09.03.2013 Views

Anabolic resistance: a road map to malnutrition

Anabolic resistance: a road map to malnutrition

Anabolic resistance: a road map to malnutrition

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Danish Society of Clinical Nutrition<br />

Annual Clinical Nutrition Meeting 2012<br />

Copenhagen, Denmark – 8 June 2012<br />

<strong>Anabolic</strong> <strong>resistance</strong>:<br />

a <strong>road</strong> <strong>map</strong> <strong>to</strong> <strong>malnutrition</strong><br />

Gianni Biolo<br />

Department of Medical Science - University of Trieste<br />

Department of Internal Medicine - AOUTS<br />

Trieste - Italy


g<br />

30<br />

25<br />

20<br />

15<br />

10<br />

J Coll Gen Pract. 1963<br />

5<br />

0<br />

Daily nitrogen intake<br />

Daily nitrogen excretion<br />

Nitrogen balance of a fractured patient of 34 years receiving 1.5 g protein/kg/day<br />

(The Disturbance of Metabolism Produced by Bony and non-Bony Injury. Biochem J. 1930)


EFFECTS OF AMINO ACID INFUSION ON SKELETAL MUSCLE<br />

PROTEIN BALANCE IN SEVERELY BURNED PATIENTS<br />

MUSCLE PROTEIN BALANCE<br />

phenylalanine nmol/min/100 ml<br />

80<br />

0<br />

-80<br />

Biolo & Wolfe, Clinical Nutrition (abstract) 2001<br />

Healthy<br />

volunteers<br />

*<br />

Burned<br />

patients<br />

Postabsorptive state Amino acid infusion<br />

*, P


F V,A<br />

MODEL OF LEG MUSCLE<br />

AMINO ACID KINETICS<br />

THE ROLE OF TRANSMEMBRANE AMINO ACID<br />

TRANSPORT KINETICS IN ANABOLIC RESISTANCE<br />

A<br />

V<br />

F IN<br />

F OUT<br />

F M,A<br />

F V,M<br />

M<br />

F 0,M<br />

F M,0<br />

JPEN 1992<br />

AJPENDO 1995


F M,A / F IN<br />

F V,A<br />

MODEL OF LEG MUSCLE<br />

AMINO ACID KINETICS<br />

A<br />

V<br />

F IN<br />

F OUT<br />

impaired ability of transport systems<br />

and<br />

increased shunting of leg blood flow from artery <strong>to</strong> vein<br />

through non-nutritive routes<br />

F M,A<br />

F V,M<br />

M<br />

F 0,M<br />

F M,0<br />

JPEN 1992<br />

AJPENDO 1995


F V,A<br />

MODEL OF LEG MUSCLE<br />

AMINO ACID KINETICS<br />

A<br />

V<br />

F IN<br />

F OUT<br />

F M,A<br />

F V,M<br />

M<br />

F 0,M<br />

F M,0<br />

JPEN 1992<br />

AJPENDO 1995<br />

“Strategies <strong>to</strong> decrease anabolic <strong>resistance</strong> should include<br />

attempts <strong>to</strong> increase microvascular, nutritive muscle blood<br />

flow.”


J. Clin. Invest. 95:811-819, 1995<br />

MUSCLE PROTEIN SYNTHESIS<br />

*<br />

*<br />

nmol /min x 100 ml leg vol.<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

ml/min/100ml leg vol.<br />

INWARD AMINO ACID TRANSPORT<br />

*<br />

*<br />

(F (FM,A) M,A)<br />

PHE LEU LYS ALA<br />

BASAL INSULIN<br />

LEG BLOOD FLOW<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

*<br />

BAS INS<br />

*<br />

*


RELATIONSHIPS BETWEEN INSULIN-MEDIATED STIMULATION OF<br />

MUSCLE BLOOD FLOW AND PROTEIN SYNTHESIS<br />

(leg or forearm A-V balance technique combined with stable iso<strong>to</strong>pes)<br />

