26.03.2013 Views

Safety and Efficacy Considerations in Endodontic ... - IneedCE.com

Safety and Efficacy Considerations in Endodontic ... - IneedCE.com

Safety and Efficacy Considerations in Endodontic ... - IneedCE.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Publication date: January 2011<br />

Expiry date: December 2013<br />

Earn<br />

3 CE credits<br />

This course was<br />

written for dentists,<br />

dental hygienists,<br />

<strong>and</strong> assistants.<br />

<strong>Safety</strong> <strong>and</strong> <strong>Efficacy</strong> <strong>Considerations</strong><br />

<strong>in</strong> <strong>Endodontic</strong> Irrigation<br />

A Peer-Reviewed Publication<br />

Written by Gary Glassman DDS, FRCD(C)<br />

Go Green, Go Onl<strong>in</strong>e to take your course<br />

This course has been made possible through an unrestricted educational grant. The cost of this CE course is $59.00 for 3 CE credits.<br />

Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contact<strong>in</strong>g PennWell <strong>in</strong> writ<strong>in</strong>g.


Educational Objectives<br />

The overall goal of this article is to provide the reader with<br />

<strong>in</strong>formation on endodontic irrigation.<br />

On <strong>com</strong>pletion of this course, the reader will be able to:<br />

1. List <strong>and</strong> describe the challenges for successful endodontic<br />

treatment<br />

2. List <strong>and</strong> describe the different types of root canal irrigants,<br />

their relative advantages <strong>and</strong> disadvantages<br />

3. List <strong>and</strong> describe root canal irrigation systems<br />

4. Describe <strong>and</strong> expla<strong>in</strong> a sodium hypochlorite <strong>in</strong>cident<br />

5. List <strong>and</strong> describe the steps that can be taken to avoid a<br />

sodium hypochlorite <strong>in</strong>cident.<br />

Abstract<br />

<strong>Endodontic</strong> treatment is a predictable procedure with<br />

high success rates. Success depends on a number of factors,<br />

<strong>in</strong>clud<strong>in</strong>g appropriate <strong>in</strong>strumentation, successful<br />

irrigation <strong>and</strong> decontam<strong>in</strong>ation of the root canal space to<br />

the apices <strong>and</strong> <strong>in</strong> areas such as isthmuses. These steps must<br />

be followed by <strong>com</strong>plete obturation of the root canals, <strong>and</strong><br />

placement of a coronal seal, prior to restorative treatment.<br />

Several irrigants <strong>and</strong> irrigation systems are available, all<br />

of which behave differently <strong>and</strong> have relative advantages<br />

<strong>and</strong> disadvantages. Common root canal irrigants <strong>in</strong>clude<br />

sodium hypochlorite, chlorhexid<strong>in</strong>e gluconate, alcohol,<br />

hydrogen peroxide <strong>and</strong> ethylenediam<strong>in</strong>etetraacetic acid<br />

(EDTA). In select<strong>in</strong>g an irrigant <strong>and</strong> technique, consideration<br />

must be given to their efficacy <strong>and</strong> safety.<br />

Introduction<br />

With the <strong>in</strong>troduction of modern techniques, endodontic<br />

success rates of up to 98% are be<strong>in</strong>g achieved. 1<br />

The ultimate goal of endodontic treatment per se is the<br />

prevention or treatment of apical periodontitis such<br />

that there is <strong>com</strong>plete heal<strong>in</strong>g <strong>and</strong> an absence of <strong>in</strong>fection,<br />

2 while the overall long-term goal is the placement<br />

of a def<strong>in</strong>itive, cl<strong>in</strong>ically successful restoration <strong>and</strong><br />

preservation of the tooth. For these to be achieved,<br />

appropriate <strong>in</strong>strumentation, irrigation <strong>and</strong> decontam<strong>in</strong>ation,<br />

<strong>and</strong> root canal obturation must occur,<br />

as well as atta<strong>in</strong>ment of a coronal seal. There is clear<br />

evidence that apical periodontitis is a biofilm-<strong>in</strong>duced<br />

disease. 3 A biofilm is an aggregate of microorganisms<br />

<strong>in</strong> which cells adhere to each other <strong>and</strong>/or to a surface.<br />

These adherent cells are frequently embedded with<strong>in</strong><br />

a self-produced matrix of extracellular polymeric substance.<br />

The presence of microorganisms embedded <strong>in</strong><br />

a biofilm <strong>and</strong> grow<strong>in</strong>g <strong>in</strong> the root canal system is a key<br />

factor for the development of periapical lesions. 4,5,6,7<br />

Additionally, the root canal system has a <strong>com</strong>plex<br />

anatomy that consists of arborizations, isthmuses, <strong>and</strong><br />

cul-de-sacs that harbor organic tissue <strong>and</strong> bacterial<br />

contam<strong>in</strong>ants. 8<br />

The challenge for successful endodontic treatment has<br />

always been the removal of vital <strong>and</strong> necrotic remnants of<br />

pulp tissues, debris generated dur<strong>in</strong>g <strong>in</strong>strumentation, the<br />

dent<strong>in</strong> smear layer, microorganisms, <strong>and</strong> microtox<strong>in</strong>s from<br />

the root canal system. 9<br />

Figure 1. Root canal <strong>com</strong>plex<br />

Courtesy of Dr. Charles J. Goodis. In: M<strong>and</strong>ibular Molar <strong>Endodontic</strong> Treatment.<br />

Even with the use of rotary <strong>in</strong>strumentation, the nickel-titanium<br />

<strong>in</strong>struments currently available only act on the central<br />

body of the root canal, result<strong>in</strong>g <strong>in</strong> a reliance on irrigation<br />

to clean beyond what may be achieved by these <strong>in</strong>struments.<br />

10 In addition, Enterococcus faecalis <strong>and</strong> Act<strong>in</strong>omyces<br />

israelii—which are both implicated <strong>in</strong> endodontic <strong>in</strong>fections<br />

as well as <strong>in</strong> endodontic failure—penetrate deep <strong>in</strong>to the<br />

dent<strong>in</strong>al tubules, mak<strong>in</strong>g their removal through mechanical<br />

<strong>in</strong>strumentation impossible. 11,12 F<strong>in</strong>ally, Enterococcus faecalis<br />

<strong>com</strong>monly expresses multiple drug resistance, 13,14,15 further<br />

<strong>com</strong>plicat<strong>in</strong>g treatment.<br />

Therefore, a suitable irrigant <strong>and</strong> irrigant delivery system<br />

are essential for efficient irrigation <strong>and</strong> the success of<br />

endodontic therapy. 16 Not only should root canal irrigants<br />

be effective for dissolution of the organic <strong>com</strong>ponent of the<br />

dental pulp, they must also effectively elim<strong>in</strong>ate bacterial<br />

contam<strong>in</strong>ation <strong>and</strong> remove the smear layer—the organic <strong>and</strong><br />

