25.03.2013 Views

2011-2012 - Nabi.res.in

2011-2012 - Nabi.res.in

2011-2012 - Nabi.res.in

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

CONTENTS<br />

S.No Particulars Page No.<br />

1 From the Desk of the Executive Director 1<br />

2. Vision and Mission Statement 3<br />

3. Research Prog<strong>res</strong>s and Emerg<strong>in</strong>g Areas 5<br />

4 Synergy Through Collaborations and Network<strong>in</strong>g 41<br />

5. Newly Jo<strong>in</strong>ed Faculty 43<br />

6. Research Publications 55<br />

7. Extramural Grants and Fund<strong>in</strong>g 59<br />

8. Governance 60<br />

9. Human Resource 69<br />

10. Prog<strong>res</strong>s of Infrastructure at Ma<strong>in</strong> Campus 73<br />

11. Prog<strong>res</strong>s of Infrastructure at Interim Facility 77<br />

12. Important Events 81<br />

13. Photo-gallery 85<br />

14. F<strong>in</strong>ancials 98


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

FROM THE DESK OF THE EXECUTIVE DIRECTOR<br />

Dur<strong>in</strong>g its second year of growth, NABI began to specialty molecules<br />

prepare itself to function as a 'Change-Leader' for <strong>in</strong>dustry - the<br />

who should anticipate the future needs of agri- starches, oils, prote<strong>in</strong>s<br />

food sector, expand knowledge, and translate it and phytomolecules.<br />

to design food plants for the future. The A twenty first century<br />

Govern<strong>in</strong>g Body constituted the first Scientific <strong>in</strong>stitute must generate<br />

Advisory Committee (SAC) and the Programme dar<strong>in</strong>g ideas <strong>in</strong> bio-<br />

Advisory Committee (PAC) of NABI to guide its technology, beyond<br />

advancement around turn<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong> agri-food the current GM technobiotechnology.<br />

Expand<strong>in</strong>g the faculty and staff at logies and design<br />

NABI was the immediate need. The Programme plants for hybrid<br />

Advisory Committee <strong>in</strong> its first meet<strong>in</strong>g held on vigour, photosynthetic potential, bioavailable<br />

July 26, <strong>2011</strong> emphasized upon establish<strong>in</strong>g a nutrients, post harvest stability, specialty<br />

system for attract<strong>in</strong>g bright young scholars. The products, nutrient and water utilization<br />

Govern<strong>in</strong>g Body approved a number of efficiency and endurance to biotic and abiotic<br />

fellowships at NABI and stipend for short term st<strong>res</strong>ses. Transformational <strong>in</strong>ventiveness, team<br />

tra<strong>in</strong>ees. Soon, the <strong>in</strong>stitute developed critical work, big th<strong>in</strong>k<strong>in</strong>g, confidence to succeed from<br />

mass <strong>in</strong> some areas, and began to grow. farm to fork and societal priorities should set the<br />

The faculty strength grew from seven last year to<br />

<strong>res</strong>earch agenda for NABI.<br />

twelve this year. The adm<strong>in</strong>istration and Some of the important projects executed dur<strong>in</strong>g<br />

technical staff grew from seven to thirteen. the year <strong>in</strong>cluded efforts towards the<br />

Besides faculty, four contractual scientists, identification of molecular traits and genes that<br />

fifteen <strong>res</strong>earch fellows and seventeen tra<strong>in</strong>ees determ<strong>in</strong>e the process<strong>in</strong>g and nutritional quality<br />

energized the <strong>in</strong>stitute and its <strong>res</strong>ources. The <strong>in</strong> food crops, the <strong>in</strong>gredients that enhance the<br />

<strong>in</strong>frastructure at the Interim Facility expanded <strong>in</strong> value of food for consumer health, the growth<br />

genomics, tissue specific transcriptomics, and developmental pathways that determ<strong>in</strong>e<br />

metabolomics, genome <strong>in</strong>formatics, animal and seed formation and the quality of fruits,<br />

plant tissue culture, controlled environment transformational tools appropriate to design<strong>in</strong>g<br />

plant growth facilities, food chemistry etc. An plants for future, and susta<strong>in</strong>able biological<br />

architect was appo<strong>in</strong>ted to design the NABI approaches for add<strong>in</strong>g value to complete<br />

campus. Germplasm collection at experimental agricultural produce from seed to straw. Besides<br />

field became richer. The <strong>in</strong>stitute began to Arabidopsis as the model plant, the crop species<br />

vibrate with energy. <strong>in</strong> the above <strong>res</strong>earches were wheat, millets,<br />

The Govern<strong>in</strong>g Body and the Scientific Advisory<br />

litchi, custard apple and mango. Details of<br />

<strong>in</strong>dividual projects are described <strong>in</strong> the chapters<br />

Committee <strong>in</strong>spired NABI to develop <strong>in</strong>to a<br />

1<br />

that follow.<br />

world class <strong>in</strong>stitute on the strength of<br />

transformational <strong>in</strong>novations required for the The first <strong>res</strong>earch paper on the work 'conceived<br />

shift<strong>in</strong>g role of plants <strong>in</strong> bio-based economy. The and <strong>in</strong>itiated' at NABI was accepted for<br />

current objective of design<strong>in</strong>g plants for publication. This was a motivat<strong>in</strong>g news <strong>in</strong> the<br />

'economic access to food' was shift<strong>in</strong>g to second year of an <strong>in</strong>stitute that started from<br />

design<strong>in</strong>g plants differently for 'food sufficiency noth<strong>in</strong>g. The paper reported the first f<strong>in</strong>d<strong>in</strong>g of a<br />

with health and bioeconomy'. Some of the photo gem<strong>in</strong>i virus <strong>in</strong>fect<strong>in</strong>g wheat <strong>in</strong> India. It was<br />

synthetically most efficient plants will be published <strong>in</strong> the Archives of Virology. NABI will<br />

designed more creatively <strong>in</strong> future to produce hopefully use this virus to develop first


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

<strong>in</strong>digenous tools <strong>in</strong> the form of gene silenc<strong>in</strong>g Programme Advisory Committees, Scientific<br />

and exp<strong>res</strong>sion vectors for basic and applied Advisory Committee, Govern<strong>in</strong>g Body, the<br />

studies on wheat. Discovery of the wheat virus <strong>in</strong> Society of NABI; and hard work of the faculty<br />

two geographically and climatically dist<strong>in</strong>ct and staff. The heritage of a rich beg<strong>in</strong>n<strong>in</strong>g should<br />

locations (Mohali and Nilgiri) may be a po<strong>in</strong>ter take the <strong>in</strong>stitute to greater accomplishments <strong>in</strong><br />

at tak<strong>in</strong>g this new virus seriously by the breeders the years to come.<br />

and wheat pathologists <strong>in</strong> the country.<br />

It is a cont<strong>in</strong>u<strong>in</strong>g journey for NABI. My<br />

The first sponsored <strong>res</strong>earch project that NABI colleagues have done well <strong>in</strong> prepar<strong>in</strong>g the<br />

received was <strong>in</strong> the important area of <strong>in</strong>stitute to match the high expectations <strong>in</strong><br />

<strong>in</strong>formation flow from root to seed. The early transform<strong>in</strong>g plant sciences. A new <strong>in</strong>stitute like<br />

f<strong>in</strong>d<strong>in</strong>gs on the possibility of mov<strong>in</strong>g small RNA NABI is freer to sketch and plan its areas for<br />

signals across the plant, can open valuable <strong>in</strong>vestment, when the <strong>res</strong>ources and details are<br />

opportunities for regulat<strong>in</strong>g economically and still uncommitted, than at a later stage when the<br />

agronomically important traits. The applications die has been cast and one must live with what the<br />

of mobile small RNA signals can open past had chosen. Through this Annual Report, I<br />

extraord<strong>in</strong>ary possibilities for design<strong>in</strong>g plants. urge the readers and well wishers to guide us to<br />

NABI should hopefully apply this technology to the path of exceptional creativity for add<strong>res</strong>s<strong>in</strong>g<br />

develop smarter horticultural plants that are the chang<strong>in</strong>g landscape and dynamics of<br />

difficult to improve due to long grow<strong>in</strong>g seasons. knowledge for national good and global<br />

The emphasis on commitment, creativity,<br />

<strong>in</strong>frastructure, <strong>in</strong>tellect and team work should<br />

k<strong>in</strong>dle high ambitions <strong>in</strong> the young faculty and<br />

<strong>res</strong>earch fellows to keep NABI ahead of time <strong>in</strong><br />

networks.<br />

add<strong>res</strong>s<strong>in</strong>g the challenges <strong>in</strong> nutrition, food (Dr Rakesh Tuli)<br />

security and biobus<strong>in</strong>ess. A good beg<strong>in</strong>n<strong>in</strong>g had<br />

been made - thanks to the <strong>in</strong>sights and<br />

encouragement by the members of the<br />

Executive Director<br />

National Agri-Food Biotechnology Institute<br />

2


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

VISION AND MISSION STATEMENT<br />

To be a nodal organization for knowledge generation and translational science<br />

lead<strong>in</strong>g to value added products based on agri- food biotech <strong>in</strong>novations.<br />

l To transform agri-food sector <strong>in</strong>to globally reward<strong>in</strong>g and susta<strong>in</strong>able<br />

biotechnology-based enterprise through <strong>in</strong>novative solutions <strong>in</strong> primary<br />

and secondary agriculture <strong>in</strong>clud<strong>in</strong>g high-end food process<strong>in</strong>g.<br />

l To develop synergy among knowledge providers and <strong>in</strong>vestors <strong>in</strong> agrifood<br />

sector to carry <strong>in</strong>novations to marketplace.<br />

3


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

RESEARCH PROGRESS AND<br />

EMERGING AREAS<br />

5


1.1 Functional genomics for enhanc<strong>in</strong>g m<strong>in</strong>eral<br />

nutrition and process<strong>in</strong>g quality <strong>in</strong> wheat<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

1. IMPROVING CEREALS FOR NUTRITION AND<br />

PROCESSING QUALITY<br />

PIXE) are promis<strong>in</strong>g tools to study iron<br />

localization and tissue specific iron concentration<br />

<strong>in</strong> seeds of contrast<strong>in</strong>g wheat genotypes. X-ray<br />

Absorption Near Edge Structure (µ-XANES) and<br />

1.1.1 Iron distribution and tissue-specific<br />

transcriptomics <strong>in</strong> gra<strong>in</strong>s of contrast<strong>in</strong>g wheat<br />

genotypes<br />

Extended X-ray Absorption F<strong>in</strong>e Structure<br />

(EXAFS) can be used to <strong>in</strong>vestigate ionic state of<br />

Pr<strong>in</strong>cipal Investigator:<br />

iron and the chemical environment around iron<br />

Rakesh Tuli<br />

metal <strong>in</strong> biological tissues. The aim of the project<br />

Co-Investigator:<br />

Sudhir P. S<strong>in</strong>gh<br />

is to study the dynamics of iron distribution<br />

pattern and chemical forms of iron <strong>in</strong> the seed<br />

tissues of contrast<strong>in</strong>g wheat genotypes by us<strong>in</strong>g<br />

Research Fellows:<br />

Anuradha Swami<br />

synchrotron powered beam sources (XRF, PIXE,<br />

XANES and EXAFS).<br />

Raja Jeet Plant genome encodes families of metal<br />

Introduction:<br />

transporters, which control metal distribution <strong>in</strong><br />

plants by different exp<strong>res</strong>sion pattern and cellular<br />

In wheat gra<strong>in</strong> iron is located <strong>in</strong> the outer layer, localization. It is essential to exam<strong>in</strong>e difference<br />

called bran (Figure 1) and is lost substantially <strong>in</strong> temporal and spatial exp<strong>res</strong>sion of prote<strong>in</strong>s<br />

dur<strong>in</strong>g mill<strong>in</strong>g and process<strong>in</strong>g. The wheat flour is with<strong>in</strong> the tissues of develop<strong>in</strong>g gra<strong>in</strong>s of<br />

almost devoid of iron. The prospect of develop<strong>in</strong>g contrast<strong>in</strong>g wheat genotypes. The project aims at<br />

wheat gra<strong>in</strong> with iron-enriched endosperm is of a study<strong>in</strong>g tissue specific transcriptomics by us<strong>in</strong>g<br />

great <strong>in</strong>te<strong>res</strong>t. We are try<strong>in</strong>g to understand the Laser Capture Micro-dissection (LCM) facility to<br />

bottlenecks prevent<strong>in</strong>g iron translocation from the study the molecular biology of iron traffick<strong>in</strong>g<br />

outer bran layer <strong>in</strong>to the endosperm <strong>in</strong> wheat. from maternal tissues to filial tissues of wheat<br />

Barriers to m<strong>in</strong>eral transport with<strong>in</strong> gra<strong>in</strong> can be gra<strong>in</strong>s.<br />

explored by exam<strong>in</strong><strong>in</strong>g the turnover rate for<br />

metals between different gra<strong>in</strong> tissues <strong>in</strong><br />

Research Objectives:<br />

contrast<strong>in</strong>g genotypes. Synchrotron radiation is a l To study iron localization pattern and<br />

useful approach to study the spatial element chemical forms <strong>in</strong> the gra<strong>in</strong>s of contrast<strong>in</strong>g<br />

distribution, element concentration, state of wheat genotypes.<br />

metals and chemical environment <strong>in</strong> different<br />

tissues of wheat gra<strong>in</strong>. µ-X ray Fluo<strong>res</strong>cence (µ-<br />

XRF) and µ-Proton Induced X-ray Emission (µ-<br />

l To exam<strong>in</strong>e differential transcriptomics <strong>in</strong> the<br />

tissues of develop<strong>in</strong>g wheat gra<strong>in</strong>s.<br />

l Gene discovery for high accumulation of<br />

bioavailable iron <strong>in</strong> wheat.<br />

Figure 1: Iron distribution pattern <strong>in</strong> transverse section of<br />

Aegilops kotschyi (L) and Triticum aestivum (R) gra<strong>in</strong> by<br />

µ-PIXE (micro-Proton Induced X-ray Emmission). Most<br />

of the iron is localized <strong>in</strong> outer bran layer.<br />

7<br />

Long Term Objective:<br />

Development of wheat varieties with high<br />

bioavailable iron content <strong>in</strong> gra<strong>in</strong>s.<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

1. µ-XRF iron localization maps have been<br />

generated focus<strong>in</strong>g on the crease region of<br />

mature gra<strong>in</strong>s of contrast<strong>in</strong>g genotypes of


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

wheat by us<strong>in</strong>g synchrotron powered beam different tissues of mature wheat gra<strong>in</strong> of<br />

l<strong>in</strong>e-VESPERS (Very Sensitive Elemental contrast<strong>in</strong>g genotypes at University of<br />

and Structural Probe Employ<strong>in</strong>g Radiation), Ljubljana and Jozef Stefan Institute,<br />

at Canadian Light Source (CLS), Saskatoon, Ljubljana, Slovenia. The µ-PIXE imag<strong>in</strong>g<br />

Canada. XRF images obta<strong>in</strong>ed of the crease analysis of Aegilops kotschyi acc. 3790<br />

region of diverse genotypes showed revealed the p<strong>res</strong>ence of high concentrations<br />

different iron localization pattern. The high of iron <strong>in</strong> crease region, <strong>in</strong> particular<br />

iron genotypes (Aegilops kotschyi acc. vascular strands (Figure 3). The other iron<br />

3790, Triticum aestivum L. IITR26) showed rich tissues were nucellar projection, the<br />

relatively high <strong>in</strong>tensity of iron near crease-aleurone, aleurone and scutellum.<br />

pigment strand and nucellar projection The endosperm showed significantly low<br />

tissues of crease region (Figure 2). On the iron accumulation. Its embryo region<br />

other hand, <strong>in</strong> the low iron wheat genotypes showed only little <strong>in</strong>crease <strong>in</strong> iron<br />

Figure 2: Iron XRF maps of transverse section of seed of (A) Aegilops kotschyi accession 3790. (B)<br />

Triticum aestivum L. ITR26. (C) Triticum aestivum cv. WH291. (D) Triticum aestivum cv. WL711. The<br />

colour scale rep<strong>res</strong>ents relative <strong>in</strong>tensities of fluo<strong>res</strong>cence, with blue and red cor<strong>res</strong>pond<strong>in</strong>g to the lowest<br />

and highest iron <strong>in</strong>tensity, <strong>res</strong>pectively.<br />

(Triticum aestivum cv. WH291, Triticum accumulation than <strong>in</strong> endosperm. Iron<br />

aestivum cv. WL711) the high <strong>in</strong>tensity distribution analysis <strong>in</strong> Triticum aestivum L.<br />

region was mobilized towards aleurone of IITR26 showed nucellar projection as iron<br />

crease (Figure 3). XRF scann<strong>in</strong>g <strong>in</strong> all four hot spot, carry<strong>in</strong>g highest concentration of<br />

genotypes showed aleurone as the iron hot iron. The next iron rich tissues were creasespot<br />

region with very low signals for iron <strong>in</strong> aleurone, aleurone and scutellum. In<br />

the <strong>in</strong>ternal layers of endosperm (Figure 2). vascular strand, iron was three times lesser<br />

2. µ-PIXE iron localization maps have been<br />

generated to further validate the µ-XRF and<br />

to get accurate quantification of iron <strong>in</strong><br />

than <strong>in</strong> nucellar projection, <strong>in</strong>dicat<strong>in</strong>g<br />

mobilization of iron from vascular tissue to<br />

nucellar projection.<br />

8


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Figure 3: Iron µ-Proton <strong>in</strong>duced X-ray emission (µ-PIXE) maps of cross-section<br />

of gra<strong>in</strong> of (A) Aegilops kotschyi accession 3790. (B) Triticum aestivum L.<br />

IITR26. (C) Triticum aestivum cv. WH291. (D) Triticum aestivum cv. WL711.<br />

PIXE element maps of low iron genotypes a gradual <strong>in</strong>crease <strong>in</strong> iron concentration was<br />

Triticum aestivum cv. WH291 depicted observed along the m<strong>in</strong>eral-transport route<br />

crease-aleurone, nucellar projection and (from vascular tissue, nucellar projection to<br />

aleurone as major tissues for accumulation crease-aleurone) of both of the low iron<br />

and localization of iron, followed by genotypes. However, significantly less<br />

scutellum and vascular strand. On the other relative amount of iron <strong>in</strong> endosperm of all<br />

hand, <strong>in</strong> WL711, the genotype hav<strong>in</strong>g less the genotypes affirms aleurone as the major<br />

gra<strong>in</strong> iron content, aleurone was the iron hurdle <strong>in</strong> iron mobilization towards<br />

richest tissue followed by nucellar endosperm.<br />

projection and scutellum. In nucellar<br />

projection, iron concentration was half of<br />

the aleurone. In vascular tissue, iron was<br />

three times lesser than that <strong>in</strong> aleurone.<br />

Thus, <strong>in</strong> contrast to the high iron genotypes,<br />

3. µ-XANES has been recorded from different<br />

tissues of crease region of mature wheat<br />

gra<strong>in</strong>s to identify different ionic forms of<br />

iron and chemical environment around iron<br />

Figure 4: Laser captu<strong>res</strong> micro-dissection of nucellar projection transfer<br />

cells (NP), vascular bundle (VB), aleurone (AL) and endosperm transfer<br />

cells (TC) of wheat gra<strong>in</strong> at 14th days after anthesis.<br />

9


metal at CLS. XANES of bulk seeds are <strong>in</strong><br />

prog<strong>res</strong>s at Jozef Stefan Institute, Slovenia.<br />

Extended X-ray absorption f<strong>in</strong>e structure<br />

(EXAFS; at Hamburg Synchrotron<br />

Radiation Laboratory, Hamburg, Germany.)<br />

will be performed on the mature wheat gra<strong>in</strong><br />

samples to get the chemical form <strong>in</strong> which<br />

iron is localized <strong>in</strong> the mature wheat gra<strong>in</strong>s.<br />

4. To exam<strong>in</strong>e the tissue specific differential<br />

transcriptome <strong>in</strong> the tissues of develop<strong>in</strong>g<br />

gra<strong>in</strong>s of contrast<strong>in</strong>g genotypes, LCM was<br />

applied to micro dissect tissues such as<br />

vascular bundle, nucellar projection,<br />

endosperm and aleurone (Figure 4). RNA<br />

extraction from the micro-dissected tissues<br />

has been established. The RNA Integrity<br />

Number (RIN) was above 7 <strong>in</strong> each case<br />

(Figure 5), hence suitable for tissue specific<br />

transcriptomics studies to be taken up <strong>in</strong> the<br />

future.<br />

1.1.2 Gene discovery for improvement of<br />

process<strong>in</strong>g and nutrition quality <strong>in</strong> wheat<br />

Co-ord<strong>in</strong>ator:<br />

Rakesh Tuli<br />

Investigators:<br />

Joy K. Roy<br />

Shrikant Subhash Mantri<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Figure 5: Electropherogram of RNA, extracted from seed tissues of WL711:<br />

VB=Vascular Bundle, NP= Nucellar Projection, E= Endosperm, Al= Aleurone,<br />

show<strong>in</strong>g RIN value and RNA <strong>in</strong>tegrity assessed on Bio-analyser (Agilent).<br />

10<br />

Project Scientist:<br />

Nishima Wangoo<br />

Research Fellows:<br />

Anuradha S<strong>in</strong>gh<br />

Monica Sharma<br />

Introduction:<br />

Wheat is one of the most important staple food<br />

crops and wheat flour is processed <strong>in</strong>to a wide<br />

range of baked and processed foods. Although<br />

wheat breeders have been successful <strong>in</strong> achiev<strong>in</strong>g<br />

high yields, but the p<strong>res</strong>ent high yield<strong>in</strong>g varieties<br />

require improvement <strong>in</strong> process<strong>in</strong>g and nutrition<br />

related traits to meet the <strong>in</strong>creas<strong>in</strong>g demand of<br />

healthy wheat diets for consumers and better<br />

process<strong>in</strong>g quality for bak<strong>in</strong>g and process<strong>in</strong>g<br />

<strong>in</strong>dustries. Wheat is also a good source of dietary<br />

fib<strong>res</strong> (germplasm & bran) i.e. non-starch<br />

carbohydrates known to be helpful <strong>in</strong> the<br />

prevention of diet related health problems such as<br />

diabetes, hypertension and some types of cancers.<br />

Better understand<strong>in</strong>g of genes and regulators of<br />

metabolic pathways and their <strong>in</strong>teraction with<br />

environment is required for the improvement of<br />

seed quality for nutrition and process<strong>in</strong>g.<br />

Research Objectives:<br />

l Transcriptome and small RNA sequenc<strong>in</strong>g<br />

and genomic exp<strong>res</strong>sion studies us<strong>in</strong>g wheat<br />

microarrays to identify genes and regulators


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

5. The process<strong>in</strong>g quality is affected by size and contrast<strong>in</strong>g wheat varieties, C306 and<br />

distribution of starch granules. Starch Sonalika. These showed more differences <strong>in</strong><br />

granules were visualized under light free phenolics than bound phenolics (Figure<br />

Figure 7: Starch granules of C306, Sonalika, LOK1 and WH291 at 40X magnification viewed under a light<br />

microscope (upper panel) (scale bar = 30µm) and at 1000X magnification under Hitachi VP-SEM S-3400N<br />

facility (scale bar =50 µm).<br />

microscope and scann<strong>in</strong>g electron 8). The wheat variety C306 (86.9 to 104<br />

microscope (Figure 7). The four varieties GAE/100g) had more free phenolic content<br />

showed differences <strong>in</strong> size distribution. <strong>in</strong> comparison with Sonalika (63.9 to 68.8<br />

6. The percentage of amylopect<strong>in</strong> <strong>in</strong> the four<br />

GAE/100g).<br />

varieties, C306, LOK1, Sonalika and 8. To identify phenolic compunds, free<br />

WH291 was 21.1, 23.8, 22.0 and 25.0, phenolics were analysed on LC-MS<br />

<strong>res</strong>pectively. (Figure 9). The two varieties (C306 and<br />

7. Free phenols and bound phenols were<br />

extracted from the seeds of the two<br />

Sonalika) showed differences <strong>in</strong> the types of<br />

phenolic compounds.<br />

Figure 8: Free (f) and bound (b) phenolic content <strong>in</strong><br />

two Indian wheat varities, C306 and Sonalika, determ<strong>in</strong>ed<br />

by FCR method (GAE= gallic acid equivalents).<br />

12<br />

Figure 9: Different phenolic compounds<br />

identified <strong>in</strong> C306 and Sonalika us<strong>in</strong>g LC-MS


1.1.3 Development of Virus Induced Gene<br />

Silenc<strong>in</strong>g (VIGS)<br />

Pr<strong>in</strong>cipal Investigator:<br />

Rakesh Tuli<br />

Research Fellows:<br />

Jitendra Kumar<br />

Jitesh Kumar<br />

Kaushal Bhati<br />

Introduction:<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

VIGS is an approach to facilitate the assessment of<br />

gene function <strong>in</strong> plants. A recomb<strong>in</strong>ant virus that<br />

<strong>in</strong>fects plant tissue and spreads systemically can<br />

be very useful <strong>in</strong> the exp<strong>res</strong>sion of small RNA and<br />

silenc<strong>in</strong>g of targeted endogenous genes. The<br />

target transcript is degraded by Post-<br />

Transcriptional Gene Silenc<strong>in</strong>g (PTGS). VIGS<br />

can validate the function of a specific gene with<strong>in</strong><br />

a s<strong>in</strong>gle generation and obviates the need for<br />

screen<strong>in</strong>g large populations to identify mutations<br />

<strong>in</strong> specific genes. Be<strong>in</strong>g a transient method, it does<br />

not require the generation of stable transgenic<br />

plants. The project aims at develop<strong>in</strong>g an efficient<br />

VIGS vector for wheat.<br />

Research Objectives:<br />

13<br />

1. Detection and characterisation of viruses<br />

<strong>in</strong>fect<strong>in</strong>g wheat <strong>in</strong> India: The p<strong>res</strong>ence of<br />

virus and <strong>in</strong>sect vector was <strong>in</strong>vestigated <strong>in</strong><br />

wheat grow<strong>in</strong>g fields and suspected samples<br />

were tested (Figure 10). About 80% of the<br />

samples tested positive for the virus <strong>in</strong> the<br />

samples collected dur<strong>in</strong>g 2010 and<br />

<strong>2011</strong>(Mohali, Punjab and Well<strong>in</strong>gton, Tamil<br />

Nadu). The whole genome of the virus was<br />

sequenced and nucleotide sequences of two<br />

clones were submitted to the GenBank<br />

under the accession numbers JQ361910 and<br />

JQ361911. The virus was named as Wheat<br />

l Detection of viruses <strong>in</strong>fect<strong>in</strong>g wheat <strong>in</strong> Dwarf India Virus (WDIV).<br />

India.<br />

2. Detection of gem<strong>in</strong>ivirus associated<br />

l Analysis of the viral ma<strong>in</strong> genome and satellites from <strong>in</strong>fected wheat samples:<br />

accessory satellite genomic sequences. The wheat samples found positive for the<br />

l Establishment of <strong>in</strong>fectivity <strong>in</strong> different<br />

Indian wheat varieties by <strong>in</strong>oculat<strong>in</strong>g virus<br />

<strong>in</strong> the absesnce or p<strong>res</strong>ence of the accessory<br />

genomes.<br />

l Development of VIGS vector by modify<strong>in</strong>g<br />

the viral genome.<br />

l Validation of VIGS vector us<strong>in</strong>g visual<br />

markers.<br />

Long Term Objective:<br />

Elucidation of functions of candidate genes<br />

<strong>in</strong>volved <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the process<strong>in</strong>g and<br />

nutritional traits <strong>in</strong> wheat.<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

Figure 10: Difference <strong>in</strong> growth and physical<br />

appearance of healthy and WDIV <strong>in</strong>fected plants.Panel<br />

on the right shows probable <strong>in</strong>sect vector.<br />

virus were <strong>in</strong>vestigated, and two types of<br />

associated satellites (alpha and beta) were<br />

detected (Figure 11).<br />

Figure 11: Amplification for a mastrevirus, beta<br />

satellite and alpha satellite.