Mean changes in muscle protein protein synthesis<br />

(nmol/min/100ml leg vol)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

R 2 = 0.9318<br />

-20<br />

-100<br />

0 20 40 60<br />

Mean changes in leg blood flow<br />

(ml/min/100ml leg vol)<br />

80<br />

Moeller-Loswick et al., AJP 1994<br />

Moeller-Loswick et al., AJP 1995<br />

Zanetti et al., Cl Science 1999<br />

Tessari et al., JCI 1991<br />

Arfdisson et al., AJP 1991<br />

Meek et al., Diabetes 1998<br />

Denne et al., AJP 1991<br />

Biolo et al., JCI 1995<br />

Gelfand & Barrett, JCI 1987<br />

Louard et al., JCI 1992<br />

Biolo et al, Diabetes 1999


MUSCLE PROTEIN SYNTHESIS<br />

ml/min/100ml leg vol.<br />

LEG BLOOD FLOW<br />

8<br />

6<br />

4<br />

2<br />

0<br />

*<br />

BAS INS


µµmol · kg-1 · min-1 µµmol · kg-1 · min-1 EFFECT OF INSULIN-MEDIATED GLUCOSE CONTROL ON<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

Whole body<br />

*<br />

Phe Ra from<br />

proteolysis<br />

PROTEIN KINETICS<br />

-1 -1<br />

nmol · 100cc-1 · min- nmol · 100cc-1 · min- 60<br />

40<br />

20<br />

0<br />

Skeletal muscle<br />

*<br />

Phe Rd <strong>to</strong><br />

Protein<br />

synthesis<br />

Phe Ra from<br />

proteolysis<br />

24-h HYPERGLYCEMIA (~180 mg/dl) 24-h EUGLYCEMIA (~110 mg/dl)<br />

CANCER PATIENTS AFTER MAJOR ABDOMINAL SURGERY ON TPN


Am J Physiol. 1995 Mar;268(3 Pt 1):E514-20.<br />

Increased rates of muscle protein turnover and amino acid transport after <strong>resistance</strong> exercise in humans.<br />

Biolo G, Maggi SP, Williams BD, Tip<strong>to</strong>n KD, Wolfe RR.<br />

Department of Internal Medicine, University of Texas Medical Branch, Galves<strong>to</strong>n.<br />

RELATIONSHIP BETWEEN LEG BLOOD FLOW (BF) AND MUSCLE<br />

PROTEIN SYNTHESIS (FSR) AFTER EXERCISE<br />

FSR (% per hour)<br />

0,20<br />

0,16<br />

0,12<br />

0,08<br />

0,04<br />

R 2 = 0.52<br />

1 2 3 4 5 6 7 8<br />

BF (ml/min x 100ml leg vol.)<br />

Exercise increases microvascular, nutritive muscle blood flow


AJPENDO 1997<br />

BASAL<br />

nmol /min x 100 ml leg vol.<br />

% per hour<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0,18<br />

0,15<br />

0,12<br />

0,09<br />

0,06<br />

0,03<br />

0,00<br />

HYPERAMINOACIDEMIA<br />

AT REST<br />

HYPERAMINOACIDEMIA<br />

AFTER EXERCISE<br />

INWARD AMINO ACID TRANSPORT<br />

(FM,A) (FM,A) (FM,A)<br />

PHE LEU LYS ALA<br />

FRACTIONAL SYNTHESIS RATE<br />

OF MUSCLE PROTEIN<br />

Fractional Synthesis rate<br />

(% per hour)<br />

0.20<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

0.00<br />

F V,A V,A V,A<br />

A<br />

V<br />

F IN<br />

F OUT<br />

F M,A<br />

F V,M<br />

M<br />

F 0,M<br />

F M,0<br />

R 2 R = 0.61<br />

2 = 0.61<br />

0 200 400 600 800 1000 1200<br />

Inward Transport (nmol/min x 100 ml)


nmol PHE/min x 100 ml leg vol.<br />

Regulation of muscle protein balace in the fasting<br />

and postprandial states at rest and after exercise<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

