22.03.2013 Views

Effect of Sound Intensity Level on Judgement of - Audio Engineering ...

Effect of Sound Intensity Level on Judgement of - Audio Engineering ...

Effect of Sound Intensity Level on Judgement of - Audio Engineering ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Sound</str<strong>on</strong>g> <str<strong>on</strong>g>Intensity</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Level</str<strong>on</strong>g> <strong>on</strong> Judgment <str<strong>on</strong>g>of</str<strong>on</strong>g> "T<strong>on</strong>al<br />

Range" and "Volume <str<strong>on</strong>g>Level</str<strong>on</strong>g>"<br />

F<br />

OR MANY YEARS we have been aware<br />

that changes in the physical intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sounds are accompanied by<br />

changes in the subjective dimensi<strong>on</strong><br />

which we call loudfiess. We also know<br />

that for the normal human listener<br />

these two quantities are not always<br />

linearly related. This becomes apparent<br />

when we stimulate the ear with pure<br />

t<strong>on</strong>es at variom frequencies, over a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity-level. Figure 1 will<br />

illustrate this point. Here the data <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fletcher and Muns<strong>on</strong>l are displayed in<br />

a form enabling us to make direct comparis<strong>on</strong>s<br />

between the loudness <str<strong>on</strong>g>of</str<strong>on</strong>g> a given<br />

frequency at several intensity-levels, or<br />

between the loudness <str<strong>on</strong>g>of</str<strong>on</strong>g> several fre-<br />

*Research Psychologist U.S.N. Medical<br />

Research Laboratory U.S.N. Submarine<br />

Base, New L<strong>on</strong>d<strong>on</strong>, Corn.<br />

'H. Fletcher and W. A. Muns<strong>on</strong>. Loud-<br />

ness, its definiti<strong>on</strong>, measurement and cal-<br />

culati<strong>on</strong>. J. Acous. Soc. Am. 5, 2, 82, 1933.<br />

Opini<strong>on</strong>s and c<strong>on</strong>clusi<strong>on</strong>s expressed in this<br />

paper are the author's own and do not<br />

reflect policies <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States Navy.<br />

paper rests up<strong>on</strong> the author, and statements<br />

c<strong>on</strong>tained herein are not binding<br />

ua<strong>on</strong> the <strong>Audio</strong> En~ineerin~ Societv.<br />

Fi? 1,. The loudness functi<strong>on</strong>, showing how<br />

sound intensity-level (reference lo-*' watt/<br />

cmP) affects the loudness <str<strong>on</strong>g>of</str<strong>on</strong>g> pyre. t<strong>on</strong>es at dif-<br />

ferent frequencies in the useful auditory spec-<br />

trum. Frequency is shown as parameter.<br />

STEPHEN E. STUNTZ"<br />

A discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> factors which influence<br />

the c<strong>on</strong>clusi<strong>on</strong>s derived from listener preference tests.<br />

quencies at a_ single intensity-level. The<br />

scaling <str<strong>on</strong>g>of</str<strong>on</strong>g> the psychological dimensi<strong>on</strong>,<br />

loudness, in this figure follows the rec-<br />

ommendati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Stand-<br />

ards Associati<strong>on</strong> Committee <strong>on</strong> Acous-<br />

tical Measurements and Terminology2;<br />

the term "s<strong>on</strong>e" is applied to the unit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loudness measurement accordittg to a<br />

suggesti<strong>on</strong> by st even^.^ Intensrty-level<br />

is referred 10 theacoustical standard <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10-I= watt per cm2.<br />

The curves shown here depict the<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> sensati<strong>on</strong> magnitude with sig-<br />

nal intensity, at a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies.<br />

