

27** Spain, Llanos de Basic soil, SAR Helian<strong>the</strong>mum spp. Reticulate T. claveryi<br />

Armilla, Granada<br />

basophilous


TABLE I. Continued<br />

DíEZ ET AL: DESERT TRUFFLES PHYLOGENY<br />

Collection<br />

no. a Origin Habitat b Host<br />

Spore<br />

morphology Phenetic species<br />

28* Spain, Navalmoral, Sandy acid soil, H. guttatum Spiny T. leptoderma Tul. &<br />

Cáceres<br />

SAR<br />

C. Tul.<br />

29* Spain, Navalmoral, Sandy acid soil, H. guttatum Spiny T. leptoderma<br />

Cáceres<br />

SAR<br />

30** Spain, Campo Ar- Sandy acid soil, H. guttatum Spiny T. leptoderma<br />

añuelo, Cáceres SAR<br />

31** Spain, Campo Ar- Sandy acid soil, H. guttatum Spiny T. leptoderma<br />

añuelo, Cáceres SAR<br />

32** Spain, Cáceres Sandy acid soil,<br />

SAR<br />

H. guttatum Spiny T. leptoderma<br />

33** Spain, Trujillo, Cá- Sandy acid soil, H. guttatum Spiny T. leptoderma<br />

ceres<br />

SAR<br />

34** Spain, Cañaveral de Clayey slate de- Cistus ladanifer L. Spiny T. leptoderma<br />

León, Huelva rived soil, SAR<br />

35** Spain, Valencia Siliceous soil,<br />

SAR<br />

Pinus halepensis Mill. Spinyc T. leptoderma<br />

36** France, Auge-Fourvieille<br />

Clayey soil, SAR Quercus ilex L. Spinyc T. leptoderma<br />

37** Hungary, Csomad Forest plantation Robinia pseudoacacia Reticulate Mattirolomyces terfezioides<br />

(Matt.) Fischer<br />

38** Hungary, Surany Garden Ribes rubrum Reticulate M. terfezioides<br />

a DNA was extracted from mycelium (*) or fruit body (**).<br />

b Habitat: AR arid regions; SAR semi-arid regions.<br />

c Slightly smaller spore having shorter spines.<br />

TABLE II. Pezizalean <strong>desert</strong> <strong>truffles</strong> that naturally occur in <strong>the</strong> Mediterranean Region. Diagnostic morphological features,<br />

hosts and soil types<br />

Morphological<br />

species<br />

Main ascocarp<br />

features<br />

T. nivea Ascocarp <strong>of</strong>f-white<br />

when young<br />

T. pinoyi Ascocarp white-yellowish<br />

when young<br />

T. arenaria Gleba with pinkish<br />

tones at maturity<br />

T. boudieri Thick peridium gleba<br />

red tones at maturity<br />

T. claveryi Gleba with red tones<br />

at maturity<br />

T. leptoderma Thin peridium, gleba<br />

with olivaceous<br />

tones at maturity<br />

Melzer’s reaction<br />

<strong>of</strong> asci<br />

Spore ornamentation<br />

and size<br />

Amyloid Smooth oval to ellipsoidal,<br />

16–18 12–14<br />

m<br />

Amyloid Subsmooth (minute<br />

warts) spherical, 15–<br />

20 m<br />

Non amyloid Warty spherical, 20–26<br />

m<br />

Non amyloid Reticulate-warty spherical,<br />

18–22 m<br />

Non amyloid Reticulate spherical, 18–<br />

22 m<br />

Non amyloid Spiny spherical, 17–25<br />

m a<br />

a Inmature ascocarps present slightly smaller spores (15–22 m) and shorter spines.<br />

