20.03.2013 Views

structure factors for polymer systems - NIST Center for Neutron ...

structure factors for polymer systems - NIST Center for Neutron ...

structure factors for polymer systems - NIST Center for Neutron ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 31 – STRUCTURE FACTORS FOR POLYMER SYSTEMS<br />

Up to now, this book has focused on infinitely dilute <strong>systems</strong> only. Such <strong>systems</strong> are noninteracting<br />

and require solely the calculation of the <strong>for</strong>m factor P(Q) <strong>for</strong> isolated particles.<br />

More concentrated (or interacting) <strong>systems</strong> require the calculation of the <strong>structure</strong> factor<br />

S(Q). Structure <strong>factors</strong> <strong>for</strong> fully interacting <strong>polymer</strong> <strong>systems</strong> are considered here. These<br />

apply to semi-dilute and concentrated <strong>polymer</strong> solutions and <strong>polymer</strong> blend mixtures in<br />

the homogeneous phase.<br />

1. SCATTERING FROM INCOMPRESSIBLE SYSTEMS<br />

Consider a system consisting of N “particles” of scattering length bP occupying the<br />

sample volume V. The following would still hold if the word “<strong>polymer</strong>s” were<br />

substituted <strong>for</strong> the word “particles”. The scattering cross section is proportional to the<br />

density-density correlation function as follows:<br />

dΣ(<br />

Q)<br />

= b<br />

dΩ<br />

2<br />

P<br />

1<br />

V<br />

N<br />

∑ < exp −<br />

i,<br />

j<br />

r r 2 1<br />

( iQ.<br />

r ) >= b < n ( −Q)<br />

n ( Q)<br />

><br />

ij<br />

P<br />

1<br />

V<br />

P<br />

P<br />

. (1)<br />

Here nP(Q) is the fluctuating particle density in Fourier space. The cross section <strong>for</strong><br />

particles in solution is given by:<br />

dΣ(<br />

Q)<br />

= b<br />

dΩ<br />

2<br />

P<br />

1<br />

V<br />

< n<br />

P<br />

( −Q)<br />

n<br />

P<br />

( Q)<br />

> + b<br />

2<br />

S<br />

1<br />

V<br />

< n ( −Q)<br />

n ( Q)<br />

><br />

1<br />

+ 2bP bS<br />

< n P ( −Q)<br />

nS<br />

( Q)<br />

> . (2)<br />

V<br />

The subscripts P and S stand <strong>for</strong> particle and solvent respectively. For the sake of<br />

convenience, the following scattering <strong>factors</strong> are defined:<br />

2<br />

SPP P<br />

(3)<br />

vP<br />

( Q)<br />

= < n P ( −Q)<br />

n ( Q)<br />

><br />

V<br />

2<br />

vS<br />

( Q)<br />

= < n S ( −Q)<br />

n ( Q)<br />

><br />

V<br />

SSS S<br />

v Pv<br />

S<br />

( Q)<br />

= < n P ( −Q)<br />

n ( Q)<br />

> .<br />

V<br />

SPS S<br />

The specific volumes vP and vS and scattering length densities ρ P = b P v P and<br />

ρ = b v are defined <strong>for</strong> the <strong>polymer</strong> and the solvent respectively. To clarify, vP is the<br />

S<br />

S<br />

S<br />

S<br />

S


monomer volume and vS is the volume of the solvent molecule. The scattering cross<br />

section becomes:<br />

dΣ(<br />

Q)<br />

= ρ<br />

dΩ<br />

2<br />

P<br />

S<br />

PP<br />

( Q)<br />

+ ρ<br />

2<br />

S<br />

S<br />

SS<br />

( Q)<br />

+ 2ρ<br />

ρ<br />

P<br />

2<br />

S<br />

S<br />

PS<br />

( Q)<br />

. (4)<br />

Most scattering <strong>systems</strong> are incompressible. It is often convenient to make the following<br />

incompressibility assumption:<br />

v P n P ( Q)<br />

+ vSn<br />

S ( Q)<br />

= 0.<br />

(5)<br />

This introduces the following simplification:<br />

2<br />

2<br />

v S<br />

In other words:<br />

P < n P ( −Q)<br />

n P ( Q)<br />

> = vS<br />

< n S ( −Q)<br />

n ( Q)<br />

><br />

(6)<br />

= − v < n ( −Q)<br />

n ( Q)<br />

> .<br />

v P S P S<br />

SPP SS<br />

PS<br />

SP<br />

( Q)<br />

= S ( Q)<br />

= −S<br />

( Q)<br />

= −S<br />

( Q)<br />

(7)<br />

This simplifies the cross section to the following <strong>for</strong>m:<br />

dΣ(<br />

Q)<br />

= ( ρ<br />

dΩ<br />

P<br />

− ρ<br />

S<br />

)<br />

2<br />

S<br />

PP<br />

(<br />

Q)<br />

= Δρ<br />

2<br />

S<br />

PP<br />

( Q)<br />

. (8)<br />

This is reasonable since the contrast factor Δρ 2 is always calculated relative to a<br />