FREQUENCY - CYCLES PER SECOND<br />

Fig. 2. An interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the loudness func-<br />

ti<strong>on</strong>, showing how the over-all frequency-re-<br />

sp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> normal human hearing varies with<br />

the intensity-level <str<strong>on</strong>g>of</str<strong>on</strong>g> sound. <str<strong>on</strong>g>Intensity</str<strong>on</strong>g>-level is<br />

the parameter.<br />

They characterize the reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

average listener over the greater porti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the useful auditory spectruni. Several<br />

details are worth special attenti<strong>on</strong>: first,<br />

that although the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> loudness is<br />

far more rapid at low (those below 200<br />

cps) than at high frequencies for ordi-<br />

nary intensity-levels, much greater in-<br />

tensity <str<strong>on</strong>g>of</str<strong>on</strong>g> sound is required at the low<br />

frequencies to initiate any sensati<strong>on</strong> at<br />

all. Sec<strong>on</strong>d, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth is not<br />

uniform for all frequencies until an in-<br />

tensity-level is reached approaching the<br />

a Proposed standards for noise measure<br />

hent. J. Acous. Soc, Am. 5, 2, 109, 1933.<br />

S. S. Stevens. A scale for. the measure-<br />

ment <str<strong>on</strong>g>of</str<strong>on</strong>g> a psychological magnitude: loud-<br />

ness. Psychol. Rev. 43, 405, 1936.<br />

n +5<br />

u<br />

I-<br />

3 -to<br />

z<br />

-<br />

I-<br />

l-<br />

a -eo<br />

W<br />

2-25-<br />

I- I<br />

3 -30 -<br />

W<br />

a -35 -<br />

N MINAL RANOES .<br />

A . "wI:Es (40-toooocps) !<br />

B . .MEDIUM" (60-6000 OPS) 1<br />

C . 'NARROW. (150-4900 CPS) ,<br />

e 6<br />

100<br />

6 4 1<br />

4000<br />

6 1 0<br />

low0<br />

FREQUENCY-CYCLES PER SECOND<br />

Fig. 3. Resp<strong>on</strong>se characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg<br />

and Chinn's electrical system, exclusive <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loudspeaker, used in their study <str<strong>on</strong>g>of</str<strong>on</strong>g> preference<br />

for "t<strong>on</strong>al range" and "volume level." (Repro-<br />

duced from the Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Psy-<br />

chology, 1945, by permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> that Journal and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the American Psychological Associati<strong>on</strong>.)<br />

threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> feeling, that is, n<strong>on</strong>-audi-<br />

tory sensati<strong>on</strong>. Third, the loudness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

frequencies in the range 700 to 4000 cps<br />

seems to be affected by intensity<br />

changes least <str<strong>on</strong>g>of</str<strong>on</strong>g> all. It will be recalled<br />

that the normal human ear is most sensi-<br />

tive to this porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten called the "middle range." Fourth<br />

and last, loudness shifts at the higher<br />

frequencies (around 10,000 cps) , those<br />

with which we are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>cerned in<br />

"high-fidelity" sound reproducti<strong>on</strong>, are<br />

not greatly different from those <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

middle frequencies. In summati<strong>on</strong>, these<br />

curves suggest that the ear's frequency<br />

resp<strong>on</strong>se is to a c<strong>on</strong>siderable extent di-<br />

rectly influenced by the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stimulating sounds.<br />

Let us review this c<strong>on</strong>clusi<strong>on</strong> in more<br />

c<strong>on</strong>venti<strong>on</strong>al terms. Figure 2, based <strong>on</strong><br />

the same data as Fig. 1, shows directly<br />

how variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity affect what<br />

might be called the normal listener's<br />

frequency resp<strong>on</strong>se. The four intensity<br />

levels shown as parameters-50, 60, 70,<br />

and 75 db--were chosen <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some experimental data which will be<br />

discussed subsequently. The implicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this figure are <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable in-<br />

terest to the audio engineer. For <strong>on</strong>e<br />

thing, the ear does not behave like the<br />

usual electroacoustic transducer, whose<br />

AUDIO ENGINEERING JUNE, 1951 \ 17


frequency resp<strong>on</strong>se remains relativily<br />

unchanged over a range <str<strong>on</strong>g>of</str<strong>on</strong>g> intensities<br />

limited at the upper extreme by the <strong>on</strong>-<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> overloading. In this c<strong>on</strong>necti<strong>on</strong>, it<br />

is noteworthy that the 75-db intensity<br />

level is far below the ear's overload<br />

limit. Therefore, we cannot say that the<br />

apparent broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> the flat top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the curve is necessarily related to over-<br />

excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the auditory mechanism.<br />