b Habitat: AR arid regions, SAR semi-arid regions.<br />

Soil type, habitat b<br />

and host<br />

251<br />

Basic soils, AR, basophilousHelian-<br />

<strong>the</strong>mum spp.<br />

Acid soils, AR H.<br />

guttatum<br />

Acid soils, SAR H.<br />

guttatum<br />

Basic soils, SAR basophilus<br />

spp. <strong>of</strong><br />

Helian<strong>the</strong>mum<br />

Basic soils, SAR acidophilous<br />

spp. <strong>of</strong><br />

Helian<strong>the</strong>mum<br />

Acid soils, SAR H.<br />

guttatum and Cistus<br />

ladanifer,<br />

Quercus ilex, Pinus<br />

halepensis


252 MYCOLOGIA<br />

TABLE III. Specimens used for sequencing<br />

Phenetic species a<br />

Tirmania nivea (03)<br />

T. pinoyi<br />

Terfezia claveryi<br />

(02)<br />

(04)<br />

(01)<br />

(05)<br />

(25)<br />

(26)<br />

T. boudieri (18)<br />

(17)<br />

T. arenaria (10)<br />

(11)<br />

T. leptoderma (30)<br />

(31)<br />

(34)<br />

(35)<br />

(36)<br />

Mattirolomyces terfezioides (37)<br />

(38)<br />

ITS-RFLP<br />

patterns<br />

A<br />

A<br />

A<br />

A<br />

B<br />

C<br />

C<br />

D<br />

D<br />

E1<br />

E2<br />

F1<br />

F1<br />

F2<br />

F3<br />

F4<br />

G<br />

G<br />

Sample<br />

no. b Origin Soil type Host<br />

tun08*<br />

tab04**<br />

tun06*<br />

niv05*<br />

pin01*<br />

cly06**<br />

alc03**<br />

bou04*<br />

mot08**<br />

are19*<br />

are20**<br />

lpt12*<br />

lpt08**<br />

jar02**<br />

val06**<br />

enc07**<br />

rob01**<br />

rib02**<br />

Tunisia<br />

Spain<br />

Tunisia<br />

Kuwait<br />

Algeria<br />

Morocco<br />

Spain<br />

Kuwait<br />

Algeria<br />

Spain<br />

Spain<br />

Spain<br />

Spain<br />

Spain<br />

Spain<br />

France<br />

Hungary<br />

Hungary<br />

—<br />

Basic<br />

—<br />

—<br />

—<br />

Basic<br />

Basic<br />

Basic<br />

Basic<br />

Acid<br />

a In brackets collection no. according to TABLE I.<br />

b The ITS regions were amplified from mycelium (*) or fruit bodies (**).<br />

<strong>of</strong> slight differences in branch stability among equivalent<br />

branches. Trees branched into two main clades,<br />

which were well supported by bootstrap values: <strong>the</strong><br />

Mattirolomyces clade (100% NJ and MP) and <strong>the</strong> Tirmania/Terfezia<br />

clade (99% NJ and MP). Terminal<br />

clades <strong>of</strong> <strong>the</strong> inferred trees corresponded exactly to<br />

morphological species (FIG. 2) and were related to<br />

ecological features and hosts (FIG. 3).<br />

The Tirmania clade comprised <strong>desert</strong> <strong>truffles</strong> with<br />

smooth spores and amyloid asci, which were found<br />

in <strong>desert</strong>s. The Tirmania nivea terminal clade (100%<br />

NJ and MP) was composed <strong>of</strong> collections with oval to<br />

ellipsoidal spores, found under basophilous species<br />

<strong>of</strong> Helian<strong>the</strong>mum (e.g., H. salicifolium). Tirmania pinoyi,<br />

which has spherical spores and occurs under <strong>the</strong><br />

acidophilous plant H. guttatum, was a sister species<br />

<strong>of</strong> T. nivea.<br />

The Terfezia clade (97% NJ, 85% MP) grouped species<br />

found in semi-arid habitats and with ornamented<br />

and spherical spores. The first subclade comprises<br />

well-supported terminal clades corresponding to Terfezia<br />

spp. However, relationships between <strong>the</strong>m were<br />

not well resolved. Terfezia arenaria, which displays<br />

warty spores and occurs in sandy acid soils with H.<br />

guttatum (FIG. 1), was monophyletic and <strong>the</strong> corresponding<br />

terminal clade was well supported (100%<br />

NJ and MP). Terfezia boudieri and T. claveryi, which<br />

occur in basic soils under basophilous Helian<strong>the</strong>mum<br />

and possess reticulated and warty-reticulated spores,<br />

respectively, were similarly monophyletic (100% NJ<br />

Acid<br />

Acid<br />

Acid<br />

Acid<br />

Basic<br />

Basic<br />

—<br />

—<br />

Helian<strong>the</strong>mum salicifolium<br />

—<br />

—<br />

—<br />

H. guttatum<br />

H. ledifolium<br />

H. salicifolium<br />

H. salicifolium<br />

—<br />

H. guttatum<br />

H. guttatum<br />

H. guttatum<br />

H. guttatum<br />

Cistus ladanifer<br />

Pinus halepensis<br />

Quercus ilex<br />

Robinia<br />

—<br />

Genbank<br />

acc. no.<br />

AF276665<br />

AF276666<br />

AF276667<br />

AF276668<br />

AF276669<br />

AF276670<br />

AF276671<br />

AF276672<br />

AF276673<br />

AF276674<br />

AF276675<br />

AF276678<br />

AF276679<br />

AF396862<br />

AF396863<br />

AF396863<br />

AF276680<br />

AF276681<br />

and MP). The second subclade includes specimens<br />

with spherical spiny spores belonging to T. leptoderma<br />

(89% NJ, 95% MP). Terfezia leptoderma clade comprised<br />

specimens associated with several different<br />

hosts (Helian<strong>the</strong>mum guttatum, Cistus ladanider,<br />

Quercus ilex and Pinus halepensis), and were collected<br />

in different type <strong>of</strong> soils (ei<strong>the</strong>r basic or acid soils).<br />

