23.03.2013 Views

Charge Density of the Neutron

Charge Density of the Neutron

Charge Density of the Neutron

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Charge</strong> <strong>Density</strong> <strong>of</strong> <strong>the</strong> <strong>Neutron</strong><br />

Gerald A. Miller<br />

University <strong>of</strong> Washington<br />

arXiv:0705.2409<br />

What do form factors really measure?


What is charge density at <strong>the</strong><br />

center <strong>of</strong> <strong>the</strong> neutron?<br />

<strong>Neutron</strong> has no charge, but charge density<br />

need not vanish<br />

Is central density positive or negative?


TTM<br />

4π r 2 ρ n (r)<br />

One gluon exchange also gives<br />

positive central charge density


Enough models- models models- Today<br />

model independent independent<br />

information


Outline<br />

Electromagnetic form factors<br />

Light cone coordinates, kinematic<br />

subgroup<br />

GPDs + Bit <strong>of</strong> math<br />

Two dimensional Fourier transf. transf.<br />

<strong>of</strong> F gives ρ(b), (b), Soper ’77 77<br />

1 Data analysis, Interpretation


Definitions<br />

Old Interpretation- Breit frame<br />

G E is helicity flip matrix element <strong>of</strong> J 0<br />

2


Interpretation <strong>of</strong> Sachs - G (Q E 2 Interpretation <strong>of</strong> Sachs - GE(Q (Q ) is 2 ) is<br />

Fourier transform <strong>of</strong> charge density<br />

Correct non-relativisticaly<br />

φ invariant under Galilean transformation<br />

--<br />

φ is frame dependent,<br />

interpretation <strong>of</strong> Sachs wrong


Why relativity if Q2 ¿ M2 Why relativity if Q 2 ¿ M2 QCD- QCD photon hits ≈ massless<br />

quarks<br />

No matter how small Q 2 is, <strong>the</strong>re<br />

is a boost correction that is ∝ Q2 F ∼ Q 1 2<br />

RN<br />

2 (|ψ| (| 2 +C/(m qRN) 2 )


Light Light cone cone coordinates<br />

coordinates


Relativistic formalism-<br />

kinematic subgroup <strong>of</strong> Poincare<br />

Lorentz transformation –transverse transverse<br />

velocity v<br />

k - such that k 2 not changed<br />

Just like non-relativistic


Generalized Parton Distribution<br />

A + =0, t=(p-p’) 2 = -Q 2 =-


H q (x,0)=q(x) (PDF)<br />

transverse center <strong>of</strong> mass R


Burkardt<br />

Integrate on x, Left: sets x - =0 q + † (0,b) q+ (0,b)<br />

DENSITY; right 2 Dim. Fourier T. <strong>of</strong> F 1


<strong>Density</strong><br />

RESULT<br />

τ=Q 2 /4M 2<br />

(2π) 2<br />

Soper ‘77


hep-ex/0602017


Results<br />

Kelly<br />

BBBA<br />

Negative


Negative F 1<br />

means central<br />

density negative<br />

GeV<br />

G<br />

2<br />

GeV 2


<strong>Neutron</strong> Interpretation<br />

0.005<br />

1<br />

0.5<br />

0.1<br />

0.05<br />

0.01<br />

-<br />

+<br />

b<br />

0 1 2 3 4 5 6<br />

? π - at short distance ?


<strong>Neutron</strong> Form Factors in LFCBM<br />

Miller 2002<br />

These give negative F 1


<strong>Charge</strong> symmetry: u in proton is d in<br />

neutron, d in proton is u in neutron<br />

ρ u =ρ p -ρ n /2 ρ d =ρ p -2ρ n<br />

ρ p =4/3ρ u -2/3 ρ d


?Quark interpretation?<br />

b=0, high transverse momentum, low<br />

Bjorken x<br />

low x, sea<br />

u u<br />

-<br />

u is suppressed by Pauli principal,<br />

Signal & Thomas


Summary<br />

Model independent information on charge<br />

density<br />

• Central charge density <strong>of</strong><br />

neutron is negative<br />

• Pion cloud at large b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!