Another point <str<strong>on</strong>g>of</str<strong>on</strong>g> importance is that<br />

when we raise signal intensity from 50<br />

db to 75 db, we effectively add to the<br />

listener's range at 1 s<strong>on</strong>e, or 1000 milli-<br />

s<strong>on</strong>es, loudness, something over three<br />

octaves downward frpm 400 cps. Put<br />

another way,'by raising the intensity-<br />

level from 50 db to 75 db, we render a<br />

125-cps t<strong>on</strong>e over 90 times louder for<br />

the average listener. By either stater<br />

ment, it is evident that a tremendous im-<br />

provement <str<strong>on</strong>g>of</str<strong>on</strong>g> the ear's effective bass<br />

resp<strong>on</strong>se follows a rise in over-all signal<br />

intensity. To a somewhat lesser extent,<br />

the same is true at the treble end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

spectrum, as these curves suggest. It is<br />

expected that the 50-db c<strong>on</strong>tour, if ex-<br />

tended, would intersect the 100 millis<strong>on</strong>e<br />

(0.1 s<strong>on</strong>e) loudness ordinate just below<br />

20,000 cps, or near the upper frequency<br />

limit <str<strong>on</strong>g>of</str<strong>on</strong>g> normal hearing.<br />

Listener Preferences<br />

Recently a number <str<strong>on</strong>g>of</str<strong>on</strong>g> experimenters<br />

have investigated the preference <str<strong>on</strong>g>of</str<strong>on</strong>g> lis-<br />

teners for various c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fre-<br />

quency range and intensity-level in the<br />

reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> music and speech. Of<br />

the several studies reported, the most ex-<br />

tensively documented appear to be<br />

Eisenberg and Chinn's4 and Ols<strong>on</strong>>.s<br />

In both <str<strong>on</strong>g>of</str<strong>on</strong>g> these experiments, it will be<br />

recalled, listeners were required to com-<br />

pare c<strong>on</strong>secutive passages <str<strong>on</strong>g>of</str<strong>on</strong>g> musical se-<br />

lecti<strong>on</strong>s played through adjustable fre-<br />

quency filters. In Eisenberg and Chinn's<br />

study, electrical filters were employed<br />

restricting the ,range at both ends simul-<br />

taneously. Figzcre 3 shows the three<br />

band-pass characteristics up<strong>on</strong> which<br />

their listeners based judgments <str<strong>on</strong>g>of</str<strong>on</strong>g> "t<strong>on</strong>al<br />

range" preference. The authors note<br />

that these curves apply <strong>on</strong>ly to the elec-<br />

trical porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> their apparatus; in dis-<br />

cussing their results, they imply ,that<br />

these curves also represent c<strong>on</strong>diti<strong>on</strong>s in<br />

the acoustical field surrounding their<br />

listeners. It will also be recalled that<br />

Eisenberg and Chinn studied preference<br />

for program intensity-level, choosing 50,<br />

60, and 70 db as the three values for<br />

comparis<strong>on</strong>. In <strong>on</strong>e series <str<strong>on</strong>g>of</str<strong>on</strong>g> subexperi-<br />

'P. Eisenberg and H. A. Chinn.' T<strong>on</strong>al<br />

range and volume level preferences <str<strong>on</strong>g>of</str<strong>on</strong>g> broad-<br />

cast listeners. J. Ex@. Psychol. 35, 5, 374,<br />

October 1945.<br />

6H. F. Ols<strong>on</strong>. Frequency range pref-<br />

erences for speech and music. J. Acow. Soc.<br />

AM. 19,4, 549, July 1947.<br />

ments, these three intensi6-levels were<br />

combined with the three frequency passbands<br />

already described, and the listeners<br />

asked to state preference for the resultant<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both "t<strong>on</strong>al range"<br />

and ''volu~e level."' As we have already<br />

seen, when a sufficient change in signal<br />

intensity occurs listeners will report an<br />

apparent change in frequency range<br />

even though no physical c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> passband<br />

has 'been imposed. Now in the<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> preferences, 'it is important<br />

that the c<strong>on</strong>diti<strong>on</strong>s serving as<br />

bases for judgment be clearly discrim-<br />

-<br />

100 1000<br />

FREQUENCY-'CYCLES PER SECOND<br />

inable to the average observer. If the Fig. 4. Subiective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and<br />

differences between them be discernible Ckinn's "medium t<strong>on</strong>al range" filters at "high"<br />