REST<br />

POST-EXERCISE RECOVERY<br />

FASTING<br />

*: P


Resistance training <strong>to</strong> counteract the catabolism of a<br />

low-protein diet and reduce the <strong>malnutrition</strong>-inflammation complex<br />

syndrome of chronic kidney disease<br />

Castaneda et al. Ann Int Med 2001; Am J Kidney Dis 2004<br />

Patients with chronic kidney<br />

disease, not on dialysis therapy<br />

n = 26<br />

Randomized, Controlled Trial<br />

CRP<br />

(mg/L) changes<br />

p


EXERCISE<br />

INACTIVITY<br />

?<br />

INCREASED<br />

ANABOLIC<br />

EFFICIENCY<br />

ANABOLIC<br />

RESISTANCE


anabolic <strong>resistance</strong><br />

CONTROLS<br />

CIRRHOTIC PATIENTS<br />

CHANGES VERSUS BASELINE<br />

AFTER INSULIN, GLUCOSE AND AMINO ACID INFUSION


Metabolic Effects of Very Low Calorie<br />

Weight Reduction Diets<br />

L.J. Hoffer, B.R. Bistrian, V.R. Young, G.L. Blackburn, and D.E. Matthews<br />

J Clin Invest 1984<br />

501 ± 39 kcal<br />

0.8 g protein/kg ideal BW<br />

559 ± 79 kcal<br />

1.5 g protein/kg ideal BW<br />

WEIGHT<br />

NITROGEN<br />

BALANCE<br />

LOSS p = NS p < 0.01


CHRONIC CONDITIONS WITH ANABOLIC RESISTANCE<br />

Sarcopenia of aging<br />

Cancer cachexia<br />

Chronic renal failure<br />

Rheuma<strong>to</strong>id arthritis<br />

Osteoarthritis<br />

HIV/AIDS<br />

COPD<br />

Anorexia<br />

Male hypogonadism<br />

Obesity (weight loss)<br />

Corticosteroid administration<br />

(transplant, au<strong>to</strong>immune<br />

disease)<br />

Coronary artery disease<br />

Congestive heart failure<br />

Liver Cirrhosis<br />

Type 1 and 2 diebetes mellitus<br />

Hip fracture<br />

Disuse atrophy<br />

(spinal cord injury, bed rest,<br />

microgravity)


MUSCLE MASS<br />

NORMAL<br />

NUTRITIONAL<br />

STATUS<br />

MUSCLE WASTING<br />

IN CHRONIC DISEASES AND AGING<br />

TIME<br />

ACUTE<br />

STRESS<br />

COMPLICATIONS<br />

MORTALITY


PREOPERATIVE INSULIN RESISTANCE AND THE IMPACT OF FEEDING ON POSTOPERATIVE<br />

Delta in phenylalanine protein balance<br />

(micromo/kg/min) expressed expressed as<br />

differences fed values minus fast<br />

7<br />

6<br />

5<br />

4<br />

3<br />

PROTEIN BALANCE. A STABLE ISOTOPE STUDY<br />

Francesco Donatelli, Davide Corbella, Marta Di Nicola, Franco Carli, Luca Lorini, Rober<strong>to</strong> Fumagalli, Gianni Biolo.<br />

Ospedali Riuniti di Bergamo, Italy; McGill University Health Centre, Montreal, Quebec, Canada; University of Trieste, Italy<br />