“background” scattering length density value. Here, the solvent’s scattering length<br />

density is taken to be that reference value.<br />

2. INTER-PARTICLE INTERACTIONS<br />

Consider a system consisting of N <strong>polymer</strong>s of contrast factor Δρ 2 occupying volume V.<br />

Each <strong>polymer</strong> comprises n monomers of volume v each so that the <strong>polymer</strong> volume is vP<br />

= nv. Let us separate out the intra-<strong>polymer</strong> and the inter-<strong>polymer</strong> terms in the scattering<br />

cross section as follows:<br />

2<br />

r r<br />

N n r ⎤<br />

( − iQ.<br />

rαiβj<br />

) > + < exp(<br />

− iQ.<br />

rαiβj<br />

) ⎥⎦<br />

dΣ( Q)<br />

⎡ N n<br />

2 v<br />

r<br />

= Δρ<br />

⎢ ∑∑< exp<br />

∑∑ ><br />

dΩ<br />

V ⎣α=<br />

β i,<br />

j<br />

α≠β<br />

i,<br />

j<br />

. (9)<br />

The indices α and β run over the <strong>polymer</strong> chains and the indices i and j run over the<br />

monomers in a specific <strong>polymer</strong> chain. Consider a pair of <strong>polymer</strong> coils (called 1 and 2)<br />

and sum over all pairs.


2<br />

r r<br />

n r ⎤<br />

( − iQ.<br />

r1i<br />

1j<br />

) + N(<br />

N −1)<br />

∑ < exp(<br />

− iQ.<br />

r1i<br />

2 j ) > ⎥⎦<br />

dΣ( Q)<br />

⎡ n<br />

2 v<br />

r<br />

= Δρ<br />

⎢N∑<br />

< exp ><br />

dΩ<br />

V ⎣ i,<br />

j<br />

i,<br />

j<br />

3<br />

. (10)<br />

Note that this <strong>for</strong>malism holds if the word “particles” were to be substituted <strong>for</strong> the word<br />

“<strong>polymer</strong>s” assuming (of course) that the particles have internal <strong>structure</strong> (think<br />

monomers).<br />

Figure 1: Schematic representation of the coordinate system showing a pair of scatterers<br />

that belong to two different <strong>polymer</strong> coils.<br />

r<br />

The inter-distance between the scattering pair r1i<br />

2 j can be expressed as<br />

r r r r<br />

r = −S<br />

+ S + R and the inter-particle average can be split into the following parts:<br />

1i2<br />

j<br />

1i<br />

exp<br />

2 j<br />

12<br />

r r<br />

r r<br />

r r<br />

r r<br />

( − iQ.<br />

r ) > = < exp(<br />

iQ.<br />

S ) >< exp(<br />

− iQ.<br />

S ) >< exp(<br />

− iQ.<br />

R ) ><br />

< 1i2<br />

j<br />

1i<br />

2 j<br />

12<br />

. (11)<br />

The first two averages are within single particles and the third average is across particles.<br />

The summations become:<br />

n<br />

r r<br />

r r n r r n r r<br />

( − iQ.<br />

S ) =< exp(<br />

− iQ.<br />

R ) > ∑ < exp(<br />

iQ.<br />

S ) > < exp(<br />

− iQ.<br />

S )<br />

∑ < exp ><br />

i,<br />

j<br />

1i2<br />

j<br />

The <strong>for</strong>m factor amplitude is defined as:<br />

F(<br />

Q)<br />

=<br />

R r<br />

coil 1<br />

S1i r<br />

r r 1 n r r<br />

( − iQ.<br />

S ) = < exp(<br />

− iQ.<br />

S )<br />

1 n<br />

∑ < exp 1i<br />

><br />

n i<br />

1<br />

r<br />

1i<br />

R r<br />

r<br />

2 j<br />

12<br />

R r<br />

12<br />

2<br />

i<br />

r<br />

1i2<br />

j<br />

1i<br />

∑ > .(12)<br />

∑ 2 j > . (13)<br />

n j<br />

j<br />

S2 j<br />

coil 2<br />

r<br />

2 j


The single-particle <strong>for</strong>m factor itself is defined as:<br />

P(<br />

Q)<br />

r r<br />

( − iQ.<br />

S )<br />

1 n<br />

= ∑ < exp 1i1j<br />

> . (14)<br />

2<br />

n i,<br />

j<br />

2<br />

For uni<strong>for</strong>m density particles, the following relation holds P ( Q)<br />

= | F(<br />

Q)<br />

| . This is not<br />

true, however, <strong>for</strong> non-uni<strong>for</strong>m density object such as <strong>polymer</strong> coils.<br />