<strong>in</strong>organic layer that is created on the wall of the root canal<br />

dur<strong>in</strong>g <strong>in</strong>strumentation. The ability to deliver irrigants to the<br />

root canal term<strong>in</strong>us <strong>in</strong> a safe manner without caus<strong>in</strong>g harm to<br />

the patient is as important as the efficacy of those irrigants.<br />

Root Canal Irrigants<br />

Over the years, many irrigat<strong>in</strong>g agents have been used<br />

<strong>and</strong> tried <strong>in</strong> order to achieve tissue dissolution <strong>and</strong> bacte-<br />

2 www.<strong>in</strong>eedce.<strong>com</strong>


ial decontam<strong>in</strong>ation. The desired attributes of a root canal<br />

irrigant <strong>in</strong>clude the ability to dissolve necrotic <strong>and</strong> pulpal<br />

tissue, bacterial decontam<strong>in</strong>ation <strong>and</strong> a broad antimicrobial<br />

spectrum, the ability to enter deep <strong>in</strong>to the dent<strong>in</strong>al tubules,<br />

bio<strong>com</strong>patibility <strong>and</strong> lack of toxicity, the ability to dissolve<br />

<strong>in</strong>organic material <strong>and</strong> remove the smear layer, ease of use,<br />

<strong>and</strong> moderate cost.<br />

Table 1. Desirable root canal irrigant attributes<br />

Bacterial decontam<strong>in</strong>ation<br />

Broad spectrum antimicrobial activity<br />

Ability to enter deep <strong>in</strong>to dent<strong>in</strong>al tubules<br />

Ability to dissolve necrotic tissue<br />

Ability to dissolve <strong>in</strong>organic material<br />

<strong>Safety</strong><br />

Bio<strong>com</strong>patibility<br />

Lack of toxicity<br />

Ease of use<br />

Moderate cost<br />

Root canal irrigants currently <strong>in</strong> use <strong>in</strong>clude hydrogen<br />

peroxide, sodium hypochlorite, ethylenediam<strong>in</strong>etetraacetic<br />

acid (EDTA), alcohol, <strong>and</strong> chlorhexid<strong>in</strong>e gluconate.<br />

Chlorhexid<strong>in</strong>e gluconate offers a wide antimicrobial spectrum,<br />

the ma<strong>in</strong> bacteria associated with endodontic <strong>in</strong>fections<br />

(Enterococcus faecalis <strong>and</strong> Act<strong>in</strong>omyces israelii) are<br />

sensitive to it, <strong>and</strong> it is bio<strong>com</strong>patible with no tissue toxicity<br />

for the periapical or surround<strong>in</strong>g tissues. 17 Chlorhexid<strong>in</strong>e<br />

gluconate, however, lacks the ability to dissolve necrotic<br />

tissue, which limits its usefulness. Hydrogen peroxide as<br />

a canal irrigant helps to remove debris by the physical act<br />

of irrigation as well as through effervesc<strong>in</strong>g of the solution.<br />

However, while an effective antibacterial irrigant, hydrogen<br />

peroxide also does not dissolve necrotic <strong>in</strong>tracanal tissue,<br />

<strong>and</strong> exhibits toxicity to the surround<strong>in</strong>g tissues. Cases of<br />

tissue damage <strong>and</strong> facial nerve damage have been reported<br />

follow<strong>in</strong>g use of hydrogen peroxide as a root canal irrigant. 18<br />

Alcohol-based canal irrigants also have antimicrobial activity,<br />

but will not dissolve necrotic tissue.<br />

Table 2. Common root canal irrigants<br />

Chlorhexid<strong>in</strong>e gluconate<br />

Sodium hypochlorite<br />

Alcohol<br />

Hydrogen peroxide<br />

EDTA<br />

The irrigant that satisfies most of the requirements for<br />

a root canal irrigant is sodium hypochlorite (NaOCl). 19,20<br />

It has the unique ability to dissolve necrotic tissue <strong>and</strong> the<br />

organic <strong>com</strong>ponents of the smear layer. 19,21,22 It also kills<br />

sessile endodontic pathogens organized <strong>in</strong> a biofilm. 23,24<br />

There is no other root canal irrigant that can meet all these<br />

requirements, even with the use of methods such as lower<strong>in</strong>g<br />

the pH, 25,26,27 <strong>in</strong>creas<strong>in</strong>g the temperature, 28,29,30,31,32 or<br />

add<strong>in</strong>g surfactants to <strong>in</strong>crease the wett<strong>in</strong>g efficacy of the irrigant.<br />

33,34 However, although sodium hypochlorite appears<br />

to be the most desirable s<strong>in</strong>gle endodontic irrigant, it cannot<br />

dissolve <strong>in</strong>organic dent<strong>in</strong> particles <strong>and</strong> thus cannot prevent<br />

the formation of a smear layer dur<strong>in</strong>g <strong>in</strong>strumentation. 35<br />

Calcifications h<strong>in</strong>der<strong>in</strong>g mechanical preparation are<br />

frequently encountered <strong>in</strong> the canal system, further <strong>com</strong>plicat<strong>in</strong>g<br />

treatment. Dem<strong>in</strong>eraliz<strong>in</strong>g agents such as EDTA<br />

have therefore been re<strong>com</strong>mended as adjuvants <strong>in</strong> root<br />

canal therapy. 20,36 Thus, <strong>in</strong> contemporary endodontic practice,<br />

dual irrigants such as sodium hypochlorite (NaOCl)<br />

with EDTA are often used as <strong>in</strong>itial <strong>and</strong> f<strong>in</strong>al r<strong>in</strong>ses to circumvent<br />

the short<strong>com</strong><strong>in</strong>gs of a s<strong>in</strong>gle irrigant. 37,38,39 These<br />

irrigants must be brought <strong>in</strong>to direct contact with the entire<br />

canal wall surfaces for effective action, 20,37,40 particularly for<br />

the apical portions of small root canals. 9<br />

The <strong>com</strong>b<strong>in</strong>ation of sodium hypochlorite <strong>and</strong> EDTA<br />

has been used worldwide for antisepsis of root canal systems.<br />

The concentration of sodium hypochlorite used for<br />

root canal irrigation ranges from 2.5% to 6%, depend<strong>in</strong>g<br />

on the country <strong>and</strong> local regulations; it has been shown,<br />

however, that tissue hydrolyzation is greater at the higher<br />

end of this range, as demonstrated <strong>in</strong> a study by H<strong>and</strong> et<br />

al <strong>com</strong>par<strong>in</strong>g 2.5% <strong>and</strong> 5.25% sodium hypochlorite. The<br />

higher concentration may also favor superior microbial<br />

out<strong>com</strong>es. 41 NaOCl has a broad antimicrobial spectrum, 20<br />

<strong>in</strong>clud<strong>in</strong>g but not limited to Enterococcus faecalis. Sodium<br />

hypochlorite is also second to none among irrigat<strong>in</strong>g agents<br />

that dissolve organic matter. EDTA is a chelat<strong>in</strong>g agent that<br />

aids <strong>in</strong> smear layer removal <strong>and</strong> <strong>in</strong>creases dent<strong>in</strong> permeability,<br />