J Clin Endocrinol Metab 2011<br />

2<br />

1<br />

0<br />

ANABOLIC EFFICIENCY OF FEEDING<br />

Normal insulin<br />

sensititivity<br />

Preoperative insulin<br />

<strong>resistance</strong><br />

PRE-SURGERY POST-SURGERY<br />

Well-nourished patients with coronary artery disease<br />

Elective coronary by-pass surgery<br />

*, p=0.04, surgery effect of; p=0.002, group effect; p


AGING<br />

HORMONE<br />

DEFICIENCY<br />

OR EXCESS<br />

Sarcopenia of aging<br />

Cancer cachexia<br />

Chronic renal failure<br />

Rheuma<strong>to</strong>id arthritis<br />

Osteoarthritis<br />

HIV/AIDS<br />

COPD<br />

Anorexia<br />

Male hypogonadism<br />

Obesity (weight loss)<br />

LOW PROTEIN – ENERGY<br />

INTAKE<br />

MECHANISMS OF ANABOLIC RESISTANCE<br />

IN CHRONIC CONDITIONS<br />

CHRONIC CONDITIONS WITH ANABOLIC RESISTANCE<br />

HYPOPERFUSION<br />

HYPOXIA<br />

Corticosteroid administration<br />

(transplant, au<strong>to</strong>immune<br />

disease)<br />

Coronary artery disease<br />

Congestive heart failure<br />

Liver Cirrhosis<br />

Type 1 and 2 diebetes mellitus<br />

Hip fracture<br />

Disuse atrophy<br />

(spinal cord injury, denervation,<br />

bed rest, microgravity)<br />

OXIDATIVE STRESS<br />

AND<br />

CHRONIC<br />

INFLAMMATION<br />

CANCER<br />

CACHECTIC<br />

FACTORS<br />

LOW PHYSICAL<br />

ACTIVITY


Inactivity Amplifies the Catabolic Response of<br />

Skeletal Muscle <strong>to</strong> Cortisol<br />

Ferrando et al., J Clin Endocrinol & Metab, 1999<br />

Ambula<strong>to</strong>ry<br />

5-days<br />

nmol phenylalanine/<br />

/min/100 ml leg vol.<br />

12-h hydrocortisone infusion<br />

(120 microg/kg/h)<br />

0<br />

-25<br />

-50<br />

-75<br />

Bed rest<br />

14-days<br />

MUSCLE PROTEIN BALANCE<br />

P


percent<br />

50<br />

25<br />

0<br />

Meal-induced<br />

stimulation of protein synthesis<br />

* *<br />

AMB BR AMB BR<br />

Eucaloric diet Hypocaloric diet<br />

micromol leucine/kh/min<br />

kg<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.2<br />

-0.2<br />

-0.6<br />

-1<br />

-1.4<br />

CHANGES IN<br />

LEAN MASS (DEXA)<br />

Eucaloric<br />

Ambula<strong>to</strong>ry<br />

Hypocaloric<br />

Ambula<strong>to</strong>ry<br />

Eucaloric<br />

Hypocaloric<br />

Bed Rest<br />

Bed Rest<br />

Protein catabolism<br />

in the fasting state<br />

AMB BR AMB BR<br />

Eucaloric diet Hypocaloric diet<br />

*<br />

*


MALNUTRITION IN PATIENTS WITH<br />

CANCER OR CHRONIC DISEASES<br />

<strong>Anabolic</strong> <strong>resistance</strong> → muscle atrophy<br />

CACHEXIA<br />

ANOREXIA<br />

SARCOPENIC OBESITY<br />

ADEQUATE OR INCREASED<br />

NUTRIENT INTAKE


percent<br />

40<br />

30<br />

20<br />

10<br />

0<br />

PREVALENCE OF OBESITY IN COPD PATIENTS<br />

Body Mass Index (kg/m 2 ) (BMI)<br />

Low (30)<br />

628 elderly patients with moderate <strong>to</strong> severe COPD (61% male)<br />