An inter-particle <strong>structure</strong> factor is defined as:<br />

S<br />

I<br />

( Q)<br />

=<br />

1<br />

N<br />

N<br />

r r<br />

( − iQ.<br />

R )<br />

∑ < exp > . (15)<br />

α,<br />

β<br />

The cross section can there<strong>for</strong>e be written as follows:<br />

dΣ(<br />

Q)<br />

dΩ<br />

= Δρ<br />

2<br />

2 2<br />

v n N<br />

V<br />

αβ<br />

2<br />

[ P(<br />

Q)<br />

+ | F(<br />

Q)<br />

| ( S ( Q)<br />

−1)<br />

]<br />

4<br />

I<br />

. (16)<br />

r r<br />

Note that the statistical average < exp(<br />

iQ.<br />

r1i<br />

2 j ) > involves integration over the following<br />

r r r<br />

probability distribution P( r1i<br />

, r2<br />

j,<br />

R12<br />

) which can be split to show a conditional probability<br />

r r r r r r r<br />

P( r1i<br />

, r2<br />

j,<br />

R12<br />

) = P(<br />

r1i<br />

, r2<br />

j | R12<br />

) P(<br />

R12<br />

) . For compact scatterers which do not interfere with<br />

r r r<br />

each other’s rotation P( r1i<br />

, r2<br />

j | R12<br />

) is independent of R12 r r<br />

. P( R12<br />

) is the probability of<br />

finding the centers of mass of <strong>polymer</strong> coils 1 and 2 a distance R12 r<br />

apart.<br />

S<br />

I<br />

( Q)<br />

r r N r r r r<br />

( − iQ.<br />

R ) >= dR<br />

P(<br />

R ) exp(<br />

− iQ.<br />

R )<br />

= N < exp 12 ∫ 12 12<br />

12 . (17)<br />

V<br />

The cross section <strong>for</strong> <strong>systems</strong> in this case is given by:<br />

dΣ(<br />

Q)<br />

dΩ<br />

= Δρ<br />

2<br />

2 2<br />

2<br />

v n N ⎡ | F(<br />

Q)<br />

|<br />

P(<br />

Q)<br />

⎢1<br />

+<br />

V ⎣ P(<br />

Q)<br />

( SI<br />

( Q)<br />

−1)<br />

⎥⎦<br />

⎤<br />

. (18)<br />

This result applies to <strong>systems</strong> with non-spherical symmetry and non-uni<strong>for</strong>m density such<br />

as <strong>polymer</strong>s. Polymer are, however, so highly entangled that an inter-chain <strong>structure</strong><br />

factor SI(Q) is meaningless except <strong>for</strong> dilute solutions whereby <strong>polymer</strong> coils do not<br />

overlap. Inter-chain interactions <strong>for</strong> <strong>polymer</strong> <strong>systems</strong> are better handled using other<br />

methods described below.<br />

Uni<strong>for</strong>m density scatterers (such as particles) are characterized by<br />

that:<br />

2<br />

P ( Q)<br />

= | F(<br />

Q)<br />

| , so


dΣ(<br />

Q)<br />

dΩ<br />

2<br />

= Δρ<br />

2 2<br />

v n N<br />

P(<br />

Q)<br />

SI<br />

( Q)<br />

. (19)<br />

V<br />

Defining a particles’ volume fraction as φ = Nnv/V, the following result is obtained:<br />

d 2<br />

Σ(<br />

Q)<br />

= Δρ<br />

S(<br />

Q)<br />

dΩ<br />

( Q)<br />

= nφvP(<br />

Q)<br />

S ( Q)<br />

.<br />

S I<br />

This is a well-known result. It is included here even-though it does not apply to <strong>polymer</strong><br />

<strong>systems</strong> so that the derivation does not have to be repeated when covering scattering from<br />

particulate <strong>systems</strong> later. Note that the scattering factor S(Q) and the inter-particle<br />

<strong>structure</strong> factor SI(Q) should not be confused; S(Q) has the dimension of a volume<br />

whereas SI(Q) is dimensionless.<br />

3. THE PAIR CORRELATION FUNCTION<br />

Recall the definition <strong>for</strong> the inter-particle <strong>structure</strong> factor <strong>for</strong> a pair of particles (named 1<br />

and 2):<br />

S<br />

I<br />

( Q)<br />

= N < exp<br />

=<br />

1<br />

NV<br />

N<br />

α,<br />

β<br />

r r 1 N r r<br />

( − iQ.<br />

R ) >= < exp(<br />

− iQ.<br />

R )<br />

3<br />

∑ ∫ d R<br />

αβ<br />

∑<br />

N α,<br />

β<br />

εβ ><br />

r r<br />

exp − iQ.<br />

R<br />

r<br />

P(<br />

R ) .<br />

12<br />

( )<br />

r<br />

P( R αβ ) is the probability of finding particle β in volume d 3 Rαβ a distance R αβ<br />

r<br />

away<br />

given that particle α at the origin. When the self term (α = β) is omitted, this result<br />