42,43 which will allow further irrigation with NaOCl<br />

to penetrate deep <strong>in</strong>to the dent<strong>in</strong>al tubules. 44<br />

The <strong>com</strong>b<strong>in</strong>ation of sodium hypochlorite <strong>and</strong> EDTA has<br />

been used worldwide for antisepsis of root canal systems.<br />

General <strong>Safety</strong> Precautions<br />

Regardless of which irrigant <strong>and</strong> irrigation system is employed,<br />

<strong>and</strong> particularly if an irrigant with tissue toxicity is<br />

used, there are several general precautions that must be followed.<br />

A rubber dam must be used <strong>and</strong> a good seal obta<strong>in</strong>ed<br />

to ensure that no irrigant can spill from the pulp chamber<br />

<strong>in</strong>to the oral cavity. If deep caries or a fracture is present<br />

adjacent to the rubber dam on the tooth be<strong>in</strong>g isolated, a<br />

temporary seal<strong>in</strong>g material must be used prior to perform<strong>in</strong>g<br />

the procedure to ensure a good rubber dam seal. It is also<br />

important to protect the patient’s eyes with safety glasses<br />

<strong>and</strong> protect cloth<strong>in</strong>g from irrigant splatter or spill.<br />

www.<strong>in</strong>eedce.<strong>com</strong> 3


It is very important to note that while sodium hypochlorite<br />

has unique properties that satisfy most requirements for<br />

a root canal irrigant, it also exhibits tissue toxicity that can result<br />

<strong>in</strong> damage to the adjacent tissues, <strong>in</strong>clud<strong>in</strong>g nerve damage<br />

should sodium hypochlorite <strong>in</strong>cidents occur dur<strong>in</strong>g canal<br />

irrigation. Furthermore, Salzgeber reported <strong>in</strong> the 1970s that<br />

apical extrusion of an endodontic irrigant rout<strong>in</strong>ely occurred<br />

<strong>in</strong> vivo; 45 this highlights the importance of us<strong>in</strong>g devices <strong>and</strong><br />

techniques that m<strong>in</strong>imize or prevent this. Sodium hypochlorite<br />

<strong>in</strong>cidents are further discussed later <strong>in</strong> this article.<br />

Regardless of which irrigant <strong>and</strong> irrigation system is used,<br />

a rubber dam must be used <strong>and</strong> a good seal obta<strong>in</strong>ed.<br />

Irrigant Delivery Systems<br />

Root canal irrigation systems can be divided <strong>in</strong>to two categories:<br />

manual agitation techniques <strong>and</strong> mach<strong>in</strong>e-assisted agitation<br />

techniques. 9 Manual irrigation <strong>in</strong>cludes positive pressure<br />

irrigation, which is <strong>com</strong>monly performed with a syr<strong>in</strong>ge <strong>and</strong><br />

a side-vented needle. Mach<strong>in</strong>e-assisted irrigation techniques<br />

<strong>in</strong>clude sonics <strong>and</strong> ultrasonics, as well as newer systems such<br />

as the EndoVac® (Discus Dental, Culver City, CA) , which<br />

delivers apical negative pressure (ANP) irrigation, 46 the plastic<br />

rotary F® File (Plastic Endo, L<strong>in</strong>colnshire, IL), 47,48 the<br />

Vibr<strong>in</strong>ge® (Vibr<strong>in</strong>ge BV, Amsterdam, The Netherl<strong>and</strong>s), 49<br />

the R<strong>in</strong>sEndo® (Air Techniques Inc., NY), 9 <strong>and</strong> the Endo-<br />

Activator® (Dentsply Tulsa Dental Specialties, Tulsa, OK). 9<br />

Two important factors that should be considered dur<strong>in</strong>g<br />

the process of irrigation are whether the irrigation system<br />

can deliver the irrigant to the whole extent of the root canal<br />

system, particularly at the apical third, <strong>and</strong> whether the irrigant<br />

is capable of debrid<strong>in</strong>g areas that could not be reached<br />

with mechanical <strong>in</strong>strumentation, such as lateral canals <strong>and</strong><br />

isthmi. When evaluat<strong>in</strong>g irrigation of the apical third, the<br />

phenomenon of apical vapor lock should be considered. 50,51,52<br />

Apical Vapor Lock<br />

S<strong>in</strong>ce roots are surrounded by the periodontium, <strong>and</strong> unless<br />

the root canal foramen is open, the root canal behaves like<br />

a close-ended channel. This produces an apical vapor lock<br />

effect that resists displacement dur<strong>in</strong>g <strong>in</strong>strumentation <strong>and</strong><br />

f<strong>in</strong>al irrigation, thus prevent<strong>in</strong>g the flow of irrigant <strong>in</strong>to<br />

the apical region <strong>and</strong> adequate debridement of the canal<br />

system. 53,54 Apical vapor lock also results <strong>in</strong> gas entrapment<br />

at the apical third. 9 Dur<strong>in</strong>g irrigation, sodium hypochlorite<br />

reacts with organic tissue <strong>in</strong> the root canal system, <strong>and</strong><br />

the result<strong>in</strong>g hydrolysis liberates abundant quantities of<br />

ammonia <strong>and</strong> carbon dioxide. 55 This gaseous mixture is<br />

trapped <strong>in</strong> the apical region <strong>and</strong> quickly forms a column<br />

of gas <strong>in</strong>to which further fluid penetration is impossible.<br />

Extension of <strong>in</strong>struments <strong>in</strong>to this vapor lock does not reduce<br />

or remove the gas bubble, 56 just as it does not enable<br />

adequate flow of irrigant.<br />

Apical vapor lock prevents the flow of irrigant <strong>in</strong>to<br />

the apical region of roots <strong>and</strong> also results <strong>in</strong> gas<br />

entrapment at the apical third.<br />

The phenomenon of apical vapor lock has been confirmed<br />

<strong>in</strong> studies where roots were embedded <strong>in</strong> a polyv<strong>in</strong>ylsiloxane<br />

(PVS) impression material to restrict fluid flow through the<br />

apical foramen, simulat<strong>in</strong>g a close-ended channel. The result<br />