3. Establishment of <strong>in</strong>fectivity <strong>in</strong> different<br />

Indian wheat varieties: Infectious clones<br />

for virus and associated satellites were made<br />

and <strong>in</strong>fectivity tests were done. Host range<br />

was determ<strong>in</strong>ed by <strong>in</strong>fect<strong>in</strong>g different<br />

Indian wheat varieties which showed<br />

consistent <strong>in</strong>fectivity (Figure 12).<br />

4. Assessment of effect of alpha and beta<br />

satellites on the symptom <strong>in</strong>duction by<br />

virus: The phenotype was observed for<br />

assess<strong>in</strong>g the affects of the satellites on the<br />

virus symptom <strong>in</strong>duction process. The<br />

plants were observed show<strong>in</strong>g more<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

14<br />

Figure 14: Accumulation of virus <strong>in</strong> the<br />

p<strong>res</strong>ence of satellites.V= virus, B= beta satellite<br />

and A= alpha satellite.<br />

Figure 12: Agro<strong>in</strong>oculated wheat plants at 40th day post <strong>in</strong>oculation. M= mock<br />

<strong>in</strong>oculated and V= virus <strong>in</strong>fectious clone <strong>in</strong>oculated on different wheat varieties.<br />

was studied by us<strong>in</strong>g microarrays.<br />

Exp<strong>res</strong>sion analysis by us<strong>in</strong>g microarray<br />

revealed that, sixteen unigenes were up<br />

regulated by more than 10 fold, thirty five<br />

unigenes by more than 5 fold and about six<br />

hundred unigenes by more than 2 fold by the<br />

Figure 13: Agro<strong>in</strong>oculated wheat plants at 42nd day post <strong>in</strong>oculation. M= mock<br />

<strong>in</strong>oculated, V= virus <strong>in</strong>fectious clone and V+A+B= virus+alpha+beta satellite <strong>in</strong>fectious<br />

clone <strong>in</strong>oculated wheat plants.<br />

dwarfism <strong>in</strong> the p<strong>res</strong>ence of satellite <strong>in</strong> viral <strong>in</strong>fection. Eighteen different unigenes<br />

comparison to the virus alone (Figure 13). were down regulated by more than 10 fold,<br />

5. Assessment of effect of alpha and beta<br />

satellites on virus accumulation <strong>in</strong> plants:<br />

Semi quantitative PCR was done to assess<br />

the effect of the satellites on the virus<br />

accumulation <strong>in</strong>side the plant. The<br />

accumulation of virus was found high <strong>in</strong> the<br />

p<strong>res</strong>ence of the satellites (Figure 14). The<br />

effects of virus on plant at molecular level <strong>in</strong><br />

the p<strong>res</strong>ence and absence of these satellites<br />

sixty other by more than 5 fold and seven<br />

hundred other unigenes by 2 fold at the<br />

exp<strong>res</strong>sion level. P<strong>res</strong>ence of the beta<br />

satellite supported the gene regulation<br />

pattern of the virus, however, the alpha<br />

satellite regulated different sets of unigenes.<br />

P<strong>res</strong>ence of both the satellites and virus<br />

regulated more number of unigenes <strong>in</strong> the<br />

host plant (Figure 15).


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Figure 15: Gene exp<strong>res</strong>sion analysis <strong>in</strong> wheat leaves after 21 dpi with WDIV. (A) Up and down regulation of genes. (B)<br />

Venn diagram rep<strong>res</strong>ent<strong>in</strong>g the set of genes up regulated and down regulated dur<strong>in</strong>g virus <strong>in</strong>fection. (C) Hierarchical<br />

cluster<strong>in</strong>g and changes <strong>in</strong> gene exp<strong>res</strong>sion <strong>in</strong> virus only or virus+satellites-<strong>in</strong>fected wheat plants at 21st day post <strong>in</strong>oculation<br />

(dpi). Gene tree maps were generated us<strong>in</strong>g k-mean cluster<strong>in</strong>g at 2 fold or higher differentially regulated wheat genes.<br />

6. Development of VIGS vector by accession number FM998042). The PDS<br />

modify<strong>in</strong>g the viral genome: Two fragment was excised from the clon<strong>in</strong>g<br />

modifications were done <strong>in</strong> viral genome by vector and was <strong>in</strong>serted <strong>in</strong>to the MCS of<br />

remov<strong>in</strong>g a small stretch of nucleotides and viral genome us<strong>in</strong>g SpeI <strong>res</strong>triction<br />

<strong>in</strong>sert<strong>in</strong>g Multiple Clon<strong>in</strong>g Sites (MCS) at endonuclease. The viral genome hav<strong>in</strong>g<br />

the same positions. The modified viral PDS was termed as VIGS-PDS. In order to<br />

genome was cloned <strong>in</strong> a plasmid vector for <strong>in</strong>fect wheat for silenc<strong>in</strong>g of the PDS gene,<br />

further manipulation. head-to-tail dimerization of VIGS-PDS was<br />

7. Validation of VIGS vector us<strong>in</strong>g visual<br />

markers: A 327 bp fragment of phytoene<br />

desaturase (PDS) gene was amplified us<strong>in</strong>g<br />

cDNA as a template prepared from wheat<br />

(Triticum aestivum L.). The amplified<br />

fragment was cloned and sequenced to<br />

establish the identity. Sequence analysis<br />

showed an identity of 99% with the<br />

previously reported PDS gene (GenBank<br />

done <strong>in</strong>to pCAMBIA1301 b<strong>in</strong>ary vector.<br />

The PDS silenc<strong>in</strong>g cassette (pCAMBIA-<br />

VIGS-PDS) was transformed <strong>in</strong>to<br />

Agrobacterium tumefaciens (stra<strong>in</strong><br />

GV3101). The empty VIGS vector was also<br />

transformed <strong>in</strong> Agrobacterium. The<br />

silenc<strong>in</strong>g cassette and empty VIGS-vector<br />

were <strong>in</strong>oculated to healthy wheat plants<br />

separately and scored for phenotype at 15<br />

days (Figure 16 A, B and C).<br />

Intron<br />

C2<br />

C1<br />

WDIV<br />

2783 bp<br />

TAATATT/AC V E C<br />

V2<br />

V1<br />

Figure 16: Modification of WDIV for functional tool. (A) Genome organization of WDIV detected from<br />

wheat <strong>in</strong> India and used for develop<strong>in</strong>g as VIGS-vector, C1-Rep Prote<strong>in</strong>, C2-Rep-A Prote<strong>in</strong>, V1-Coat Prote<strong>in</strong>,<br />

V2-Movement Prote<strong>in</strong>. (B and C) Leaves from silenc<strong>in</strong>g PDS-cassette <strong>in</strong>oculated (V), empty VIGS-vector<br />

(E) and un<strong>in</strong>oculated control (C) wheat plants. (C) Partial view of a VIGS-PDS <strong>in</strong>oculated wheat plant.<br />

15


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

1.1.4 Efficient genetic transformation of wheat Research <strong>in</strong> Prog<strong>res</strong>s:<br />

Pr<strong>in</strong>cipal Investigator:<br />

Siddharth Tiwari<br />

1.<br />

a.<br />

Establishment of <strong>in</strong>-vitro regeneration:<br />

Callus mediated regeneration:<br />

Research Fellow:<br />

Anshu Alok<br />

i. In the four high yield<strong>in</strong>g (PBW621,<br />

PBW550, HD2697 and LOK1) cultivated<br />

varieties of wheat, matured embryos<br />

Introduction:<br />

cultured on MS medium supplemented<br />

with 2, 4-D showed the best <strong>res</strong>ponse for<br />

Efficient regeneration and genetic transformation callus <strong>in</strong>duction (Figure 17 A and B).<br />

protocols are pre-requisite for crop improvement ii. Multiple shoot <strong>in</strong>duction and elongation<br />

through genetic eng<strong>in</strong>eer<strong>in</strong>g. The protocols for<br />

from callus were observed to be most<br />

callus as well as direct multiple shoot mediated <strong>in</strong>-<br />

efficient on MS medium supplemented<br />

with zeat<strong>in</strong> (Figure 17 C, D and E).<br />

vitro regeneration and Agrobacterium-mediated iii. Healthy roots were <strong>in</strong>duced on the MS<br />

basal medium (Figure 17 F).<br />

genetic transformation of wheat have been<br />

optimized. Transgenic plants with reporter b. Direct multiple shoot mediated<br />

regeneration:<br />

b-glucuronidase (GUS-Intron) gene exp<strong>res</strong>sion<br />

have been developed and further molecular and i. Mature embryos of high yield<strong>in</strong>g<br />

segregation studies are <strong>in</strong> prog<strong>res</strong>s. The overall (PBW621, PBW550) cultivars of wheat<br />

showed best direct multiple shoot<br />

aim of the work undertaken is to establish an<br />

efficient <strong>in</strong>-vitro regeneration and genetic<br />

transformation protocols for wheat.<br />

Research Objective:<br />

Establishment of efficient <strong>in</strong>-vitro regeneration<br />

and genetic transformation protocols for wheat.<br />

Long Term Objective:<br />

Figure 17: Callus <strong>in</strong>duction and regeneration. (A) Explant (mature embryo).<br />

(B) Callus formation. (C-E) Stages of regenerated calli. (F) Root formation.<br />

Development of nutritionally rich and<br />

agronomically improved varieties.<br />

16<br />

Figure 18: Direct multiple shoot regeneration of wheat<br />

plants. (A) Multiple shoots. (B) Root formation.


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

<strong>in</strong>duction without an <strong>in</strong>termediary callus exp<strong>res</strong>sion studies <strong>in</strong> transgenic wheat.<br />

o n M S m e d i a c o n t a i n i n g 6 -<br />

B e n z y l a m i n o p u r i n e ( B A P ) a n d<br />

Thioridazuron (TDZ) (Figure 18 A).<br />

a. Callus based regeneration of<br />

transgenic wheat: The transient and<br />

stable exp<strong>res</strong>sion of reporter gene was<br />

ii. Culture was ma<strong>in</strong>ta<strong>in</strong>ed as the cont<strong>in</strong>uous noticed as blue colour on the embryos<br />

source of shoots. and callus-derived shoot bud,<br />

iii. Shoots were separated from the multiple<br />

<strong>res</strong>pectively (Figure 19 A and C). No<br />

shoot clumps and rooted on MS basal<br />

medium conta<strong>in</strong><strong>in</strong>g Indole-3-butynic acid<br />

(IBA) and Naphthaleneacetic acid (NAA)<br />

(0.5mg/l each) (Figure 18 B).<br />

2. Establishment of genetic transformation:<br />

Several factors were considered for the<br />

optimization of Agrobacterium-mediated<br />

genetic transformation. Mature embryo<br />

derived callus and direct multiple shoot<br />

<strong>in</strong>duction based <strong>in</strong>-vitro regeneration was<br />

used for reporter (GUS-Intron) gene<br />

Figure 19: GUS histochemical assay. (A) Transient<br />

exp<strong>res</strong>sion <strong>in</strong> embryos (blue color). (B) Non-transgenic<br />

embryos. (C) Stable exp<strong>res</strong>sion <strong>in</strong> callus-derived shoot<br />

bud (blue color). (D) Non-transgenic shoot bud.<br />

17<br />

exp<strong>res</strong>sion of GUS was noticed <strong>in</strong> the<br />

control embryos and shoot bud (Figure<br />

19 B and D).<br />

l· Direct multiple shoot <strong>in</strong>duction based<br />

regeneration of transgenic:<br />

a. Stable exp<strong>res</strong>sion was noticed as blue<br />

color on the shoots developed without<br />

an <strong>in</strong>termediate callus (Figure 20 A and<br />

B). No exp<strong>res</strong>sion of GUS was noticed<br />

<strong>in</strong> control shoots (Figure 20 C).<br />

Figure 20: GUS histochemical assay. (A and B) Transformed germ<strong>in</strong>ated shoots (blue color). (C) Nontransformed<br />

shoots.


1.1.5 Metabolic eng<strong>in</strong>eer<strong>in</strong>g of phytic acid<br />

pathway to enhance iron bioavailability <strong>in</strong> wheat<br />

Pr<strong>in</strong>cipal Investigators:<br />

Ajay K. Pandey<br />

Co-Investigator:<br />

Siddharth Tiwari<br />

Research Fellow:<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

18<br />

Research Objectives:<br />

l Identification of genes <strong>in</strong>volved <strong>in</strong> phytic<br />

acid pathway.<br />

l Comparative gene exp<strong>res</strong>sion analysis<br />

dur<strong>in</strong>g different developmental stages of the<br />

wheat gra<strong>in</strong>s.<br />

l Construction of RNAi vectors to <strong>in</strong>hibit the<br />

exp<strong>res</strong>sion of the target genes <strong>in</strong> wheat<br />

plant.<br />

Roohi Bansal l Stable transformation and exp<strong>res</strong>sion (for<br />

Introduction:<br />

RNAi) <strong>in</strong> wheat plants us<strong>in</strong>g selection<br />

markers.<br />

Phytic acid (myo-<strong>in</strong>ositol-1, 2, 3, 4, 5, 6-<br />

hexakisphosphate; PA; InsP6) beside been a<br />

storage form of phosphorus <strong>in</strong> seed is also a well<br />

l Exam<strong>in</strong>ation of quantitative relationship<br />

between total phytate content and <strong>in</strong>organic<br />

phosphorus <strong>in</strong> silenced wheat plants.<br />

Figure 21: Schematic rep<strong>res</strong>entation of PA pathway <strong>in</strong> plants.<br />

Long Term Objectives:<br />

Develop<strong>in</strong>g wheat varieties with reduced total<br />

phytate content and enhanced bioavailable iron.<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

1. We analysed transcriptome data for the<br />

genes which are differentially regulated and<br />

possibly <strong>in</strong>volved <strong>in</strong> phytic acid synthesis<br />

pathway. Dur<strong>in</strong>g our <strong>in</strong>itial analysis of C306<br />

and LOK1 varieties of wheat gra<strong>in</strong>s, we<br />

were able to identify some genes which<br />

putatively codes for <strong>in</strong>ositol phosphate<br />

k<strong>in</strong>ases (Table 1).<br />

know seed anti-nutrient. The chelat<strong>in</strong>g properties 2. Blastx analysis of the cor<strong>res</strong>pond<strong>in</strong>g gene<br />

of PA <strong>in</strong> seeds contribute to reduced iron and other ID suggests that they belong to <strong>in</strong>ositol<br />

micronutrients bioavailability. One of the major phosphate k<strong>in</strong>ase (IPK) gene family. All the<br />

challenges faced by <strong>res</strong>earchers worldwide is how<br />

to <strong>in</strong>crease the bioavailability of iron <strong>in</strong> wheat<br />

genes mentioned below belong to the late<br />

phase of the InsP synthesis pathway.<br />

seeds. In this project we want to utilize functional<br />

genomic tool/s to add<strong>res</strong>s the role of phytic acid<br />

synthesis genes. Our goal is to reduce the PA<br />

3. Wheat be<strong>in</strong>g a hexaploids crop (A, B and D<br />

genome), we are design<strong>in</strong>g primers<br />

target<strong>in</strong>g at the conserve nucleotide region<br />

content by silenc<strong>in</strong>g late PA pathway genes to amplify<strong>in</strong>g different genes by utiliz<strong>in</strong>g<br />

(Figure 21) <strong>in</strong> wheat gra<strong>in</strong>s and therefore genomic DNA as a template. Further, RNAi<br />

anticipat<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>g bioavailability of total constructs will be developed to target these<br />

iron. genes to assess their functional role <strong>in</strong> PA<br />

synthesis


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Table 1: List of putative phytic acid biosynthesis pathway genes regulated<br />

dur<strong>in</strong>g the anthesis <strong>in</strong> wheat plants.<br />

Probe set<br />

Gene Bank ID<br />

1.2 Accelerated breed<strong>in</strong>g for quality<br />

improvement<br />

19<br />

Annotated function<br />

(based on blast homology)<br />

Ta.27561.1.S1_at CK215630 <strong>in</strong>ositol-tetrakisphosphate 1 -k<strong>in</strong>ase 1 (from Zea<br />

mays)<br />

Ta.30464.1.A1_at CK214494 <strong>in</strong>ositol hexaphosphate k<strong>in</strong>ase (from Arabidopsis)<br />

Ta.5574.1.S1_a_at BJ227701 1-phosphatidyl<strong>in</strong>ositol-3-phosphate 5<br />

(from Oryza sativa Japonica)<br />

-k<strong>in</strong>ase-like<br />

TaAffx.113052.1 .S1_at<br />

TaAffx.121326.1.S1_at CA690518<br />

TaAffx.19998.1.A1_at CD867474<br />

CA618510 <strong>in</strong>ositol-tetrakisphosphate 1 -k<strong>in</strong>ase 1 (from Zea<br />

mays)<br />

<strong>in</strong>ositol 1,3,4 -trisphosphate 5/6 -k<strong>in</strong>ase (from<br />

Oryza sativa Japonica)<br />

<strong>in</strong>ositol phosphate k<strong>in</strong>ase<br />

TaAffx.112860.1.S1_at AF532601 multidrug <strong>res</strong>istance associated like prote<strong>in</strong> :<br />

MRP2 (Zea mays: lpa-1 gene)<br />

is well known. The prote<strong>in</strong> content and types<br />

determ<strong>in</strong>e the end product quality like bread,<br />

biscuit, cake, chapatti and noodles etc. Biscuit<br />

Pr<strong>in</strong>cipal Investigator:<br />

Monika Garg<br />

mak<strong>in</strong>g requi<strong>res</strong> soft wheat with low prote<strong>in</strong><br />

content and specific comb<strong>in</strong>ation of different<br />

Research Fellows:<br />

alleles (2+12 allele of High Molecular Weight<br />

Rohit Kumar<br />

Vishal Gupta<br />

Shaweta Arora<br />

gluten<strong>in</strong> subunit gene (HMW-GS) at chromosome<br />

1D (locus GluD1), P<strong>in</strong>a-D1a, P<strong>in</strong>b-D1a alleles of<br />

puro<strong>in</strong>dol<strong>in</strong>e gene etc). Bread mak<strong>in</strong>g requi<strong>res</strong><br />

hard wheat with high prote<strong>in</strong> content and specific<br />

Introduction:<br />

comb<strong>in</strong>ation of different alleles (5+10 allele of<br />

In the developed countries, gra<strong>in</strong> market is driven<br />

by wheat quality. A wheat class/grade is awarded<br />

to a product based on its process<strong>in</strong>g and end-use<br />

quality. Validated markers are available for each<br />

product type and are be<strong>in</strong>g rout<strong>in</strong>ely used. Indian<br />

GluD1-HMWGS, P<strong>in</strong>a-D1b, P<strong>in</strong>b-D1a/b etc).<br />

Chapatti mak<strong>in</strong>g requi<strong>res</strong> medium strength wheat<br />

with medium prote<strong>in</strong> content. The contribution of<br />

different genes/alleles to chapatti mak<strong>in</strong>g is<br />

poorly understood.<br />

cultivars are released based upon agro climatic Research Objectives:<br />

zones, time of sow<strong>in</strong>g and soil fertility. Validated<br />

markers are not available for a major product i.e.<br />

chapatti. Available validated markers are not<br />

l Generation of breed<strong>in</strong>g material with<br />

improved process<strong>in</strong>g quality.<br />

be<strong>in</strong>g utilized. In India, there is a need of breed<strong>in</strong>g<br />

cultivars, based upon their process<strong>in</strong>g quality<br />

l Marker discovery.<br />

(mill<strong>in</strong>g and bak<strong>in</strong>g characteristics), marker l Generation of near isogenic l<strong>in</strong>es for marker<br />

development and utilization of validated markers. discovery.<br />

Process<strong>in</strong>g quality of wheat depends upon seeds l Generation of RIL populations to validate<br />

harvested from field and its components like markers.<br />

prote<strong>in</strong>s, starch, non starch carbohydrates and<br />

lipids. Prote<strong>in</strong>'s contribution to process<strong>in</strong>g quality


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Long Term Objectives:<br />

l<strong>in</strong>es. PCR multiplex<strong>in</strong>g for selection of<br />

l Development and validation of markers<br />

associated with different process<strong>in</strong>g quality<br />

gra<strong>in</strong> softness genes <strong>in</strong> the backcross l<strong>in</strong>es<br />

was standardised.<br />

traits. 2. Accelerated breed<strong>in</strong>g<br />

l Screen<strong>in</strong>g of generated breed<strong>in</strong>g material For improvement of bread mak<strong>in</strong>g quality<br />

for multiple traits and <strong>in</strong>troduction <strong>in</strong>to we are utiliz<strong>in</strong>g wild species of wheat and<br />

mult<strong>in</strong>ational trials with the help of their genetic stocks (addition l<strong>in</strong>es,<br />

Directorate of Wheat Reaearch (DWR)/ substitution l<strong>in</strong>es and translocation l<strong>in</strong>es) as<br />