becomes:<br />

αβ<br />

r r<br />

( iQ.<br />

R )<br />

1 N r<br />

r<br />

3<br />

SI<br />

( Q)<br />

−1<br />

= ∑ ∫ d R εβ exp − αβ P(<br />

R αβ ) (22)<br />

NV α≠β<br />

N r r r r<br />

3<br />

= ∫ d R12<br />

exp(<br />

− iQ.<br />

R12<br />

) P(<br />

R12<br />

) .<br />

V<br />

r<br />

The probability P( R12<br />

) is referred to as the pair correlation function and is often called<br />

r<br />

( R ) . Removing the <strong>for</strong>ward scattering term yields the following well known result:<br />

g 12<br />

S<br />

I<br />

( Q)<br />

−1<br />

=<br />

N<br />

∫ d<br />

V<br />

3<br />

R<br />

12<br />

exp<br />

5<br />

αβ<br />

r r r<br />

3<br />

( − iQ.<br />

R )[ g(<br />

R ) −1]<br />

+ ( 2π)<br />

δ(<br />

Q)<br />

12<br />

12<br />

(20)<br />

(21)<br />

. (23)


The last term (containing the Dirac Delta function) is irrelevant and can be neglected.<br />

r<br />

This last equation shows that SI ( Q)<br />

− 1 and g( R12<br />

) −1<br />

are a Fourier trans<strong>for</strong>m pair. Note<br />

r<br />

that g( R12<br />

) peaks at the first nearest-neighbor shell and goes asymptotically to unity at<br />

r r<br />

large distances. The total correlation function is introduced as ( R ) = g(<br />

R ) −1.<br />

4. POLYMER SOLUTIONS<br />

6<br />

h 12<br />

12<br />

In the case of <strong>polymer</strong> solutions, the Zimm single-contact approximation (Zimm, 1946;<br />

Zimm, 1948) is a simple way of expressing the inter-<strong>polymer</strong> <strong>structure</strong> factor. Within that<br />

approximation, the first order term in a “concentration” expansion is as follows:<br />

n<br />

r<br />

2<br />

r vex<br />

⎛ v 2 ⎞<br />

( − iQ.<br />

r ) = − ⎜ n P(<br />

Q)<br />

⎟ + ...<br />

∑ < exp ><br />

i,<br />

j<br />

1 i2<br />

j<br />

V ⎜<br />

⎝ V<br />

vex is a dimensionless factor representing interactions. The cross section becomes an<br />

expansion:<br />

Σ(<br />

Q)<br />

2 ⎡ v ex<br />

= Δρ<br />

⎢S0<br />

( Q)<br />

−<br />

dΩ<br />

⎣ V<br />

d 2<br />

⎟<br />

⎠<br />

( S0<br />

( Q)<br />

) + ... ⎥<br />

⎦<br />

2<br />

(24)<br />

⎤<br />

. (25)<br />

2<br />

This expansion can be resumed as follows 1 x + x ... = 1 ( 1+<br />

x)<br />

dΣ(<br />

Q)<br />

dΩ<br />

= Δρ<br />

2<br />

− to yield:<br />

S0<br />

( Q)<br />

. (26)<br />

v ex<br />

1+<br />

S0<br />

( Q)<br />

V<br />

The bare <strong>structure</strong> factor <strong>for</strong> non-interacting <strong>polymer</strong>s has been defined as:<br />

S<br />

0<br />

( Q)<br />

2 2<br />

Nn v<br />

= P(<br />

Q)<br />

= nφvP(<br />

Q)<br />

. (27)<br />

V<br />

Resuming the series extends the single-contact approximation’s applicability range to a<br />

wide concentration regime. The single-contact approximation applies best to semi-dilute<br />

solutions.


Figure 2: Typical interactions that are included and those that are excluded within the<br />

single-contact approximation.<br />

5. THE ZERO CONTRAST METHOD<br />

The zero contrast (or scattering length density match) method also called the high<br />

concentration method <strong>for</strong> <strong>polymer</strong> <strong>systems</strong> consists of using a mixture of deuterated and<br />

non-deuterated <strong>polymer</strong>s and deuterated and non-deuterated solvents in order to isolate<br />

the single-chain <strong>for</strong>m factor; i.e., in order to cancel out the inter-chain interaction terms.<br />

The scattering cross section <strong>for</strong> a <strong>polymer</strong> solution containing both deuterated and nondeuterated<br />

<strong>polymer</strong>s is given by:<br />

dΣ(<br />

Q)<br />

dΩ<br />

= Δρ<br />

2<br />

D<br />

S<br />

DD<br />

Included Interactions<br />

( Q)<br />

Excluded Interactions<br />

+<br />

Δρ<br />

2<br />

H<br />

S<br />

HH<br />

( Q)<br />

7<br />

+ 2Δρ<br />

D<br />

Δρ<br />

H<br />

S<br />

HD<br />

( Q)<br />

. (28)<br />

The scattering length density differences between the deuterated (or hydrogenated)<br />

<strong>polymer</strong> and the solvent are:


Δρ<br />

Δρ<br />

D<br />

H<br />

=<br />

=<br />

⎛ b<br />

⎜<br />

⎝ v<br />

⎛ b<br />

=<br />

⎜<br />

⎝ v<br />

( ) ⎟ D S<br />

ρ − ρ = ⎜ −<br />

D<br />

S<br />

D<br />

b<br />

v<br />

S<br />

⎞<br />

⎠<br />

⎞<br />

.<br />

⎠<br />

( ) ⎟ H S<br />

ρ − ρ −<br />

H<br />

S<br />

H<br />

b<br />

v<br />

S<br />

The various partial scattering <strong>factors</strong> are split into single-chain parts and inter-chain parts<br />

as follows:<br />

S<br />

I<br />

[ P D ( Q)<br />

+ φ P ( Q)<br />

]<br />

8<br />

(29)<br />

S ( Q)<br />

= n φ v<br />

DD<br />

(30)<br />

DD<br />

D<br />

D<br />

D<br />

S<br />

I<br />

[ P H ( Q)<br />

+ φ P ( Q)<br />

]<br />

S ( Q)<br />

= n φ v<br />

HH<br />

HH<br />

H<br />

H<br />

H<br />

SHD H H H D D D H D HD<br />

I<br />

( Q)<br />

= n φ v n φ v φ φ P ( Q)<br />

.<br />

D<br />

H<br />

Note that the inter-chain <strong>structure</strong> <strong>factors</strong> could be negative depending on the volume<br />

fraction. Assume that deuterated and hydrogenated <strong>polymer</strong>s have the same degree of<br />

<strong>polymer</strong>ization ( n D = n H = n P ), and the same specific volume ( v D = v H = v P ), and<br />

define the <strong>polymer</strong> volume fraction as φ P = φD<br />

+ φH<br />

. The contrast match method consists<br />

in varying the relative deuterated to hydrogenated volume fraction but keeping the total<br />

<strong>polymer</strong> volume fraction constant.<br />

Define the following “average of the square” and “square of the average” <strong>polymer</strong><br />

contrast <strong>factors</strong>:<br />

2 ⎡ 2 φD<br />

2 φH<br />

⎤<br />

{ Δ P } = ⎢Δρ<br />

D + ΔρH<br />

⎥<br />

⎣ φP<br />

φP<br />

⎦<br />

B (31)<br />

2<br />

2 ⎡ φD<br />

φH<br />

⎤<br />

BP = ⎢Δρ<br />

D + ΔρH<br />

⎥<br />

⎣ φP<br />

φP<br />

⎦<br />

{ }<br />

Δ .<br />

The scattering cross section becomes:<br />

dΣ(<br />

Q)<br />

=<br />

dΩ<br />

2<br />

2<br />

{ ΔB<br />

} n φ v P ( Q)<br />

+ { ΔB<br />

} n φ v P ( Q)<br />

P<br />

P<br />

P<br />

P<br />

S<br />

P<br />

2<br />

2<br />

2<br />

( { Δ } − { ΔB<br />

} ) n φ v P ( Q)<br />

+ { ΔB<br />

} n φ v P ( Q)<br />

= . (32)<br />

BP P P P P S<br />

P P P P T<br />

The following definition has been used:<br />

PT S<br />

P I<br />

( Q)<br />

= P ( Q)<br />

+ φ P ( Q)<br />

. (33)<br />

Note the following simplifications:<br />

P<br />

P<br />

P<br />

I


2<br />

2<br />

2 φDφ<br />

{ BP<br />

} − { ΔBP<br />

} = ( ρD<br />

− ρH<br />

) 2<br />

H<br />

Δ . (34)<br />

φP<br />

φ φ φ φ<br />

Δ .<br />

φ φ φ φ<br />

D<br />

H<br />

D<br />

H<br />

{ BP } = ΔρD<br />

+ ΔρH<br />

= ρD<br />

+ ρH<br />

− ρS<br />

The final result follows:<br />

dΣ(<br />

Q)<br />

=<br />

dΩ<br />

P<br />

P<br />

P<br />

2 D H<br />

D<br />

H<br />

( ρ − ρ ) n φ v P ( Q)<br />

+ ⎜ρ<br />

+ ρ − ρ ⎟ n φ v P ( Q)<br />

D<br />

H<br />

φ<br />

φ<br />

φ<br />

2<br />

P<br />

P<br />

P<br />

P<br />

S<br />

⎛<br />

⎜<br />

⎝<br />

9<br />

D<br />

φ<br />

φ<br />

P<br />

P<br />

H<br />

φ<br />

φ<br />

P<br />

S<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

P<br />

P<br />

P<br />

T<br />

. (35)<br />

Setting the second contrast factor (between the <strong>polymer</strong> and the solvent) to zero cancels<br />

the second term containing PT(Q) leaving only the first term containing the single-chain<br />

<strong>for</strong>m factor PS(Q). This zero contrast condition is there<strong>for</strong>e:<br />

φ<br />

φ<br />

D<br />

H<br />

ρ D + ρH<br />

= ρS<br />

. (36)<br />

φP<br />

φP<br />

Note that in general in order to achieve this condition, the solvent must also consist of<br />

mixtures of deuterated and non-deuterated solvents. Defining the following four indices<br />