<strong>in</strong> these studies was <strong>in</strong><strong>com</strong>plete debridement of the apical<br />

part of the canal walls with the use of a positive pressure<br />

syr<strong>in</strong>ge delivery technique. 57,58,59,60 Micro-CT scann<strong>in</strong>g <strong>and</strong><br />

histological tests conducted by Tay et al have also confirmed<br />

the presence of apical vapor lock. 60 In fact, studies conducted<br />

without ensur<strong>in</strong>g a close-ended channel cannot be regarded<br />

as conclusive on the efficacy of irrigants <strong>and</strong> the irrigant system.<br />

61,62,63 The apical vapor lock may also expla<strong>in</strong> why, <strong>in</strong> a<br />

number of studies, <strong>in</strong>vestigators were unable to demonstrate<br />

a clean apical third <strong>in</strong> sealed root canals. 59,64,65,66<br />

Figure 2a. Close-ended channel Figure 2b. Open-ended channel<br />

Courtesy of Dr. Frankl<strong>in</strong> Tay<br />

In a paper published by Chow <strong>in</strong> 1983, based on research<br />

he determ<strong>in</strong>ed that traditional positive pressure irrigation<br />

had virtually no effect apical to the orifice of the irrigation<br />

needle <strong>in</strong> a closed root canal system. 67 Fluid exchange <strong>and</strong><br />

debris displacement were m<strong>in</strong>imal. Equally important to his<br />

primary f<strong>in</strong>d<strong>in</strong>gs, Chow set forth an <strong>in</strong>fallible paradigm for<br />

endodontic irrigation: “For the solution to be mechanically<br />

effective <strong>in</strong> remov<strong>in</strong>g all the particles, it has to: (a) reach the<br />

apex; (b) create a current (force); <strong>and</strong> (c) carry the particles<br />

away.” 67 The apical vapor lock <strong>and</strong> consideration for the patient’s<br />

safety have always prevented the thorough clean<strong>in</strong>g of<br />

the apical 3 mm. It is critically important to determ<strong>in</strong>e which<br />

irrigation system will effectively irrigate the apical third as<br />

well as isthmi <strong>and</strong> lateral canals, 16 <strong>and</strong> <strong>in</strong> a safe manner that<br />

prevents the extrusion of irrigant.<br />

An effective irrigant must reach the apex, create a current<br />

<strong>and</strong> remove particles.<br />

4 www.<strong>in</strong>eedce.<strong>com</strong>


Manual Agitation Techniques<br />

By far the most <strong>com</strong>mon <strong>and</strong> conventional set of irrigation<br />

techniques, manual irrigation <strong>in</strong>volves dispens<strong>in</strong>g of an irrigant<br />

<strong>in</strong>to a canal through needles/cannulae of variable<br />

gauges, either passively or with agitation by mov<strong>in</strong>g the<br />

needle up <strong>and</strong> down the canal space without b<strong>in</strong>d<strong>in</strong>g it on<br />

the canal walls. This allows good control of needle depth <strong>and</strong><br />

the volume of irrigant that is flushed through the canal. 9,63<br />

However, the closer the needle tip is positioned to the apical<br />

tissue, the greater the chance of apical extrusion of the irrigant.<br />

67,68 This must be avoided; if sodium hypochlorite were<br />

to extrude past the apex there is a chance that a catastrophic<br />

accident could occur. 69<br />

Manual-Dynamic Irrigation<br />

Manual dynamic irrigation <strong>in</strong>volves gently mov<strong>in</strong>g a well-fitt<strong>in</strong>g<br />

gutta-percha master cone up <strong>and</strong> down <strong>in</strong> short 2 mm to<br />

3 mm strokes with<strong>in</strong> an <strong>in</strong>strumented canal, thereby produc<strong>in</strong>g<br />

a hydrodynamic effect <strong>and</strong> significant irrigant exchange. 70<br />

Recent studies have shown that this irrigation technique is<br />

significantly more effective than an automated-dynamic irrigation<br />

system <strong>and</strong> static irrigation. 9,71,72<br />

Figure 3. Manual Dynamic Max-I-Probe®<br />

Mach<strong>in</strong>e-Assisted Agitation Systems<br />

Sonic Irrigation<br />

Sonic activation has been shown to be an effective method<br />

for dis<strong>in</strong>fect<strong>in</strong>g root canals, operat<strong>in</strong>g at frequencies of 1-6<br />

kHz. 73,74 There are several sonic irrigation devices on the<br />

market. The Vibr<strong>in</strong>ge allows delivery <strong>and</strong> sonic activation<br />

of the irrigat<strong>in</strong>g solution <strong>in</strong> one step. It employs a 2-piece<br />

syr<strong>in</strong>ge with a rechargeable battery. The irrigant is sonically<br />

activated, as is the needle that attaches to the syr<strong>in</strong>ge.<br />

The EndoActivator System is a more recently <strong>in</strong>troduced<br />

sonically driven canal irrigation system. 9,75 It consists of a<br />

portable h<strong>and</strong>piece <strong>and</strong> three types of disposable polymer<br />

tips of different sizes. The EndoActivator has been reported<br />

to effectively clean debris from lateral canals, remove the<br />

smear layer, <strong>and</strong> dislodge clumps of biofilm with<strong>in</strong> the<br />

curved canals of molar teeth. 9<br />

Figure 4. Sonic irrigation systems<br />

Ultrasonics<br />

Ultrasonic energy produces higher frequencies than sonic<br />

energy but low amplitudes, oscillat<strong>in</strong>g at frequencies of 25-<br />

30 kHz. 9,76 Two types of ultrasonic irrigation are available<br />

for use. The first type is simultaneous ultrasonic <strong>in</strong>strumentation<br />

<strong>and</strong> irrigation (UI), <strong>and</strong> the second type is referred<br />

to as passive ultrasonic irrigation operat<strong>in</strong>g without simultaneous<br />

irrigation (PUI). The literature <strong>in</strong>dicates that it is<br />

more advantageous to apply ultrasonics after <strong>com</strong>pletion of<br />

canal preparation rather than as an alternative to conventional<br />

<strong>in</strong>strumentation. 9,20,77 PUI irrigation allows energy<br />

to be transmitted from an oscillat<strong>in</strong>g file or smooth wire to<br />

the irrigant <strong>in</strong> the root canal by means of ultrasonic waves. 9<br />

There is consensus that PUI is more effective than syr<strong>in</strong>ge<br />