(70-db), "moderate" (60-db), and "low" (50<strong>on</strong>ly<br />

by chance, then the observer is db) volume levels. Broken lines indicate cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

plainly handicapped in stating his pref- effect <str<strong>on</strong>g>of</str<strong>on</strong>g> filters. Note the apparent ineffectiveness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high-pass filters at 50 and<br />

erence with certainty. ~~~~i~~ this in<br />

60 db.<br />

mind, then, let us look at the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Eisenberg and Chinn's filters up<strong>on</strong> the<br />

auditory spectrum as perceived by an<br />

average observer under the three in-<br />

tensity-levels used. Returning to Fig. 2,<br />

we can estimate from the 50, 60, and 70<br />

db curves the perceptual results <str<strong>on</strong>g>of</str<strong>on</strong>g> sound<br />

transmissi<strong>on</strong> through a system nominally<br />

flat from 40 to 10,000 cps, corresp<strong>on</strong>ding<br />

totthe "wide t<strong>on</strong>al range" <str<strong>on</strong>g>of</str<strong>on</strong>g> these ex-<br />

periments. Figure 4.shows the subjective<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the "medium-t<strong>on</strong>al-range," that<br />

in<br />

W<br />

z<br />

in 0<br />

10 -<br />

I<br />

% 1-<br />

W z<br />

0 3<br />

3<br />

70 db<br />

100 XMO moo0<br />

FREQUENCY - CYCLES PER SECOND<br />

is, 60 to 6,000 cps, filtering: it will be<br />

noted that a the 'igh Fig. 5. f ubjectivc effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Iisenberg and<br />

level" do the restricti<strong>on</strong>s at both high Chinn's "narrow t<strong>on</strong>al range" filters at ''hirrh"<br />

and low ends become noticeable. At (70-db), "moderate" (60-2b) and "low" (50db)<br />

volume levels. Broken lines indicate cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

lower levels, the be effect <str<strong>on</strong>g>of</str<strong>on</strong>g> filters. Note relative ineffectiveness<br />

expected to report,mainly - a change in <str<strong>on</strong>g>of</str<strong>on</strong>g> high-pass filter at 50 db, and sliht effect<br />

/<br />

hi&s as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> filteri&'but a iaria- <strong>on</strong> subjective bandwidth at' high eid caused<br />

by change in intensity-levels.<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both lows and highs would be<br />

reported as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the-changes in<br />

level. Figz~re.5, showing the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

"narrow-range," that is, 150 to 4,900<br />

cps, filtering, -suggests an opposite c<strong>on</strong>clusi<strong>on</strong><br />

: here the greatest perceived differences<br />

occur at the low-frequency end<br />

as level is varied. Restricti<strong>on</strong> at the high<br />

end is so severe that raising level from<br />

50 to 70 db expands subjective frequency<br />

range hardly more than half an<br />

100<br />

octave upward at 1 s<strong>on</strong>e loudness. Fig-<br />

FREQUENCY -CYCLES PER SECOND<br />

ures 2,4 and 5 indicate that a growth in<br />

the perceived range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies prob- Fig. 6. Subjective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and<br />

Chinn's "wide," "medium" and "narrow t<strong>on</strong>al<br />

ably occurred independently <str<strong>on</strong>g>of</str<strong>on</strong>g> the band- range" filters at 704, intensity-level ("high<br />

pass imposed by means <str<strong>on</strong>g>of</str<strong>on</strong>g> fil- volume level"). Broken lines indicate cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

ters.<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> filters.<br />

In Figs. 6, 7 a%d 8 we can see the "medium", that is, "A" with "B", diseffects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> filtering at any <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the criminativn is likely to be uncertain,<br />

three intensity-levels. Figure 6 suggests yieldin2 statements <str<strong>on</strong>g>of</str<strong>on</strong>g> preference not acthat<br />

at "high-volume level" the average ceptably reliable. Figzcre 7 shows an aglistener<br />

would experience little difficulty gravati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this difficulty, brought about<br />

discerning the shift from "wide" to "nar- by reducing intensity-level to 60 db.<br />

row" ranges, that is, from band A to Here the three batids become more easily<br />

band C. Likewise, the shift from "me- c<strong>on</strong>fused, although discriminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dium" to "narrow", band B to band C; :wide" (A) from "narrow" (C) might<br />

probably would be easily detected. HOW- still be accomplished with better than<br />

ever, in comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> "wide" with chance success. Figure 8 presents a pic-<br />