DP, HP, DS, and HS <strong>for</strong> deuterated <strong>polymer</strong>, non-deuterated (hydrogenated) <strong>polymer</strong>,<br />

deuterated solvent and non-deuterated solvent, the contrast match condition becomes in<br />

the general case:<br />

φ<br />

φ<br />

φ<br />

DP<br />

HP<br />

DS<br />

HS<br />

ρ DP + ρHP<br />

= ρDS<br />

+ ρHS<br />

. (37)<br />

φP<br />

φP<br />

φS<br />

φS<br />

Note that φDP + φHP = φP , φDS + φHS = φP and φP + φS = 1.<br />

6. THE RANDOM PHASE APPROXIMATION<br />

φ<br />

The random phase approximation (de Gennes, 1979, Akcasu-Tombakoglu, 1990;<br />

Hammouda, 1993; Higgins-Benoit, 1994) is a simple mean-field approach used to<br />

calculate the linear response of a homogeneous <strong>polymer</strong> mixture following a<br />

thermodynamic fluctuation. Consider a binary mixture consisting of a mixture of<br />

<strong>polymer</strong>s 1 and 2 with fluctuating densities n1(Q) and n2(Q). The interaction potentials<br />

between monomers 1 and 2 are W11, W12, W21 and W22. Assume an external perturbation<br />

represented by potentials U1 and U2 and a constraint u that helps apply the<br />

incompressibility assumption. The parameter u can be thought of as a Lagrange<br />

multiplier in an optimization problem with constraints. The constraint here is the<br />

incompressibility condition. The linear response equations follow:


0 ⎡ U1<br />

+ u + W11v1n<br />

1(<br />

Q)<br />

+ W12v<br />

2n<br />

2 ( Q)<br />

⎤<br />

v1<br />

n1<br />

( Q)<br />

= −S11(<br />

Q)<br />

⎢<br />

⎥ (38a)<br />

⎣<br />

k BT<br />

⎦<br />

v<br />

2<br />

n<br />

2<br />

( Q)<br />

= −S<br />

0<br />

22<br />

v1 1<br />

2 2<br />

⎡ U 2 + u + W21v1n<br />

1(<br />

Q)<br />

+ W<br />

( Q)<br />

⎢<br />

⎣<br />

k BT<br />

10<br />

22<br />

v<br />

2<br />

n<br />

2<br />

( Q)<br />

⎤<br />

⎥ (38b)<br />

⎦<br />

n ( Q)<br />

+ v n ( Q)<br />

= 0 . (38c)<br />

The last equation represents the incompressibility constraint. The non-interacting or<br />

“bare” <strong>structure</strong> <strong>factors</strong> S ( Q)<br />

0<br />

11 and S ( Q)<br />

0<br />

22 have been defined. These equations have<br />

assumed that no co<strong>polymer</strong>s are present in the homogeneous mixture; i.e., that<br />

0<br />

0<br />

S ( Q)<br />

= S ( Q)<br />

= 0 .<br />

12<br />

21<br />

In order to solve the set of linear equations, we extract the perturbing potential u from the<br />

second equation and substitute it into the first equation to obtain:<br />

0 ⎡U<br />

1 − U 2<br />

⎤<br />

1 n1<br />

( Q)<br />

= −S11(<br />

Q)<br />

⎢ + v11(<br />

Q)<br />

n ( Q)<br />

⎥ . (39)<br />

⎣ k BT<br />

⎦<br />

v 1<br />

This applies along with the following equation representing the response of the fully<br />

interacting system:<br />

⎡U 1 − U 2 ⎤<br />

v1<br />

n1<br />

( Q)<br />

= −S11(<br />

Q)<br />

⎢ ⎥ . (40)<br />

⎣ k BT<br />

⎦<br />

The factor v11(Q) and the Flory-Huggins interaction parameter χ12 are defined as:<br />

v<br />

χ<br />

11<br />

12<br />

( Q)<br />

1<br />

2χ<br />

12<br />

= −<br />

(41)<br />

0<br />

S22<br />

( Q)<br />

v 0<br />

W12<br />

⎛ W11<br />

+ W<br />

= − ⎜<br />

k BT<br />

⎝ 2k<br />

BT<br />

22<br />

Here v0 is a reference volume (often taken to be v 0 = v1v<br />

2 ).<br />

⎟ ⎞<br />

.<br />

⎠<br />

The RPA result <strong>for</strong> a homogeneous binary blend mixture follows:<br />