. needle irrigation <strong>in</strong> remov<strong>in</strong>g pulpal tissue remnants <strong>and</strong><br />

dent<strong>in</strong> debris. 78,79,80 This may be due to the much higher<br />

velocity <strong>and</strong> volume of irrigant flow that are created <strong>in</strong> the<br />

canal dur<strong>in</strong>g ultrasonic irrigation. 9,81 PUI has been shown<br />

to remove the smear layer; there is a large body of evidence<br />

with different concentrations of NaOCl. 9,80,82,83,84 In addition,<br />

numerous <strong>in</strong>vestigations have demonstrated that the<br />

use of PUI after h<strong>and</strong> or rotary <strong>in</strong>strumentation results <strong>in</strong><br />

a significant reduction of the number of bacteria, 9,85,86,87 or<br />

achieves significantly better results than syr<strong>in</strong>ge needle irrigation.<br />

9,84,88,89<br />

Studies have demonstrated that effective delivery of irrigants<br />

to the apical third can be enhanced by us<strong>in</strong>g ultrasonic<br />

<strong>and</strong> sonic devices. 79,81,90,91,92 However, some recent studies<br />

have shown that once a sonic or ultrasonically activated tip<br />

leaves the irrigant <strong>and</strong> enters the apical vapor lock, acoustic<br />

microstream<strong>in</strong>g <strong>and</strong>/or cavitation be<strong>com</strong>es physically<br />

impossible, 93 which is not the case with the apical negative<br />

pressure irrigation technique. 46,94<br />

Consider the erroneous idea that acoustic microstream<strong>in</strong>g<br />

or cavitation that occurs dur<strong>in</strong>g PUI can clean any part<br />

of the apical portion filled with gas (apical vapor lock).<br />

Acoustic microstream<strong>in</strong>g is def<strong>in</strong>ed as the movement of fluids<br />

along cell membranes, which occurs as a result of the ultrasound<br />

energy creat<strong>in</strong>g mechanical pressure changes with<strong>in</strong><br />

the tissue. Cavitation is def<strong>in</strong>ed as the formation <strong>and</strong> collapse<br />

of gas- <strong>and</strong> vapor-filled bubbles or cavities <strong>in</strong> a fluid.<br />

www.<strong>in</strong>eedce.<strong>com</strong> 5


This process (cavitation) results from the creation <strong>and</strong> collapse<br />

of microbubbles <strong>in</strong> the liquid. Acoustic microstream<strong>in</strong>g<br />

or cavitation is only possible <strong>in</strong> fluids/liquids, not <strong>in</strong><br />

gases. Therefore, as previously mentioned, it is physically<br />

impossible for acoustic microstream<strong>in</strong>g <strong>and</strong>/or cavitation<br />

to disrupt the apical vapor lock.. 56<br />

Other studies have shown that sonic or ultrasonic activation<br />

might allow a better removal of pulpal tissue remnants<br />

<strong>and</strong> debris from isthmi <strong>and</strong> f<strong>in</strong>s. 79,81 Although ultrasonics<br />

can effectively clean debris <strong>and</strong> bacteria from the root canal<br />

system, they still have the drawback of not be<strong>in</strong>g able to<br />

effectively get through the apical vapor lock <strong>in</strong> the apical 3<br />

mm of the canal.<br />

Ultrasonics can effectively clean debris <strong>and</strong> bacteria from<br />

the root canal system, but cannot effectively get through<br />

the apical vapor lock.<br />

The Plastic Rotary F File<br />

Although sonic or ultrasonic <strong>in</strong>strumentation is more effective<br />

<strong>in</strong> remov<strong>in</strong>g residual canal debris than rotary endodontic<br />

files 95 <strong>and</strong> irrigation solutions are often unable to remove<br />

this dur<strong>in</strong>g endodontic treatment, many cl<strong>in</strong>icians still do<br />

not <strong>in</strong>corporate it <strong>in</strong> their endodontic <strong>in</strong>strument armamentarium.<br />

The <strong>com</strong>mon reasons given for not us<strong>in</strong>g sonic or<br />

ultrasonic fil<strong>in</strong>g are that it can be time-consum<strong>in</strong>g to set up,<br />

an unwill<strong>in</strong>gness to <strong>in</strong>cur the cost of the equipment, <strong>and</strong> lack<br />

of awareness of the benefits of this f<strong>in</strong>al <strong>in</strong>strumentation step<br />

<strong>in</strong> endodontic treatment.<br />

It is for these reasons that an endodontic polymer-based<br />

rotary f<strong>in</strong>ish<strong>in</strong>g file was developed. This new, s<strong>in</strong>gle-use,<br />

plastic rotary file has a unique file design with a diamond<br />

abrasive embedded <strong>in</strong>to a nontoxic polymer. The F File will<br />

remove dent<strong>in</strong>al wall debris <strong>and</strong> agitate the sodium hypochlorite<br />

without further enlarg<strong>in</strong>g the canal.<br />

Pressure Alternation Devices<br />

R<strong>in</strong>sEndo irrigates the canal by us<strong>in</strong>g pressure-suction<br />

technology. Its <strong>com</strong>ponents are a h<strong>and</strong>piece, a cannula with<br />

a 7 mm exit aperture, <strong>and</strong> a syr<strong>in</strong>ge carry<strong>in</strong>g irrigant. The<br />

h<strong>and</strong>piece is powered by a dental air <strong>com</strong>pressor <strong>and</strong> has an<br />

irrigation speed of 6.2 ml/m<strong>in</strong>. Research has shown that it<br />

has promis<strong>in</strong>g results <strong>in</strong> clean<strong>in</strong>g the root canal system, but<br />

more research is required to provide scientific evidence for<br />

its efficacy. Periapical extrusion of irrigant has been reported<br />

with this device. 96,97<br />

Figure 5. R<strong>in</strong>sEndo<br />

The EndoVac Apical Negative Pressure System<br />

The EndoVac apical negative pressure irrigation system has<br />

three <strong>com</strong>ponents: The Master Delivery Tip, MacroCannula<br />

<strong>and</strong> MicroCannula. The Master Delivery Tip simultaneously<br />

delivers <strong>and</strong> evacuates the irrigant. The MacroCannula is used<br />

to suction irrigant from the chamber to the coronal <strong>and</strong> middle<br />

segments of the canal. The MacroCannula or MicroCannula<br />

is connected via tub<strong>in</strong>g to the high-speed suction of a dental<br />

unit. The Master Delivery Tip is connected to a syr<strong>in</strong>ge of irrigant<br />

<strong>and</strong> the evacuation hood is connected via tub<strong>in</strong>g to the<br />

high-speed suction of a dental unit. 56 The plastic MacroCannula<br />

has an ISO size 0.55 mm diameter open end with a .02<br />

taper <strong>and</strong> is attached to a H<strong>and</strong>piece for gross, <strong>in</strong>itial flush<strong>in</strong>g<br />

of the coronal <strong>and</strong> mid-length parts of the root canal. The<br />