Breyer et al., Clin Nutr 2009


(kJ/d)<br />

6000<br />

5750<br />

5500<br />

5250<br />

5000<br />

time effect<br />

P = 0.02.<br />

PHYSICAL<br />

ACTIVITY<br />

ENERGY<br />

INTAKE<br />

REDUCED ENERGY<br />

REQUIREMENT<br />

IN CANCER<br />

PATIENTS<br />

RMR Weight and Body Composition Changes during<br />

and after Adjuvant Chemotherapy in Women<br />

with Breast Cancer<br />

J Clin Endocrinol Metab 2004<br />

PRE CHEMOTHERAPY<br />

2 wk 6 wk<br />

43<br />

kg 42<br />

kg<br />

23<br />

41<br />

40<br />

39<br />

time effect<br />

P < 0.05<br />

LEAN MASS<br />

24<br />

22<br />

21<br />

time effect<br />

P < 0.05<br />

FAT MASS


∆ (kg)<br />

2<br />

Changes in fat mass<br />

(bioimpedence)<br />

3 * §<br />

1<br />

0<br />

Positive Energy Balance<br />

Near-neutral Energy Balance<br />

* , p


kg<br />

STEPS/DAY<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

15<br />

10<br />

5<br />

0<br />

PRE<br />

2 wk<br />

TOTAL FAT<br />

ml<br />

Metabolic Responses <strong>to</strong><br />

Reduced Daily Steps in Healthy<br />

Nonexercising Men<br />

750<br />

700<br />

650<br />

600<br />

550<br />

500<br />

*, P


∆ (kg)<br />

Changes in fat mass<br />

(bioimpedence)<br />

3 * §<br />

2<br />

1<br />

0<br />

Positive Energy Balance<br />

Near-neutral Energy Balance<br />

* , p


THE VICIOUS CYCLE OF SARCOPENIC OBESITY<br />

INCREASED<br />

FAT DEPOSITION<br />

ABDOMINAL<br />

PERIPHERAL<br />

HEPATIC<br />

MUSCULAR<br />

POSITIVE<br />

ENERGY<br />

BALANCE<br />

DECREASED<br />

PHYSICAL<br />

ACTIVITY<br />

MUSCLE<br />

ATROPHY<br />

SYSTEMIC<br />

INFLAMMATORY<br />

RESPONSE<br />

INSULIN<br />

RESISTANCE<br />

ANABOLIC<br />

RESISTANCE<br />

TO AMINO ACID<br />

AND PROTEIN


2115<br />

cancer patients<br />

15%<br />

obesity<br />

15%<br />

sarcopenic obesity<br />

SURVIVAL


kg<br />

100<br />

80<br />

60<br />

CROSS-SECTIONAL STUDY<br />

252 healthy subjects with normal body mass index, 35 <strong>to</strong> 65 years<br />