1 1 1 2χ<br />

S ( Q)<br />

11<br />

12<br />

= + −<br />

(42)<br />

0<br />

0<br />

S11(Q)<br />

S22<br />

(Q) v 0


0<br />

S11 1 1 1 1<br />

( Q)<br />

= n φ v P ( Q)<br />

.<br />

4<br />

g1<br />

2 2<br />

2 2<br />

[ exp( −Q<br />

R ) −1<br />

Q R ]<br />

2<br />

P 1(<br />

Q)<br />

=<br />

4<br />

g1<br />

+<br />

Q R<br />

Rg1 is the radius of gyration. The incompressibility assumption yields the simplifying<br />

relations:<br />

S11 22<br />

12<br />

( Q)<br />

= S ( Q)<br />

= −S<br />

( Q)<br />

= S(<br />

Q)<br />

. (43)<br />

The scattering cross section is given by:<br />

Σ(<br />

Q)<br />

= ( ρ<br />

dΩ<br />

d 2<br />

1 − ρ2<br />

)<br />

( ρ − ρ )<br />

1<br />

2<br />

dΣ(<br />

Q)<br />

dΩ<br />

2<br />

0<br />

11<br />

S(<br />

Q)<br />

1 1 2χ<br />

= + −<br />

S (Q) S (Q) v<br />

0<br />

22<br />

12<br />

0<br />

This is the so-called de Gennes <strong>for</strong>mula representing the scattering cross section <strong>for</strong><br />

<strong>polymer</strong> blends in the single-phase (mixed phase) region. This is based on the Random<br />

Phase Approximation that applies <strong>for</strong> long degree of <strong>polymer</strong>izations (n1>>1 and n2>>2)<br />

and far from the phase boundary condition. This approach does not apply inside the<br />

demixed phase region.<br />

This <strong>for</strong>malism also applies to <strong>polymer</strong> solutions by replacing one of the <strong>polymer</strong>s (say<br />

component 2) by solvent; i.e., by setting n2 = 1 and P2(Q) = 1. In the case of <strong>polymer</strong><br />

solutions, the excluded volume effect is included in the <strong>polymer</strong> <strong>for</strong>m factor P1(Q). Note<br />

that the second virial coefficient can be defined <strong>for</strong> <strong>polymer</strong> solutions as<br />

= v ( Q = 0)<br />

2 .<br />

A 2 11<br />

The phase separation condition is achieved when the scattering intensity “blows up”; i.e.,<br />

in the limit ( Q = 0)<br />

→ ∞ . This is achieved <strong>for</strong><br />

S<br />

0<br />

11<br />

S 11<br />

( 0)<br />

.<br />

11<br />

g1<br />

(44)<br />

0 2χ12<br />

0 0<br />

+ S22<br />

( 0)<br />

− S11(<br />

0)<br />

S22<br />

( 0)<br />

= 0 . (45)<br />

v<br />

0<br />

This is the so-called spinodal condition. Note that with the simplifying assumptions that<br />

n1 = n2 = n, v1 = v2 = v0 and φ1 = φ2 = 0.5, the spinodal condition <strong>for</strong> <strong>polymer</strong> blends<br />

simplifies to n 2 = χ .<br />

12


7. THE ISOTHERMAL COMPRESSIBILITY FACTOR<br />

Most mixed <strong>polymer</strong> <strong>systems</strong> have finite compressibility. The scattering cross section<br />

consists of a Q-dependent coherent scattering term which is a good monitor of the<br />

<strong>structure</strong>, a Q-independent incoherent scattering term (mostly from hydrogen scattering),<br />

and another Q-independent “isothermal compressibility” term expressed as:<br />

⎡ dΣ<br />

⎤<br />

⎢<br />

⎣dΩ<br />

⎥<br />

⎦<br />

iso−comp<br />

= Δρ<br />

2<br />

k<br />

B<br />

T χ<br />

T<br />

. (46)<br />

Here Δρ 2 is the contrast factor, kBT is the temperature in energy units and χT is the<br />

isothermal compressibility which is defined as:<br />

1 ⎛ ∂V<br />

⎞<br />

χ T = − ⎜ ⎟ . (47)<br />

V ⎝ ∂P<br />

⎠<br />

T<br />

The isothermal compressibility term is usually small compared to the other terms. For<br />

example, χT = 4.57*10 -4 cm 3 /J <strong>for</strong> pure water at 25 o C and atmospheric pressure (Weast,<br />

1984). χT is set equal to zero altogether <strong>for</strong> incompressible mixtures.<br />

REFERENCES<br />

B. Zimm, “Application of the Methods of Molecular Distribution to Solutions of Large<br />

Molecules”, J. Chem. Phys. 14, 164 (1946); and B. Zimm, “The Scattering of Light and<br />

the Radial Distribution Function of High Polymer Solutions”, J. Chem. Phys. 16, 1093<br />

(1948).<br />

P.G. de Gennes, "Scaling Concepts in Polymer Physics", Cornell University Press, New<br />

York (1979).<br />

A.Z. Akcasu and M. Tombakoglu, “Dynamics of Co<strong>polymer</strong> and Homo<strong>polymer</strong> Mixtures<br />

in Bulk and in Solution via the Random Phase Approximation”, Macromolecules 23,<br />

607-612 (1990)<br />

B. Hammouda, "SANS from Homogeneous <strong>polymer</strong> Mixtures: A Unified Overview",<br />

Advances in Polymer Science 106, 87 (1993).<br />

J.S. Higgins and H. Benoit, "Polymers and <strong>Neutron</strong> Scattering", Ox<strong>for</strong>d (1994).<br />