State University scientists to design end donors. For improvement of biscuit mak<strong>in</strong>g<br />

product (bread, biscuit, chapatti) specific quality, we are utiliz<strong>in</strong>g two soft wheat<br />

cultivars. landraces NAP HAL and IITR67 as donors<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

of gra<strong>in</strong> softness. For chapatti mak<strong>in</strong>g old<br />

cultivars C306 and LOK1 (well known for<br />

1. Marker discovery<br />

their good chapatti quality) are be<strong>in</strong>g<br />

Three traits (bread, biscuit and chapatti<br />

mak<strong>in</strong>g) and the factors <strong>res</strong>ponsible for their<br />

utilized. Factors/genes from the donors are<br />

be<strong>in</strong>g transferred to agronomically superior<br />

background by accelerated breed<strong>in</strong>g<br />

good quality are under study. Trans-<br />

20<br />

approach.<br />

criptomics studies at different developmental<br />

stages of good (C306 and LOK1) a. For improvement of chapatti mak<strong>in</strong>g<br />

and poor chapatti mak<strong>in</strong>g varieties quality, good chapatti mak<strong>in</strong>g old<br />

(Sonalika and WH291) <strong>in</strong>dicated that cultivars were crossed with high yield<strong>in</strong>g<br />

among the earlier reported genes affect<strong>in</strong>g recent cultivars (PBW343, PBW550 and<br />

wheat process<strong>in</strong>g quality, granule bound PBW621). Crossed seeds were<br />

starch synthase 1(GBSS1) was several folds backcrossed at DWR Regional Station,<br />

down-regulated <strong>in</strong> good chapatti varieties. Dalang Maidan, Lahaul, Himachal<br />

GBSS1 is <strong>in</strong>volved <strong>in</strong> amylose starch Pradesh dur<strong>in</strong>g off season. One hundred<br />

synthesis. Genomic variation of GBSS1 was and eighty n<strong>in</strong>e BC plants were screened<br />

1<br />

studied <strong>in</strong> several wheat cultivars. Allelic for absence of GBSS-1B and out of them<br />

variation of GBSS1 <strong>in</strong> Indian cultivars sixty plants were selected. Negative plants<br />

<strong>in</strong>dicated that GBSS-A1 and GBSS-D1 genes were backcrossed with selected cultivars<br />

were non-polymorphic and p<strong>res</strong>ent <strong>in</strong> all the and BC plants have been sown at Dalang<br />

2<br />

cultivars studied. GBSS-B1 gene was Maidan.<br />

polymorphic based on p<strong>res</strong>ence/absence<br />

alleles. Prelim<strong>in</strong>ary study on different b. For improvement of biscuit mak<strong>in</strong>g<br />

cultivars and l<strong>in</strong>es with known chapatti<br />

quality, donor landraces were aga<strong>in</strong><br />

mak<strong>in</strong>g quality <strong>in</strong>dicated that absence of<br />

crossed with high yield<strong>in</strong>g recent cultivars<br />

GBSS-B1 gene was co-related with good<br />

(PBW343, PBW550 and PBW621).<br />

chapatti mak<strong>in</strong>g quality (Figure 22). Among<br />

Crossed seeds were backcrossed at<br />

starch past<strong>in</strong>g characteristics, breakdown <strong>in</strong><br />

Dalang Maidan dur<strong>in</strong>g off season. One<br />

viscosity was found to be co-related with<br />

hundred and seventy eight BC 1 plants<br />

good chapatti mak<strong>in</strong>g quality. Validation of<br />

were selected based upon p<strong>res</strong>ence of<br />

relationship between GBSS1 and (Rheo<br />

puro<strong>in</strong>dol<strong>in</strong>e gene P<strong>in</strong>aD1a and fifty<br />

Visco Analyzer) RVA-breakdown of<br />

selected plants were backcrossed with<br />

viscosity <strong>in</strong> chapatti mak<strong>in</strong>g is <strong>in</strong> prog<strong>res</strong>s. selected cultivar. BC 2 plants have been<br />

For improvement of biscuit mak<strong>in</strong>g quality<br />

sown at Dalang Maidan.<br />

major genes (puro<strong>in</strong>dol<strong>in</strong>e and HMW c. For improvement of bread mak<strong>in</strong>g quality,<br />

gluten<strong>in</strong> genes) <strong>res</strong>ponsible for gra<strong>in</strong><br />

wild species/genetic stocks of Ag.<br />

softness were characterised <strong>in</strong> selected elongatum, Ae. searsii and Ag.


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

<strong>in</strong>termedium, are be<strong>in</strong>g utilized. We want 1.2.1 Development of puro<strong>in</strong>dol<strong>in</strong>e gene<br />

to transfer HMW-GS genes related to high database of Indian cultivars<br />

gra<strong>in</strong> strength from wild species to<br />

chromosome 1A of wheat (translocation<br />

l<strong>in</strong>es) as later has some alleles that<br />

contribute negatively to bread mak<strong>in</strong>g<br />

quality. For this purpose marker assisted<br />

selection and transfer to agronomically<br />

superior cultivars is <strong>in</strong> prog<strong>res</strong>s. The<br />

endosperm half of seeds of the above<br />

genotypes were screened for storage<br />

prote<strong>in</strong>s of <strong>in</strong>te<strong>res</strong>t by sodium dodecyl<br />

s u l p h a t e - p o l y a c r y l a m i d e g e l<br />

electropho<strong>res</strong>is (SDS-PAGE). The<br />

rema<strong>in</strong><strong>in</strong>g half seeds exp<strong>res</strong>s<strong>in</strong>g the<br />

selected wild species HMW-GSs were<br />

raised <strong>in</strong>to plants and crossed with the<br />

selected Indian wheat varieties. The above<br />

procedure was repeated one more time at<br />

NABI and the selected seeds were grown<br />

at Dalang Maidan. The seeds were<br />

Puro<strong>in</strong>dol<strong>in</strong>e genes have been reported to be<br />

strongly associated with gra<strong>in</strong> softness; a trait<br />

associated with process<strong>in</strong>g quality of wheat. Two<br />

genes P<strong>in</strong>a-D1 and P<strong>in</strong>b-D1 located on<br />

chromosome 5D have been found to be associated<br />

with gra<strong>in</strong> softness. P<strong>in</strong>a-D1 and P<strong>in</strong>b-D1 encode<br />

small (13 kDa) prote<strong>in</strong> called puro<strong>in</strong>dol<strong>in</strong>e A and<br />

B (PINA and PINB), which exhibit the<br />

characteristics of alpha helical structure, ten<br />

cyste<strong>in</strong>e <strong>res</strong>idue, a tryptophan rich doma<strong>in</strong> and<br />

basic nature (PI 10.5). The soft texture of the<br />

common wheat requi<strong>res</strong> both wild type PINA and<br />

PINB. Diverse alleles with s<strong>in</strong>gle nucleotide<br />

polymorphism (SNPs), small <strong>in</strong>sertions/deletions<br />

and/or megabase deletions have been associated<br />

with hard texture of common wheat. There is no<br />

<strong>in</strong>formation available on sequences of<br />

puro<strong>in</strong>dol<strong>in</strong>e genes <strong>in</strong> the Indian germplasm. This<br />

<strong>res</strong>elected and sown at NABI field<br />

Figure 22: Marker assisted breed<strong>in</strong>g for process<strong>in</strong>g<br />

quality. (A) SDS-PAGE of HMW-GSs of endosperm<br />

half of seeds to f<strong>in</strong>d <strong>in</strong>dividual plants carry<strong>in</strong>g addition<br />

subunit from wild species (<strong>in</strong>dicated by arrow) hav<strong>in</strong>g<br />

positive effect on bread mak<strong>in</strong>g quality. (B) PCR<br />

multiplex<strong>in</strong>g for biscuit mak<strong>in</strong>g quality to co-amplify<br />

puro<strong>in</strong>dol<strong>in</strong>e gene and high molecular weight gluten<strong>in</strong><br />

genes. (C) PCR multiplex<strong>in</strong>g for chapatti mak<strong>in</strong>g<br />

quality to co-amplify GBSS-1B functional and nonfunctional<br />

alleles.<br />

21<br />

study was planned to generate a database of<br />

puro<strong>in</strong>dol<strong>in</strong>e genes of around 500 Indian<br />

cultivar/l<strong>in</strong>es that can be utilized by Indian<br />

breeders. This will also help to f<strong>in</strong>d out structure<br />

function relationship and <strong>in</strong>volvement of different<br />

genes <strong>in</strong> gra<strong>in</strong> hardness.<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

1. PCR amplification of P<strong>in</strong>a-D1gene from<br />

five hundred and fifty one Indian<br />

germplasm <strong>in</strong>dicated amplification and thus<br />

p<strong>res</strong>ence P<strong>in</strong>a-D1a functional allele <strong>in</strong> fifty<br />

three l<strong>in</strong>es i.e. 9.6% of total l<strong>in</strong>es.<br />

2. Sequenc<strong>in</strong>g of some of the exp<strong>res</strong>sed P<strong>in</strong>a-<br />

D1a allele <strong>in</strong>dicated no sequence variation<br />

<strong>in</strong> the Indian germplasm. PCR amplification<br />

of P<strong>in</strong>b-D1gene from five hundred and fifty<br />

one Indian germplasm <strong>in</strong>dicated<br />

amplification <strong>in</strong> all the l<strong>in</strong>es studied (Figure<br />

22).<br />

3. Sequenc<strong>in</strong>g of P<strong>in</strong>b-D1 gene from different<br />

Indian cultivars <strong>in</strong>dicated sequence<br />

variations. Out of thirty three l<strong>in</strong>es<br />

analysed, twenty six l<strong>in</strong>es had P<strong>in</strong>a D1b<br />

(null) allele and functional P<strong>in</strong>b-D1a allele.<br />

These varieties <strong>in</strong>cluded RAJ4120, HS505,<br />

VL616, K0307, WH1062, HD3002,


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Table 2: Indian cultivars hav<strong>in</strong>g mutated P<strong>in</strong> b-D1gene with mismatch position and<br />

changed nucleotide and /or am<strong>in</strong>o acid.<br />

S. No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Cultivar<br />

VL934<br />

DBW17<br />

WH1073<br />

HS511<br />

HP1102<br />

6 PBW613K<br />

0710<br />

Allele<br />

P<strong>in</strong> b-D1b<br />

P<strong>in</strong> b-D1y1<br />

P<strong>in</strong> b-D1y2<br />

P<strong>in</strong> b -<br />

D1y3<br />

P<strong>in</strong> b-D1y4<br />

No. of<br />

entries<br />

MACS6222, NP809, HS1138, K816, substitution without change <strong>in</strong> am<strong>in</strong>o acid.<br />

KSML3, NARMADA195, UP215, Allele P<strong>in</strong> b -D1y3 and P<strong>in</strong> b -D1y4 <strong>res</strong>ulted<br />

HUW12, HW5210, NP836VL916, VL921, <strong>in</strong> am<strong>in</strong>o acid substitutions at positions 2nd<br />

HS508, VL829, HPW251, UP2771, HS295, and 57th. These mutations were not with<strong>in</strong><br />

HS512, HS513, HPW296, VL924, VL925, tryptophan rich doma<strong>in</strong> (34th to 47th am<strong>in</strong>o<br />

VL935, UP2772, HD2967, PBW343, acid) that leads to functional change of the<br />

PBW621, WH1061, PBW628, WH1081, P<strong>in</strong> b-D1 gene. 78% of Indian cultivars have<br />

HD3014, UAS315, K0607, DBW39, wild type P<strong>in</strong>b-D1a allele.<br />

HUW612 and DBW46.<br />

6. Mutant P<strong>in</strong>b-D1b allele commonly found <strong>in</strong><br />

4. One l<strong>in</strong>e VL934 had P<strong>in</strong>a-D1a (functional Australian wheat is rare <strong>in</strong> Indian cultivars.<br />

allele) and P<strong>in</strong>b-D1b (non-functional Five new alleles have been identified <strong>in</strong><br />

allele). P<strong>in</strong>b-D1b allele <strong>res</strong>ulted from Indian germplasm that may contribute more<br />

Guan<strong>in</strong>e to Aden<strong>in</strong>e nucleotide mutation to the sources of variation. We have<br />

lead<strong>in</strong>g to glyc<strong>in</strong>e to ser<strong>in</strong>e am<strong>in</strong>o acid sequenced only thirty three cultivars for<br />

mutation at 46th position as reported <strong>in</strong> P<strong>in</strong>b-D1 gene. Currently work is <strong>in</strong> prog<strong>res</strong>s<br />

literature. to sequence P<strong>in</strong>a-D1 and P<strong>in</strong>b-D1gene.<br />

5. In addition five new mutations (P<strong>in</strong> b-D1y1<br />

Others genes <strong>in</strong> the pipel<strong>in</strong>e are GSP and<br />

P<strong>in</strong>b-2D1 that are known to be <strong>in</strong>volved <strong>in</strong><br />

to P<strong>in</strong>b-D1y5) were identified as listed <strong>in</strong><br />

Table 2. Allele P<strong>in</strong> b-D1y1, P<strong>in</strong> b-D1y4 and<br />

P<strong>in</strong> b-D1y5 showed s<strong>in</strong>gle nucleotide<br />

1<br />

Mismatch position<br />

Nucleotide /Am<strong>in</strong>o acid<br />

22<br />

223/ 46<br />

1 92<br />

1 93/2<br />

1 256/57<br />

1<br />

52<br />

gra<strong>in</strong> hardness.<br />

Base<br />

change/<br />

AA change<br />

G-----A/ G-<br />

----S<br />

Allele<br />

Published<br />

T-----C New<br />

T-----A/V--<br />

--A<br />

T-----C /C-<br />

---R<br />

T----A<br />

New<br />

New<br />

New<br />

P<strong>in</strong> b-D1y5 2 53 T----A New


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

2.1 Genetic transformation of banana for Research Objectives:<br />

quality improvement<br />

l Development of efficient genetic<br />

Pr<strong>in</strong>cipal Investigator:<br />

transformation<br />

<strong>in</strong> Indian banana varieties<br />

Siddharth Tiwari<br />

viz., Grand Na<strong>in</strong> and Rasthali.<br />

Co- Investigator:<br />

Rakesh Tuli<br />

l Evaluation of fruit specific promoters and<br />

pro-vitam<strong>in</strong> A candidate genes and<br />

comb<strong>in</strong>ations there of after transformation<br />

Research Fellow:<br />

<strong>in</strong> Indian banana.<br />

Anshu Alok<br />

Introduction:<br />

2. IMPROVING FRUITS FOR POST HARVEST<br />

QUALITY AND NUTRITION<br />

23<br />

l Development of transgenic l<strong>in</strong>es us<strong>in</strong>g<br />

constructs for pro-vitam<strong>in</strong> A biofortification.<br />

Banana and planta<strong>in</strong> are among the most<br />

important fruit crops <strong>in</strong> the world and contribute<br />

significantly towards the food security <strong>in</strong> many<br />

develop<strong>in</strong>g countries. India is the largest producer<br />

l<br />

l<br />

Initial field and nutritional analysis of fruit<br />

under conta<strong>in</strong>ment conditions.<br />

Selection of l<strong>in</strong>es for nutritional and<br />

bioavailability analysis.<br />

of banana <strong>in</strong> the world with an annual production Long Term Objectives:<br />

of about 18 million tonnes. Banana are consumed<br />

f<strong>res</strong>h (except cook<strong>in</strong>g types (planta<strong>in</strong>)) without<br />

any thermal cook<strong>in</strong>g and process<strong>in</strong>g. The pulp of<br />

dessert banana rema<strong>in</strong>s unexposed to light, hence<br />

allow<strong>in</strong>g m<strong>in</strong>imal degradation of carotenoids <strong>in</strong><br />

the edible flesh. Genetic improvement of banana<br />

Development of pro-vitam<strong>in</strong> A rich biofortified<br />

Indian bananas, bioavailability study, nutritional<br />

analysis and agronomical filed trials of<br />

transgenics.<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

through conventional methods is limited because 1. Germplasm collection and plantation at<br />

most of the cultivated varieties are triploid <strong>in</strong> NABI <strong>res</strong>earch field:<br />

nature, hence sterile and provide natural barrier to<br />

cross poll<strong>in</strong>ation. Therefore, transgenic<br />

approaches hold high promise for develop<strong>in</strong>g<br />

susta<strong>in</strong>able <strong>res</strong>istance aga<strong>in</strong>st diseases/pests and<br />

a. Suckers of established banana cultivars<br />

(Grand Na<strong>in</strong>, Robusta, Nendran, Poovan,<br />

Rasthali, Red Banana, Ney Poovan,<br />

Virupakashi, Karpuravalli, Dwarf<br />

for biofortification <strong>in</strong> banana. Plant regeneration Cavendish, Dwarf-Robusta, Udhayam and<br />

of banana has been reported from various explant Nanjanagud Rasabale) have been collected<br />

sources. Immature male flowers are the most from Tamil Nadu Agricultural University<br />

<strong>res</strong>ponsive material for <strong>in</strong>itiat<strong>in</strong>g the embryogenic<br />

cultu<strong>res</strong>. An Embryogenic Cell Suspension (ECS)<br />

culture is be<strong>in</strong>g used for Agrobacterium<br />

tumefaciens mediated genetic transformation <strong>in</strong><br />

many laboratories. However, genetic<br />

(TNAU), Coimbatore and Gandhi Krishi<br />

Vigyana Kendra (GKVK) Bangalore<br />

(Figure 1A). The collected suckers have<br />

been grown at NABI <strong>res</strong>earch field for<br />

establish<strong>in</strong>g germplasm (Figure 1B and C).<br />

transformation and regeneration frequencies are<br />

reported to be highly genotype dependent. Thus,<br />

2. Establishment of ECS culture for genetic<br />

transformation of banana:<br />

optimization of transformation protocol for any a. Immature male flower buds of two cultivars<br />

particular type of cultivar becomes a prerequisite (Grand Na<strong>in</strong> and Rasthali) were collected<br />

for genetic improvement <strong>in</strong> that cultivar. from TNAU, Coimbatore and NRCB,


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Trichy, Tamil Nadu (Figure 2 A and B). d. Best <strong>res</strong>ponse for callus formation was<br />

optimized (Figure 2 D).<br />

b. Immature male flower hands of rank 1 to 15<br />

adjacent to the floral apex were isolated and e. Optimization of ECS has been <strong>in</strong>itiated for<br />

cultured on MS medium conta<strong>in</strong><strong>in</strong>g several the <strong>in</strong>duction of globular embryos and<br />

Figure 1: Establishment of Banana germplasm at NABI <strong>res</strong>earch field. (A) Banana<br />

suckers. (B) Banana germplasm. (C) Banana plant with fruit at NABI <strong>res</strong>earch field.<br />

comb<strong>in</strong>ations and concentrations of genetic transformation (Figure 2 E).<br />

different growth regulators for the<br />

optimization of protocol (Figure 2 C).<br />

f. ECS was used for transient transformation<br />

of reporter (GUS-Intron) gene and<br />

c. Calli were formed on the callus form<strong>in</strong>g exp<strong>res</strong>sion was noticed as blue colour on the<br />

medium. However, efficiency and <strong>res</strong>ponse ECS (Figure 3 A and B). No exp<strong>res</strong>sion of<br />

for callus <strong>in</strong>duction depends upon the GUS was noticed <strong>in</strong> control ECS (Figure<br />

cultivars. 3C).<br />

Figure 2: Stages of ECS and culture development for somatic embryogenesis. (A, B) Immature male<br />

flower bud. (C) Immature male flower hands of rank 1 to 15 adjacent to the floral apex. (D) Embryogenic<br />

callus <strong>in</strong>duction. (E) Suspension culture.<br />

Figure 3: Transient genetic transformation of ECS. (A) ECS (B) Transformed suspension<br />

culture cells (blue clour). (C) Non-transformed suspension culture cells (no blue clour).<br />

24


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Figure 4: Different stages of micropropagation of banana. (A) Banana sucker as explants. (B) Sucker turned<br />

<strong>in</strong>to green bud. (C) Induction of multiple shoots. (D) Shoot elongation. (E) Tissue culture raised plants.<br />

3. Establishment of micropropagation: for f<strong>res</strong>h fruits. The concept of global<br />

a.<br />

b.<br />

Suckers of Grand Na<strong>in</strong>, Rasthali and Dwarf<br />

Cavendish cultivars were used for<br />

optimization of protocol for micro<br />

propagation (Figure 4 A).<br />

Multiple shoots were <strong>in</strong>duced and<br />

multiplied under some of the culture<br />

conditions (Figure 4 B, C and D).<br />

harmonization of quality standards is emerg<strong>in</strong>g<br />

rapidly which warrants the development of<br />

globally acceptable analytical tools for quality<br />

assessment and deliver<strong>in</strong>g the logical and<br />

susta<strong>in</strong>able solutions to ma<strong>in</strong>ta<strong>in</strong> postharvest<br />

quality <strong>in</strong> the supply cha<strong>in</strong>. The genetic,<br />

physiological and biochemical diversity <strong>in</strong> the<br />

f<strong>res</strong>h produce require the commodity specific<br />

c. Tissue culture raised acclimatized plants approach to develop postharvest solutions.<br />

have been generated and transferred at<br />

NABI <strong>res</strong>earch field (Figure 4 E).<br />

Research Objectives:<br />

2.2 Quality enhancement and postharvest<br />

stability of tropical fruits<br />

l Understand<strong>in</strong>g and explicat<strong>in</strong>g the<br />

complexity of biochemical and molecular<br />

factors contribut<strong>in</strong>g to produce quality.<br />

Pr<strong>in</strong>cipal Investigator:<br />

Sukhv<strong>in</strong>der P. S<strong>in</strong>gh<br />

l Development of preharvest and postharvest<br />

strategies to improve quality and enhance<br />

Research Fellow:<br />

postharvest stability of farm produce.<br />

Manpreet Kaur l Translation of knowledge and <strong>in</strong>novation<br />

Introduction:<br />

<strong>in</strong>to commercially important products/<br />

processes/services for primary producers<br />

Qualitative and quantitative postharvest losses of<br />

f<strong>res</strong>h fruits are significant <strong>in</strong> India. Enhanc<strong>in</strong>g and<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g quality through adaptive preharvest<br />

and <strong>in</strong>dustry.<br />

Long Term Objectives:<br />

and postharvest actions is important to reduce l To develop protocols to add<strong>res</strong>s commodity<br />

losses, meet consumer expectations and promote specific quality and postharvest issues.<br />

domestic and <strong>in</strong>ternational trade. The prime<br />

objective of this <strong>res</strong>earch program is to understand<br />

biological basis of fruit quality and generate basic<br />

knowledge to develop pre and postharvest<br />

strategies for extend<strong>in</strong>g the storage stability and<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g produce quality. The <strong>res</strong>earch efforts<br />

l To improve and ma<strong>in</strong>ta<strong>in</strong> farm produce<br />

quality through application of Generally<br />

Recognised As Safe (GRAS) compounds,<br />

natural metabolites, growth regulators and<br />

antagonistic microorganisms.<br />

are directed to expand the horizon of l Generat<strong>in</strong>g primary data on the produce<br />

measurement, def<strong>in</strong>ition and mean<strong>in</strong>g of 'quality' quality with special reference to flavour and<br />

25


nutritional quality. lcyclopropene (1-MCP), which is an<br />

Research <strong>in</strong> Prog<strong>res</strong>s: Mango, citrus, litchi and<br />

guava are the targeted crops to study the quality<br />

and postharvest stability of fruits.<br />

ethylene action <strong>in</strong>hibitor, was not effective<br />

to retard the process of fruit soften<strong>in</strong>g <strong>in</strong><br />

both treated and control fruit. The<br />

<strong>in</strong>efficacy of 1-MCP is contrary to its proven<br />

Mango<br />

effectiveness <strong>in</strong> other fruits.<br />

Mango export from India has been jeopardised by 4. The qualitative profil<strong>in</strong>g of aroma volatiles<br />

the postharvest phytosanitary requirements by <strong>in</strong> mango showed that sesquiterpenes and<br />

several countries such as the United States of monoterpenes constituted about 85-90% of<br />

America, Japan, Australia and New Zealand. In the total volatiles production. With the<br />

recent years, heat-based phytosanitary treatments prog<strong>res</strong>s of fruit ripen<strong>in</strong>g, the abundance of<br />

have received regulatory approvals from Japan, sesquiterpenes decreased and that of<br />