AUDIO ENGINEERING * JUNE, 1951


ture <str<strong>on</strong>g>of</str<strong>on</strong>g> potential c<strong>on</strong>fusi<strong>on</strong> bordering <strong>on</strong><br />

chaos. Here, at 50 db intensity-level, dif-'<br />

ferential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> high-pass filtering<br />

have almost disappeared. Any discrim- - $<br />

inati<strong>on</strong> am<strong>on</strong>g the three bands must be A<br />

made <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> changes at the high<br />

end al<strong>on</strong>e. Since there is relatively little g<br />

difference between "narrow" (C) and S<br />

"medium" (B) for the listener (perhaps<br />

<strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> an octave above 5,000 cps<br />

too 1000<br />

at 1 s<strong>on</strong>e loudness), we would anticipate<br />

FREQUENCY -CYCLES PER SECOND<br />

4<br />

largely unreliable judgments <str<strong>on</strong>g>of</str<strong>on</strong>g> preference<br />

for <strong>on</strong>e or the other. However, the Fig. 7. Subjective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and<br />

Chinn's "wide," "mediun" and "narrow t<strong>on</strong>al<br />

subjective difference between '%ide,, range" filters at 60-db intensity-level ("mod-<br />

(A) and "narr~~" (C) is more evident, erate volume level"). Broken lines indicate<br />

and likely would prodbce more satisfac-<br />

cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f effect <str<strong>on</strong>g>of</str<strong>on</strong>g> filters.<br />

tory indicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> preference.<br />

Eisenberg and Chinn's preferred combiq$ti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> "t<strong>on</strong>al range" and "volume<br />

level" appear in the left-hand columns.<br />

From their results as here interpreted, .<br />

there emerge two facts <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable<br />

importance. First, out <str<strong>on</strong>g>of</str<strong>on</strong>g> the twenty<br />

combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> band-pass filtering, intensity-level,<br />

and musical c<strong>on</strong>tent which<br />

their listenefs were yked to evaluate,<br />

<strong>on</strong>ly the nine shown here appear to have<br />

produced adequately reliable statements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> preference. This suggests that in the<br />

remaining eleven, judgment was complicated<br />

by inadequate discriminability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>fered for comparis<strong>on</strong>,<br />

due either to the -effects <str<strong>on</strong>g>of</str<strong>on</strong>g> combining<br />

frequency-range and intensity-level, or<br />

In the experiments c<strong>on</strong>ducted by 01-<br />

to failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the musical samples to sufs<strong>on</strong>,<br />

intensity-level was maintained at 75<br />

ficiently occupy the porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sppctrum<br />

db throughout, and but two frequency-<br />

st~died.~ The sec<strong>on</strong>d important point is<br />

range c<strong>on</strong>diti<strong>on</strong>s were compared-unrestricted<br />

bandwidth, and a nominal 5,000<br />

cps low-pass. Figu~e 9 shows the physical<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the frequency-range c<strong>on</strong>trols<br />

imposed in this experiment, while<br />

Fig. 10 represents the subjective effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>trols. Observe that at the<br />

high frequency end this curve compares<br />

favorably with that for Eisenberg and<br />

Chinn's "narrow range" at 70 db (Fig.<br />

6, curve C), while the curve representing<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Ols<strong>on</strong>'s unrestricted<br />

c<strong>on</strong>diti<strong>on</strong> closely .resembles Eisenberg<br />

and Chinn's "wide-range" curve at<br />

"high volume level" (Fig. 2, 70 db).<br />

From these observati<strong>on</strong>s we might infer<br />

that as far as the high-frequency end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the range is c<strong>on</strong>cerned, there was little<br />

difference between the discriminati<strong>on</strong><br />

task presented Ols<strong>on</strong>'s listeners and that<br />

c<strong>on</strong>fr<strong>on</strong>ting Eisenberg and Chinn's.<br />

Also, we may predict that Ols<strong>on</strong>'s two<br />

passbands should be easily discriminable<br />

<strong>on</strong> the. basis <str<strong>on</strong>g>of</str<strong>on</strong>g> their subjective differences,<br />

and therefore give rise to highly<br />

reliable estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> preference for <strong>on</strong>e<br />

or the other.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Tests<br />

11 FREQUENCY - CYCLES PER SECOND I<br />

Fig. 8. Subjective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and<br />

Chinn's "wide," "medium" and "narrow t<strong>on</strong>al<br />

range" filters at 50-db intensity-level ("low<br />

volume l'evel"). Broken lines indicate cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> filters.<br />