MicroCannula conta<strong>in</strong>s 12 microscopic holes <strong>and</strong> is capable of<br />

evacuat<strong>in</strong>g debris to full work<strong>in</strong>g length. 97 The ISO size 0.32<br />

mm diameter sta<strong>in</strong>less steel MicroCannula has four sets of<br />

three laser-cut, laterally positioned, offset holes adjacent to its<br />

closed end, 100 microns <strong>in</strong> diameter <strong>and</strong> spaced 100 microns<br />

apart. This is attached to a F<strong>in</strong>gerpiece for irrigation of the apical<br />

part of the canal when it is positioned at the work<strong>in</strong>g length.<br />

The MicroCannula can be used <strong>in</strong> canals that are enlarged<br />

with endodontic files to ISO size #35/.04 or larger.<br />

Figure 6a. EndoVac Multi-Port Adapter<br />

Figure 6b. EndoVac <strong>in</strong>struments<br />

Master Delivery Tip<br />

MacroCannula<br />

MicroCannula with vent<strong>in</strong>g<br />

6 www.<strong>in</strong>eedce.<strong>com</strong>


Dur<strong>in</strong>g irrigation, the Master Delivery Tip delivers irrigant<br />

to the pulp chamber <strong>and</strong> siphons off the excess irrigant to<br />

prevent overflow. Both the MacroCannula <strong>and</strong> MicroCannula<br />

exert negative pressure that pulls irrigant from its fresh<br />

supply <strong>in</strong> the chamber, down the canal to the tip of the cannula,<br />

<strong>in</strong>to the cannula, <strong>and</strong> out through the suction hose.<br />

Thus, a constant flow of fresh irrigant is be<strong>in</strong>g delivered by<br />

negative pressure to work<strong>in</strong>g length. A recent study showed<br />

that the volume of irrigant delivered was significantly higher<br />

than the volume delivered by conventional syr<strong>in</strong>ge needle<br />

irrigation dur<strong>in</strong>g the same time period, 46 <strong>and</strong> resulted <strong>in</strong><br />

significantly more debris removal at 1 mm from the work<strong>in</strong>g<br />

length than did needle irrigation. Dur<strong>in</strong>g conventional root<br />

canal irrigation, cl<strong>in</strong>icians must be careful when determ<strong>in</strong><strong>in</strong>g<br />

how far an irrigation needle is placed <strong>in</strong>to the canal.<br />

Re<strong>com</strong>mendations for avoid<strong>in</strong>g NaOCl <strong>in</strong>cidents <strong>in</strong>clude<br />

not b<strong>in</strong>d<strong>in</strong>g the needle <strong>in</strong> the canal, not plac<strong>in</strong>g the needle<br />

close to work<strong>in</strong>g length, <strong>and</strong> us<strong>in</strong>g a gentle flow rate when<br />

us<strong>in</strong>g positive pressure irrigation. 98 With the EndoVac, <strong>in</strong><br />

contrast, irrigant is pulled <strong>in</strong>to the canal at work<strong>in</strong>g length<br />

<strong>and</strong> removed by negative pressure. Apical negative pressure<br />

has been shown to enable irrigants to reach the apical<br />

third <strong>and</strong> help over<strong>com</strong>e the issue of apical vapor lock. 46,99<br />

In addition, with respect to isthmus clean<strong>in</strong>g, although it is<br />

not possible to reach <strong>and</strong> clean the isthmus area with <strong>in</strong>struments,<br />

it is not impossible to reach <strong>and</strong> totally clean these<br />

areas with NaOCl when the method of irrigation is safe<br />

<strong>and</strong> efficacious. In studies <strong>com</strong>par<strong>in</strong>g the EndoActivator, 100<br />

passive ultrasonic, 100 the F File, 100 the Manual Dynamic<br />

Max-I-Probe, 100,101 the Pressure Ultrasonic, 95 <strong>and</strong> the EndoVac,<br />

101 only the EndoVac was capable of clean<strong>in</strong>g 100% of<br />

the isthmus area.<br />

The EndoVac uses negative pressure, pulls irrigant<br />

<strong>in</strong>to the canal to work<strong>in</strong>g length <strong>and</strong><br />

removes it with suction.<br />

Apart from be<strong>in</strong>g able to avoid air entrapment, the EndoVac<br />

system is also advantageous <strong>in</strong> its ability to safely deliver<br />

irrigants to work<strong>in</strong>g length without caus<strong>in</strong>g their undue<br />

extrusion <strong>in</strong>to the periapex, 46,97 thereby avoid<strong>in</strong>g sodium<br />

hypochlorite <strong>in</strong>cidents. It is important to note that it is<br />

possible to create positive pressure <strong>in</strong> the pulp canal if the<br />

Master Delivery Tip is misused, which would create the<br />

risk of a sodium hypochlorite <strong>in</strong>cident. The manufacturer’s<br />

<strong>in</strong>structions must be followed for correct use of the Master<br />

Delivery Tip.<br />

Sodium Hypochlorite Incidents<br />

Although a devastat<strong>in</strong>g endodontic sodium hypochlorite (Na-<br />

OCl) <strong>in</strong>cident is a rare event, 102 the cytotoxic effects of sodium<br />

hypochlorite on vital tissue have been well established. 103 The<br />

associated sequelae of NaOCl extrusion have been reported to<br />

<strong>in</strong>clude life-threaten<strong>in</strong>g airway obstructions, 104 facial disfig-<br />

urement requir<strong>in</strong>g multiple corrective surgical procedures, 105<br />

permanent paresthesia with loss of facial muscle control, 69<br />

<strong>and</strong>—the least significant consequence—tooth loss. 106<br />

Table 2. Potential sequelae of sodium hypochlorite extrusion through the apex<br />

Ecchymosis<br />

Widespread tissue trauma<br />

Tooth loss<br />

Facial disfigurement<br />

Permanent paresthesia<br />

Loss of facial muscle control<br />

Irreversible muscle atrophy<br />

Life-threaten<strong>in</strong>g airway obstruction<br />

Although the exact etiology of the NaOCl <strong>in</strong>cident is<br />

still uncerta<strong>in</strong>, based on the evidence from actual <strong>in</strong>cidents<br />