Australia and New Zealand which led to the monoterpenes and esters <strong>in</strong>creased.<br />

establishment of these facilities <strong>in</strong> the major<br />

mango produc<strong>in</strong>g and export<strong>in</strong>g zones of the<br />

country. However, there are certa<strong>in</strong> quality<br />

5. The evolution of aroma volatiles such as<br />

monoterpenes and esters was faster <strong>in</strong> VHT<br />

fruit, parallel to other changes <strong>in</strong> fruit<br />

concerns associated with these treatments which<br />

ripen<strong>in</strong>g, compared to control.<br />

can affect consumer acceptance of the exported<br />

fruit <strong>in</strong> the <strong>in</strong>ternational markets. Our objective 6. The abundance of esters (fruity odour)<br />

was to assess the impact of heat treatment decl<strong>in</strong>ed significantly <strong>in</strong> VHT fruit after 8<br />

protocols on quality and postharvest behaviour of days of shelf-life at 26°C. The VHT was<br />

mango fruit. effective to reduce the microbial on fruit<br />

surface and also helped reduc<strong>in</strong>g the<br />

1. In <strong>2011</strong> season, an experiment on Vapour<br />

<strong>in</strong>cidence of anthracnose disease.<br />

Heat Treatment (VHT) of 'Chausa' mango<br />

was conducted <strong>in</strong> a commercial VHT 7. The VHT fruit stored at 10°C for 2 or 3<br />

facility at Saharanpur, U.P. weeks and then held for 4 days at 26°C for<br />

2. The <strong>res</strong>ults showed that the VHT accelerated<br />

rate of fruit ripen<strong>in</strong>g, <strong>res</strong>ulted <strong>in</strong> develop-<br />

ment of uniform sk<strong>in</strong> colouration (Figure 5).<br />

The heat treated fruits reached ready-to-eat<br />

simulated shelf conditions showed lower<br />

<strong>in</strong>cidence of chill<strong>in</strong>g <strong>in</strong>jury. However, the<br />

detrimental effect of VHT <strong>in</strong> terms of faster<br />

fruit soften<strong>in</strong>g was not prevalent <strong>in</strong> fruit held<br />

<strong>in</strong> cold storage after treatment.<br />

stage with<strong>in</strong> 4 days of treatment aga<strong>in</strong>st the 8<br />

days <strong>in</strong> control held at ambient conditions<br />

(26°C).<br />

3. Post-VHT treatment with 1-methy-<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Figure 5: Effect of VHT on sk<strong>in</strong> colouration <strong>in</strong><br />

'Chausa' mangoes after 48 hours at 26°C.<br />

26<br />

In future, the efforts will be made to m<strong>in</strong>imise the<br />

detrimental effects of VHT on mango fruit quality<br />

attributes and also to retard the process of fruit<br />

ripen<strong>in</strong>g through better understand<strong>in</strong>g of fruit<br />

physiology.<br />

Litchi<br />

Sk<strong>in</strong> colouration <strong>in</strong> litchi is due to the p<strong>res</strong>ence of<br />

anthocyan<strong>in</strong> pigments. whose biosynthesis and<br />

postharvest stability can seriously affect fruit<br />

quality. Targeted metabolite profil<strong>in</strong>g of litchi<br />

(cvs. 'Calcuttia', 'Dehradun' and 'Seedless') was<br />

conducted at different stages of maturation (green,<br />

colour break/p<strong>in</strong>k, and red).<br />

1. The <strong>res</strong>ults showed that the concentrations


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Figure 6: Chromatograms rep<strong>res</strong>ent<strong>in</strong>g the anthocyan<strong>in</strong>s (top) <strong>in</strong> the pericarp and<br />

sugars (bottom) <strong>in</strong> the aril of litchi fruit.<br />

of chlorophyll a, chlorophyll b, xanthophyll tissue showed that the concentrations of<br />

and pheophyt<strong>in</strong> <strong>in</strong> the pericarp tissue fructose, glucose and sucrose <strong>in</strong>creased<br />

decl<strong>in</strong>ed dur<strong>in</strong>g maturation <strong>in</strong> three significantly dur<strong>in</strong>g maturation. Fructose<br />

cultivars. was found to be the pr<strong>in</strong>cipal sugar followed<br />

2. Figure 6 rep<strong>res</strong>ents the chromatograms of<br />

various targeted metabolites such as<br />

anthocyan<strong>in</strong>s and sugars. Cyanid<strong>in</strong>-3-o-<br />

rut<strong>in</strong>oside (Cyn-3-o-rut) was identified and<br />

quantified as the major anthocyan<strong>in</strong><br />

pigment <strong>in</strong> all three cultivars and was<br />

detected dur<strong>in</strong>g colour break/p<strong>in</strong>k stage and<br />

showed <strong>in</strong>creas<strong>in</strong>g trend dur<strong>in</strong>g maturation.<br />

The concentration of Cyn-3-o-rut was<br />

maximum <strong>in</strong> 'Dehradun' cultivar followed<br />

by glucose and sucrose <strong>in</strong> all cultivars.<br />

'Seedless' cultivar showed the highest<br />

concentration of sucrose at the red-ripe stage<br />

compared to other cultivars, 'Dehradun' and<br />

'Calcuttia'. Among organic acids, malic acid<br />

was the predom<strong>in</strong>ant acid <strong>in</strong> all three<br />

cultivars. The other organic acids <strong>in</strong>cluded<br />

citric acid, succ<strong>in</strong>ic acid, tartaric acid and<br />

shikimic acid. The concentration of malic<br />

acid and other m<strong>in</strong>or organic acids decl<strong>in</strong>ed<br />

by 'Calcuttia' and 'Seedless'.<br />

27<br />

with the prog<strong>res</strong>s of maturation of aril tissue.<br />

The protocols developed for identification<br />

3. The other anthocyan<strong>in</strong> pigments were and quantification of these metabolites will<br />

identified as cyanid<strong>in</strong>-3-o-glucoside, be used for objective assessment of the<br />

cyanid<strong>in</strong>-3, 5-diglucoside and cyanid<strong>in</strong>-3-o- effects of various postharvest treatments on<br />

galactoside. The sugar profil<strong>in</strong>g of fruit aril litchi fruits


3.1 Biology of seed development <strong>in</strong> custard<br />

apple and litchi<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

3. BASIC BIOLOGY FOR CROP IMPROVEMENT<br />

28<br />

carpels (>100). Each carpel has a s<strong>in</strong>gle<br />

anatropous ovule that may develop <strong>in</strong>to a s<strong>in</strong>gle<br />

seed. The Annona fruit develops from the cluster<br />

Pr<strong>in</strong>cipal Investigator:<br />

Rakesh Tuli<br />

of fertilized carpels, thus the aggregate fruit<br />

conta<strong>in</strong>s several fruitlets. Out of the multiple<br />

Co-Investigator:<br />

fruitlets a few fruitlets develop naturally, without<br />

Sudhir P. S<strong>in</strong>gh<br />

Research Fellow:<br />

seeds. Annona squamosa produces fruits with<br />

greater number of seed fruitlets, sixty-eighty<br />

seeds per fruit. A contrast<strong>in</strong>g genotype, named<br />

Yogesh Gupta NMK-1, has been identified hav<strong>in</strong>g fewer<br />

Introduction:<br />

numbers of seeded fruitlets and many of the<br />

fruitlets are seedless (Figure 1). The variety<br />

Seeds <strong>in</strong> many fruit crops like custard apple, litchi, selected from the seedl<strong>in</strong>g population of Annona<br />

guava, orange, mango and grape are a h<strong>in</strong>drance to squamosa by a farmer, Shri N. M. Kaspate of<br />

fruit process<strong>in</strong>g and f<strong>res</strong>h fruit consumption. Madhuban nursery, Solapur, Maharastra.<br />

Sugar (or Custard) apple, a popular fruit<br />

throughout the tropics, belongs to genus Annona.<br />

The genus Annona conta<strong>in</strong>s about one hundred<br />

and twenty species, out of which six species<br />

produce edible fruits; Annona squamosa (Sugar<br />

apple or Sarifa or Sitafal), Annona reticulata<br />

(Custard apple or Bullock's heart or Ramphal),<br />

Annona cherimola (Cherimoya or Hanumanfal),<br />

The aim of the project is to understand the<br />

molecular basis of the development of seeded and<br />

seedless fruitlets <strong>in</strong> the same fruit of Annona<br />

squamosa. The major <strong>res</strong>earch objective is to do<br />

tissue specific differential transcriptomics <strong>in</strong><br />

develop<strong>in</strong>g fruitlets of Annona species for<br />

identify<strong>in</strong>g genes <strong>in</strong>volved <strong>in</strong> seed development.<br />

Annona muricata (Sour sop), Annona atemoya Litchi is another crop where seedlessness is a<br />

(Laxmanphal, a hybrid between Annona desirable trait. The <strong>in</strong>flo<strong>res</strong>cence is composed of<br />

cherimola and Annona squamosa), Annona<br />

diversifolia (Ilama) (Gandhi and Gopalkrishna,<br />

1957). Annona squamosa is the most popular<br />

species <strong>in</strong> India. The Annona species flowers<br />

comprise of a cluster of stamens (>200) and<br />

several panicles bear<strong>in</strong>g three types of flowers<br />

which open <strong>in</strong> succession with the same panicle.<br />

The three types of flowers are (type 1) male flower<br />

which has functional anthers but lacks pistil, (type<br />

2) hermaphrodite female flower which has<br />

A<br />

C<br />

completely developed pistil but the anthers do<br />

not dehisce and conta<strong>in</strong> very less number of<br />

viable pollen. The ovary is bicarpellary, each<br />

conta<strong>in</strong><strong>in</strong>g an ovule, (type 3) hermaphrodite<br />

B<br />

D<br />

male flower is a functional male, which has<br />

pistil but lacks stigma and thus pollen fail to<br />

enter. The litchi fruit develops from type 2<br />

flowers. Generally only one carpel of type 2<br />

flower gets developed <strong>in</strong>to fruit after<br />

Figure 1: Seed percentage <strong>in</strong> the contrast<strong>in</strong>g cutivars of<br />

custard apple. (A) Flower of Annona squamosa with<br />

multiple stamens and pistils. (B) Seed percentage <strong>in</strong> the<br />

fruits of Annona squamosa and NMK-1. (C) Fruits of<br />

poll<strong>in</strong>ation. Botanically the fruit is a drupe.<br />

The edible part of the fruit is called as aril (or<br />

pulp) which is an outgrowth of the outer<br />

contrast<strong>in</strong>g genotypes of Annona squamosa and (D)<br />

NMK-1.<br />

<strong>in</strong>tegument. Some litchi accessions, popularly


known as 'Seedless' or 'Bedana', have seeds of<br />

very small size with well-developed fleshy<br />

pulp, <strong>in</strong> comparison to the common litchi<br />

varieties (Figure 2). The project aims to<br />

identify genes related to small size of seeds by<br />

do<strong>in</strong>g tissue specific differential transcriptomics<br />

of contrast<strong>in</strong>g accessions of litchi.<br />

Research Objectives:<br />

l Differential transcriptomics of develop-<br />

<strong>in</strong>g fruits of contrast<strong>in</strong>g genotypes of<br />

Annona species.<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Long Term Objectives:<br />

l To identify genes <strong>res</strong>ponsible for the<br />

development of fruits and seeds.<br />

l To develop different varieties of seedless<br />

fruit crops.<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

1. A genotype, NMK-1, of Annona has<br />

been identified with more number of<br />

seedless fruitlets at Madhuban Nursery,<br />

Solapur, Maharashtra.<br />

l Tissue specific differential trans-<br />

criptomics <strong>in</strong> ovules of contrast<strong>in</strong>g<br />

genotypes of Annona species at different<br />

developmental stages.<br />

2. Self-poll<strong>in</strong>ation and collection of<br />

fertilized carpels (at different days after<br />

poll<strong>in</strong>ation) of contrast<strong>in</strong>g genotypes,<br />

NMK-1 and common custard apple<br />

(Annona squamosa) is <strong>in</strong> prog<strong>res</strong>s at<br />

l Tissue specific differential trans- Solapur, Maharashtra.<br />

criptomics <strong>in</strong> ovules of contrast<strong>in</strong>g litchi<br />

accessions, at different developmental<br />

stages.<br />

3. Litchi contrast<strong>in</strong>g genotypes, show<strong>in</strong>g<br />

differences <strong>in</strong> seed development and<br />

seed size are be<strong>in</strong>g screened for<br />

l Accessions of litchi, show<strong>in</strong>g candidate genes to develop molecular<br />

differences <strong>in</strong> seed development and approaches to seedlessness. Polymorph-<br />

seed size to be screened for candidate ism <strong>in</strong> nucleotide sequences of a<br />

genes to develop molecular approaches candidate gene for seed development<br />

to seedlessness.<br />

has been identified (Figure 2). Further<br />

study on molecular details is <strong>in</strong> prog<strong>res</strong>s.<br />

Figure 2: Polymorphism <strong>in</strong> nucleotide sequence of a gene related to seedlessness <strong>in</strong><br />

diverse accessions of litchi<br />

29


3.1.1 Development of approaches for the technology to prevent the development of seeds <strong>in</strong><br />

modulation of seedlessness through rootstock fruit crops, where seed may not be desirable by<br />

signal<strong>in</strong>g food process<strong>in</strong>g <strong>in</strong>dustry. Prevention of seed<br />

Pr<strong>in</strong>cipal Investigator:<br />

Rakesh Tuli<br />

development may also lead to enhanc<strong>in</strong>g the<br />

productivity and biomass. The objective of the<br />

p<strong>res</strong>ent proposal is to exam<strong>in</strong>e if siRNA based<br />

Co-Investigator:<br />

signal<strong>in</strong>g can be applied to develop rootstocks,<br />

Sudhir P. S<strong>in</strong>gh<br />

which may <strong>in</strong>fluence seed development <strong>in</strong> the<br />

Research Fellow:<br />

Anita Kumari<br />

scion, grafted on to the stock. The rootstock would<br />

transmit siRNAs, targeted for silenc<strong>in</strong>g of specific<br />

genes <strong>in</strong>volved <strong>in</strong> the development of embryo and<br />

Introduction:<br />

Fruit crops are mostly propagated through asexual<br />

reproduction by graft<strong>in</strong>g. In graft<strong>in</strong>g, one plant is<br />

selected for its roots and is called rootstock. The<br />

other plant is selected for its stems, leaves, flowers<br />

endosperm. Effect of silenc<strong>in</strong>g on the<br />

development of fruits and seeds on the grafted<br />

scion will be studied, us<strong>in</strong>g the model plant<br />

Arabidopsis thaliana (Fugure 3). If successful, the<br />

study will be applied to a suitable horticultural<br />

crop plant.<br />

l To develop various transgenic plants<br />

harbour<strong>in</strong>g RNAi constructs target<strong>in</strong>g the<br />

gene exp<strong>res</strong>sion <strong>in</strong> ovule <strong>in</strong>volved <strong>in</strong> seed<br />

development.<br />

l To exam<strong>in</strong>e the movement of RNAi<br />

delivered from root-stock to scion affect<strong>in</strong>g<br />

exp<strong>res</strong>sion of genes <strong>in</strong> Arabidopsis.<br />

l Development of improved rootstock for the<br />

Figure 3: Stem graft<strong>in</strong>g <strong>in</strong> Arabidopsis thaliana.<br />

delivery of long distance signals <strong>in</strong>to the<br />

scion.<br />

or fruits and is called the scion. Scion–rootstock<br />

<strong>in</strong>teraction affects the physiology and thus<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

phenotype of the scion plant. For example, to 1. Transgenic Arabidopsis l<strong>in</strong>es exp<strong>res</strong>s<strong>in</strong>g<br />

<strong>in</strong>duce dwarf<strong>in</strong>g <strong>in</strong> apple trees, scions are grafted reporter gene (GUS) have been developed.<br />

on to dwarf root stock to give smaller canopy, so Breed<strong>in</strong>g of transgenic plants to obta<strong>in</strong><br />

that it becomes suitable for plant<strong>in</strong>g the trees at homozygous l<strong>in</strong>es is <strong>in</strong> prog<strong>res</strong>s.<br />

higher density. In recent years, evidence<br />

suggestive of long-distance transport of signals<br />

through vascular system have been reported<br />

appears to be <strong>in</strong>creas<strong>in</strong>g. Such signals can<br />

<strong>in</strong>fluence various developmental and<br />

physiological processes such as flower<strong>in</strong>g,<br />

tuberization, nodulation, leaf development, shoot<br />

2.<br />

3.<br />

Development of transgenic Arabidopsis<br />

l<strong>in</strong>es exp<strong>res</strong>s<strong>in</strong>g reporter gene <strong>in</strong> ovule is <strong>in</strong><br />

prog<strong>res</strong>s.<br />

Transgenic Arabidopsis l<strong>in</strong>es exp<strong>res</strong>s<strong>in</strong>g<br />

(constitutive and phloem specific) double<br />

stranded RNA- hairp<strong>in</strong> homologue of<br />

branch<strong>in</strong>g and disease <strong>res</strong>istance.<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Research Objectives:<br />

Long Term Objective:<br />

reporter gene have been raised. Breed<strong>in</strong>g of<br />

transgenic plants to obta<strong>in</strong> homozygous<br />

The <strong>res</strong>earch project anticipates establishment of a<br />

technology which can lead to the development of a<br />

new approach to use transgenic rootstocks for<br />

deliver<strong>in</strong>g specific siRNAs <strong>in</strong> non-transgenic<br />

scions for the modification of economically<br />

important traits. In the p<strong>res</strong>ent case, the pr<strong>in</strong>ciple<br />

will possibly lead to the application of the<br />

4.<br />

l<strong>in</strong>es is <strong>in</strong> prog<strong>res</strong>s.<br />

Transgenic Arabidopsis l<strong>in</strong>es exp<strong>res</strong>s<strong>in</strong>g<br />

(constitutive and phloem specific) double<br />

stranded RNA- hairp<strong>in</strong> homologue of<br />

candidate gene of seed development have<br />

been raised. Breed<strong>in</strong>g of transgenic plants to<br />

obta<strong>in</strong> homozygous l<strong>in</strong>es is <strong>in</strong> prog<strong>res</strong>s<br />

30


4.1Effect of dietary constituents on<br />

adipogenesis<br />

4.1.1Role of arab<strong>in</strong>oxylans from millets <strong>in</strong><br />

regulat<strong>in</strong>g adipogenesis: A nutrigenomic study<br />

Pr<strong>in</strong>cipal Investigator:<br />

Kanthi K. Kiran<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

4. DIET AND HEALTH<br />

31<br />

AXs <strong>in</strong> high fat diet <strong>in</strong>duced obese mouse<br />

model through molecular approaches.<br />

Long Term Objectives:<br />

l To study the role of high dietary fiber<br />

consumption and the role of gut microbiota <strong>in</strong><br />

alleviat<strong>in</strong>g weight ga<strong>in</strong> and obesity.<br />

Co-Investigator:<br />

l Design<strong>in</strong>g AXs enriched functional food<br />

Mahendra Bishnoi<br />

models that can modulate metabolic<br />

Introduction:<br />

Obesity is a worldwide epidemic and has a<br />

significant negative impact on health, mortality<br />

and related costs. Diet and genetic factors<br />

<strong>in</strong>clud<strong>in</strong>g gene mutations are closely related to the<br />

development of obesity. Untreated, it may lead to<br />

chronic diseases, such as diabetes (type II),<br />

hypertension, cardiovascular disease and certa<strong>in</strong><br />

type of cancers. P<strong>res</strong>ent anti-obesity medications<br />

disorders.<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

Currently, we are standardiz<strong>in</strong>g the cultur<strong>in</strong>g of<br />

preadipocytes and differentiation <strong>in</strong>to adipocytes.<br />

Primers for important transcriptional factors,<br />

enzymes <strong>in</strong> the fatty acid pathway and key<br />

adipok<strong>in</strong>es are designed. Chemo-enzymatic<br />

extraction of AXs from f<strong>in</strong>ger millet gra<strong>in</strong>s is<br />

under prog<strong>res</strong>s.<br />

are shown to be associated with side effects upon<br />

long term usage. Phytochemicals such as<br />

polyphenols and non-starch polysaccharides have<br />

tremendous health benefits. Arab<strong>in</strong>oxylans (AXs)<br />

4.1.2 Transient Receptor Potential (TRP)<br />

channel mediated modulation of adipogenesis<br />

and obesity by dietary molecules<br />

are non-starch hemicellulosic polysaccharides, Pr<strong>in</strong>cipal Investigator:<br />

major constituents <strong>in</strong> the cell walls of cereals and Mahendra Bishnoi<br />

millets, are reported to have potential health<br />

benefits <strong>in</strong> alleviat<strong>in</strong>g disease symptoms such as<br />

diabetes, atherosclerosis and colon cancer. Wheat<br />

Co-Investigator:<br />

Kanthi K. Kiran<br />

AXs help <strong>in</strong> regulat<strong>in</strong>g the weight ga<strong>in</strong> and obesity<br />

by controll<strong>in</strong>g the release of gut hormones like<br />

peptide YY and Glucagon-Like Peptide-1<br />

(GLP1). The potential beneficial effects of AXs<br />

from f<strong>in</strong>ger millet and kodo millet <strong>in</strong> regulat<strong>in</strong>g<br />

Introduction:<br />

Current anti-obesity medications are<br />

pharmacological agents which can reduce or<br />

control weight. These drugs affect one of the<br />

adipogenesis and their metabolic fate <strong>in</strong> animal fundamental processes of the weight regulation <strong>in</strong><br />

models will be studied, which is expected to human body i.e. alter<strong>in</strong>g appetite, metabolism or<br />

provide the <strong>in</strong>sight on mechanism of action of consumption of calories. There is only one anti-<br />

AXs <strong>in</strong> adipogenesis regulation and help <strong>in</strong> obesity medication, Orlistat, approved by FDA. It<br />

design<strong>in</strong>g functional foods with enriched Axs. acts through <strong>in</strong>hibition of pancreatic lipase<br />

Research Objectives:<br />

enzyme. Rimonabant, act<strong>in</strong>g through blockade of<br />

the endocannab<strong>in</strong>oid receptor and Sibutram<strong>in</strong>e,<br />

l Mechanistic studies on the role of AXs on a c t i n g t h r o u g h b r a i n b y i n h i b i t i n g<br />

adipogenesis us<strong>in</strong>g mouse 3T3-L1 cell l<strong>in</strong>es neurotransmitter metabolism were previously<br />

<strong>in</strong>-vitro.<br />

approved drugs which have been withdrawn from<br />

l Modulat<strong>in</strong>g adipogenesis and obesity us<strong>in</strong>g<br />

the market <strong>in</strong> several countries and regions


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

<strong>in</strong>clud<strong>in</strong>g India (Banned Medic<strong>in</strong>es, p<strong>res</strong>s l To study the effect of dietary modulations of<br />

release), M<strong>in</strong>istry of Health and Family Welfare. TRP channels (TRPV1: capsaic<strong>in</strong>, capsiate,<br />

th<br />

February 10 , <strong>2011</strong>). The potential side effects piper<strong>in</strong>e; TRPA1: garlic, c<strong>in</strong>namon; TRPM8:<br />

(<strong>in</strong>creased cardiovascular concerns, stroke, menthol) <strong>in</strong> a diet (high fat) based <strong>in</strong> vivo<br />

suicidality and dep<strong>res</strong>sion) of these drugs are mouse model of obesity.<br />

much more than their beneficial effects. Over the<br />

years it has been seen that the best and most<br />

Long Term Objectives:<br />

effective options available for overweight and l Develop<strong>in</strong>g diets constituted of modulat<strong>in</strong>g<br />

obese <strong>in</strong>dividuals are diet<strong>in</strong>g and physical food components and study their effect on<br />

exercise. It is important to have dietary regulations adipogenesis, obesity and related<br />

to prevent life style problems rather than to search complications.<br />

for the treatment. Available literature suggests that<br />

Transient Receptor Potential (Transient Receptor<br />

Potential Vanilloid (TRPV1), Transient Receptor<br />

Potential Ankyr<strong>in</strong> (TRPA1), Transient Receptor<br />

l Special dietary formulations will be made<br />

us<strong>in</strong>g TRP channel modulat<strong>in</strong>g dietary agents<br />

alone or <strong>in</strong> comb<strong>in</strong>ation with other nutrients.<br />

Potential Metastat<strong>in</strong> (TRPM8) channels are l Undertake cl<strong>in</strong>ical trial us<strong>in</strong>g human<br />

possible candidates to regulate energy metabolism volunteers for establish<strong>in</strong>g role of TRP<br />

and thermogenesis, which can lead to calorie channel modulat<strong>in</strong>g dietary agents <strong>in</strong> obesity.<br />

consumption and prevention of obesity. Common<br />

dietary spices like chilli pepper, black pepper,<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

clove, garlic, c<strong>in</strong>namon and their constituents Based on our PCR data multiple TRP channel<br />