Thus, <strong>the</strong> molecular phylogenetic analysis indicated<br />

that morphological species represent phylogenetic<br />

species.<br />

DISCUSSION<br />

Previous studies have noted that <strong>desert</strong> <strong>truffles</strong> are<br />

sometimes difficult to distinguish on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir<br />

morphology (Moreno et al 2000, 2001). In <strong>the</strong> present<br />

work, <strong>the</strong> RFLP pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> nuclear rDNA ITS<br />

sequences were consistent with species delimitation<br />

based on known morphological characters. In addition,<br />

ITS sequences were nearby homogenous within<br />

species (e.g., 0.3% nucleotide divergence within Terfezia<br />

arenaria) to polymorphic (up to 7% within T.<br />

leptoderma), and clearly polymorphic at <strong>the</strong> interspecific<br />

level (8%).<br />

The general morphological characteristics <strong>of</strong> Tirmania<br />

and Terfezia are described in Trappe (1979),<br />

and Alsheikh and Trappe (1983a) authored a monograph<br />

<strong>of</strong> Tirmania. Both genera are characterized by<br />

globose to turbinate ascocarps, with solid glebae<br />

formed <strong>of</strong> fertile pockets separated by pale sterile tra-


TABLE IV. Restriction size polymorphism in <strong>desert</strong> <strong>truffles</strong> (Tirmania and Terfezia spp.) and Mattirolomyces terfezioides. Size <strong>of</strong> <strong>the</strong> uncut ITS and restriction fragments<br />

in base pairs (bp)<br />

RFLP<br />

patterns<br />

Size <strong>of</strong> RFLP fragments<br />

AluI HhaI HinfI b RsaI<br />

Uncut<br />

ITS<br />

Collection nos. a Phenetic species<br />

1, 2, 3, 4 Tirmania nivea 620 390, 230 350, 270 210, 170, 120, 100 620 type A<br />

5, 6 T. pinoyi 630 380, 250 340, 290 200, 140, 130, 100, 40 480, 150 type B<br />

24, 25, 26, 27 Terfezia claveryi 630 380, 250 340, 290 300, 310 490, 90, 50 type C<br />

17, 18, 19, 20, 21, 22,<br />

23 T. boudieri 640 390, 250 350, 290 310, 230, 80 500, 90, 50 type D<br />

7, 8, 10, 11, 12, 13 T. arenaria (are19) 640 370, 270 330, 310 300, 320 490, 90, 60 type E1<br />

9, 11, 12, 13, 14, 15, 16 (are20) 640 640 330, 310 300, 320 490, 90, 60 type E2<br />

28, 29, 30, 31, 32, 33 T. leptoderma (lpt08) (lpt12) 620 390, 230 350, 270 310, 290 530, 90 type F1<br />

34 (jar02) 630 380, 250 340, 290 300, 310 400, 140, 90 type F2<br />

35 (val06) 640 390, 250 350, 290 310, 310 400, 140, 90 type F3<br />

36 (enc07) 620 380, 240 340, 280 300, 190, 110 530, 90 type F4<br />

37, 38 Mattirolomyces terfezioides 670 390, 280 370, 300 330, 140, 110, 80 580, 90 type G<br />

DíEZ ET AL: DESERT TRUFFLES PHYLOGENY<br />

a See Table I for specimen data.<br />

b This enzyme also produced one or two 20 bp fragments.<br />

253<br />

mal veins. They have saccate to globose asci with up<br />

to eight clustered spores. Based on <strong>the</strong>se morphological<br />

data, similar habitat and associated hosts, <strong>the</strong>y<br />

have been considered as closely related genera. Our<br />

molecular analyses confirmed <strong>the</strong>ir close relationship.<br />

Moreover, <strong>the</strong> phylogenetic analyses indicate<br />

that both genera are monophyletic. Such a monophyly<br />

is in agreement with morphological data. Terfezia<br />

has non-amyloid asci and ornamented spores. In<br />

contrast, Tirmania has amyloid asci and smooth<br />

spores, both <strong>of</strong> which are features regarded as diagnostic<br />

characters at different taxonomic ranks.<br />

Trappe (1971) used Melzer’s reagent to distinguish<br />

Tirmania from Terfezia. Later, Trappe (1979) used<br />

this character to transfer Tirmania from <strong>the</strong> Terfeziaceae<br />

(non-amyloid asci) to <strong>the</strong> Pezizaceae (amyloid<br />

asci). Amyloid reaction seems to be diagnostic at <strong>the</strong><br />

genus level. However, <strong>the</strong> strong statistical support<br />

for <strong>the</strong> Terfezia/Tirmania molecular clade (present<br />

work), toge<strong>the</strong>r with <strong>the</strong> lack <strong>of</strong> amyloid asci in Matteriolomyces,<br />

suggest that this biochemical reaction is<br />

<strong>of</strong> limited value as diagnostic character at <strong>the</strong> family<br />

level.<br />

To reconstruct <strong>the</strong> molecular <strong>phylogeny</strong> <strong>of</strong> <strong>the</strong>se<br />

fungi, we included <strong>the</strong> related hypogeous fungus<br />

Mattirolomyces terfezioides Fischer (Percudani et al<br />

1999). This fungus does not occur in <strong>the</strong> same habitats<br />

as Terfezia and Tirmania, but in temperate forests.<br />

This species seems to be specifically associated<br />

with Robinia pseudoacacia (Montecchi and Lazzari<br />

1993, Bratek et al 1996). It was probably co-introduced<br />

to Europe with Robinia pseudoacacia. The collection<br />

<strong>of</strong> M. terfezioides under Ribes rubrum in a garden<br />

in Hungary (collection no. 38, TABLE I) does not<br />

provide reliable information on its <strong>mycorrhizal</strong> status,<br />

because Robinia pseudoacacia is a common garden<br />

tree in Hungary. Mattirolomyces terfezioides was<br />

described by Fischer (1938) and <strong>the</strong>n assigned to <strong>the</strong><br />

genus Terfezia by Trappe (1971). Later, based on <strong>the</strong><br />

analysis <strong>of</strong> <strong>the</strong> 18S rDNA sequence, Percudani (1999)<br />

suggested <strong>the</strong> re-establishment <strong>of</strong> <strong>the</strong> genus Mattirolomyces.<br />