FILTER<br />

OUT<br />

0<br />

-10 -<br />

-20 -<br />

-30 -<br />

-40 -<br />

5 4 i 6 i<br />

100 1000 1OOOO<br />

FREQUENCY -CYCLES PER SECOND I Fig. 9. Approximate resp<strong>on</strong>se characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acoustical filter system used in Ols<strong>on</strong>'s study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> preference for frequelrcy range, showing<br />

acoustical cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> "5000-cps" low-pass<br />

filter.<br />

indicated by the asterisks appearing in<br />

the left-hand column <str<strong>on</strong>g>of</str<strong>on</strong>g> the upper table.<br />

Five out <str<strong>on</strong>g>of</str<strong>on</strong>g> nine <str<strong>on</strong>g>of</str<strong>on</strong>g> the reliably preferred<br />

combinati<strong>on</strong>s yield passbands which are<br />

subjectively broader than their n<strong>on</strong>-preferred<br />

counterparts, although by plzysical<br />

definiti<strong>on</strong> they are narrower. To<br />

some extent, the authors may have bekn<br />

aware <str<strong>on</strong>g>of</str<strong>on</strong>g> this apparent anomaly, for<br />

they c<strong>on</strong>clude that "the most reliable<br />

judgments were made when both toqal<br />

range and volume level were varied."T<br />

.However, the findings reported here<br />

str<strong>on</strong>gly suggest that their prime c<strong>on</strong>clusi<strong>on</strong>,<br />

"listeners prefer either a narrow<br />

or medium t<strong>on</strong>al range to a wide <strong>on</strong>e,"s<br />

may deserve careful reviewing. Submitting<br />

the results <str<strong>on</strong>g>of</str<strong>on</strong>g> Ols<strong>on</strong> to similar<br />

analysis, we do not find evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

c<strong>on</strong>taminating factors. (Table I) Evidently<br />

the passbands and intensity-level<br />

used so unequivocally structured the<br />

judgmental situati<strong>on</strong>, and were so occupied<br />

by the spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> the musical<br />

samples chosen, that his listeners could<br />

make their choices relatively unhampered<br />

by doubt. All <str<strong>on</strong>g>of</str<strong>on</strong>g> the judgments<br />

rendered by his unselected listeners meet<br />

the criteri<strong>on</strong> for reliability, and definitely<br />

favor wide-passband transmissi<strong>on</strong><br />

over narrow.<br />

If the preceding arguments be ac-<br />

[C<strong>on</strong>tinued <strong>on</strong> page 26 1<br />

The published results <str<strong>on</strong>g>of</str<strong>on</strong>g> the two<br />

studies cited here have been analyzed<br />

for the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating the relia-<br />

bility <str<strong>on</strong>g>of</str<strong>on</strong>g> preferences indicated by the.lis-<br />

teners. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this analysis are<br />

shown in Table I. Only the preferences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the "cross-secti<strong>on</strong>", or unspecialized,<br />

listeners are Geated, <strong>on</strong> the grounds that<br />

they are more representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the gen-<br />

eral populati<strong>on</strong> than would be the judg-<br />

ments <str<strong>on</strong>g>of</str<strong>on</strong>g>, say, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al musicians,<br />

high-fidelity enthusiasts, audio engi-<br />

neers, or other specialists. This * table<br />

summarizes <strong>on</strong>ly the testing in which<br />

music was used. It lists the preference-<br />

statements <str<strong>on</strong>g>of</str<strong>on</strong>g> whose occurrence we can<br />

be reas<strong>on</strong>ably sure 99 or more times out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 100 ('f.01 level <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fidence").<br />