<strong>and</strong> the location of the associated tissue trauma, it would<br />

appear that an <strong>in</strong>travenous <strong>in</strong>jection may be the cause. The<br />

patient shown <strong>in</strong> Figure 7 demonstrates a widespread area<br />

of tissue trauma that is <strong>in</strong> contrast to the characteristics of<br />

sodium hypochlorite <strong>in</strong>cident trauma reported by Pashley.<br />

103,107 This extensive trauma, <strong>and</strong> particularly <strong>in</strong>volv<strong>in</strong>g<br />

the pattern of ecchymosis around the eye, could only occur<br />

if the sodium hypochlorite were <strong>in</strong>troduced <strong>in</strong>travenously to<br />

a ve<strong>in</strong> close to the root apex through which extrusion of the<br />

irrigant occurred, <strong>and</strong> the irrigant then found its way <strong>in</strong>to<br />

the venous <strong>com</strong>plex. This would require positive pressure<br />

apically that exceeded venous pressure (10 mg of Hg). In<br />

one <strong>in</strong> vitro study, which used a positive pressure needle irrigation<br />

technique to realistically mimic cl<strong>in</strong>ical conditions<br />

<strong>and</strong> techniques, the apical pressure generated was found to<br />

be 8 times higher than the normal venous pressure. 108<br />

Figure 7. Widespread tissue trauma<br />

www.<strong>in</strong>eedce.<strong>com</strong> 7


Figure 8. Irreversible musculature atrophy<br />

This does not imply that NaOCl can or should be excluded<br />

as an endodontic irrigant; <strong>in</strong> fact, its use is critical, as has been<br />

discussed <strong>in</strong> this article. What this does imply is that it must<br />

be safely delivered.<br />

<strong>Safety</strong> First<br />

To <strong>com</strong>pare the safety of six current <strong>in</strong>tracanal irrigation delivery<br />

devices, an <strong>in</strong> vitro test was conducted us<strong>in</strong>g the worstcase<br />

scenario of apical extrusion, with neutral atmospheric<br />

pressure <strong>and</strong> an open apex. 97 The study concluded that the<br />

EndoVac did not extrude irrigant after deep <strong>in</strong>tracanal delivery<br />

<strong>and</strong> suction<strong>in</strong>g of the irrigant from the chamber to full<br />

work<strong>in</strong>g length, whereas other devices did. The EndoActivator<br />

extruded only a very small volume of irrigant, the cl<strong>in</strong>ical<br />

significance of which is not known.<br />

Figure 9. Comparative extrusion of irrigant us<strong>in</strong>g irrigation devices<br />

100<br />

Extrusion of irrigant (%)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

MicroCannula<br />

MacroCannula<br />

EndoActivator<br />

Max-I-Probe<br />

Positive Pressure<br />

Ultrasonic<br />

R<strong>in</strong>sEndo<br />

Mitchell <strong>and</strong> Baumgartner Irrigation tested system irrigant used(NaOCl)<br />

extrusion<br />

from a root canal sealed with a permeable agarose gel. 109 Significantly<br />

less extrusion occurred us<strong>in</strong>g the EndoVac system<br />

<strong>com</strong>pared with positive pressure needle irrigation. A well-controlled<br />

study by Gondim et al found that patients experienced<br />

less postoperative pa<strong>in</strong>, measured objectively <strong>and</strong> subjectively,<br />

when apical negative pressure irrigation was performed (EndoVac)<br />

rather than apical positive pressure irrigation. 110<br />

The use of apical negative pressure needle irrigation<br />

results <strong>in</strong> safer delivery of sodium hypochlorite, <strong>and</strong> less<br />

post-operative pa<strong>in</strong>.<br />

<strong>Efficacy</strong><br />

In vitro <strong>and</strong> <strong>in</strong> vivo studies have demonstrated greater removal<br />

of debris from the apical walls <strong>and</strong> a statistically cleaner result<br />

us<strong>in</strong>g apical negative pressure irrigation <strong>in</strong> closed root canal<br />

systems with sealed apices. In an <strong>in</strong> vivo study of 22 teeth by<br />

Siu <strong>and</strong> Baumgartner, less debris rema<strong>in</strong>ed at 1 mm from<br />

work<strong>in</strong>g length us<strong>in</strong>g apical negative pressure <strong>com</strong>pared to use<br />

of traditional needle irrigation, while Sh<strong>in</strong> et al found <strong>in</strong> an <strong>in</strong><br />

vitro study of 69 teeth <strong>com</strong>par<strong>in</strong>g traditional needle irrigation<br />

with apical negative pressure that these methods both resulted<br />

<strong>in</strong> clean root canals but that apical negative pressure resulted<br />

<strong>in</strong> less debris rema<strong>in</strong><strong>in</strong>g at 1.5 mm <strong>and</strong> 3.5 mm from work<strong>in</strong>g<br />

length. 46, 99,111 When <strong>com</strong>par<strong>in</strong>g root canal debridement us<strong>in</strong>g<br />

manual dynamic agitation or the EndoVac for f<strong>in</strong>al irrigation<br />

<strong>in</strong> a closed system <strong>and</strong> an open system, it was found that the<br />

presence of a sealed apical foramen adversely affected debridement<br />

efficacy when manual dynamic agitation was used, but did<br />

not adversely affect results when the EndoVac was used. Apical<br />

negative pressure irrigation is an effective method to over<strong>com</strong>e<br />

the fluid dynamic challenges <strong>in</strong>herent <strong>in</strong> closed canal systems. 112<br />

Apical negative pressure irrigation results <strong>in</strong> greater<br />

removal of debris <strong>and</strong> a cleaner result at work<strong>in</strong>g length.<br />

Microbial Control<br />

Hockett et al tested the ability of apical negative pressure to<br />

remove a thick biofilm of Enterococcus faecalis, f<strong>in</strong>d<strong>in</strong>g that<br />

these specimens rendered negative cultures obta<strong>in</strong>ed with<strong>in</strong><br />

48 hours while those irrigated us<strong>in</strong>g traditional positivepressure<br />

irrigation were positive at 48 hours. 94 Figure 10<br />

shows a scann<strong>in</strong>g electron microscope image of decontam<strong>in</strong>ated<br />

dent<strong>in</strong>al tubules after use of apical negative pressure<br />

irrigation with sodium hypochlorite <strong>and</strong> use of EDTA.<br />

Figure 10. SEM of decontam<strong>in</strong>ated dent<strong>in</strong>al tubules<br />

Courtesy of Dr. Jeffrey L. Hockett <strong>and</strong> Dr. Nestor Cohenca<br />

8 www.<strong>in</strong>eedce.<strong>com</strong>


One study found apical negative pressure irrigation<br />

resulted <strong>in</strong> similar bacterial reductions to use of apical positive<br />

pressure irrigation <strong>and</strong> a triple antibiotic <strong>in</strong> immature<br />

teeth. 113 In a study <strong>com</strong>par<strong>in</strong>g the use of apical positive<br />

pressure irrigation <strong>and</strong> a triple antibiotic that has been<br />

utilized for pulpal regeneration/revascularization <strong>in</strong> teeth<br />

with <strong>in</strong><strong>com</strong>pletely formed apices (Trimix=Cipro, M<strong>in</strong>oc<strong>in</strong>,<br />