The lack <strong>of</strong> nesting <strong>of</strong> Mattirolomyces terfezioides<br />

in <strong>the</strong> Terfezia clade (FIGS. 2 and 3) and <strong>the</strong><br />

study <strong>of</strong> Norman and Egger (1999) support this reestablishment.<br />

According to molecular data (O’Donnell et al<br />

1997, Norman and Egger 1999, Percudani et al<br />

1999), Terfezia and o<strong>the</strong>r pezizalean ascomycetes<br />

such as Pachyphloeus, Mattirolomyces, and Cazia, may<br />

have evolved from ancestral epigeous pezizas towards<br />

a hypogeous habit. Some species <strong>of</strong> Pachyphloeus and<br />

Mattirolomyces combine a hypogeous ascoma with biseriate<br />

spores. This combination might represent an<br />

intermediate step between <strong>the</strong> uniseriate asci <strong>of</strong> epigeous<br />

Pezizaceae and globose asci <strong>of</strong> <strong>the</strong> genera Ter-


254 MYCOLOGIA<br />

FIG. 1. A common <strong>desert</strong> truffle in sandy acid soils <strong>of</strong> <strong>the</strong> semiarid regions in <strong>the</strong> Iberian Peninsula (Terfezia arenaria)<br />

and its <strong>mycorrhizal</strong> host plant Helian<strong>the</strong>mum guttatum.<br />

fezia and Tirmania. Analysis <strong>of</strong> <strong>the</strong> ITS sequences<br />

showed <strong>the</strong> separation <strong>of</strong> <strong>the</strong> Mattirolomyces from <strong>the</strong><br />

Terfezia-Tirmania clade. They seem to represent two<br />

different evolutionary pezizalean lineages. This hypo<strong>the</strong>sis<br />

is in agreement with <strong>the</strong> analyses <strong>of</strong> <strong>the</strong> 18S<br />

rDNA sequences by Norman and Egger (1999) and<br />

Percudani et al (1999), who found that Terfezia arenaria<br />

and Mattirolomyces terfezioides are not sister<br />

genera. Indeed, Pachyphloeus and Mattirolomyces species<br />

occur in temperate forests with cold winters and<br />

are associated with North Temperate trees (Trappe<br />

1979). In addition, M. terfezioides and Pachyphloeus<br />

melanoxanthus were sister species in Percudani<br />

(1999). They perhaps evolved hypogeous ascocarps<br />

to protect fruitbody development from frost, and rely<br />

on animals for <strong>the</strong>ir spore dispersal. This might be<br />

<strong>the</strong> case with most common forest-dwelling <strong>truffles</strong><br />

fruiting in winter in Central Europe (e.g., Tuber melanosporum).<br />

In contrast, Terfezia and Tirmania occur<br />

in arid and semi-arid ecosystems in <strong>the</strong> Mediterranean<br />

region, associated with dwarf shrubs and herbaceous<br />

plants (Helian<strong>the</strong>mum spp.). The <strong>desert</strong> <strong>truffles</strong><br />

fruit are vernal fungi. The Terfezia-Tirmana evolutionary<br />

lineages have probably evolved towards hypogeous<br />

fruitbodies as protection from <strong>the</strong> heat and<br />

drought <strong>of</strong> late spring in semi-arid and arid habitats.<br />

The evolution <strong>of</strong> epigeous fruitbodies towards hypogeous<br />

habits seems to have happened in several lineages<br />

<strong>of</strong> ecto<strong>mycorrhizal</strong> fungi; selection for reduction<br />

<strong>of</strong> water loss has been proposed to explain <strong>the</strong><br />

accelerated evolution <strong>of</strong> suilloid basidiocaps towards<br />

false <strong>truffles</strong> (e.g., Rhizopogon) through secotioid<br />

forms (Bruns et al 1989).<br />

Relationships between Peziza/Plicaria and Terfezia


DíEZ ET AL: DESERT TRUFFLES PHYLOGENY<br />

FIG. 2. Neighbor-joining tree <strong>of</strong> 30 ITS/5.8S rDNA sequences <strong>of</strong> pezizalean <strong>truffles</strong> constructed with <strong>the</strong> Jukes and<br />

Cantor’s one-parameter distance method. Numbers in branches are <strong>the</strong> bootstrap values as percentage bootstrap replication<br />

from a 1000 replicate analysis. Scale represents <strong>the</strong> distance between isolates. Outlines delimit clusters, which correspond to<br />

morphological species. Square brackets delimit genera. Major diagnostic morphological characters are indicated.<br />