AUDIO ENGINEERING JUNE, 1951<br />

\<br />

\<br />

FILTER lN\<br />

1<br />

\ t<br />

\<br />

4 1 t<br />

too0 iwGQ<br />

I FREOUENCY -CYCLES PER SECOND 1<br />

Fig. 10. Subjective effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Ols<strong>on</strong>'s "wide"<br />

and "narrow frequency range" filters at 75-db<br />

intensity-level. Broken line shows cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f effect<br />

due to filter. Note similarity between this low-<br />

pass cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f effect and that <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and<br />

Chinn's "narrow t<strong>on</strong>al range" at "high volume<br />

level" (70-db curve, Fig. 5).<br />

In designing tests <str<strong>on</strong>g>of</str<strong>on</strong>g> this sort, <strong>on</strong>e must<br />

be aware that a mere statement <str<strong>on</strong>g>of</str<strong>on</strong>g> the range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies which his apparatus will<br />

, transmit is insufficient evidence that this<br />

range was actually occupied by the sound<br />

<strong>on</strong> which the listeners had to base their<br />

preferences. Neither <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies reviewed<br />

in this paper makes any direct menti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the frequency c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the program material<br />

used. Some sort <str<strong>on</strong>g>of</str<strong>on</strong>g> sp,ectral analysis is<br />

plainly required in order to dem<strong>on</strong>strate<br />

the physical effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the frequency-restricting<br />

c<strong>on</strong>trols imposed..<br />

' Zbid., p. 390.<br />

LOC. cit.<br />

19


SOUND INTENSITY LEVEL<br />

[from page 281<br />

TABLE I<br />

T<strong>on</strong>al Range/Volume <str<strong>on</strong>g>Level</str<strong>on</strong>g> Preferentes Significant at or Above<br />

-01 <str<strong>on</strong>g>Level</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>fidence<br />

From data <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and Chinn ( 1945) : unselected listeners<br />

PREFERRED COMBINATION<br />

TONAL VOLUME TONAL VOLUME MUSIC<br />

RANGE LEVEL RANGE LEVEL TYPE<br />

* Narrow Moderate Wide Low ' Classical<br />

Narrow Moderate Wide High Classical<br />

Narrow Moderate Wide HIgh Popular<br />

Narrow Moderate Wide H~gh Light Classical<br />

* Narrow High Wide Moderate Classical<br />

* Wide Moderate Wide Low Classical<br />

* Narrow Moderate Narrow Low Classical<br />

* Wide High Wide Moderate Classical<br />

Narrow<br />

-- Moderate Narrow High Classical<br />

* Range-level combinati<strong>on</strong> wh~ch gives subjectively greater frequency passband than n<strong>on</strong>-oreferred<br />

combinati<strong>on</strong>.<br />

From data <str<strong>on</strong>g>of</str<strong>on</strong>g> Ols<strong>on</strong> (1947). Unselected listeners<br />

' PREFERRED TYPE OF<br />

FREQUENCY RANGE MUSIC<br />

. Wide Popular<br />

Wide Semiclassical<br />

ceptable, then we may postulate a c<strong>on</strong>-<br />

siderable similarity between the results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and Chinn and those <str<strong>on</strong>g>of</str<strong>on</strong>g> 01-<br />

s<strong>on</strong>. This similarity would be even more<br />

apparent, we might predict, had certain<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the physical c<strong>on</strong>trols <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisenberg and<br />

Chinn been more rigorously applied.<br />

It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten observed that the disagreement<br />

between Ols<strong>on</strong>'s and Eisenberg and Chinn's<br />

results is due to a possible inherent differ-<br />

ence between listeniw to music transmitted<br />

acoustica!ly direct from its origi,nal source<br />

and listening to the same sounds played<br />

through a reproducing system. Up to now<br />

this criticism has been <str<strong>on</strong>g>of</str<strong>on</strong>g>fered without<br />

empirical support, indicating a gap <str<strong>on</strong>g>of</str<strong>on</strong>g> cru-<br />

cial significance in the case for wide-range<br />

sound reproducti<strong>on</strong>. A research group<br />

headed by H. F. Ols<strong>on</strong> at the Princet<strong>on</strong><br />

laboratories <str<strong>on</strong>g>of</str<strong>on</strong>g> RCA is currently collecting<br />

data to determine whether listeners' pre-<br />

erences based <strong>on</strong> directly transmitted sound<br />

are comparable to those based <strong>on</strong> repro-<br />

duced sound.<br />

AUDIO ENGINEERING * JUNE, 1951

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!