22.03.2013 Views

Nicolas Roy's Curriculum Vita - Institut für Mathematik - Humboldt ...

Nicolas Roy's Curriculum Vita - Institut für Mathematik - Humboldt ...

Nicolas Roy's Curriculum Vita - Institut für Mathematik - Humboldt ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nicolas</strong>Roy’s<br />

<strong>Curriculum</strong><strong>Vita</strong><br />

Personal<br />

Date of birth: 13Feb. 1974<br />

Birthplace: MaisonsLaffittes, France<br />

Nationality: French<br />

Maritalstatus: Married, 2 children<br />

Address: GeometricAnalysisGroup,<strong>Institut</strong><strong>für</strong><strong>Mathematik</strong>,<strong>Humboldt</strong>Universität,Rudower<br />

Chaussee 25,Berlin D-12489,Germany<br />

Email: roy@math.hu-berlin.de<br />

Web: http://www.math.hu-berlin.de/∼roy/<br />

Positions<br />

Since Oct. 2006. Assistant position inthe GeometricAnalysisGroup,<strong>Institut</strong> <strong>für</strong><strong>Mathematik</strong>,<br />

<strong>Humboldt</strong> Universität, Berlin<br />

Oct. 2003-Sep. 2006. Post-doctoral position inthe GeometricAnalysisGroup<br />

Teaching experience<br />

Assistant ”Mitarbeiter”, <strong>Humboldt</strong> Universität zuBerlin<br />

09-10 Tutorial Linear Algebra1<br />

09-10 Seminar Introduction toDynamicalSystems<br />

08-09 Tutorial Linear Algebra1&2<br />

07-08 Tutorial Linear Algebra2<br />

06-07 Tut. DifferentialGeometry1<br />

06-07 Tut. Analysison manifolds<br />

06-07 Tut. Analysis1<br />

ATER, Mathematics department, Grenoble<br />

02-03 Tut. Introduction todynamicalsystems,DEUG SMb 1<br />

02-03 Tut. Mathematicalmethodsof physics,IUTGénieMeca 2<br />

Moniteur,Physics department, Grenoble<br />

01-02 Practical Electrostaticsand Magnetostatics, DEUGSMa 1et MIAS1<br />

01-02 Tut. Mathematicalmethodsof physics,IUPGénieélectrique 2<br />

00-01 Pract. Electrostaticsand Magnetostatics, DEUGSMa 1etMIAS1<br />

00-01 Tut. Mathematicalmethodsof physics,IUPGénieélectrique 2<br />

99-00 Pract. Electrostaticsand Magnetostatics, DEUGSMa 1etMIAS1<br />

99-00 Tut./Pract. Modelisationof physicalsystemsand numerics,Licence Physique<br />

Recherche<br />

Other<br />

97-99 Instructor ofcomputer science and French language, asconscientious objector,<br />

Grenoble<br />

98-03 Music teacherin my own Jazzschool CEMA,Grenoble. Harmony, pianojazz,<br />

improvisation, eartraining...<br />

1


Education<br />

PhD in Mathematics, Sept. 2003, <strong>Institut</strong> Fourier, Grenoble (France), under supervision of<br />

Y. Colin deVerdière, on deformationsof classicaland semi-classicalcompletelyintegrable systems<br />

Master degree in Theoretical Physics, 1997, Ecole Normale Supérieure de Lyon (France).<br />

Master thesis on Conformal transformations of (pseudo)Riemannian manifolds<br />

UndergraduateandgraduatestudiesinPhysics,1992-1997,UniversitéJosephFourier,Grenoble<br />

Practicalperiods<br />

1997, <strong>Institut</strong> dePhysique Nucléaire de Lyon, Lyon, 3months<br />

1996, <strong>Institut</strong> deFísica d’AltesEnergies, Barcelona, 6 months<br />