255


256 MYCOLOGIA<br />

FIG. 3. Rooted 50% majority rule consensus tree resulting from 1000 bootstrap replications <strong>of</strong> <strong>the</strong> parsimony analysis <strong>of</strong><br />

<strong>the</strong> ITS/5.8 rDNA sequences (607 steps, consistency index, CI 0.81; retention index, RI 0.86; rescaled consistency index,<br />

RC 0.70; homoplasy index, HI 0.19). Analysis was conducted using <strong>the</strong> heuristic search algorithm <strong>of</strong> PAUP 3.1.1.<br />

(Sw<strong>of</strong>ford 1993). Numbers on <strong>the</strong> branches are <strong>the</strong> bootstrap values (%). Scale represents steps. Outlines indicate <strong>the</strong><br />

different clades observed, which coincide with <strong>the</strong> different habitats (e.g., temperate forests, <strong>desert</strong>s and semi-arid areas).<br />

Habitat, soil types and hosts are indicated.


have been recently studied by 18S rDNA sequence<br />

analysis (Norman and Egger 1999, Percudani et al<br />

1999). Whereas Percudani et al (1999) indicated that<br />

P. badia is not a sister species <strong>of</strong> Terfezia, Norman and<br />

Egger (1999) reported Peziza badia and P. griseo-rosea<br />

as closely related to Terfezia. In <strong>the</strong> present study, Terfezia,<br />

Matteriolomyces, and Tirmania ITS did not produce<br />

significant sequence similarities with ITS <strong>of</strong> Peziza<br />

deposited in GenBank. This result is in agreement<br />

with Percudani et al (1999). The ITS sequences<br />

<strong>of</strong> P. badia and P. griseo-rosea (U40475 and U4047)<br />

are shorter and very different from those <strong>of</strong> Terfezia<br />

and Tirmania. In <strong>the</strong> present study, we wanted to verify<br />

whe<strong>the</strong>r <strong>the</strong> Tirmania/Terfezia clade was still<br />

monophyletic after introduction <strong>of</strong> Peziza species in<br />

<strong>the</strong> phylogenetic analyses. The lack <strong>of</strong> satisfactory<br />

alignments among ITS sequences <strong>of</strong> Tirmania/Terfezia<br />

and Peziza supports <strong>the</strong> divergence <strong>of</strong> <strong>the</strong>se lineages<br />

and <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> Terfezia/Tirmania<br />

clade.<br />

The Tirmania-Terfezia lineage presented two wellsupported<br />

branching clades, one with smooth spores<br />

and amyloid asci (Tirmania spp.) and <strong>the</strong> o<strong>the</strong>r with<br />

ornamented spores and nonamyloid asci (Terfezia<br />

spp.). Species with smooth spores occur in <strong>desert</strong> areas<br />

<strong>of</strong> <strong>the</strong> Mediterranean region (Alsheikh and<br />

Trappe 1983b). In <strong>the</strong> Western Mediterranean Basin,<br />

its nor<strong>the</strong>rnmost populations seem to be in <strong>the</strong> Tabernas<br />

Desert in Sou<strong>the</strong>rn Spain (Moreno et al<br />

2000). In contrast, Terfezia species (ornamented<br />

spores) occur in semiarid areas and thus have a more<br />

nor<strong>the</strong>rly distribution; i.e., <strong>the</strong>y are well represented<br />

all over <strong>the</strong> Mediterranean area <strong>of</strong> <strong>the</strong> Iberian Peninsula<br />

(Alvarez et al 1993, Moreno et al 2001). Although<br />

regarded as hypogeous fungi, <strong>the</strong> <strong>desert</strong> <strong>truffles</strong><br />

eventually emerge above ground, resulting in a<br />

semi-hypogeous habit. Fur<strong>the</strong>rmore, it has been<br />

claimed that <strong>the</strong>ir ascocarps <strong>the</strong>n dry in situ from <strong>the</strong><br />

heat and drought <strong>of</strong> late spring (Trappe 1992). Trappe<br />

(1992) fur<strong>the</strong>r suggested that in Tirmania <strong>the</strong> peridium<br />

collapses when dried and spores are <strong>the</strong>n disseminated<br />

by dry winds. We have observed fruitbodies<br />

<strong>of</strong> Terfezia bitten by rodents, suggesting a potential<br />

role <strong>of</strong> animals in spore dissemination.<br />

Because today’s species <strong>of</strong> <strong>desert</strong> <strong>truffles</strong> seem to<br />

represent different species adapted to different types<br />

<strong>of</strong> soils, differences in <strong>the</strong> edaphic tolerance may account<br />

for species diversity. Terfezia boudieri and T.<br />

claveryi occur in marl-gypsum soils. In contrast, T. arenaria<br />

lives in siliceous sands. Terfezia leptoderma was<br />

found in association with Helian<strong>the</strong>mun guttatum in<br />

acid soil and with Cistus ladanifer in slate-derived<br />

soils. This fungus was also associated with Quercus ilex<br />

and Pinus halepensis in basic soils. We observed some<br />

differences in <strong>the</strong> spore morphology <strong>of</strong> <strong>the</strong> T. lepto-<br />