(capsaic<strong>in</strong>, piper<strong>in</strong>e, eugenol, allic<strong>in</strong>, genes are exp<strong>res</strong>sed <strong>in</strong> mouse 3T3-L1<br />

c<strong>in</strong>namaldehyde, menthol) can activate the TRP preadipocytes (high to moderate exp<strong>res</strong>sion:<br />

channels. In this proposal, us<strong>in</strong>g the TRP channel TRPP2 (PKD2), TRPC1, TRPV2, TRPM2,<br />

receptor system we <strong>in</strong>tend to come up with dietary TRPV4 TRPV1, TRPV3, TRPV6, TRPC4; low<br />

constituents that can modulate the molecular exp<strong>res</strong>sion: TRPA1, TRPC6, and TRPM8) and<br />

mechanism associated with the process of adipocytes (high to moderate exp<strong>res</strong>sion: TRPP2<br />

adipogenesis, adipose tissue related hormonal (PKD2), TRPV2, TRPC1, TRPV4, TRPM2; low<br />

secretion and release of pro-<strong>in</strong>flammatory exp<strong>res</strong>sion: TRPA1, TRPV3, TRPV6, TRPC4,<br />

mediators and lipolysis.<br />

TRPV1, TRPC6, and TRPM8) (Table 1). TRPV1,<br />

TRPV3, TRPM8, TRPC4, TRPC6 were<br />

Research Objectives:<br />

differential exp<strong>res</strong>sed (multiple fold higher <strong>in</strong><br />

l Determ<strong>in</strong>ation of exp<strong>res</strong>sion and function of<br />

TRP channels <strong>in</strong> commercially available<br />

mouse preadipocytes cell l<strong>in</strong>es (3T3-L1),<br />

human preadipocytes (HPAd) and adipocytes<br />

(HAd) cells.<br />

preadipocytes than adipocytes) (Figure 2).<br />

Further, these channels are also exp<strong>res</strong>sed <strong>in</strong><br />

mur<strong>in</strong>e white adipose tissue (WAT) (high to<br />

moderate exp<strong>res</strong>sion: TRPP2 (PKD2), TRPV2,<br />

TRPC6, TRPC1, TRPV4, TRPM2, TRPV3,<br />

TRPC4; low exp<strong>res</strong>sion: TRPV1, TRPV6,<br />

l In-vitro characterization of the molecular TRPM8 and TRPA1] and brown adipose tissue<br />

basis of adipogenesis us<strong>in</strong>g mouse/human (BAT) [high to moderate exp<strong>res</strong>sion: TRPP2<br />

gene microarray chip, mouse/human (PKD2), TRPV2, TRPC6, TRPC1, TRPV4,<br />

adipogenesis and obesity PCR arrays. TRPM2, TRPV3, TRPC4, TRPV6; low exp<strong>res</strong>sion:<br />

Determ<strong>in</strong>ation of effect of TRP channel TRPV1, TRPM8, and TRPA1) (Table 1). TRPV4,<br />

activation on adipogenesis process <strong>in</strong> TRPV6 and TRPC6 were differentially exp<strong>res</strong>sed<br />

mouse/human adipocytes cells.<br />

<strong>in</strong> mur<strong>in</strong>e WAT and BAT (Figure 2).<br />

32


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Table 1: Summary of TRP channel exp<strong>res</strong>sion <strong>in</strong> (A) undifferentiated (preadipocytes) and<br />

differentiated (adipocytes) 3T3-L1 cells (B) mouse white (WAT) and brown (BAT) adipose tissue<br />

TRP Gene<br />

Mouse 3T3-L1 cell l<strong>in</strong>e<br />

Preadipocyte Adipocyte<br />

Mouse adipose tissue<br />

WAT BAT<br />

V1 ++ + ++ ++<br />

V2 ++ ++ +++ +++<br />

V3 ++ + ++ ++<br />

V4<br />

V6<br />

++<br />

++<br />

++<br />

+<br />

+++<br />

+++<br />

++<br />

++<br />

M2 ++ ++ ++ ++<br />

M8 ++ + + +<br />

A1 ++ + + +<br />

C1 +++ ++ ++ ++<br />

C4 ++ + ++ ++<br />

C6 + + +++ +++<br />

P2 +++ +++ +++ +++<br />

GAPDH ++++ ++++ ++++ ++++<br />

(++++ = very high exp<strong>res</strong>sion (ct values= 30).<br />

Figure 1: Differential exp<strong>res</strong>sion of TRP channel <strong>in</strong> (A) undifferentiated (preadipocytes) and differentiated<br />

(adipocytes) 3T3-L1 cells relative to GAPDH (House Keep<strong>in</strong>g Gene, HKG) (B) mouse white (WAT) and<br />

brown adipose tissue (BAT) relative to TRPP2 (HKG). * significant with p value =< 0.01; ** significant with p<br />

value =< 0.03.<br />

33


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

4.1.3 Characterization of arab<strong>in</strong>oxylans <strong>in</strong> regulat<strong>in</strong>g their biological activities will be<br />

cereal gra<strong>in</strong>s evaluated us<strong>in</strong>g <strong>in</strong>-vitro and <strong>in</strong>-vivo model, which<br />

Pr<strong>in</strong>cipal Investigator:<br />

Koushik Mazumder<br />

will further allow us to understand the structurefunction<br />

relationship of the AXs <strong>in</strong> Indian millet<br />

varieties with <strong>res</strong>pect to their biological activities.<br />

Introduction: Research Objectives:<br />

Cereals, the staple foods for millions of people<br />

across the world, are the chief source of soluble<br />

dietary fibers. Several epidemiological studies<br />

have clearly demonstrated that <strong>in</strong>creased<br />

consumption of whole gra<strong>in</strong> cereals and soluble<br />

dietary fibers has been associated with a reduced<br />

risk of many life style disorders such as type-2<br />

diabetes and obesity. In cereal gra<strong>in</strong>s, AXs are the<br />

The p<strong>res</strong>ent study aims to elucidate comparative<br />

statement profile of AXs from Indian millet<br />

varieties and its effect on their biological<br />

activities.<br />

l Isolation and purification of the arab<strong>in</strong>oxylan<br />

polysaccharides and oligosaccharides from<br />

the bran of Indian variety millets.<br />

major non-starchy polysaccharides which<br />

constitute the cell walls <strong>res</strong>idues <strong>in</strong> cereal gra<strong>in</strong>s<br />

and make up an important physicochemical and<br />

physiological property beneficial to the health of<br />

consumers and for this reason, their use as food<br />

<strong>in</strong>gredients has <strong>in</strong>creased rapidly. Although AXs<br />

l Compositional sugar analysis and structural<br />

characterization of the arab<strong>in</strong>oxylan<br />

polysaccharides and oligosaccharides us<strong>in</strong>g<br />

various chemical and modern analytical<br />

methods (GC-MS, HPLC, MALDI-TOF<br />

and ESI-MS/MS) to establish structure-<br />

share the same basic chemical structure, but the<br />

34<br />

function relationship.<br />

pattern and degree of substitution of arab<strong>in</strong>ose<br />

along the xylan backbone vary with cereal Long Term Objective:<br />

sources. Therefore, the AXs exhibits a great deal<br />

of structural heterogeneity and variability with<br />

<strong>res</strong>pect to molecular weight mass, xylose to<br />

Development of nutraceutical health foods based<br />

on dietary fibers enriched with Axs.<br />

arab<strong>in</strong>ose ratio and branch<strong>in</strong>g pattern, Research <strong>in</strong> Prog<strong>res</strong>s:<br />

distribution of arab<strong>in</strong>ose <strong>res</strong>idues and substitution<br />

with glucuronic acid/4-O-methyl glucuronic<br />

acids.<br />

In our prelim<strong>in</strong>ary studies, we have<br />

standardized the extraction protocol for the<br />

isolation of AXs from F<strong>in</strong>ger millet bran and the<br />

There is no documented report about the compositional analysis of the polysaccharides<br />

comparative study of arab<strong>in</strong>oxylan poly and have been carried out (GC, GC-MS analysis) as<br />

oligo-saccharides from Indian millet varieties monomeric alditol acetate derivative with <strong>in</strong>ositol<br />

such as f<strong>in</strong>ger millet, kodo millet, branyard millet as <strong>in</strong>ternal standard (Figure 2). The compositional<br />

and foxtail millet. Hence <strong>in</strong> the p<strong>res</strong>ent study, the analysis showed the p<strong>res</strong>ence of arab<strong>in</strong>oxylan as<br />

variability <strong>in</strong> the structu<strong>res</strong> of the AXs from major constituent (~90%) together with starch and<br />

various Indian millet varieties and their role <strong>in</strong> galactomannan as m<strong>in</strong>or component.<br />

Figure 2: GC chromatogram of the monomeric sugar <strong>res</strong>idues of extracted arb<strong>in</strong>oxylan fraction from f<strong>in</strong>ger<br />

millet bran. (Ara: Arab<strong>in</strong>ose, Xyl: Xylose, Inos: Inositol, Gal: Galactose, Glc: Glucose, Man: Mannose).


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

5. COMPUTATIONAL BIOLOGY APPROACHES FOR<br />

MARKER AND GENE DISCOVERY FOR NUTRITION AND<br />

PROCESSING TRAITS IN GENOMES OF FOOD CROPS<br />

5.1 Development of advanced algorithms, Research Objectives:<br />

databases, tools and pipel<strong>in</strong>e for data m<strong>in</strong><strong>in</strong>g<br />

and comparative analysis of food crop<br />

genomes, transcriptome and small RNA based<br />

regulation.<br />

Coord<strong>in</strong>ator:<br />

Rakesh Tuli<br />

Investigators:<br />

Shrikant Subhash Mantri<br />

Joy K. Roy<br />

Project Scientists:<br />

Shailesh Sharma<br />

Vandana Mishra<br />

35<br />

l Transcriptome sequenc<strong>in</strong>g, assembly and<br />

annotation for contrast<strong>in</strong>g wheat varieties.<br />

l Digital exp<strong>res</strong>sion profil<strong>in</strong>g and microarray<br />

datam<strong>in</strong><strong>in</strong>g for identification of S<strong>in</strong>gle<br />

Feature Polymorphism (SFP) <strong>in</strong> Indian<br />

cultivars and annotation of hypothetical<br />

prote<strong>in</strong>s.<br />

l SNP database development <strong>in</strong> wheat.<br />

l Comparative genomics and related data<br />

m<strong>in</strong><strong>in</strong>g.<br />

l Small RNA analysis pipel<strong>in</strong>e development.<br />

Research Fellows:<br />

l Microarray datam<strong>in</strong><strong>in</strong>g for SFP.<br />

Gourab Das l Repository of germplasm.<br />

Anuradha S<strong>in</strong>gh<br />

Long Term Objectives:<br />

Introduction:<br />

l Framework map development for wheat<br />

Bread wheat, Triticum aestivum, is an genome (assembly and annotation).<br />

allohexaploid species. Its genome is composed of<br />

the three dist<strong>in</strong>ct ancestral genomes A, B and D.<br />

The polyploid nature of the wheat genome<br />

l Identification of genes <strong>in</strong>volved <strong>in</strong> high<br />

accumulation of micronutrients.<br />

together with its large size and high percentage of l Genome wide association analysis for<br />

repeat elements makes it extremely complex and co-rrelat<strong>in</strong>g quality and process<strong>in</strong>g related<br />

computationally <strong>in</strong>tensive to analyze ever traits with the identified SNP's.<br />

<strong>in</strong>creas<strong>in</strong>g transcriptome and genome data. With<br />

the advent of next-generation sequenc<strong>in</strong>g<br />

technology it is now possible to generate whole<br />

5.1.1 SNP database development <strong>in</strong> hexaploid<br />

wheat<br />

genome/transcriptome sequences for a number of Research <strong>in</strong> Prog<strong>res</strong>s:<br />

wheat genome. We are <strong>in</strong>te<strong>res</strong>ted to harness the<br />

public doma<strong>in</strong> data of wheat for different projects<br />

on crop improvement <strong>in</strong> terms of nutritional and<br />

process<strong>in</strong>g quality. Additionally, NABI has<br />

<strong>in</strong>itiated experiments to generate transcriptome<br />

sequences for Indian wheat varities show<strong>in</strong>g<br />

contrast<strong>in</strong>g characters. Bio<strong>in</strong>formatics Labortary<br />

Datam<strong>in</strong><strong>in</strong>g of non-synonymous mutations or<br />

S<strong>in</strong>gle Am<strong>in</strong>o acid Polymorphisms (SAPs) from<br />

ESTs and homoeologous SNPs from chromosome<br />

1 of Triticum aestivum, <strong>res</strong>ulted <strong>in</strong>to the<br />

identification putative 35395 and 1817 SNPs<br />

<strong>res</strong>pectively.<br />

which has the high performance comput<strong>in</strong>g nsSNP m<strong>in</strong><strong>in</strong>g <strong>in</strong> ESTs from dbEST:<br />

<strong>in</strong>frastructure is a gateway for NABI scientists to<br />

use computational methods and databases to<br />

deepen and <strong>in</strong>tegrate their <strong>res</strong>earch.<br />

Non-synonymous deleterious mutations are fairly<br />

common <strong>in</strong> crop genomes. Statistical analysis of<br />

homologous sequence from multiple genomes can


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

identify am<strong>in</strong>o acid changes that are likely to be am<strong>in</strong>o acid across species suggests that the nondisadvantageous.<br />

Figure 1 shows a hypothetical synonymous change (<strong>in</strong>dicated by the red 'G')<br />

alignment of cod<strong>in</strong>g sequence from multiple grass observed <strong>in</strong> maize is likely to be deleterious.<br />

species. The conserved nature of the histid<strong>in</strong>e Synonymous changes are shown <strong>in</strong> black.<br />

Figure 1: Hypothetical alignment of cod<strong>in</strong>g sequence from multiple grass species.<br />

Non-synonymous change <strong>in</strong>dicated <strong>in</strong> red, synonymous change <strong>in</strong>dicated <strong>in</strong> black.<br />

Highly putative nsSNPs <strong>in</strong> hexaploid wheat ESTs were found through the follow<strong>in</strong>g steps (Table 1-7):<br />

1. dbEST records were parsed us<strong>in</strong>g custom perl script and multifasta conta<strong>in</strong><strong>in</strong>g all EST sequences<br />

was generated.<br />

Table 1: dbEST summary (updated February 1, <strong>2012</strong>).<br />

No. of Triticum<br />

aestivum ESTs<br />

No. of<br />

cultivars<br />

2. These EST sequences were clustered us<strong>in</strong>g BLAST algorithm.<br />

Table 2: EST cluster<strong>in</strong>g <strong>res</strong>ults. Current release March 19, <strong>2012</strong><br />

conta<strong>in</strong>s 36692 unigenes.<br />

3. SNPs were determ<strong>in</strong>ed us<strong>in</strong>g autosnpV2 script.<br />

Table 3: Overall SNPs summary.<br />

36<br />

No. of tissues No. of developmental<br />

stages<br />

1073845 101 108 132<br />

No. of Triticum<br />

aestivum probe sets<br />

No. of<br />

Probe<br />

sets<br />

20699<br />

No. of unigenes<br />

covered<br />

No. of probe sets<br />

hav<strong>in</strong>g no cluster<br />

<strong>in</strong>fo<br />

No. of probe sets<br />

hav<strong>in</strong>g cluster depth<br />

> 5 sequences<br />

61115 24697 123 46372<br />

SNPs<br />

Synonymo<br />

us SNPs<br />

Synonymous<br />

SNPs <strong>in</strong><br />

CDS<br />

Synonymous<br />

SNPs <strong>in</strong> flank<strong>in</strong>g<br />

Cod<strong>in</strong>g region<br />

prote<strong>in</strong><br />

substitutions<br />

SNPs <strong>in</strong><br />

doma<strong>in</strong>s<br />

161188 94654 67478 27176 35395 2486


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

4. nsSNPs were extracted from the overall SNP <strong>res</strong>ult.<br />

Table 4: nsSNP statistics.<br />

Total no. of nsSNPs No. of probe sets<br />

<strong>in</strong>volved<br />

5. SNPs <strong>in</strong> transcription factors were identified.<br />

Table 5: Summary of SNPs <strong>in</strong> Transcription Factors.<br />

6. SNPs <strong>in</strong> pathways were also determ<strong>in</strong>ed.<br />

Table 6: Summary of mutations <strong>in</strong> pathways.<br />

7. SNPs <strong>in</strong> starch & sucrose metabolism pathway.<br />

Involved probe sets<br />

with annotation<br />

Table 7: SNP summary <strong>in</strong> Starch Metabolism Pathway.<br />

nsSNPs <strong>in</strong> rema<strong>in</strong><strong>in</strong>g 11995 unigenes from Unigene database of NCBI is be<strong>in</strong>g detected.<br />

Homoeologous SNPs <strong>in</strong> chromosome1: s<strong>in</strong>gle <strong>in</strong>dividual. Varieties 1 and 2 possess the<br />

Accord<strong>in</strong>g to SNP nomenclature, a homoeologous same homoeologous SNP and have the<br />

SNP exists if there is a difference between the characteristic of a s<strong>in</strong>gle <strong>in</strong>dividual.<br />

three homoeologous genomes (A, B and D) <strong>in</strong> a<br />

Figure 2: Depiction of homoeologus variation between A, B and D genome <strong>in</strong> wheat.<br />

37<br />

No. of nsSNPs with<br />

annotation<br />

35395 12441 12409 35233<br />

No. of probe sets Synonymous SNPs No. of nsSNPs SNPs <strong>in</strong> doma<strong>in</strong>s<br />

188 776 335 106<br />

No. of pathways No. of probe<br />

sets <strong>in</strong>volved<br />

No. of enzymes No. of<br />

synonymous<br />

SNPs<br />

No. of nonsynonymous<br />

substitutions<br />

147 2157 521 13442 4556<br />

Pathway ID No. of enzymes<br />

<strong>in</strong>volved<br />

Path: map<br />

00500<br />

No. of probe sets<br />

<strong>in</strong>volved<br />

No. of<br />

synonymous<br />

SNPs<br />

No. of nonsynonymous<br />

substitutions<br />

42 214 1840 525


Homoeologous SNP m<strong>in</strong><strong>in</strong>g was carried out homoeologs us<strong>in</strong>g cut-off value of m<strong>in</strong>imum<br />

through the follow<strong>in</strong>g steps (Table 8-11): 5 reads from each of the 3 genomes (A,B,D)<br />

1) SRA reads were retrieved from NCBI SRA<br />

database and multifasta was generated.<br />

2) Reads were assembled by CLC Assembly Cell<br />

produc<strong>in</strong>g 105 homoeologs out of which 90<br />

homoeologs have the polymorphism which<br />

is determ<strong>in</strong>ed by autosnpV1 script.<br />

software with default parameters.<br />

3) Resultant contigs were filtered to get the<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Table 8: Assembly <strong>res</strong>ults of hexaploid wheat chromosome<br />

CLC version No. of SRA<br />

reads<br />

Table 9: Assembled contig summary.<br />

Table 10: Homoeologous SNPs summary.<br />

No. of contigs Reads from A<br />

genome<br />

Table 11: PLACE database screen<strong>in</strong>g report.<br />

No. of contigs<br />

Total no. of<br />

regulatory SNPs<br />

4) SNPs <strong>in</strong> the regulatory region were identified<br />

No. of contigs No. of annotated<br />

with no contigs with<br />

regulatory SNPs regulatory SNPs<br />

us<strong>in</strong>g cis regulatory motifs <strong>in</strong> PLACE<br />

database.<br />

S<strong>in</strong>gleton Assemble reads Total no. of<br />

contigs<br />

4 beta 1072765 6126635 4601040 885431<br />

3.2 1072765 2850260 7877415 821609<br />

Total no. of<br />

contigs<br />

No. of contigs<br />

with reads from<br />

1 genome<br />

No. of contigs<br />

with reads from<br />

2 genomes<br />

Both 3.2 and 4 beta versions were used to compare the number of identified SNPs.<br />

Reads from B<br />

genome<br />

5) Calculation of GC content for all the genomes from chromosome 1 (Table 12).<br />

Table 12: Nucleotide base summary and GC contents of 3 genomes.<br />

38<br />

No. of contigs<br />

hav<strong>in</strong>g reads<br />

from all<br />

genomes<br />

Reads from D<br />

genome<br />

No. of contigs<br />

with no read<br />

<strong>in</strong>formation<br />

885431 284159 71530 47205 482537<br />

821609 443337 130377 81295 166600<br />

Total no. of<br />

SNPs<br />

90 4254 4810 1182 1817<br />

No. of annotated<br />

regulatory SNPs<br />

90 369 31 40 250<br />

Featu<strong>res</strong> Genome A Genome B Genome D<br />

GC content 0.4317 0.4368 0.4430


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

5.1.2 Wheat genechip microarray data m<strong>in</strong><strong>in</strong>g out of the 61127 probe sets of wheat.<br />

for identification of SFPs <strong>in</strong> Indian cultivars and Optimization of script is under prog<strong>res</strong>s.<br />

annotation of hypothetical prote<strong>in</strong>s<br />

5.1.3 Development of small RNA analysis<br />

Introduction:<br />

pipel<strong>in</strong>e<br />

SNPs and <strong>in</strong>sertion or deletions of one or more Introduction:<br />

nucleotides (<strong>in</strong>dels) are DNA polymorphisms that<br />

can affect hybridization of DNA or cRNA to a<br />

probe on an array. The Affymetrix Gene Chip<br />

arrays are suitable to detect such variations<br />

miRNAs are small and endogenous RNAs that<br />

regulate endogenous genes or gene exp<strong>res</strong>sion.<br />

miRNAs are important for implement<strong>in</strong>g<br />

because each gene is rep<strong>res</strong>ented by a set of eleven developmental programs <strong>in</strong> animals and plants.<br />

25-bp probes that are sensitive to target mismatch Our <strong>res</strong>earch focus is on plant miRNA prediction<br />

ow<strong>in</strong>g to their short sequence. A target sequence and its target prediction (miRNA). In plants, these<br />

that matches the sequence of a probe b<strong>in</strong>ds with ~18-24 nt RNAs are processed from stem-loop<br />

much greater aff<strong>in</strong>ity than one with a mismatch regions of long primary transcripts by a dicer-like<br />

sequence. The <strong>res</strong>ult<strong>in</strong>g difference <strong>in</strong><br />

hybridization <strong>in</strong>tensity between two genotypes for<br />

an <strong>in</strong>dividual probe is called a SFP, where a feature<br />

refers to a probe <strong>in</strong> the array. A SFP may be caused<br />

by a SNP, a multiple nucleotide polymorphism, or<br />

an <strong>in</strong>del.<br />

enzyme and are loaded <strong>in</strong>to silenc<strong>in</strong>g complexes,<br />

where they generally direct cleavage of<br />

complementary mRNAs. NABI has <strong>in</strong>itiated<br />

experiments to generate small RNA sequences<br />

us<strong>in</strong>g Illum<strong>in</strong>a platform for RNA isolated from<br />

contrast<strong>in</strong>g samples of wheat, custard apple, litchi<br />

Research Objective:<br />

and mango to understand small RNA regulation<br />

To predict SFPs <strong>in</strong> the genomes of the follow<strong>in</strong>g<br />

wheat varieties: C-306, LOK1, Sonalika and<br />

WH291, us<strong>in</strong>g microarray data.<br />

and identify novel regulatory small RNA. Long<br />

term goal under this component is to reconstruct<br />

gene regulatory networks us<strong>in</strong>g multi-dimension<br />

data. Small RNA prediction and its target<br />

Research <strong>in</strong> Prog<strong>res</strong>s:<br />

prediction will be done us<strong>in</strong>g <strong>in</strong>-house developed<br />

1. An algorithm was written for predict<strong>in</strong>g<br />

SFPs us<strong>in</strong>g the normalized exp<strong>res</strong>sion signal<br />

values of the four wheat varieties.<br />

pipel<strong>in</strong>e of open source prediction tools and<br />

customized scripts. Bench mark<strong>in</strong>g of different<br />

softwa<strong>res</strong> (<strong>in</strong> the pipel<strong>in</strong>e) is <strong>in</strong> prog<strong>res</strong>s us<strong>in</strong>g<br />

datasets available <strong>in</strong> public doma<strong>in</strong>.<br />

2. Standard deviation values were computed<br />

us<strong>in</strong>g the normalized signal <strong>in</strong>tensity values Research Objectives:<br />

of perfect match probes of a probeset for all<br />

the four wheat varieties 7 DAA,<br />

14 DAA and 28 DAA.<br />

l Bench-mark<strong>in</strong>g of miRNA prediction and<br />

miRNA-target prediction tools.<br />

3. Four average standard deviation values were<br />

used as reference values to predict SFP. SFP<br />

l Development of small RNA analysis<br />

Pipel<strong>in</strong>e.<br />

is predicted if the standard deviation values<br />

of a probe of a probeset are less than or equal<br />

to the m<strong>in</strong>imum of the four average standard<br />

l Development of <strong>in</strong>-house small RNA<br />

database.<br />

deviation values.<br />

l Comparative analysis of small RNA<br />

4. Python script was written based on the above<br />

regulation.<br />

written statistical logic for predict<strong>in</strong>g SFPs l Reconstruction of gene regulatory networks.<br />

39


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

EMERGING AREAS<br />

1. Prob<strong>in</strong>g B-ZIP transcription factors role <strong>in</strong> 2. Develop<strong>in</strong>g carbohydrate and lipid<br />

root and seed development <strong>in</strong> plants: Use of a derivative based nano molecular vehicles for<br />

designed dom<strong>in</strong>ant negative prote<strong>in</strong> bioavailability of micronutrients<br />