1995, European Synchrotron Radiation Facility, Grenoble, 2 months<br />

1993, <strong>Institut</strong> desSciences Nucléaires, Grenoble, 2 months<br />

Invitedtalks<br />

7th Sep. 2009,"Quantum dynamics”conference, Lyon, France<br />

14th May. 2009, "Dynamicalsystems”seminar, Freie Universität, Berlin<br />

21stApr. 2009,"Nonlineardynamics”seminar, Freie Universität, Berlin<br />

16th Mar. 2009,"Symplecticand contactgeometry"seminar,Brussels<br />

21stJan. 2009,Workshop "Resonancesin physics and mathematics", Marseille (France)<br />

14th May. 2008, ”Geometric analysis and spectral theory” seminar, <strong>Humboldt</strong> Universität,<br />

Berlin<br />

13th Dec. 2006, ”Geometric analysis and spectral theory” seminar, <strong>Humboldt</strong> Universität,<br />

Berlin<br />

19th Jan. 2004,”Mathematical physics” seminar, Technische Universität, Berlin<br />

3rd Dec. 2003, ”Geometric analysis and spectral theory” seminar, <strong>Humboldt</strong> Universität,<br />

Berlin<br />

12thNov. 2003,Workshop”SpectralproblemsforSchrödinger-typeoperatorsII”,<strong>Humboldt</strong><br />

Universität, Berlin<br />

13th May2003,Topology seminar, AarhusUniversity, Aarhus(Denmark)<br />

Research visits<br />

Feb. 2009,MFO Oberwolfach (Allemagne), 2weeks, grant ”Research in Pairs”<br />

Mai2006,Roma (Italy), 1 week, invited byC. Liverani.<br />

Administrative duties<br />

19-25 Jul. 2008, co-organiser and webmaster of the workshop ”Symplectic Field Theory 3”,<br />

Berlin<br />

24-26 Apr. 2008, co-organiser and webmaster of the conference”Mathematical Physics and<br />

Spectral Theory”,Berlin<br />

2-3Nov2007,co-organiserandwebmasteroftheconference”GeometricAnalysisandSpectral<br />

Theory”,Berlin<br />

2006-2009,Organiser of the ”Geometricanalysis”seminar<br />

2


Attended conferences and summerschools<br />

1999-2009, many international mathematics workshops and conferences : Munich, Strasbourg,<br />

Berlin, Bruxelles, Peyresq, Lille, Leipzig, Nantes, Giens, Stare Jablonki, Cargèse, Bordeaux,<br />

Villetaneuse,Montpellier,Reims,...<br />

Languages<br />

Mother tongue : French<br />

Fluently spoken andwritten languages : German,English, Polish<br />

Music in general andjazz in particular<br />

Trekking, climbing, skiing, biking<br />

Computers<br />

Personal Interests<br />

3


Published papers<br />

Listof publications 1<br />

[7] N. Roy and V. Humilière, The geometry of the space of fibrations. To appear in Ann.<br />

Global Anal. Geom. (2009)<br />

[6] N. Roy, F. Faure and J. Sjöstrand, Semi-classical approach for Anosov diffeomorphisms<br />

and Ruelleresonances. Open Math. Journal (2008),vol. 1,35–81<br />

[5] N. Roy, A semi-classical K.A.M. theorem. Comm. Partial Differential Equations 32<br />

(2007), no. 5, 745–770<br />

[4] N. Roy and F. Faure, Ruelle-Pollicottresonances for real analytic hyperbolicmaps. Nonlinearity<br />

19(2006), no. 6, 1233–1252<br />

[3] N. Roy, Intersections of Lagrangian submanifolds and the Mel’nikov 1-form. J. Geom.<br />

Phys. 56(2006), no. 11,2203–2229<br />

[2] N. Roy, Regular deformations of completely integrable systems. J. Symplectic Geom. 3<br />

(2005), no. 1, 1–16<br />

[1]N.Roy,Thegeometryofnondegeneracyconditionsincompletelyintegrablesystems. Ann.<br />

Fac. Sci. Toulouse Math. (6)14(2005), no. 4, 705–719<br />

Doctoral Thesis<br />

[0] N. Roy, Sur les déformations des systèmes complètement intégrables classiques et semiclassiques.<br />