DíEZ ET AL: DESERT TRUFFLES PHYLOGENY<br />

257<br />

derma. The small spores <strong>of</strong> specimens collected under<br />

pine and Q. ilex would fit those <strong>of</strong> T. olbiensis.<br />

Terfezia olbiensis was described with similar morphology<br />

to T. leptoderma, except for slightly smaller spores<br />

and shorter spines. However, <strong>the</strong>re is a certain consensus<br />

that T. olbiensis is an immature form and a<br />

synonym <strong>of</strong> T. leptoderma (Moreno et al 1986, 2001,<br />

Alvarez et al 1993). The morphological species T. leptoderma<br />

might be ei<strong>the</strong>r a species with wide edaphic<br />

tolerance and host range or a species complex; isolates<br />

occurring in Cistus scrubs and pine and Quercus<br />

sclerophilous woodlands could belong to distinct species<br />

with different host or/and edaphic specialization.<br />

Our sampling in <strong>the</strong>se ecosystems is scanty and<br />

fur<strong>the</strong>r study is necessary.<br />

In <strong>the</strong> Mediterranean region, o<strong>the</strong>r <strong>mycorrhizal</strong><br />

taxa seem to present different edaphic tolerances<br />

and host ranges, i.e., <strong>the</strong> Pisolithus species complex<br />

(Díez et al 2000, 2001). As in <strong>the</strong> case <strong>of</strong> Terfezia<br />

species, ITS analyses suggested <strong>the</strong> presence <strong>of</strong> several<br />

Pisolithus species occurring in different soil types<br />

(basic, acid, and clayey slate-derived soils) and with<br />

specificity for particular indigenous hosts.<br />

In <strong>the</strong> case <strong>of</strong> Tirmania spp., Tirmania nivea collections<br />

analyzed in <strong>the</strong> present work were found in<br />

basic soils (e.g., collection no. 2) and associated with<br />

<strong>the</strong> basophilous plant H. salicifolium (e.g., no. 1). In<br />

contrast, T. pinoyi specimens were collected under<br />

<strong>the</strong> acidophilous plant H. guttatum (e.g., collections<br />

nos. 5–6). Larger surveys are needed to confirm<br />

whe<strong>the</strong>r T. nivea and T. pinoyi also have different<br />

edaphic tolerances and/or host adaptations.<br />

The distribution pattern <strong>of</strong> <strong>the</strong> <strong>desert</strong> <strong>truffles</strong> species<br />

seems to correlate so strongly with host, that <strong>the</strong><br />

two factors (host specialization and soil pH) might<br />

have played a key role in <strong>the</strong>ir speciation. Fur<strong>the</strong>rmore,<br />

most species <strong>of</strong> Helian<strong>the</strong>mum forming mycorrhizas<br />

with <strong>desert</strong> <strong>truffles</strong> in <strong>the</strong> Mediterranean region<br />

show different edaphic tolerances. Whereas H.<br />

salicifolium and H. ledifolium occur in basic soils, o<strong>the</strong>r<br />

species <strong>of</strong> Helian<strong>the</strong>mum occur only in acid soils,<br />

e.g., H. guttatum. Soil features <strong>the</strong>refore have an impact<br />

on <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> host plants. Distribution<br />

<strong>of</strong> <strong>desert</strong> <strong>truffles</strong> species according to soil features<br />

might <strong>the</strong>refore just reflect <strong>the</strong> edaphic tolerance<br />

<strong>of</strong> <strong>the</strong>ir hosts.<br />

The present phylogenetic analyses confirm that<br />

<strong>the</strong>se morphological species are also phylogenetic<br />

species. Distance analysis indicated that <strong>the</strong>y are well<br />

separated. Distance values within and among species<br />

are low, suggesting that <strong>the</strong>se species diverged a short<br />

time ago. Estimation <strong>of</strong> reliable divergence-time rates<br />

for ITS sequences from <strong>mycorrhizal</strong> fungi would be<br />

invaluable in dating this divergence. A larger survey<br />

using multilocus molecular analyses is needed to de-


258 MYCOLOGIA<br />

termine <strong>the</strong> genetic structure <strong>of</strong> Terfezia and Tirmania<br />

populations.<br />

ACKNOWLEDGMENTS<br />

We thank Dr. James M. Trappe (Forest Service, Corvallis,<br />

Oregon), Dr. Thomas D. Bruns (University <strong>of</strong> California,<br />

Berkeley, California), and anonymous reviewers for critical<br />

comments on <strong>the</strong> manuscript. We are grateful to Dr. G.<br />

Chevalier and C. Dupré (INRA, Clermont-Ferrand,<br />

France), L. Khabar (University <strong>of</strong> Rabat, Morocco) and<br />

Romero de la Osa (Forest Service, Junta de Andalucía,<br />

Spain) for providing several strains and specimens. We also<br />

thank Dr. E. Jakucs (Eotvos Lorand University, Budapest,<br />

Hungary) for his comments on Mattirolomyces terfezioides,<br />

and Dr. G. Moreno (Alcalá University) for assistance in <strong>the</strong><br />

taxonomic identification. We are also grateful to INIA (project<br />

SC98–030) and ‘‘Vicerrectorado de Investigación de la<br />

Univ. de Alcalá’’ (EO28/98) for <strong>the</strong>ir financial support.<br />

This work was supported by a postdoctoral fellowship (EU,<br />

Contract HPMF-CT-1999-00174) and a ‘‘Ramón y Cajal’’<br />

contract from <strong>the</strong> MCyT (Spain) to J. Díez.<br />

LITERATURED CITED<br />

Alsheikh M, Trappe JM. 1983a. Desert <strong>truffles</strong>: <strong>the</strong> genus<br />