BODY WEIGHT AND COMPOSITION IN AGING<br />

40<br />

20<br />

0<br />

BODY WEIGHT<br />

LEAN MASS<br />

FAT MASS<br />

30 40 50 60 70<br />

Age (years)<br />

Clinica Medica – University of Trieste


Percent loss of lean body mass<br />

Long-term bed-rest<br />

(60 days) in healthy<br />

female volunteers<br />

WISE 2005 (Women<br />

International Space Simulation<br />

for Exploration)<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

ESA/CNES/NASA/CSA<br />

BR<br />

15 days<br />

*<br />

BR<br />

31 days<br />

Control<br />

High-protein diet<br />

BR<br />

43 days<br />

SKELETAL MUSCLE<br />

ATROPHY (DEXA)<br />

N = 8<br />

N = 6<br />

BR<br />

60 days<br />

Bed rest effect: p = 0.01; bed rest × diet interaction: p = 0.01<br />

(repeated measures ANCOVA)<br />

ADAPTATION<br />

(20 days)<br />

Ambula<strong>to</strong>ry<br />

conditions<br />

Ambula<strong>to</strong>ry<br />

conditions<br />

EXPERIMENTAL PERIOD<br />

(60 days)<br />

“Bed Rest”- Eucaloric diet<br />

1 g protein / (kg · day)<br />

non-protein calories <strong>to</strong> nitrogen ratio<br />

134±3 kcal/g<br />

“Bed Rest”- Eucaloric diet<br />

1.4 g protein / (kg · day)<br />

0.16 g BCAA / (kg · day)<br />

non-protein calories <strong>to</strong> nitrogen ratio<br />

86±2 kcal/g<br />

REABILITATION<br />

(20 days)<br />

Ambula<strong>to</strong>ry<br />

conditions<br />

Ambula<strong>to</strong>ry<br />

conditions<br />

High-protein<br />

CARDIAC ATROPHY (MRI)<br />

Dorfman et al., J Appl Physiol 2007


Adjusting for covariates (age at inclusion, BMI at<br />

inclusion, and BMD of the femoral neck at<br />

inclusion) a significant (P < 0.05) difference was<br />

seen in the response <strong>to</strong> training of bone mineral<br />

density between the two groups.<br />

Strength improvements from 6 <strong>to</strong> 24 wk, a<br />

significant difference was apparent between<br />

groups: nutrient group, 9±3% vs. control, 1±2% (P<br />

< 0.05).


The majority of sick elderly patients require at<br />

least 1 g protein/kg/day and around 30<br />

kcal/kg/day of energy, depending on their<br />

activity.


A 5-Year Cohort Study of the Effects of High Protein Intake on Lean Mass<br />

and Bone Mineral Content in Elderly Postmenopausal Women<br />

J Bone Miner Res. 2009<br />

• relationship between baseline protein intake and lean mass and bone mineral<br />

content (DEXA)<br />

• 862 elderly postmenopausal women (mean age: 75 yrs)<br />

• 5 years follow-up<br />

6<br />

4<br />

2<br />

0<br />

whole body<br />

lean mass<br />

whole body<br />

bone mineral density<br />

Percent differences between the lowest (< 66 g/d), and the highest<br />

(> 87 g/d) tertile of protein intake<br />

A higher protein intake is associated with long term beneficial<br />

effects on muscle mass and size and bone mass in elderly women


Whole-body Whole-body Whole-body protein loss<br />

(kg (kg (kg / 2 weeks)<br />

PROTEIN REQUIREMENT IN CRITICAL ILLNESS<br />

AT ADEQUATE ENERGY INTAKE<br />

Wolfe et al., Ann Surg 1983; Ishibashi et al., Crit Care Med 1998<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

Hoffer Am J Clin Nutr 2003<br />

g protein / kg IBW per day<br />

≈ 0.7 ≈ 1.0 ≈ 1.5 ≈ 2.2


Protein/amino acid<br />

requirement<br />

“1.3–1.5 g/kg ideal body weight<br />

per day in conjunction with an<br />

adequate energy supply”<br />

(Grade B)<br />

2009 ESPEN Guidelines


Medications and<br />

nutraceuticals <strong>to</strong><br />

counteract<br />

anabolic <strong>resistance</strong>


8 weeks supplementation<br />

CLAMP = INSULIN+GLUCOSE+AMINO ACID INFUSION


90-day strength training increased muscle strength in elderly women. The inclusion of fish oil<br />

supplementation caused greater improvements in muscle strength and functional capacity.<br />

Fish<br />

oil<br />

Fish<br />

oil<br />

Fish<br />

oil<br />

Fish<br />

oil


ANABOLIC<br />

RESISTANCE<br />

Critical illness<br />

Chronic diseases<br />

Aging<br />

Inactivity<br />

COUNTERACTING ANABOLIC RESISTANCE<br />

• Increase microvascular, nutritive muscle blood<br />

flow (exercise)<br />

• Definition of optimal protein intake in each<br />

condition<br />

• Control of energy balance and fat mass<br />

• Medications and nutraceuticals (?)


iolo@units.it<br />

Department of Internal Medicine<br />

Clinica Medica<br />

Ospedale di Cattinara<br />

University of Trieste<br />

Trieste, Italy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!