Grenoble (France), September2003<br />

Submited articles<br />

N. Roy, A Weinstein’stubular neighbourhood for Lagrangian fibrations. ArXiv 0905.0594<br />

Articlesin preparation<br />

N. Royand V. Humilière,The geometryof the spaceof completelyintegrablesystems<br />

1 pdffiles availableatØØÔÛÛÛÑØÙÖÐÒÖÓÝ<br />

4


Summaries of published articles<br />

[0] Sur lesdéformationsdessystèmescomplètementintégrablesclassiquesetsemi-classiques<br />

Inthisthesis,westudyseveralaspectsofperturbationsofcompletelyintegrablesystems.<br />

The first part deals with completely integrable Hamiltonian systems (classical mechanics)<br />

and their deformations. This work as developped further and gave rise to the articles [1,2]<br />

described below. The second part concerns perturbations of semiclassical completely integrable<br />

systems. We introduce the theory of Pseudodifferential operators with small parameter<br />

on the torus. The particular algebraic structure of the torus provides a weel-defined<br />

notion of total symbol for these operators. The main results of this part were improved and<br />

are presented in[5].<br />

[1] Thegeometryofnondegeneracy conditions incompletelyintegrablesystems<br />

In K.A.M-like theorems one needs to impose nondegeneracy conditions on the completely<br />

integrable Hamiltonian H0 in order to insure that the set of Diophantine tori (which<br />

persist after a small perturbation H0 + εK) has large measure. These conditions are usualy<br />

given in action-angle coordinates, but it is possible to formulate them geometrically, by<br />

considering completely integrable systems defined on a symplectic manifold by a fibration<br />

in Lagrangian tori and a Hamiltonian function constant on the fibers. In this article, we<br />

give a geometric definition for several nondegeneracy conditions, we explain the different<br />

implication relation that exist between them, and we show the unicity of the fibration for<br />

non-degenerate Hamiltonians.<br />

[2] Regular deformationsofcompletelyintegrable systems<br />

Given a symplectic manifold (M, ω) and a fibration M → B in lagrangian tori, we show<br />

thatanyfamily φ ε ofsymplectomorphims canbedecomposed inauniquewayas φ ε = Φ ε ◦<br />

ϕ ε ,with Φ ε afamilyoffiber-preservingsymplectomorphimsand ϕ ε afamilyofHamiltonian<br />

symplectomorphims. This normal form is used in a second part to study deformations of<br />

non-degenerate regular completely integrable hamiltonian. Namely, we make explicit the<br />

spaceofperturbationsKofacompletelyintegrableHamiltonian H0,suchthattheperturbed<br />

Hamiltonian H0 + εK is“completelyintegrable up toO ε 2 ”.<br />

[3] Intersectionsof Lagrangian submanifoldsand the Mel’nikov1-form<br />

Mel’nikov’s theory/method deals with Hamiltonian systems H0 ∈ C∞ R2 with a hyperbolic<br />

point x0 and their perturbations Hε := H0 + εK, where H1 (t) ∈ C∞ R2 × R depends<br />

on the time in a periodic way. We assume that the stable and the unstable manifolds<br />

of x0 coincide, thus forming together a manifold of homoclinic points. Meln’ikov’s method<br />

provides a way to detect homoclinic points in the perturbed system Hε, in which the stable<br />

andunstable manifolddonolongercoincide. Namely,themethodpredictthatthesehomoclinic<br />

points are given by the zeros of a function (called “Mel’nikov function”) and that this<br />

function admitsan integral form, in which appearsonlythe flow of H0.<br />

This method extends to perturbations of Hamiltonian systems having two transversally<br />

hyperbolic periodic orbits linked by a heteroclinic manifold. Unfortunately, the most of<br />

the works on this topic deal always with models, written in a coordinate system and with<br />

an explicit splitting between periodic and transversal varaibles. Besides the fact that these<br />

models are non-generic, they alsohide the geometrical characterof the method.<br />