Tirmania. Trans Br Mycol Soc 81:83–90.<br />

———, ———. 1983b. Taxonomy <strong>of</strong> Phaeangium lefebvrei,<br />

a <strong>desert</strong> truffle eaten by birds. Can J Bot 61:1919–1925.<br />

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z,<br />

Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-<br />

BLAST, a new generation <strong>of</strong> protein database search<br />

programs. Nuc Acids Res 25:3389–3402.<br />

Alvarez IF, Parladé X, Trappe JM, Castellano MA. 1993. Hypogeous<br />

<strong>mycorrhizal</strong> fungi <strong>of</strong> Spain. Mycotaxon 47:<br />

201–217.<br />

Bratek Z, Jakucs E, Boka K, Szedlayu G. 1996. Mycorrhizae<br />

between black locust (Robinia pseudoacacia) and Terfezia<br />

terfezioides. Mycorrhiza 6:271–274.<br />

Bruns TD, Fogel R, White T, Palmer JD. 1989. Accelerated<br />

evolution <strong>of</strong> a false-truffle from a mushroom ancestor.<br />

Nature 339:140–142.<br />

Corpet F. 1988. Multiple sequence alignment with hierarchical<br />

clustering. Nucl. Acids Res 16:10881–10890.<br />

Díez J, Anta B, Manjón JL, Honrubia M. 2001. Genetic variability<br />

<strong>of</strong> Pisolithus isolates associated with native hosts<br />

and exotic eucalyptus in <strong>the</strong> western Mediterranean region.<br />

New Phytol 149:577–588.<br />

———, Manjón JL, Kovacs G, Celestino C, Toribio M. 2000.<br />

Mycorrhization <strong>of</strong> vitroplants raised from somatic embryos<br />

<strong>of</strong> cork oak (Quercus suber L.). Appl Soil Ecol 15:<br />

137–144.<br />

Dexheimer J, Gérard J, Leduc JP, Chevalier G. 1985. Etude<br />

ultrastructurale comparée des associations symbiotiques<br />

mycorhiziennes Helian<strong>the</strong>mum salicifolium–Terfezia<br />

claveryi et Helian<strong>the</strong>mum salicifolium–Terfezia leptoderma.<br />

Can J Bot 63:582–591.<br />

Felsenstein J. 1985. Confidence limits on phylogenies: an<br />

approach using <strong>the</strong> bootstrap. Evolution 39:783–791.<br />

Fischer E. 1938. Die Naturlichen Pflazenfamilien, Engler-<br />

Prantl-Harms, Leipzig. 42 p.<br />

Fortas Z, Chevalier G. 1992. Effet des conditions de culture<br />

sur la mycorhization de l’Helian<strong>the</strong>mum guttatum par<br />

trois espèces de terfez des genres Terfezia et Tirmania<br />

d’Algérie. Can J Bot 70:2453–2460.<br />

Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW. 1991.<br />

Identification <strong>of</strong> indigenous and introduced symbiotic<br />

fungi in ectomycorrhizae by amplification <strong>of</strong> nuclear<br />

and mitochondrial rDNA. Can J Bot 69:189–190.<br />

Gargas A, Taylor JW. 1995. Phylogeny <strong>of</strong> Discomycetes and<br />

early radiations <strong>of</strong> <strong>the</strong> apo<strong>the</strong>cial Ascomycotina inferred<br />

from SSU rDNA sequence data. Exp Mycol 19:<br />

7–15.<br />

Harrington FA, Pfister DH, Potter D, Donoghue MJ. 1999.<br />

Phylogenetic studies within <strong>the</strong> Pezizales. I. 18S rDNA<br />

sequence data and classification. <strong>Mycologia</strong> 91:41–50.<br />

———, Potter D. 1997. Phylogenetic relationships within<br />

Sarcoscypha based upon nucleotide sequence <strong>of</strong> <strong>the</strong> internal<br />

transcribed spacer <strong>of</strong> nuclear ribosomal DNA.<br />

<strong>Mycologia</strong> 89:258–267.<br />

Henrion B, Le Tacon F, Martin F. 1992. Rapid identification<br />

<strong>of</strong> genetic variation <strong>of</strong> ecto<strong>mycorrhizal</strong> fungi by amplification<br />

<strong>of</strong> ribosomal RNA genes. New Phytol 122:289–<br />

298.<br />

Honrubia M, Cano A, Molina-Niñirola C. 1992. Hypogeous<br />

fungi from Sou<strong>the</strong>rn Spanish semi-arid lands. Persoonia<br />

14:647–653.<br />

Landvik S, Egger KN, Schumacher T. 1997. Towards a subordinal<br />

classification <strong>of</strong> <strong>the</strong> Pezizales Ascomyceta). Phylogenetic<br />

analyses <strong>of</strong> SSU rDNA sequences. Nord J Bot<br />

17:403–418.<br />

Marx DH. 1969. The influence <strong>of</strong> ectotrophic <strong>mycorrhizal</strong><br />

fungi on <strong>the</strong> resistance <strong>of</strong> pine roots to pathogenic infections.<br />