Investigator: Vikas Rishi Investigator: Nit<strong>in</strong> K. S<strong>in</strong>ghal<br />

There are approximately 72 B-ZIP transcription Micronutrient deficiency such as iron deficiency<br />

factors <strong>in</strong> Arabidopsis and a number of these are may arise from <strong>in</strong>adequate <strong>in</strong>take and impaired<br />

<strong>in</strong>volved <strong>in</strong> root and seed development. The B-ZIP absorption lead<strong>in</strong>g to anaemia, reduce cognitive<br />

motif is a long bipartite α-helix. The C-term<strong>in</strong>al development and lower work capacity. Although<br />

half is an amphipathic α-helix that dimerizes to iron deficiency therapy with oral ferrous salts is<br />

form a parallel dimeric coiled-coil termed as<br />

widespread, the bioavailability of iron from such<br />

salts is poor. Anti-nutrient components, such as<br />

phytate <strong>in</strong> whole gra<strong>in</strong> and bran, oxalic acid <strong>in</strong><br />

sp<strong>in</strong>ach, phosphates <strong>in</strong> practically all foods, and<br />

tann<strong>in</strong>s from black tea and coffee may decrease<br />

+2<br />

the bioavailability of ferrous iron Fe by form<strong>in</strong>g<br />

<strong>in</strong>soluble complexes .<br />

Figure 1: Design of dom<strong>in</strong>ant negative to B-ZIP:A-ZIP.<br />

FeSO 4 is water soluble compound, but is easily<br />

+ 3<br />

oxidized to low soluble Fe form after contact<br />

with oxygen. This may often cause unacceptable<br />

leuc<strong>in</strong>e zipper. The N-term<strong>in</strong>al half is a basic<br />

region that b<strong>in</strong>ds sequence specific DNA. A<br />

dom<strong>in</strong>ant negative (DN) prote<strong>in</strong> called A-ZIP <strong>in</strong><br />

which the basic DNA b<strong>in</strong>d<strong>in</strong>g region of a B-ZIP<br />

transcription factor (TF) is replaced by a rationally<br />

designed acidic extension has been used<br />

change <strong>in</strong> the color and taste of foods. Moreover,<br />

+2<br />

Fe frequently causes gastro<strong>in</strong>test<strong>in</strong>al side effects.<br />

It is highly desirable to f<strong>in</strong>d a better alternative<br />

iron source that can overcome the gastro<strong>in</strong>test<strong>in</strong>al<br />

side effects of iron. Iron oxide/hydroxide<br />

nanoparticles with neutral and hydrophilic<br />

successfully <strong>in</strong> mammalian systems to study the carbohydrate nanosize shell can be used as<br />

role of these TFs <strong>in</strong> growth, development and alternatives to ferrous salts. In these formulations<br />

differentiation (Figure 1). These DN prote<strong>in</strong>s gastro<strong>in</strong>test<strong>in</strong>al side effects are rare because<br />

3+<br />

heterodimerize with the wild type prote<strong>in</strong>s and hundreds of Fe atoms are safely packed <strong>in</strong><br />

<strong>in</strong>hibit their function by not allow<strong>in</strong>g them to b<strong>in</strong>d<br />

to promoter of a gene. DN is biologically active<br />

reagent because a heterodimer is more stable than<br />

a B-ZIP homodimer bound to DNA. This strategy<br />

will be used to study root and seed development <strong>in</strong><br />

Arabidopsis. Use of dom<strong>in</strong>ant negative for<br />

silenc<strong>in</strong>g genes has advantage over other RNA<br />

based technologies like siRNA and miRNA.<br />

These designed dom<strong>in</strong>ant negatives can <strong>in</strong>hibit the<br />

nanoscaled co<strong>res</strong> surrounded by the solubiliz<strong>in</strong>g<br />

shell. There are some evidences that particles <strong>in</strong><br />

the range of nanometre show different properties<br />

as compared to larger particles. This and the fact<br />

that very large surface area of nanoparticles allows<br />

iron to be much more bioavailable, suggest<strong>in</strong>g the<br />

potential of design<strong>in</strong>g and produc<strong>in</strong>g particles of<br />

nano dimension. Nanoparticle based delivery<br />

functions of all the TFs belong<strong>in</strong>g to the same systems can boost iron bioavailability and may<br />

family, thus overcom<strong>in</strong>g the problem of play a vital role <strong>in</strong> food applications <strong>in</strong> the near<br />

redundancy, a phenomenon common <strong>in</strong> biological<br />

systems.<br />

future for treat<strong>in</strong>g micronutrient deficiencies.<br />

40


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

SYNERGY THROUGH COLLABORATIONS<br />

AND NETWORKING<br />

1. NABI and NIPER signed a MOU on 18.02.<strong>2012</strong> to undertake jo<strong>in</strong>t <strong>res</strong>earch work <strong>in</strong> the area of<br />

mutual <strong>in</strong>te<strong>res</strong>t besides impart<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g to staff, students and technical personnel with<strong>in</strong> the areas<br />

of cooperation.<br />

2. NABI is <strong>in</strong> advanced stage of sign<strong>in</strong>g MOUs with the follow<strong>in</strong>g Institutes/Universities:<br />

i. Punjab Agricultural University, Ludhiana.<br />

ii. Punjab Technical University, Kapurthala<br />

iii. Birla Institute of Technology, Pilani.<br />

41


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

NEWLY JOINED FACULTY<br />

43


Name: Dr. Vikas Rishi<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 01-03-<strong>2012</strong><br />

Designation: Scientist E<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Epigenetics, DNA methylation and gene regulation,<br />

transcription factors dimerization and DNA b<strong>in</strong>d<strong>in</strong>g specificity, prote<strong>in</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> decipher<strong>in</strong>g biological functions of B-ZIP transcription factors.<br />

Past Appo<strong>in</strong>tments:<br />

1. Visit<strong>in</strong>g Scientist (2001-2006): National Cancer Institute, National Institutes of Health, Bethesda,<br />

USA.<br />

2. Research Fellow (FTE position) (2006-2009): National Cancer Institute, National Institutes of<br />

Health, Bethesda, USA.<br />

Major Publications:<br />

(BRIEF PROFILES)<br />

1. Warren CL, Zhao J, Glass K, Rishi V, Ansari AZ, V<strong>in</strong>son C (<strong>2012</strong>). Fabrication of duplex DNA<br />

microarrays <strong>in</strong>corporat<strong>in</strong>g methyl-5-cytos<strong>in</strong>e. Lab Chip. 12 (2): 376-80.<br />

2. Eric RD, Chatterjee R, Zhao J, Rishi V, V<strong>in</strong>son C (<strong>2012</strong>). Dom<strong>in</strong>ant negative <strong>in</strong>duces degradation of<br />

B-ZIP prote<strong>in</strong>s. Biochem Biophys Res Commun. (<strong>in</strong> p<strong>res</strong>s).<br />

3. Rishi V, Bhattacharya P, Chatterjee R, Rozenberg J, Zhao J, Glass K, Fitzgerald P and V<strong>in</strong>son C<br />

(2010). CpG methylation of half-CRE sequences creates C/EBP alpha b<strong>in</strong>d<strong>in</strong>g sites that activate<br />

some tissue-specific genes. Proc Natl Acad Sci U S A.107 (47): 20311-6.<br />

4. Rishi V, Oh WJ, Heyerdahl SL, Zhao J, Scudiero D, Shoemaker RH and V<strong>in</strong>son C (2010).<br />

Arylstibonic acids that <strong>in</strong>hibit the DNA b<strong>in</strong>d<strong>in</strong>g of five B-ZIP dimers. J Struct Biol. 170 (2): 216-25.<br />

5. Rishi V, Gal J, Krylov D, Fridriksson J, Boysen MS, Mandrup S, V<strong>in</strong>son C (2004). SREBP-1<br />

dimerization specificity maps to both the helix-loop-helix and leuc<strong>in</strong>e zipper doma<strong>in</strong>s: use of a<br />

dom<strong>in</strong>ant negative. J Biol Chem. 279 (12): 11863-74.<br />

45


Name: Dr. Ajay K. Pandey<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 14-11-<strong>2011</strong><br />

Designation: Scientist D<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Functional genomics approaches <strong>in</strong> wheat and<br />

legumes crop plants to understand the l<strong>in</strong>kage between the gene function and trait<br />

development. Metabolic eng<strong>in</strong>eer<strong>in</strong>g for trait development.<br />

Past Appo<strong>in</strong>tments:<br />

1. Post Doctoral Research Associate (2008-<strong>2011</strong>): Department of Plant Pathology, 351 Bessey Hall,<br />

Iowa State University, Ames, Iowa 50011.<br />

2. Post Doctoral Fellow (2004-2008): Department of Biological Sciences, University of Alabama,<br />

Huntsville, AL-35899.<br />

3. Post Doctoral Fellow (2003-2004): Institute of Plant and Microbial Biology, Academia S<strong>in</strong>ica,<br />

Taipei, Taiwan.<br />

Major Publications:<br />

1. Pandey AK, Yang C, Zhang C, Graham MA, Hill JH, Pedley KF and Whitham S (<strong>2011</strong>). Functional<br />

analysis of the genes that contribute to Rpp2-mediated defense aga<strong>in</strong>st Asian soybean rust.<br />

Molecular Plant Microbe Interactions. 24: 196-204.<br />

2. Pandey AK, Ja<strong>in</strong> P, Podila GK, Tudzynski B and Davis MR (2009). Cold <strong>in</strong>duced Botrytis c<strong>in</strong>erea<br />

enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by CAMP. Molecular<br />

Genetics and Genomics. 281: 135-146.<br />

3. Cseke LJ, Rav<strong>in</strong>der N, Pandey AK and Podila GK (2007). Identification of PTM5 prote<strong>in</strong><br />

<strong>in</strong>teraction partners, a MADS-box gene <strong>in</strong>volved <strong>in</strong> aspen tree vegetative development. Gene. 391:<br />

209-222.<br />

4. Huang HEn, Ger MJ, Y<strong>in</strong>g CC, Pandey AK, Yip MK, L<strong>in</strong> MK, Chou HK and Feng TY (2007).<br />

Disease <strong>res</strong>istance to bacterial pathogens affected by the amount of ferredox<strong>in</strong>-I prote<strong>in</strong> <strong>in</strong> plants.<br />

Molecular Plant Pathology. 8: 129-137.<br />

5. Pandey AK, Ger MJ, Huang HEn, Yip MK, L<strong>in</strong> MK, Zeng J and Feng TY (2005). Exp<strong>res</strong>sion of the<br />

hypersensitive <strong>res</strong>ponse-assist<strong>in</strong>g prote<strong>in</strong> <strong>in</strong> Arabidopsis <strong>res</strong>ults <strong>in</strong> harp<strong>in</strong> dependent hypersensitive<br />

cell death <strong>in</strong> <strong>res</strong>ponse to Erw<strong>in</strong>ia carotovora. Plant Molecular Biology. 59: 771-780.<br />

46


Name: Dr. Kanthi K. Kiran<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 02-09-<strong>2011</strong><br />

Designation: Scientist C<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Dietary constituents for the regulation of metabolic<br />

syndrome- nutrigenomics study, functional foods (probiotics, prebiotics and<br />

synbiotics), bacterial exopolysaccharides.<br />

Past Appo<strong>in</strong>tments:<br />

1. Post Doctoral Fellow (2009-<strong>2011</strong>): Lund University, Lund, Sweden<br />

2. Lecturer (2002-2003): TSR & TBK Degree College and P.G Centre, Gajuwaka, Visakhapatnam<br />

Major Publications:<br />

1. Kondepudi KK, Ambalam P, Wadström T and Ljungh A (<strong>2012</strong>). Prebiotic-non-digestible<br />

oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity aga<strong>in</strong>st<br />

clostridium difficile. Anaerobe. 18 (5): 489-97.<br />

2. Ambalam P, Kondepudi KK, Wadström T and Ljungh A (<strong>2012</strong>). Bile stimulates cell surface<br />

hydrophobicity, congo red b<strong>in</strong>d<strong>in</strong>g and biofilm formation of Lactobacillus stra<strong>in</strong>s. FEMS Microbiol<br />

Lett. 333 (1): 10–19.<br />

3. Kondepudi KK and Chandra TS (<strong>2011</strong>). Isolation of a moderately halophilic and amylolytic<br />

bacterium from sal<strong>in</strong>e soil of a salt manufactur<strong>in</strong>g <strong>in</strong>dustry. J. Pure Appl Microbiol. 5 (2): 545-552.<br />

4. Kondepudi KK and Chandra TS (<strong>2011</strong>). Identification of osmolytes from a moderately halophilic<br />

amylolytic Bacillus sp. stra<strong>in</strong> TSCVKK. Eur. J. Expt. Biol. 1 (1): 113-121.<br />

5. Kondepudi KK and Chandra TS (2008). Production of surfactant and detergent-stable, halophilic<br />

and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Stra<strong>in</strong> TSCVKK. Appl.<br />

Microbiol. Biotechnol. 77: 1023-1031.<br />

47


Name: Dr. Mahendra Bishnoi<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 16-12-<strong>2011</strong><br />

Designation: Scientist C<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Receptor pharmacology (metabolic disorders and<br />

nervous system disorders)<br />

Past Appo<strong>in</strong>tments:<br />

1. Research Associate (2009-<strong>2011</strong>): Department of Pharmacology, Southern<br />

Ill<strong>in</strong>ois University- School of Medic<strong>in</strong>e, Spr<strong>in</strong>gfield, Ill<strong>in</strong>ois, USA.<br />

2. Post Doctoral Associate (2009-2009): Department of Psychiatry, McKnight Bra<strong>in</strong> Institute,<br />

University of Florida, Ga<strong>in</strong>esville, Florida, USA.<br />

3. Assistant Professor (Temporary) (2007-2008): Department of Pharmacology, University Institute<br />

of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh.<br />

4. Research Assistant (2004-2005): Pharmacology Division of Bio<strong>res</strong>earch Division, Sun Pharma<br />

Advanced Research Centre (SPARC), Vadodara, Gujarat.<br />

Major Publications:<br />

1. Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L and Premkumar LS (<strong>2012</strong>).<br />

Exp<strong>res</strong>sion of TRPA1 and its role <strong>in</strong> <strong>in</strong>sul<strong>in</strong> release from rat pancreatic beta cells, PLoS ONE. 7(5):<br />

e38005.<br />

2. Bishnoi M, Bosgraaf CS, Abooj M and Premkumar LS (<strong>2011</strong>). Involvement of TRPV1 and<br />

<strong>in</strong>flammation <strong>in</strong> STZ-<strong>in</strong>duced early thermal hyperalgesia is <strong>in</strong>dependent of glycemic state of rats.<br />

Molecular Pa<strong>in</strong>. 7: 52.<br />

3. Bishnoi M, Bosgraaf CS and Premkumar LS (<strong>2011</strong>). P<strong>res</strong>ervation of acute pa<strong>in</strong> and efferent<br />

functions follow<strong>in</strong>g <strong>in</strong>trathecal <strong>res</strong><strong>in</strong>iferatox<strong>in</strong>-<strong>in</strong>duced analgesia. Journal of Pa<strong>in</strong>. 12: 991-1003.<br />

4. Bishnoi M, Chopra K and Kulkarni SK (2009). Co-adm<strong>in</strong>istration of nitric oxide (NO) donors<br />

prevents haloperidol-<strong>in</strong>duced orofacial dysk<strong>in</strong>esia, oxidative damage and change <strong>in</strong> striatal<br />

dopam<strong>in</strong>e levels. Pharmacol Biochem Behav. 91: 423-429.<br />

5. Bishnoi M, Chopra K and Kulkarni SK (2008). Modulatory effect of neurosteroids <strong>in</strong> haloperidol<strong>in</strong>duced<br />

orofacial dysk<strong>in</strong>esia: An animal model of Tardive Dysk<strong>in</strong>esia, Psychopharmacology.<br />

196: 243-254.<br />

48


Name: Dr. Koushik Mazumder<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 01-02-<strong>2012</strong><br />

Designation: Scientist C<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Carbohydrate chemistry, glycobiology.<br />

Past Appo<strong>in</strong>tment:<br />

1. Post Doctoral Research Associate (2008-<strong>2011</strong>): Complex Carbohydrate<br />

Research Centre, University of Georgia, 315 Riverbend Road, Athens,<br />

Georgia 30602, USA.<br />

Major Publications:<br />

1. Correia MAS, Mazumder K, Brás JLA, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CMGA and<br />

Gilbert HJ (<strong>2011</strong>). The structure and function of an arab<strong>in</strong>oxylan-specific xylanase. Journal of<br />

Biological Chemistry. 286: 22510-22520.<br />

2. Mazumder K and York WS (2010). Structural analysis of AXs isolated from ball milled switchgrass<br />

biomass. Carbohydrate Research. 345: 2183-2193.<br />

3. Mazumder K, Choudhury BP, Nair GB and Sen AK (2008). Identification of a novel sugar 5, 7diacetamido-8-am<strong>in</strong>o-3,5,7,8,9-pentadeoxy-D-glycero-D-galacto-non-2-ulosonic<br />

acid p<strong>res</strong>ent <strong>in</strong><br />

the lipooligosaccharide of Vibrio parahaemolyticus O3:K6. Glycoconjugate Journal. 25: 345–354.<br />

4. Zhu X, Pattathil S, Mazumder K, Brehm A, Hahn MG, D<strong>in</strong>esh-Kumar SP and Joshi CP (2010).<br />

Virus <strong>in</strong>duced gene silenc<strong>in</strong>g offers a functional genomics platform for study<strong>in</strong>g plant cell wall<br />

formation. Molecular Plant. 3: 818-833.<br />

5. Kulkarni AR, Peña MJ, Avci U, Mazumder K, Urbanowicz B, Y<strong>in</strong> Y, O'Neill MA, Roberts AW,<br />

Hahn MG, Xu Y, Darvill AG and York WS (<strong>2011</strong>). The ability of land plants to synthesize<br />

glucuronoxylans predates the evolution of tracheophytes. Glycobiology. 22: 439-451.<br />

49


Name: Dr. Nit<strong>in</strong> K. S<strong>in</strong>ghal<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 02-03-<strong>2012</strong><br />

Designation: Scientist C<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Synthetic nano-biochemistry, liposome based gene<br />

delivery, fabrication of nano / microstructu<strong>res</strong>, cellular assays, organic synthesis<br />

of small molecules, biosensors, biomarker based disease diagnostic.<br />

Past Appo<strong>in</strong>tments:<br />

1. Post Doctoral Fellow (2008-2009): Pennsylvania State University, State College, USA<br />

2. Post Doctoral Fellow (2009-<strong>2012</strong>): Seoul National University, Seoul, South Korea<br />

Major Publications:<br />

1. Kumar A, Ramanujam B, S<strong>in</strong>ghal NK, Mitra A and Chebrolu PR (2010). Interaction of aromatic<br />

im<strong>in</strong>o glycoconjugates with jacal<strong>in</strong>: experimental and computational dock<strong>in</strong>g studies Carbohydrate<br />

Res. 345: 2491-2498.<br />

2. Amit K, S<strong>in</strong>ghal NK, Nagender RR, Siva KN and Chebrolu PR (2009). C1- and C2-Im<strong>in</strong>o-based<br />

glycoconjugates: <strong>in</strong>hibition aspects towards glycosidase activities isolated from soybean and jack<br />

bean. Glycoconjugates Journal. 26: 495-510.<br />

3. S<strong>in</strong>ghal NK, Mitra A, Ramanujam B and Chebrolu PR (2009). Variation <strong>in</strong> the sensitivity and<br />

2+<br />

selectivity of M as a function of the stereochemistry of the carbohydrate: Selectivity differences<br />

2+<br />

between galactosyl and ribosyl derivatives towards Cu attributed to the structural differences.<br />

Dalton Tran. 39: 8432-8442.<br />

4. S<strong>in</strong>ghal NK, Ramanujam B, Mariappanadar V and Rao CP (2006). Carbohydrate-based switch-on<br />

molecular sensor for cu (ii) <strong>in</strong> buffer: Absorption and fluo<strong>res</strong>cence study of the selective recognition<br />

of cu (ii) ions by galactosyl derivatives <strong>in</strong> HEPES buffer. Organic Letters. 8: 3525-3528.<br />

5. Ahuja R, S<strong>in</strong>ghal NK, Ramanujam B, Ravikumar M and Rao CP (2007). Experimental and<br />

computational studies of the recognition of am<strong>in</strong>o acids by galactosyl-im<strong>in</strong>e and -am<strong>in</strong>e derivatives:<br />

An attempt to understand the lect<strong>in</strong>-carbohydrate <strong>in</strong>teractions. Journal of Organic Chemistry.<br />

72: 3430-3442.<br />

50


Name: Dr. Shailesh Sharma<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 02-01-<strong>2012</strong><br />

Designation: Project Scientist<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Detect<strong>in</strong>g s<strong>in</strong>gle feature polymorphisms <strong>in</strong> Triticum<br />

aestivum us<strong>in</strong>g affymetrix arrays. Transcript annotation of Triticum aestivum<br />

obta<strong>in</strong>ed from affymetrix.<br />

Past Appo<strong>in</strong>tment:<br />

1. Post Doctoral Scientist (2010 – <strong>2011</strong>): USA - India jo<strong>in</strong>t <strong>res</strong>earch tra<strong>in</strong><strong>in</strong>g program. This program<br />

was hosted by the Seattle Biomedical Research Institute at the University of Wash<strong>in</strong>gton, USA and at<br />

The International Centre for Genetic eng<strong>in</strong>eer<strong>in</strong>g and Biotechnology, New Delhi. Research program<br />

was funded by the Fogarty International Center of the National Institutes of Health, USA.<br />

Major Publications:<br />

1. Sharma S, Cavallaro G and Rosato A (2010). A systematic <strong>in</strong>vestigation of multiheme c-type<br />

cytochromes <strong>in</strong> prokaryotes. J. Biol. Inorg. Chem. 15: 559-571.<br />

2. Sharma S and Rosato A (2009). Role of the N-term<strong>in</strong>al tail of metal-transport<strong>in</strong>g P (1B)-type<br />

ATPases from genome-wide analysis and molecular dynamics simulations. J. Chem. Inf. Model. 49:<br />

76-83.<br />

51


Name: Dr. Nishima<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 04-01-<strong>2012</strong><br />

Designation: Project Scientist<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Areas of Research Inte<strong>res</strong>t: Nanobiotechnology and its applications,<br />

microcantilever based detection of biomolecules, polypeptides based<br />

microelectronics, chemical modification of haptens and physicochemical<br />

characterization, natural product chemistry<br />

Past Appo<strong>in</strong>tment:<br />

1. Post Doctoral Research Fellow (2010-<strong>2011</strong>): Nanyang Technological University, S<strong>in</strong>gapore<br />

Major Publications:<br />

1. Wangoo N, Shekhawat G, J<strong>in</strong>-Song Wu, Suri CR, Bhas<strong>in</strong> KK and Dravid V (<strong>2012</strong>). Green synthesis<br />

and characterization of size tunable silica capped gold core-shell nanoparticles. Journal of<br />

Nanoparticle Research (In P<strong>res</strong>s).<br />

2. Wangoo N, Kaushal J, Bhsas<strong>in</strong> KK, Mehtaand SK and Suri C (2010). Zeta potential based<br />

colorimetric immunoassay for the direct detection of diabetic marker HbA1c us<strong>in</strong>g gold nanoprobes.<br />

Chemical Communications. 46: 5755-5757.<br />

3. Wangoo N, Bhas<strong>in</strong> KK, Mehta SK and Suri CR (2008). Synthesis and capp<strong>in</strong>g of water-dispersed<br />

gold nanoparticles by an am<strong>in</strong>o acid: Bioconjugation and b<strong>in</strong>d<strong>in</strong>g studies. Journal of Colloid and<br />

Interface Science. 323: 247-254.<br />

4. Wangoo N, Bhas<strong>in</strong> KK, Boro R and Suri CR (2008). Facile synthesis and functionalization of watersoluble<br />

gold nanoparticles for a bioprobe. Analytica Chimica Acta. 610: 142-148.<br />

52


Name: Dr. Sudhir P. S<strong>in</strong>gh<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 16-01-<strong>2012</strong><br />

Designation: Project Scientist<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Molecular biology of seed development <strong>in</strong> wheat<br />

with the objective to identify bottlenecks by prevent<strong>in</strong>g iron translocation from<br />

outer bran layers to endosperm <strong>in</strong> bioavailable form. To identify the candidate<br />

genes for <strong>in</strong>duc<strong>in</strong>g seedlessness <strong>in</strong> fruit crops.<br />