R.C. Weast, Editor-in-Chief, “CRC Handbook of Chemistry and Physics”, CRC Press<br />

(1984)<br />

12


QUESTIONS<br />

1. What is the primary effect of the incompressibility assumption on the scattering cross<br />

section?<br />

2. If an incompressible <strong>polymer</strong> solution is characterized by one (independent) <strong>structure</strong><br />

factor, how many <strong>structure</strong> <strong>factors</strong> describe the equivalent compressible solution?<br />

3. What is the Zimm single-contact approximation?<br />

4. Does the inter-chain <strong>structure</strong> factor (with excluded volume) <strong>for</strong> dilute <strong>polymer</strong><br />

solutions tend to increase or decrease the scattering intensity at low-Q?<br />

5. What is the use of the zero contrast condition in concentrated <strong>polymer</strong> <strong>systems</strong>? What<br />

is the procedure to follow?<br />

6. The Random Phase Approximation applies in what conditions?<br />

7. What is the origin of monomer/monomer interactions in <strong>polymer</strong> mixtures?<br />

8. Are <strong>polymer</strong> chains in mixed <strong>polymer</strong> blends characterized by excluded volume; i.e.,<br />

are they swollen?<br />

9. What is the pair correlation function g(r)?<br />

10. Estimate kBTχT (χT is the isothermal compressibility) <strong>for</strong> pure water <strong>for</strong> 25 o C and 1<br />

atmosphere pressure.<br />

ANSWERS<br />

1. The primary effect of the incompressibility assumption is to simplify the scattering<br />

dΣ(<br />

Q)<br />

2<br />

2<br />

cross section from its full <strong>for</strong>m = ρP<br />

SPP<br />

( Q)<br />

+ ρS<br />

SSS<br />

( Q)<br />

+ 2ρ<br />

Pρ<br />

SSPS<br />

( Q)<br />

(where P<br />

dΩ<br />

and S represent the <strong>polymer</strong> and the solvent respectively) to its simplified <strong>for</strong>m<br />

dΣ(<br />

Q)<br />

2<br />

2<br />

= ( ρP<br />

− ρS<br />

) SPP<br />

( Q)<br />

= Δρ<br />

SPP<br />

( Q)<br />

. This is due to the incompressibility condition<br />

dΩ<br />

relating the various partial <strong>structure</strong> <strong>factors</strong> SPP ( Q)<br />

= SSS<br />

( Q)<br />

= −SPS<br />

( Q)<br />

= −SSP<br />

( Q)<br />

.<br />

2. An incompressible <strong>polymer</strong> solution is characterized by one <strong>structure</strong> factor SPP(Q).<br />

The equivalent compressible <strong>polymer</strong> solution is described by three <strong>structure</strong> <strong>factors</strong>:<br />

SPP(Q), SSS(Q) and SPS(Q).<br />

3. The Zimm single-contact approximation assumes that inter-chain interactions occur<br />

only through single contacts or chains of single contacts. Double contacts within the same<br />

chain or between two different chains or higher order contacts are not included.<br />

4. The inter-chain <strong>structure</strong> factor (with excluded volume) <strong>for</strong> dilute solutions decreases<br />

the scattering intensity at low-Q. Recall the negative sign in Zimm’s single-contact<br />

dΣ( Q)<br />

2 ⎡ v ex<br />

2 ⎤<br />

approximation <strong>for</strong>mula: = Δρ<br />

⎢S0<br />

( Q)<br />

− ( S0<br />

( Q)<br />

) + ...<br />

dΩ<br />

⎥ .<br />

⎣ V<br />

⎦<br />

5. The contrast match method is a way to extract single-chain properties (such as the<br />

radius of gyration) from concentrated <strong>polymer</strong> <strong>systems</strong>. This method consists in using a<br />

mixture of deuterated and non-deuterated <strong>polymer</strong>s and deuterated and non-deuterated<br />

solvents in the zero average contrast condition. This involves varying the deuterated to<br />

non-deuterated <strong>polymer</strong> fraction but keeping the total <strong>polymer</strong> fraction constant.<br />

13


6. The Random Phase Approximation applies <strong>for</strong> high molecular weight <strong>polymer</strong>s in the<br />

single-phase (mixed phase) region. It does not apply in the demixed phase region.<br />

7. Monomers interact with each other and with organic solvent molecules due to Van der<br />

Waals interactions mostly. Hydrogen bonding dominates in water-soluble <strong>polymer</strong>s.<br />

8. Polymer coils follow random walk statistics in mixed <strong>polymer</strong> blends. They are not<br />

swollen like in <strong>polymer</strong> solutions. Their <strong>for</strong>m factor is the well-known Debye function.<br />

9. The pair correlation function g(r) is the probability of finding a scatterer at a radial<br />

distance r from another scatterer at the origin.<br />

10. kBT = 1.38*10 -23 [J.K -1 ]*295 [K] = 4.112*10 -21 [J] and χT = 4.57*10 -4 cm 3 /J so that<br />

kBT χT = 1.879*10 -24 cm 3 .<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!