I. Antagonism <strong>of</strong> <strong>mycorrhizal</strong> fungi to root<br />

pathogenic fungi and soil bacteria. Phytopathology 59:<br />

153–163.<br />

Montecchi A, Lazzari G. 1993. Atlante fotografico di funghi<br />

ipogei. Associazione Micologica Bresadola, Centro Studi<br />

Micologici. Vicenza. 490 p.<br />

Moreno G, Díez J, Manjón JL. 2000. Picoa lefebvrei and Tirmania<br />

nivea, two rare hypogeous fungi from Spain. Mycol<br />

Res 104:378–381.<br />

———, ———, ———. 2001. Terfezia boudieri, first records<br />

from Europe <strong>of</strong> a rare vernal hypogeous <strong>mycorrhizal</strong><br />

fungus. Persoonia 17: (In press).<br />

———, Galán R, Montecchi A. 1991. Hypogeous fungi from<br />

peninsular Spain II. Mycotaxon 42:201–238.<br />

———, ———, Ortega A. 1986. Hypogeous fungi from continental<br />

Spain I. Cryptog Mycol 7:201–229.<br />

Norman JE, Egger KN. 1996. Phylogeny <strong>of</strong> <strong>the</strong> genus Plicaria<br />

and its relationship with Peziza inferred from ribosomal<br />

DNA sequence analysis. <strong>Mycologia</strong> 88:986–<br />

995.<br />

———, ———. 1999. <strong>Molecular</strong> <strong>phylogeny</strong> analysis <strong>of</strong> Peziza<br />

and related genera. <strong>Mycologia</strong> 91:820–829.<br />

O’Donnell K, Cigelnik E, Weber NS, Trappe JM. 1997. Phylogenetic<br />

relationships among ascomycetous <strong>truffles</strong><br />

and true and false morels inferred from 18S and 28S<br />

ribosomal DNA sequence analysis. <strong>Mycologia</strong> 89:48–65.


Page RDM. 1996. TREEVIEW: an application to display phylogenetic<br />

trees on personal computers. Comput Appl<br />

Biosci 12:357–358.<br />

Percudani R, Trevisi A, Zambonelli A, Ottonello S. 1999.<br />

<strong>Molecular</strong> <strong>phylogeny</strong> <strong>of</strong> <strong>truffles</strong> Pezizales (Terfeziaceae,<br />

Tuberaceae) derived from nuclear rDNA sequence<br />

analysis. Mol Phylogenet Evol 13:169–180.<br />

Roux C, Sejalon-Delmas N, Martins M, Parguey-Leduc A,<br />

Dargent R, Bécard G. 1999. Phylogenetic relationships<br />

between European and Chinese <strong>truffles</strong> based on parsimony<br />

and distance analysis <strong>of</strong> ITS sequences. FEMS<br />

Microbiol Lett 180:147–155.<br />

Saitou N, Nei M. 1987. The neighbour-joining method: a<br />

new method for reconstructing phylogenetic trees. Mol<br />

Biol Evol 4:406–425.<br />

Spatafora JW. 1995. Ascomal evolution <strong>of</strong> filamentous ascomycetes.<br />

Evidence from molecular data. Can J Bot<br />

73:S811–S815.<br />

Sw<strong>of</strong>ford DL. 1993. PAUP: phylogenetic analysis using parsimony.<br />

Version 3.1.1. Computer Program distributed<br />

DíEZ ET AL: DESERT TRUFFLES PHYLOGENY<br />

259<br />

by <strong>the</strong> Illinois Natural History Survey, Champaign, Illinois,<br />

USA.<br />

Trappe JM. 1971. A synopsis <strong>of</strong> <strong>the</strong> Carbomycetaceae and<br />

Terfeziaceae (Tuberales). Trans Br Mycol Soc 57:85–<br />

92.<br />

———. 1979. The orders, families, and genera <strong>of</strong> hypogeous<br />

Ascomycotina (<strong>truffles</strong> and <strong>the</strong>ir relatives). Mycotaxon<br />

9:297–340.<br />

———. 1992. Use <strong>of</strong> <strong>truffles</strong> and false-<strong>truffles</strong> around <strong>the</strong><br />

world. In: Bencivenga M, Granetti B, eds. Acti del II<br />

Congr Int sul Tartufo. Spoleto, Italy: Comunità Montana<br />

dei Monti Martani e del Serrano. p 19–30.<br />

Van de Peer Y, De Wachter R. 1993. TREECOM: a s<strong>of</strong>tware<br />

package for <strong>the</strong> construction and drawing <strong>of</strong> evolutionary<br />

trees. Comput Appl Biosci 10:177–182.<br />

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and<br />

direct sequencing <strong>of</strong> fungal ribosomal RNA genes for<br />

phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ,<br />

White TJ, eds. PCR protocols: a guide to methods and<br />

applications. New York: Academic Press. p 315–322.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!