Past Appo<strong>in</strong>tment:<br />

1. Research Associate (2010-<strong>2011</strong>): National Agri-Food Biotechnology Institute, Mohali, Punjab<br />

Major Publications:<br />

1. Kumar J, S<strong>in</strong>gh SP, Kumar J and Tuli R (<strong>2012</strong>). A novel mastrevirus <strong>in</strong>fect<strong>in</strong>g wheat <strong>in</strong> India.<br />

Archives of Virology. 157(10): 2031-2034. ISSN: 0304-8608.<br />

2. Kumar J, Kumar A, S<strong>in</strong>gh SP, Roy JK, Lalit A, Parmar D, Sharma NC and Tuli R (<strong>2012</strong>). First report<br />

of leaf curl virus <strong>in</strong>fect<strong>in</strong>g okra <strong>in</strong> India. New Disease Reports. 25: 9. ISSN No. 2044-0588.<br />

3. S<strong>in</strong>gh SP, Pandey T, Srivastava R, Verma PC, S<strong>in</strong>gh PK, Tuli R and Sawant SV (2010). BECLIN 1<br />

from Arabidopsis thaliana, under the generic control of regulated exp<strong>res</strong>sion systems, a strategy for<br />

develop<strong>in</strong>g male sterile plants. Plant Biotechnology Journal, 8(9): 1005–1022. ISSN: 1467-7652.<br />

International Patent (Published): Sawant SV, Tuli R and S<strong>in</strong>gh SP. Method for produc<strong>in</strong>g male<br />

sterile plants. PCT WO/2010/061276; A gene for <strong>in</strong>duc<strong>in</strong>g male sterility. India: 2697/DEL/2008;<br />

USA: US<strong>2011</strong>289631; European Union: EP2350290; Ch<strong>in</strong>a: CN102257143; Australia:<br />

AU2009321261.<br />

4. Lodhi N, Ranjan A, S<strong>in</strong>gh M, Srivastava R, S<strong>in</strong>gh SP, Chaturvedi CP, Ansari SA, Sawant SV and<br />

Tuli R (2008). Interactions between upstream and core promoter sequences determ<strong>in</strong>e gene<br />

exp<strong>res</strong>sion and nucleosome position<strong>in</strong>g <strong>in</strong> tobacco PR-1a promoter. Biochimicaet Biophysica Acta<br />

(BBA). 1779 (10): 634-644. ISSN: 1874-9399.<br />

5. S<strong>in</strong>gh RK, S<strong>in</strong>gh SP and S<strong>in</strong>gh SB (2005). Correlation and path analysis <strong>in</strong> sugarcane ratoon. Sugar<br />

Tech. 7(4): 176-178. ISSN: 0972-1525.<br />

Extramural Grants Received: Title: A novel strategy for develop<strong>in</strong>g scion plants of desired phenotype,<br />

by us<strong>in</strong>g RNAi deliver<strong>in</strong>g rootstock. Sponsor<strong>in</strong>g Agency: Science and Eng<strong>in</strong>eer<strong>in</strong>g Research Board,<br />

Department of Science and Technology (DST).<br />

53


Name: Ms. Vandana Mishra<br />

Date of Jo<strong>in</strong><strong>in</strong>g: 23-01-<strong>2012</strong><br />

Designation: Project Scientist<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Area of Research Inte<strong>res</strong>t: Bio<strong>in</strong>formatics: Development of genomics<br />

<strong>res</strong>ources for gra<strong>in</strong> crops.<br />

Past Appo<strong>in</strong>tments:<br />

1. Junior Research Fellow (Project- Next generation sequenc<strong>in</strong>g) (<strong>2011</strong>-<br />

<strong>2012</strong>): Plant Immunity Laboratory, National Institute of Plant Genome Research, JNU campus, New<br />

Delhi.<br />

2. Application Specialist (Biotechnology <strong>in</strong>struments/bio<strong>in</strong>formatics software) (2010-<strong>2011</strong>):<br />

NSW Biotech Pvt. Ltd, New Delhi.<br />

3. Junior Research Fellow (Project- Structural bio<strong>in</strong>formatics) (2009-2010): Department of<br />

Biochemistry, Delhi University, South campus, New Delhi.<br />

4. Bio<strong>in</strong>formatician (2008-2009): Infovalley Biosystems (India) Pvt. Ltd, Bangalore.<br />

Major Publications:<br />

Nil<br />

54


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

RESEARCH PUBLICATIONS<br />

55


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

<strong>2011</strong><br />

1. Bishnoi M, Bosgraaf CA, Abooj M and Premkumar LS (<strong>2011</strong>). Involvement of TRPV1 and<br />

<strong>in</strong>flammation <strong>in</strong> STZ-<strong>in</strong>duced early thermal hyperalgesia is <strong>in</strong>dependent of glycemic state of rats.<br />

Molecular Pa<strong>in</strong>. 7: 52.<br />

2. Bishnoi M, Bosgraaf CS and Premkumar LS (<strong>2011</strong>). P<strong>res</strong>ervation of acute pa<strong>in</strong> and Efferent<br />

functions follow<strong>in</strong>g <strong>in</strong>trathecal <strong>res</strong><strong>in</strong>iferatox<strong>in</strong>-<strong>in</strong>duced analgesia. Journal of Pa<strong>in</strong>. 12: 991-1003.<br />

3. Correia MAS, Mazumder K, Brás JLA, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CMGA and<br />

Gilbert HJ (<strong>2011</strong>). The structure and function of an arab<strong>in</strong>oxylan-specific xylanase. Journal of<br />

Biological Chemistry. 286: 22510-22520.<br />

4. Jena SN, Srivastava A, S<strong>in</strong>gh UM, Roy S, Banerjee N, Rai KM, S<strong>in</strong>gh SK, Kumar V, Chaudhary LB,<br />

Roy JK, Tuli R and Sawant SV (<strong>2011</strong>). Analysis of genetic diversity, population structure and<br />

l<strong>in</strong>kage disequilibrium <strong>in</strong> elite cotton (Gossypium L.) germplasm <strong>in</strong> India. Crop and Pasture<br />

Science. 62: 859-875.<br />

5. Premkumar LS and Bishnoi M (<strong>2011</strong>). Disease-related changes <strong>in</strong> TRPV1<br />

exp<strong>res</strong>sion and its implications for drug development. Curr Top Med Chem. 11(17): 2192-209.<br />

6. Raju M, Gupta V, Deeba F, Upadhyay SK, Pandey V, S<strong>in</strong>gh PK and Tuli R (<strong>2011</strong>). A highly stable<br />

Cu/Zn superoxide dismutase from Withania somnifera plant: gene clon<strong>in</strong>g, exp<strong>res</strong>sion and<br />

characterization of the recomb<strong>in</strong>ant prote<strong>in</strong>. Biotechnology Letters. 33: 2057-2063.<br />

7. Sidhu OP, Annarao S, Chatterjee S, Tuli R, Roy R and Khaterpal CL ( <strong>2011</strong> ). Metabolic alterations<br />

of Withania somnifera ( L.) Dunal fruits at different developmental stages by NMR spectroscopy.<br />

Phytochemical Analysis. DOI 10.1002 /pca.1307.<br />

8. Tiwari S, Mishra DK, Chandrashekar K, S<strong>in</strong>gh PK and Tuli R (<strong>2011</strong>). Exp<strong>res</strong>sion of d-endotox<strong>in</strong><br />

Cry1EC from an <strong>in</strong>ducible promoter confers <strong>in</strong>sect protection <strong>in</strong> peanut (Arachis hypogaea L.)<br />

plants. Pest Management Science. 67: 137-145.<br />

9. Upadhyay SK, Sharad S, S<strong>in</strong>gh R, Rai P, Dubey NK, Chandashekar K, Negi KS, Tuli R and S<strong>in</strong>gh<br />

PK (<strong>2011</strong>). Purification and characterization of a lect<strong>in</strong> with high hemagglut<strong>in</strong>ation property isolated<br />

from Allium altaicum. Prote<strong>in</strong> Journal. 30: 374-83.<br />

58


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

EXTRAMURAL GRANTS AND FUNDING<br />

S. No. Investigator<br />

1<br />

2<br />

Dr. Rakesh Tuli<br />

Dr. Sudhir P. S<strong>in</strong>gh<br />

Title of the Project Funded by<br />

J. C. Bose Fellowship DST, Govt. of<br />

India<br />

A novel strategy for develop<strong>in</strong>g scion<br />

plants of desired phenotype by us<strong>in</strong>g RNAi<br />

deliver<strong>in</strong>g rootstock<br />

59<br />

SERB, DST,<br />

Govt. of India


PAC<br />

Agri. Biotechnology<br />

Chair: Dist<strong>in</strong>guished<br />

Scientist<br />

Member Secretary :<br />

Dean 1<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

GOVERNANCE<br />

NABI SOCIETY<br />

P<strong>res</strong>ident: M<strong>in</strong>ister, Science and Technology<br />

Member Secretary: Executive Director<br />

Govern<strong>in</strong>g Body, NABI<br />

Chairman: Secretary, DBT<br />

Member Secretary : Executive Director<br />

Scientific Advisory Committee, NABI<br />

Chairman: Em<strong>in</strong>ent Scientist<br />

Member Secretary : Executive Director<br />

ED/IMC, NABI<br />

PAC<br />

Food Biotechnology<br />

Chair: Dist<strong>in</strong>guished<br />

Scientist<br />

Member Secretary :<br />

Dean 2<br />

60<br />

PAC<br />

Nutritional<br />

Biotechnology<br />

Chair: Dist<strong>in</strong>guished<br />

Scientist<br />

Member Secretary :<br />

Dean 3


A. Members of NABI Society<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Sh. Vilasrao Deshmukh Dr. N. Sathyamurthy<br />

Hon'ble M<strong>in</strong>ister of Science & Technology and Director,<br />

Earth Sciences, Indian Institute of Science Education and<br />

M<strong>in</strong>istry of Science & Technology and Earth Research,<br />

Sciences, Mohali<br />

Govt. of India, New Delhi<br />

(P<strong>res</strong>ident)<br />

Dr. Akhilesh Kumar Tyagi<br />

(July 12, <strong>2011</strong> to till date)<br />

Director,<br />

National Institute of Plant Genome Research,<br />

Sh. Pawan Kumar Bansal New Delhi<br />

Hon'ble M<strong>in</strong>ister of Science & Technology and<br />

Earth Sciences,<br />

Dr. V. Prakash<br />

M<strong>in</strong>istry of Science & Technology and Earth (Former Director, CFTRI)<br />

Sciences,<br />

Dist<strong>in</strong>guished Scientist,<br />

Govt. of India, New Delhi<br />

Council of Sc<strong>in</strong>tific and Industrial Research,<br />

(P<strong>res</strong>ident)<br />

Mysore<br />

(Upto July 11, <strong>2011</strong>)<br />

Dr. S. Nagarajan<br />

Dr. M. K. Bhan<br />

Former Chairperson,<br />

Secretary,<br />

Protection of Plant Varieties and Farmers Rights<br />

Department of Biotechnology,<br />

Authority,<br />

M<strong>in</strong>istry of Science & Technology,<br />

New Delhi<br />

New Delhi<br />

Dr. Rajesh Kapur<br />

Ms. Anuradha Mitra<br />

Advisor,<br />

F<strong>in</strong>ancial Advisor,<br />

Department of Biotechnology,<br />

Council of Scientific and Industrial Research, M<strong>in</strong>istry of Science & Technology,<br />

New Delhi<br />

New Delhi<br />

Dr. B. Sesikeran<br />

Director,<br />

National Institute of Nutrition,<br />

Hyderabad<br />

61<br />

Dr. Rakesh Tuli<br />

Executive Director,<br />

National Agri-Food Biotechnology Institute,<br />

Mohali<br />

(Member Secretary)


B. Govern<strong>in</strong>g Body (GB)<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Dr. M. K. Bhan Dr. N. K. Ganguly<br />

Secretary, (Former Director General- ICMR),<br />

Department of Biotechnology, Distuiguished Professor of Biotechnology,<br />

M<strong>in</strong>istry of Science & Technology, Translational Health Science & Technology<br />

New Delhi Institute,<br />

(Chairman) New Delhi<br />

Ms. Anuradha Mitra Dr. V. Prakash<br />

F<strong>in</strong>ancial Advisor, (Former Director, CFTRI)<br />

Council of Scientific and Industrial Research, Dist<strong>in</strong>guished Scientist,<br />

New Delhi Council of Sc<strong>in</strong>tific and Industrial Research,<br />

Dr. Manju Sharma<br />

Mysore<br />

P<strong>res</strong>ident & Executive Director, Dr. Rajesh Kapur<br />

Indian Institute of Advanced Research, Advisor, DBT<br />

Gujarat CGO Complex,<br />

Lodi Road,<br />

Dr. C. R. Bhatia<br />

62<br />

New Delhi<br />

Former Secretary,<br />

Department of Biotechnology,<br />

New Delhi<br />

Dr. S. Nagarajan<br />

Former Chairperson,<br />

Dr. Ashok D. B. Vaidya<br />

Protection of Plant Varieties and Farmers Rights<br />

Authority,<br />

Research Director,<br />

New Delhi<br />

Kasturba Health Society Medical & Research<br />

Centre, Dr. B. Siva Kumar<br />

Mumbai Former Director,<br />

National Institute of Nutrition,<br />

Dr. B. Sesikeran<br />

Secunderabad<br />

Director,<br />

National Institute of Nutrition, Dr. Joy K. Roy<br />

Hyderabad Scientist D,<br />

National Agri-Food Biotechnology Institute,<br />

Dr. N. Sathyamurthy<br />

Mohali<br />

Director,<br />

Indian Institute of Science Education and Dr. Sukhv<strong>in</strong>der P. S<strong>in</strong>gh<br />

Research,<br />

Mohali<br />

Dr. Akhilesh Kumar Tyagi<br />

Director,<br />

National Institute of Plant Genome Research,<br />

New Delhi<br />

Dr. J. S. Pai<br />

(Former Director, UICT)<br />

Executive Director,<br />

Prote<strong>in</strong> Foods & Nutrition Development<br />

Association of India,<br />

Mumbai<br />

Scientist C,<br />

National Agri-Food Biotechnology Institute,<br />

Mohali<br />

Sh. Shrikant Subhash Mantri<br />

Scientist C,<br />

National Agri-Food Biotechnology Institute,<br />

Mohali<br />

Dr. Rakesh Tuli<br />

Executive Director,<br />

National Agri-Food Biotechnology Institute,<br />

Mohali<br />

(Member Secretary)


C. F<strong>in</strong>ance Committee<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Dr. M. K. Bhan Dr. Joy K. Roy<br />

Secretary, Scientist D,<br />

Department of Biotechnology, National Agri-Food Biotechnology Institute,<br />

M<strong>in</strong>istry of Science & Technology, Mohali<br />

New Delhi<br />

(Chairman) Dr. Sukhv<strong>in</strong>der P. S<strong>in</strong>gh<br />

Scientist C,<br />

Ms. Anuradha Mitra National Agri-Food Biotechnology Institute,<br />

F<strong>in</strong>ancial Advisor, Mohali<br />

Council of Scientific and Industrial Research,<br />

New Delhi Sh. Shrikant Subhash Mantri<br />

Scientist C,<br />

Dr. Rakesh Tuli National Agri-Food Biotechnology Institute,<br />

Executive Director, Mohali<br />

National Agri-Food Biotechnology Institute,<br />

Mohali Sh. R. L. Sharma<br />

Associate Director,<br />

Dr. Rajesh Kapur National Agri-Food Biotechnology Institute,<br />

Advisor, Mohali<br />

Department of Biotechnology, (Non-Member Secretary)<br />

M<strong>in</strong>istry of Science & Technology,<br />

New Delhi<br />

63


D. Scientific Advisory Committee (SAC)<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Dr. R. S. Paroda Dr. Anura V. Kurpad<br />

(Former DG, ICAR)<br />

Professor of Physiology,<br />

Trust for Advancement of Agricultural Sciences, St John's Medical College,<br />

New Delhi<br />

Bangalore<br />

(Chairman)<br />

Dr. H. P. S. Sachdev<br />

Dr. C. R. Bhatia<br />

Former Secretary,<br />

Department of Biotechnology,<br />

New Delhi<br />

Senior Consultant (Paediatrics),<br />

Sitaram Bhartia Institute of Science & Research,<br />

B-16, Kutub Institutional Area,<br />

New Delhi<br />

Dr. Deepak Pental<br />

Vice-Chancellor,<br />

University of Delhi,<br />

New Delhi<br />

Dr. Venkatesh Rao<br />

Former Director,<br />

Central Food Technological Research Institute,<br />

Mysore<br />

Dr. Arun Sharma<br />

Dr. B. Siva Kumar<br />

Outstand<strong>in</strong>g Scientist (Food Technology) ,<br />

Former Director,<br />

Bhabha Atomic Research Centre,<br />

National Institute of Nutrition,<br />

Mumbai<br />

Secunderabad<br />

Dr. Rakesh Tuli<br />

Dr. V. Prakash<br />

(Former Director, CFTRI)<br />

Dist<strong>in</strong>guished Scientist,<br />

Executive Director,<br />

National Agri-Food Biotechnology Institute,<br />

Mohali<br />

Council of Sc<strong>in</strong>tific and Industrial Research, Dr. Rajesh Kapur<br />

Mysore Advisor, DBT<br />

CGO Complex,<br />

Dr. Imran Siddiqi Lodi Road,<br />

Scientist,<br />

Centre for Cellular & Molecular Biology<br />

(CCMB),<br />

Hyderabad<br />

New Delhi<br />

Dr. Akshay Kumar Pradhan<br />

Professor,<br />

Deptt. of Genetics,<br />

University of Delhi,<br />

South Campus, Dhaula Kuan,<br />

New Delhi<br />

64


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

E. Programe Advisory Committee (PAC): Agri-Biotechnology<br />

Dr. C. R. Bhatia Dr. Kiran K. Sharma<br />

Former Secretary, International Crops Research Institute for<br />

Department of Biotechnology, the Semi-Arid Tropics (ICRISAT),<br />

New Delhi Hyderabad<br />

(Chairman)<br />

Dr. Ramesh Sonti<br />

Dr. Kailash Chander Bansal Deputy Director,<br />

Director, Centre for Cellular & Molecular Biology<br />

National Bureau of Plant Genetic Resources (CCMB),<br />

(NBPGR), Hyderabad<br />

New Delhi<br />

Dr. Rajesh Kapur<br />

Dr. Akhilesh Kumar Tyagi Advisor, DBT<br />

Director, CGO Complex,<br />

National Institute of Plant Genome Research, Lodi Road,<br />

New Delhi New Delhi<br />

Dr. G. K. Garg Dr. Ashok K. S<strong>in</strong>gh<br />

Director, ITR Senior Scientist & Programme Leader (Rice),<br />

Krishidhan Research Foundation Pvt. Ltd., Div. of Genetics,<br />

Aurangabad Road, Indian Agricultural Research Institute,<br />

Jalna New Delhi<br />

(Chairman)<br />

Dr. T. Mohapatra<br />

Dr. K. Madhavan Nair Pr<strong>in</strong>cipal Scientist,<br />

Deputy Director, NRC Plant Biotechnology,<br />

National Institute of Nutrition, Indian Agricultural Research Institute,<br />

Hyderabad New Delhi<br />

Dr. (Prof.) Sunil Kumar Mukharjee Dr. Rakesh Tuli<br />

Scientist, Executive Director,<br />

International Centre for Genetic Eng<strong>in</strong>eer<strong>in</strong>g & National Agri-Food Biotechnology Institute,<br />

Biotechnology, Mohali<br />

New Delhi<br />

65


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

F. Programe Advisory Committee (PAC): Food and Nutrition Biotechnology<br />

Dr. V. Prakash Dr. H. P. S. Sachdev<br />

(Former Director, CFTRI)<br />

Sitaram Bhartia Institute of Science & Research,<br />

Dist<strong>in</strong>guished Scientist,<br />

B-16, Kutub Institutional Area,<br />

Council of Sc<strong>in</strong>tific and Industrial Research, New Delhi<br />

Mysore<br />

(Chairman-Food Biotechnology)<br />

Dr. H. N. Mishra<br />

Professor,<br />

Dr. B. Siva Kumar<br />

Former Director,<br />

National Institute of Nutrition,<br />

Agriculture & Food Eng<strong>in</strong>eer<strong>in</strong>g Department<br />

Indian Institute of Technology,<br />

Kharagpur<br />

Secunderabad<br />

(Chairman-Nutrition Biotechnology)<br />

Dr. Bhupendar Khatkar<br />

Chairman, Department of Food Technology,<br />

Dr. Appu Rao<br />

Scientist,<br />

Central Food Technological Research Institute,<br />

Guru Jambeshwar University of Science &<br />

Technology,<br />

Hissar<br />

Mysore Dr. M. C. Varadraj<br />

Dr. V. K. Batish<br />

Emeritus Scientist,<br />

Molecular Biology Unit,<br />

Scientist,<br />

Central Food Technological Research Institute,<br />

Mysore<br />

National Dairy Research Institute (NDRI),<br />

Karnal<br />

Dr. Rajesh Kapur<br />

Advisor, DBT<br />

Dr. K. Madhavan Nair<br />

Deputy Director,<br />

National Institute of Nutrition,<br />

CGO Complex,<br />

Lodi Road,<br />

New Delhi<br />

Hyderabad Dr. Rakesh Tuli<br />

Dr. S. K. Roy<br />

Emeritus Professor & Consultant FAO,<br />

Indian Agricultural Research Institute (IARI),<br />

New Delhi<br />

Executive Director,<br />

National Agri-Food Biotechnology Institute,<br />

Mohali<br />

66


H. Build<strong>in</strong>g Committee<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Dr. G. P. Talwar Er. S. L. Kaushal<br />

Director Research, Former Chief Architect Punjab,<br />

Talwar Research Foundation, Chandigarh<br />

New Delhi<br />

Ms. Balw<strong>in</strong>der Sa<strong>in</strong>i<br />

Dr. N. Sathyamurthy Chief Architect,<br />

Director, Govt. of Punjab,<br />

Indian Institute of Science & Education Chandigarh<br />

Research,<br />

Mohali Er. Kuldeep S<strong>in</strong>gh<br />

Former Chief Eng<strong>in</strong>eer<br />

Dr. P. K. Seth Chandigarh Adm<strong>in</strong>stration,<br />

Chief Executive Officer, Chandigarh<br />

Biotech Park,<br />

Lucknow Dr. S. B. Katti<br />

Scientist G,<br />

Sh. Sanjay Goel Central Drug Research Institute,<br />

Director (F<strong>in</strong>ance), Lucknow<br />

Department of Biotechnology,<br />

New Delhi Dr. U. V. Pathre<br />

Scientist,<br />

Dr. Rajesh Kapur National Botanical Research Institute,<br />

Advisor, Lucknow<br />

Department of Biotechnology,<br />

M<strong>in</strong>istry of Science & Technology, Dr. Jagdeep S<strong>in</strong>gh<br />

New Delhi Coord<strong>in</strong>ator,<br />

Indian Institute of Science Education and<br />

Er. N. S. Bhatti Research,<br />

Former Chief Eng<strong>in</strong>eer, Mohali<br />

Punjab Adm<strong>in</strong>istration,<br />

Chandigarh Er. A. A. Malik<br />

Supretendent Eng<strong>in</strong>eer,<br />

Dr. K. K. Kaul National Botanical Research Institute,<br />

Former Chief Town Planner, Lucknow<br />

Greater Mohali Area Development Authority,<br />

Chandigarh Dr. Rakesh Tuli<br />

Executive Director,<br />

Er. S. K. Jaitley National Agri-Food Biotechnology Institute,<br />

Former Chief Eng<strong>in</strong>eer, Mohali<br />

UT Sectritariat, (Chairman)<br />

Chandigarh<br />

67


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

HUMAN RESOURCE<br />

69


I. Research Faculty<br />

i. Regular:<br />

S. No<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

S. No Name Designation Date of Jo<strong>in</strong><strong>in</strong>g<br />

1 Sh. E. Subramanian<br />

2<br />

3<br />

4<br />

5<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

ii. On Contract:<br />

S. No Name<br />

1<br />

II. Technical and Eng<strong>in</strong>eer<strong>in</strong>g Support<br />

Er. Jat<strong>in</strong> S<strong>in</strong>gla<br />

Computer Operator<br />

71<br />

Designation Date of<br />

Jo<strong>in</strong><strong>in</strong>g<br />

2 Dr. Nishima Project Scientist 04-01-<strong>2012</strong><br />

3<br />

4<br />

Name<br />

Designation<br />

Date of Jo<strong>in</strong><strong>in</strong>g<br />

Dr. Rakesh Tuli Executive Director 08-02-2010<br />

Dr. Vikas Rishi Scientist E 01-03-<strong>2012</strong><br />

Dr. Joy K. Roy Scientist D 09-08-2010<br />

Dr. Ajay K. Pandey Scientist D 14-11-<strong>2011</strong><br />

Dr. Siddharth Tiwari<br />

Sh. Shrikant Subhash Mantri<br />

Dr. (Ms.) Monika Garg<br />

Scientist C<br />

Scientist C<br />

Scientist C<br />

28-07-2010<br />

18-08-2010<br />

30-11-2010<br />

Dr. Sukhv<strong>in</strong>der P. S<strong>in</strong>gh Scientist C 06-12-2010<br />