In this article, we develop the general theory of intersections of pairs of familiies of La-<br />

grangian submanifolds N ± ε , with N+ 0 = N− 0<br />

, and constrained to live in an auxiliary family<br />

of submanifolds N ± ε ⊂ Pε ⊂ M. We show that the intersections N + ε ∩ N − ε which survive<br />

when ε = 0 are detected by a 1-form on N0, called Mel’nikov 1-form. We show that it is<br />

the appropriate tool for studying heteroclinic points between two transversally hyperbolic<br />

5


periodicorbits. This1-formadmitsanintegralexpressioninvolvingonlytheflowof H0,but<br />

which is in general divergent. We give several ways to treat this divergence problem and<br />

we explain whyit doesapparentlynot appearin the above-mentionned particular models.<br />

[5] Asemi-classicalK.A.M. theorem<br />

We consider a semiclassical completely integrable system defined by a pseudodifferential<br />

operator ˆH, with small parameter ¯h, on the torus T d , whose total symbol is a classicaly<br />

completely integrable Hamiltonian H ∈ C ∞ T ∗ T d . We study perturbed operators of the<br />

form ˆH + ¯h κ ˆK, where ˆK is any pseudodifferential operator and κ > 0, and we show the<br />

existence ofsemiclassical normal forms forthese operators. Thisisused toconstruct a large<br />

number of quasimodes, in analogy with the K.A.M theorem in classical mechanics which<br />

proves the persistency of a large number of invariant tori after perturbation. Moreover, the<br />

first correction to the eigenvalues is related to the average of the symbol of the perturbation<br />

ˆK. In order to prove these result, one needs to perform a very precise analysis of the<br />

resonances and the diophantine tori with parameters dependingon ¯h.<br />

[4] Ruelle-Pollicottresonancesfor realanalytic hyperbolicmaps<br />

Weconsider two simplemodelsof uniformly hyperbolic dynamical systems : expansive<br />

maponthecircleS 1 andhyperbolicmaponthetorus T 2 ,andwestudythedecayoftimecorrelation<br />

functions, which isfundamental to establish other chaotic properties of the system.<br />

To achieve this, we study the Ruelle transfert operator ˆM defined as the pull-back operator<br />

ˆM (ϕ) = ϕ ◦ M, where M is a chaotic real analytic map on S 1 (resp. T 2 ) and ϕ ∈ L 2 S 1<br />

(resp. ϕ ∈ L 2 T 2 ). We show that the Ruelle-Pollicott resonances, which describe the time<br />

correlation functions Cϕ,φ (n) = ϕ. ˆM n (φ) dx, with n ∈ N, can be obtained as the eigenvalues<br />

of a trace class operator on L 2 S 1 (resp. L 2 T 2 ). We show moreover that these<br />

resonances accumulate exponentiallyfast on 0.<br />

[6] ASemi-classicalapproachfor Anosov diffeomorphismsand Ruelle resonances<br />

If f is an Anosov diffeomorphism on a compact manifold, the decay of the dynamical<br />

correlation functions is governed by the so-called Ruelle resonances. It follows from the<br />

works of Baladi & al and Liverani & al, that these resonances can be obtained by a suitable<br />

spectral analysisofthecomposition operator (oranotherone relatedto it)calledthe "Transfer<br />

operator". In this paper, we show how these results can be obtained by a systematic<br />

microlocal analysis, extending the approach of the previous work [4].<br />

[7] Thegeometryofthe spaceof fibrations<br />

We study geometrical aspects of the space of fibrations between two given manifolds<br />

M and B, from the point of view of Frechet geometry. As a first result, we show that any<br />

connected component of this space is the base space of a Frechet-smooth principal bundle<br />

with the identity component of the group of diffeomorphisms of M as total space. Second,<br />

weprovethatthespaceoffibrationsisalsoitselfthetotalspaceofasmoothFrechetprincipal<br />

bundle with structure group the group of diffeomorphisms of the base B.<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!