Dr. Kanthi K. Kiran<br />

Scientist C<br />

02-09-<strong>2011</strong><br />

Dr. Mahendra Bishnoi Scientist C 16-12-<strong>2011</strong><br />

Dr. Koushik Mazumder Scientist C 01-02-<strong>2012</strong><br />

Dr. Nit<strong>in</strong> K. S<strong>in</strong>ghal Scientist C 02-03-<strong>2012</strong><br />

Dr. Shailesh Sharma Project Scientist 02-01-<strong>2012</strong><br />

Dr. Sudhir P. S<strong>in</strong>gh Project Scientist 16-01-<strong>2012</strong><br />

Ms. Vandana Mishra Project Scientist 23-01-<strong>2012</strong><br />

27-02-2010<br />

Assistant Eng<strong>in</strong>eer (Civil) 21-01-<strong>2011</strong><br />

Ms. Aakriti Gupta Senior Tech Assistant 22-02-<strong>2011</strong><br />

Sh. Jagdeep S<strong>in</strong>gh Senior Tech Assistant 01-03-<strong>2011</strong><br />

Sh. Sukhj<strong>in</strong>der S<strong>in</strong>gh Computer Operator 23-02-<strong>2012</strong><br />

6 Sh. Jaspreet S<strong>in</strong>gh Assistant Eng<strong>in</strong>eer (Civil) 19-03-<strong>2012</strong><br />

III. Adm<strong>in</strong>istration<br />

S. No Name Designation Date of Jo<strong>in</strong><strong>in</strong>g<br />

1 Sh. Rattan Lal Sharma Associate Director<br />

(Accounts and F<strong>in</strong>ance)<br />

2<br />

3<br />

4<br />

5<br />

6<br />

25-5-<strong>2011</strong><br />

Sh. S. Krishnan Store & Purchase Officer 10-03-2010<br />

Sh. Vikram S<strong>in</strong>gh Adm<strong>in</strong>istrative Officer 01-04-<strong>2011</strong><br />

Sh. Suneet Verma F<strong>in</strong>ance Officer 15-09-<strong>2011</strong><br />

Sh. Sabir Ali Executive Assistant<br />

(Adm<strong>in</strong>istration)<br />

Ms. Hema Rawat Executive Assistance<br />

(Accounts)<br />

7 Sh. Vishal Kumar Management Assistant<br />

(Accounts)<br />

21-01-<strong>2011</strong><br />

01-04-<strong>2011</strong><br />

08-09-<strong>2011</strong>


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

IV. Human Resource Development<br />

i. Research Scholars:<br />

S.No Name<br />

Designation<br />

72<br />

Date of Jo<strong>in</strong><strong>in</strong>g<br />

1 Sh. Jitendra Kumar Senior Research Fellow 04-06-2010<br />

2<br />

3<br />

Sh. Yogesh Gupta Junior Research Fellow 09-08-2010<br />

Ms. Anuradha S<strong>in</strong>gh Junior Research Fellow 11-09-2010<br />

4 Sh. Rohit Kumar Junior Research Fellow 06-06-<strong>2011</strong><br />

5<br />

6 Sh. Anshu Alok Junior Research Fellow 09-09-<strong>2011</strong><br />

7<br />

Ms. Shaweta Arora<br />

Junior Research Fellow 09-09-<strong>2011</strong><br />

8 Ms. Manpreet Kaur Sa<strong>in</strong>i Junior Research Fellow 09-09-<strong>2011</strong><br />

9<br />

10<br />

11<br />

12<br />

13<br />

Ms. Anita Kumari Junior Research Fellow 29-08-<strong>2011</strong><br />

Sh. Jitesh Kumar Junior Research Fellow 09-09-<strong>2011</strong><br />

Sh. Gaurab Das Junior Research Fellow 10-10-<strong>2011</strong><br />

Sh. Kaushal Kumar Bhati<br />

Junior Research Fellow<br />

14-11-<strong>2011</strong><br />

Ms. Anuradha Swami Junior Research Fellow 23-02-<strong>2012</strong><br />

Ms. Roohi Bansal Junior Research Fellow 24-02-<strong>2012</strong><br />

14 Ms. Monica Sharma Junior Research Fellow 01-03-<strong>2012</strong><br />

15 Sh. Raja Jeet Junior Research Fellow 12-03-<strong>2012</strong><br />

ii. Tra<strong>in</strong>ees:<br />

S.No Name Designation Date of Jo<strong>in</strong><strong>in</strong>g<br />

1 Sh. Vikas B<strong>in</strong>dal Tra<strong>in</strong>ee 02-01-<strong>2012</strong><br />

2 Ms. Arushi Sharma Tra<strong>in</strong>ee 02-01-<strong>2012</strong><br />

3 Ms. Natasha Paul Tra<strong>in</strong>ee 02-01-<strong>2012</strong><br />

4 Ms. Manila Kashyap Tra<strong>in</strong>ee<br />

02-01-<strong>2012</strong><br />

5 Sh. Rav<strong>in</strong>dra Dhakad<br />

Tra<strong>in</strong>ee<br />

02-01-<strong>2012</strong><br />

6 Sh. Anuj Kumar Pandey Tra<strong>in</strong>ee 03-01-<strong>2012</strong><br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

Sh. Rakesh Kumar Tra<strong>in</strong>ee 03-01-<strong>2012</strong><br />

Ms. Iram Preet Kaur<br />

Tra<strong>in</strong>ee<br />

04-01-<strong>2012</strong><br />

Ms. Arti Katoch Tra<strong>in</strong>ee 04-01-<strong>2012</strong><br />

Ms. Guneet Kaur Tra<strong>in</strong>ee 04-01-<strong>2012</strong><br />

Ms. Lipika Sahota<br />

Tra<strong>in</strong>ee<br />

09-01-<strong>2012</strong><br />

Ms. Ramandeep Kaur Tra<strong>in</strong>ee 09-01-<strong>2012</strong><br />

14 Sh. Nishant Garg Tra<strong>in</strong>ee 03-02-<strong>2012</strong><br />

15<br />

Sh. Deepak Soni Tra<strong>in</strong>ee 13-01-<strong>2012</strong><br />

Sh. Shashank Maheshwari Tra<strong>in</strong>ee 03-02-<strong>2012</strong>


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

PROGRESS OF INFRASTRUCTURE<br />

AT MAIN CAMPUS<br />

73


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Proposed Master Plan of the ma<strong>in</strong> campus,<br />

Sector-81, Ajitgarh (Mohali)<br />

75


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Ma<strong>in</strong> entrance gate of the campus at sector-81, Mohali.<br />

Low ly<strong>in</strong>g area at the ma<strong>in</strong> campus and a view of IISER campus on the other side of boundary wall.<br />

76


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

PROGRESS OF INFRASTRUCTURE<br />

AT INTERIM FACILITY<br />

77


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Development of NABI <strong>in</strong>terim facility<br />

st th<br />

Inauguration of construction work at 1 floor at <strong>in</strong>terim facility: July 4 , <strong>2011</strong><br />

st<br />

Upper and lower left: Analytical <strong>in</strong>struments rooms at 1 floor.<br />

st<br />

Upper Right: New laboratories at 1 floor.<br />

st<br />

Lower right: Plant tissue culture and animal cell culture facility developed at 1 floor.<br />

79


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

st<br />

Plant Tissue Culture facility at 1 floor.<br />

st<br />

Scientists work<strong>in</strong>g at Animal Cell Culture facility, 1 floor.<br />

80


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

IMPORTANT EVENTS<br />

81


Important events:<br />

NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

83<br />

promote Indo-Canada partnership<br />

th<br />

development activities: August 14 , <strong>2011</strong>.<br />

1. Independence Day celebration: August<br />

th<br />

15 , <strong>2011</strong>. Dr. Rakesh Tuli, hoisted the 6. Visit of Nutrition Science and<br />

National flag at <strong>in</strong>terim facility. Biotechnology Faculty Selection<br />

th<br />

Committee experts: October 29 , <strong>2011</strong>.<br />

2. Tree plantation programe at the ma<strong>in</strong><br />

th<br />

campus: August 18 <strong>2011</strong>. Dr. Rakesh Tuli 7. Visit of Food Science and Biotechnology<br />

and staff participated <strong>in</strong> the tree plantation Faculty Selection Committee experts :<br />

th th<br />

programe. Pollution tolerant species were November 27 – 28 , <strong>2011</strong>.<br />

planted along with the boundary wall of<br />

NABI campus with the objective of<br />

mak<strong>in</strong>g the campus green and colourful.<br />

8. Visit of National Dairy Research Institute<br />

th<br />

delegates: December 27 , <strong>2011</strong>.<br />

th<br />

3. Republic Day celebration: January 26 , 9. Second Scientific Advisory Committee<br />

<strong>2012</strong>. Dr. Rakesh Tuli, hoisted the national<br />

(SAC) and Programe Advisory Committee<br />

th th<br />

flag at <strong>in</strong>terim facility.<br />

(PAC) meet<strong>in</strong>g : February 18 - 19 , <strong>2012</strong>.<br />

4.<br />

nd<br />

The 2 Foundation Day of NABI was<br />

celebrated at <strong>in</strong>terim facility: Feburary<br />

10. Visit of University of Agricultural<br />

th<br />

Sciences delegates: February 27 , <strong>2012</strong>.<br />

th<br />

18 , <strong>2012</strong>. Padma Bhushnan Dr. R. S.<br />

Paroda, former DG, ICAR & Secretary,<br />

National/International visits of NABI staff:<br />

Department of Argicultural Research and 1. Dr. Joy K. Roy was <strong>in</strong>vited to participate <strong>in</strong><br />

Education (DARE) delivered the the symposium organized by the Indian<br />

Foundation Day lecture “Harness<strong>in</strong>g National Science Academy (INSA) under<br />

biotechnology <strong>in</strong> Indian agriculture: its Bilateral Exchange Programe with the<br />

Challenges and Opportunities”. Padma German National Academy of Sciences,<br />

Bushna Dr. N K Ganguly, former DG, Leopold<strong>in</strong>a on “Plant Biology” which was<br />

ICMR gave P<strong>res</strong>idential Add<strong>res</strong>s on “Food th th<br />

held dur<strong>in</strong>g October 18 -20 , <strong>2011</strong> at New<br />

Security and Nutritional Challenges for Delhi. He also p<strong>res</strong>ented his <strong>res</strong>earch work<br />

Marg<strong>in</strong>alised Populations”. They also entitled “Towards understand<strong>in</strong>g of<br />

released the Foundation Year Annual molecular basis of process<strong>in</strong>g quality <strong>in</strong><br />

Report 2010-<strong>2011</strong> of the <strong>in</strong>stitute. wheat”.<br />

Meet<strong>in</strong>gs<br />

2. Dr. Sudhir P. S<strong>in</strong>gh visited, Canadian Light<br />

1. Visit of Agri-Biotechnology Faculty<br />

th<br />

Selection Committee experts : July 12 ,<br />

<strong>2011</strong>.<br />

Source, Saskatoon, Canada from<br />

th nd<br />

September 26 to October 2 , <strong>2011</strong> to<br />

perform experiments on m<strong>in</strong>eral<br />

localization <strong>in</strong> the seed tissues of wheat.<br />

2. First Programe Advisory Committee<br />

th<br />

(PAC) meet<strong>in</strong>g : July 26 , <strong>2011</strong>.<br />

The Beam time was awarded by the<br />

Canadian Light Source to perform X-Ray<br />

Fluo<strong>res</strong>cence and XANES experiments on<br />

3. First Scientific Advisory Committee VESPERS beam l<strong>in</strong>e.<br />

nd<br />

(SAC) meet<strong>in</strong>g : August 2 , <strong>2011</strong>.<br />

3. Sh. Shrikant Mantri, attended a sem<strong>in</strong>ar on<br />

4. Third Govern<strong>in</strong>g Body (GB) meet<strong>in</strong>g :<br />

Genomeet (A Decade of Genomics) held at<br />

nd<br />

August 2 , <strong>2011</strong>.<br />

st<br />

IGIB, New Delhi on January 1 , <strong>2012</strong>.<br />

5. Visit of Canadian Delegates from<br />

Saskatoon-cluster, Saskatchewan, to<br />

4. Dr. Sudhir P. S<strong>in</strong>gh attended the first ICC<br />

International Gra<strong>in</strong>s Conference held at


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

th th<br />

New Delhi dur<strong>in</strong>g January 16 -18 , <strong>2012</strong>. International visitors to NABI<br />

He p<strong>res</strong>ented his work entitled “New<br />

<strong>in</strong>sights <strong>in</strong>to iron transport from maternal<br />

tissues to endosperm <strong>in</strong> mature wheat seed<br />

us<strong>in</strong>g synchrotron radiation”.<br />

1. Canadian delegates visited NABI campus<br />

and <strong>in</strong>teracted with NABI Scientists:<br />

th<br />

August 14 , <strong>2011</strong>.<br />

5. Dr. Joy K. Roy attended the first “ICC<br />

International Gra<strong>in</strong>s Conference”, which<br />

2. Dr. Bikram S<strong>in</strong>gh Gill from Kansas State<br />

University, Kansas, USA visited NABI on<br />

rd<br />

January 23 , <strong>2012</strong>. He discussed <strong>res</strong>earch<br />

th th<br />

was held dur<strong>in</strong>g January 16 - 18 , <strong>2012</strong> at prog<strong>res</strong>s with NABI scientists. He gave his<br />

New Delhi. He p<strong>res</strong>ented his work entitled p<strong>res</strong>entation on recent approaches <strong>in</strong> wheat<br />

“Gene discovery for improvement of genomics.<br />

process<strong>in</strong>g quality <strong>in</strong> bread wheat”.<br />

3. Dr. Harbans Bariana from University of<br />

6. Dr. Nishima, participated <strong>in</strong> a sem<strong>in</strong>ar on Sydney, Sydney, Australia, Plant Breed<strong>in</strong>g<br />

“Green Chemistry” held at Ludhiana on Institute, Australia visited NABI on<br />

th th<br />

February 24 , <strong>2012</strong>. Febuary 9 , <strong>2012</strong> to share his thoughts and<br />

<strong>in</strong>teracted with NABI faculty <strong>in</strong> the area of<br />

7. Dr. Rakesh Tuli, attended Biotechnology- plant breed<strong>in</strong>g and genetic <strong>res</strong>ources.<br />

Industry Research Assistance Council<br />

th th 4. Prof. Leon A. Terry from Cranfield<br />

meet<strong>in</strong>g at Australia dur<strong>in</strong>g March 6 -10 ,<br />

<strong>2012</strong> and visited to Queensland University<br />

Technology, Brisbane, Australia to discuss<br />

about the project on banana improvement.<br />

84<br />

University, Bedfordshire, England visited<br />

th<br />

NABI on Febuary 15 , <strong>2012</strong> and discussed<br />

about his <strong>res</strong>earch work.


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

PHOTO-GALLERY<br />

85


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Agri-Biotechnology Faculty Selection Committee:<br />

th<br />

July 12 , <strong>2011</strong><br />

Visit of experts to <strong>in</strong>terim facility. Dr. Joy K. Roy expla<strong>in</strong><strong>in</strong>g his work on Affymetrix microarray to<br />

(from left) Dr. A. K. Tyagi, Dr. C. R. Bhatia, Dr. J. P. Khurana, Dr. P. K. Gupta, Dr. Imran Siddiqi<br />

and Dr. Rakesh Tuli.<br />

Visit of experts to the ma<strong>in</strong> campus, Sector-81, Mohali.<br />

87


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

th<br />

First PAC Meet<strong>in</strong>g: July 26 , <strong>2011</strong><br />

PAC meet<strong>in</strong>g be<strong>in</strong>g chaired by Dr.V. Prakash.<br />

Dist<strong>in</strong>guished experts from Agri, Food and Nutrition Biotechnology dur<strong>in</strong>g the PAC meet<strong>in</strong>g.<br />

88


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

nd<br />

First SAC Meet<strong>in</strong>g: August 2 , <strong>2011</strong><br />

First SAC meet<strong>in</strong>g be<strong>in</strong>g add<strong>res</strong>sed by Dr. M.K. Bhan and chaired by Dr. C.R. Bhatia.<br />

Dr. Rakesh Tuli, p<strong>res</strong>ent<strong>in</strong>g the <strong>res</strong>earch plans of NABI to PAC and SAC members.<br />

89


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

nd<br />

Third Govern<strong>in</strong>g Body Meet<strong>in</strong>g: August 2 , <strong>2011</strong><br />

The third GB meet<strong>in</strong>g be<strong>in</strong>g chaired by Dr. M. K. Bhan, Secretary, DBT,<br />

Dr. (Mrs.) Manju Sharma, Former Secretary, DBT and member GB is seen on the right.<br />

Dr. Rakesh Tuli, discuss<strong>in</strong>g the prog<strong>res</strong>s, oppurtunities and challanges <strong>in</strong> Agri-Food <strong>res</strong>earches with<br />

the dist<strong>in</strong>guished GB members.<br />

90


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Independence Day Celebrations<br />

th<br />

at NABI: August 15 , <strong>2011</strong><br />

Dr. Rakesh Tuli, hoisted the national flag at NABI <strong>in</strong>terim facility and add<strong>res</strong>sed the staff.<br />

Independence Day celebrations at the ma<strong>in</strong> campus, Sector 81, Mohali.<br />

91


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

th<br />

Tree Plantation Programe at the Ma<strong>in</strong> Campus: August 18 , <strong>2011</strong><br />

Tree plantation programe was organised at the ma<strong>in</strong> campus, Sector 81, Mohali. Dr. Rakesh Tuli<br />

and staff participated <strong>in</strong> the programe. Pollution tolerant species were planted along the boundary<br />

wall to make campus look green and colourful, under the guidance of Dr. S. C. Sharma, former Dy.<br />

Director, NBRI, Lucknow.<br />

92


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Visits of Delegates<br />

Visit of Canadian delegates from Saskatoon-cluster, Saskatchewan, to promote Indo-Canada<br />

th<br />

partnership: August 14 , <strong>2011</strong>. From Left:<br />

Sh. G. V. Shankar, Dr. Venkatesh Meda, Dr. Rakesh Tuli,<br />

Dr. Sudhir P. S<strong>in</strong>gh and Dr. Robert (Bob) Tyler.<br />

th<br />

Visit of Scientific delegation from National Dairy Research Institute: December 27 , <strong>2011</strong>.<br />

93


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

th<br />

Republic Day Celebrations at NABI: January 26 , <strong>2012</strong><br />

Dr. Rakesh Tuli, hoisted the national flag.<br />

Republic day celebrations at NABI <strong>in</strong>terim facility.<br />

94


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Second PAC Meet<strong>in</strong>g: February 18th, <strong>2012</strong><br />

First row from left: PAC meet<strong>in</strong>gs be<strong>in</strong>g chaired by Dr. V. Prakash (PAC – Food Biotechnology) ,<br />

Dr. B. Siva Kumar (PAC – Nutrition Biotechnology) and Dr. R. S. Paroda (PAC – Agricultural<br />

Biotechnology).<br />

Second row from left: Discussion dur<strong>in</strong>g the comb<strong>in</strong>ed PAC meet<strong>in</strong>g of Agri, Food and Nutrition<br />

Biotechnology.<br />

Third row: Visit of the experts to the ma<strong>in</strong> campus at Sector 81, Mohali.<br />

95


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

th<br />

Second SAC Meet<strong>in</strong>g: February 19 , <strong>2012</strong><br />

SAC meet<strong>in</strong>g be<strong>in</strong>g chaired by Dr. R.S. Paroda, Chairman SAC and former Director General, ICAR.<br />

Experts <strong>in</strong> Agri, Food and Nutrition Biotechnology hav<strong>in</strong>g discussion with faculty, dur<strong>in</strong>g<br />

the SAC meet<strong>in</strong>g.<br />

96


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

Second Foundation Day: February 18th, <strong>2012</strong><br />

First row from left: Dr. R.S. Paroda, Dr. N.K. Ganguly, Dr. B. Siva Kumar and other dist<strong>in</strong>guished<br />

guests <strong>in</strong>vited on the occasion. Dr. R.S. Paroda was the Chief Guest and Dr. N.K. Ganguly p<strong>res</strong>ided<br />

over the function.<br />

Second row from left: Dr. Rakesh Tuli, read<strong>in</strong>g Annual Report of NABI. Sign<strong>in</strong>g of MoU between<br />

NIPER and NABI.<br />

Third row from left: Dr. R. S. Paroda deliver<strong>in</strong>g a talk on “Harness<strong>in</strong>g Biotechnology <strong>in</strong> Indian<br />

Agriculture: Challenges and Opportunities”. Dr N.K. Ganguly gave P<strong>res</strong>idential add<strong>res</strong>s “Food<br />

Security and Nutritional Challenges for Marg<strong>in</strong>alised Populations” on the occasion. Dr. Ajay K.<br />

Pandey giv<strong>in</strong>g the vote of thanks.<br />

97


NATIONAL AGRI-FOOD BIOTECHNOLOGY INSTITUTE<br />

FINANCIALS<br />

Annual Accounts for the year <strong>2011</strong>-12: prepared by the <strong>in</strong>stitute on the basis of<br />

l The f<strong>in</strong>ancial <strong>res</strong>ource of the <strong>in</strong>stitute is the<br />

core grant provided by the Department of<br />

Biotechnology, Govt. of India under nonrecurr<strong>in</strong>g<br />

& recurr<strong>in</strong>g components.<br />

accrual system of account<strong>in</strong>g us<strong>in</strong>g<br />

standard format of accounts p<strong>res</strong>cribed by<br />

the Government of India for Central<br />

Autonomous Bodies.<br />

l The <strong>in</strong>stitute received the core grant of Rs.<br />

2,358.00 lac <strong>in</strong> the year <strong>2011</strong>-12.<br />

l M/s Raj Gupta & Co., (Chartered<br />

Accountant) Chandigarh, the statutory<br />

auditors of the <strong>in</strong>stitute have audited the<br />

l Annual accounts for the year <strong>2011</strong>-12 are<br />

accounts.<br />

F<strong>in</strong>ancial Position:-<br />

98<br />

(Figure <strong>in</strong> Rupees)<br />

S.No. Particulars As on 31-03-<strong>2011</strong> As on 31-03-<strong>2012</strong><br />

A.<br />

1.<br />

2.<br />

B.<br />

1.<br />

2.<br />

3.<br />

C.<br />

1.<br />

2.<br />

D.<br />

1.<br />

2.<br />

Capital Fund and Liabilities<br />

Capital Fund<br />

22,52,20,686 36,08,87,705<br />

Current Liability and Provisions 11,16,888 69,72,351<br />

Total<br />

Assets<br />

Fixed Assets<br />

22,63,37,574 36,78,60,056<br />

11,84,15,380 18,07,26,363<br />

Capital Work-<strong>in</strong>-Prog<strong>res</strong>s 76,20,000 3,69,11,630<br />

Current Assets ,Loans & Advances etc. 10,03,02,194 15,02,22,063<br />

Total<br />

Receipts of the Institute<br />

Grants from DBT<br />

22,63,37,574 36,78,60,056<br />

22,22,24,014 23,58,00,000<br />

Internal Receipts /Income 23,01,994 91,79,908<br />

Total<br />

Utilization<br />

Equipment<br />

22,45,26,008 24,49,79,908<br />

12,08,76,581 7,42,44,835<br />

Furniture and other Fixed Assets 44,67,606 62,47,815<br />

3. Manpower 77,35,259 2,12,64,257<br />

4.<br />

R&D Expenses<br />

1,07,13,216 1,54,34,510<br />

5. Adm<strong>in</strong>istrative Expenses 2,89,08,896 5,44,32,454<br />

E. Payables/Outstand<strong>in</strong>gs 11,16,888 69,72,351<br />

F. Advances / Receivables 1,63,49,345 1,65,25,554<br />

G. Marg<strong>in</strong> Money for LCs 5,50,00,000 8,27,47,849<br />

H. Clos<strong>in</strong>g Bank Balance (Exclud<strong>in</strong>g Marg<strong>in</strong><br />

Money )<br />

2,89,52,849 5,09,48,660


C-127, Industrial Area, Phase 8, Ajitgarh (Mohali), Punjab, India - 160071

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!