Flagyl) versus use of apical negative pressure irrigation with<br />

sodium hypochlorite, it was found that the results were statistically<br />

equivalent for m<strong>in</strong>eralized tissue formation <strong>and</strong> the<br />

repair process. 114 Us<strong>in</strong>g negative apical pressure <strong>and</strong> sodium<br />

hypochlorite also avoids the risk of drug resistance, tooth<br />

discoloration, <strong>and</strong> allergic reactions. 115,116<br />

Conclusion<br />

S<strong>in</strong>ce the dawn of contemporary endodontics, dentists have<br />

been syr<strong>in</strong>g<strong>in</strong>g sodium hypochlorite <strong>in</strong>to the root canal<br />

space <strong>and</strong> then proceed<strong>in</strong>g to place endodontic <strong>in</strong>struments<br />

down the canal <strong>in</strong> the belief that they were carry<strong>in</strong>g the<br />

irrigant to the apical term<strong>in</strong>ation. Biological, SEM, light<br />

microscopy, <strong>and</strong> other studies have proven this belief to be<br />

<strong>in</strong> error. Sodium hypochlorite reacts with organic material<br />

<strong>in</strong> the root canal <strong>and</strong> quickly forms micro gas bubbles at<br />

the apical term<strong>in</strong>ation that coalesce <strong>in</strong>to a s<strong>in</strong>gle large apical<br />

vapor bubble with subsequent <strong>in</strong>strumentation. S<strong>in</strong>ce the<br />

apical vapor lock cannot be displaced via mechanical means,<br />

it prevents further sodium hypochlorite flow <strong>in</strong>to the apical<br />

area. Additionally, acoustic microstream<strong>in</strong>g <strong>and</strong> cavitation<br />

are limited to liquids <strong>and</strong> have no effect <strong>in</strong>side the vapor<br />

lock. The only method yet discovered to elim<strong>in</strong>ate the apical<br />

vapor lock is to evacuate it via apical negative pressure. This<br />

method has also been proven to be safe because it always<br />

draws irrigants to the source via suction—down the canal<br />

<strong>and</strong> simultaneously away from the apical tissue <strong>in</strong> abundant<br />

quantities. 117 When the proper irrigat<strong>in</strong>g agents are<br />

delivered safely to the full extent of the root canal term<strong>in</strong>us,<br />

thereby remov<strong>in</strong>g 100% of organic tissue <strong>and</strong> 100% of the<br />

microbial contam<strong>in</strong>ants, success <strong>in</strong> endodontic treatment<br />

may be taken to levels never seen before.<br />

References<br />

1 Friedman S,MorC.Thesuccess ofendodontictherapy—heal<strong>in</strong>g<br />

<strong>and</strong> functionality. J Calif Dent Assoc. 2004;32(6):493–503.<br />

2 Orstavik D, Pittford T. Essential endodontology: prevention<br />

<strong>and</strong> treatment of apical periodontitis. 2nd ed. Ames, IA:<br />

Blackwell Munksgaard Ltd; 2008:1.<br />

3 Ricucci D, Siqueira JF Jr. Biofilms <strong>and</strong> apical periodontitis:<br />

study of prevalence <strong>and</strong> association with cl<strong>in</strong>ical <strong>and</strong><br />

histopathologic f<strong>in</strong>d<strong>in</strong>gs. J Endod. 2010;36(8);1277-88.<br />

4 FabriciusL,DahlenG,SundqvistG,etal.Influenceofresidual<br />

bacteria on periapical tissue heal<strong>in</strong>g after chemomechanical<br />

treatment <strong>and</strong> root fill<strong>in</strong>g of experimentally <strong>in</strong>fected monkey<br />

teeth. Eur J Oral Sci. 2006;114:278-85.<br />

5 Siqueira JF Jr, Rocas IN. Cl<strong>in</strong>ical implications <strong>and</strong><br />

microbiology of bacterial persistence after treatment<br />

procedures. J Endod. 2008;34:1291-301.<br />

6 Wong R. Conventional endodontic failure <strong>and</strong> retreatment.<br />

Dent Cl<strong>in</strong> North Am. 2004;48:265-89.<br />

7 Basmadjian-Charles CL, Farge P, Bourgeois DM, Lebrun<br />

T. Factors <strong>in</strong>fluenc<strong>in</strong>g the long-term results of endodontic<br />

treatment: a review of the literature. Int Dent J. 2002;52:81-6.<br />

8 Nair PN, Henry S, Cano V, Vera J. Microbial status of apical<br />

root canal system of human m<strong>and</strong>ibular first molars with<br />

primary apical periodontitis after “one-visit” endodontic<br />

treatment. Oral Surg Oral Med Oral Pathol Oral Radiol<br />

Endod. 2005;99:231-52.<br />

9 Gu LS, Kim JR, L<strong>in</strong>g J, Choi KK, Pashley DH, Tay FR.<br />

Review of contemporary irrigant agitation techniques <strong>and</strong><br />

devices. J Endod. 2009;35(6):791-804.<br />

10 Peters OA. Current challenges <strong>and</strong> concepts <strong>in</strong> the<br />

preparation of root canal systems: A review. J Endod.<br />

2004;30:559-67.<br />

11 Siqueira JF, de Uzeda M, Fonseca MEF. A scann<strong>in</strong>g electron<br />

microscope evaluation of <strong>in</strong> vitro dental tubules penetration<br />

by selected anaerobic bacteria. J Endod. 1996;22:308-10.<br />

12 Haapasalo M. In vitro <strong>in</strong>fection <strong>and</strong> dis<strong>in</strong>fection of dent<strong>in</strong>al<br />

tubules. J Dent Res. 1987;66:1375-79.<br />

13 Gomes BP, P<strong>in</strong>heiro ET, Gade-Neto CR, et al.<br />

Microbiological exam<strong>in</strong>ation of <strong>in</strong>fected dental root canals.<br />

Oral Microbiol Immunol. 2004;19:71-6.<br />

14 Orstavik D, Haapasalo M. Dis<strong>in</strong>fection by endodontic<br />

irrigants <strong>and</strong> dress<strong>in</strong>gs of experimentally <strong>in</strong>fected dent<strong>in</strong>al<br />

tubules. Endod Dent Traumatol. 1990;6:142-9.<br />

15 Nakajo K, Komori R, Ishikawa S, et al. Resistance to acidic<br />

<strong>and</strong> alkal<strong>in</strong>e environments <strong>in</strong> the endodontic pathogen<br />

Enterococcus faecalis. Oral Microbiol Immunol. 2006;21:283-8.<br />

16 de Gregorio C, Estevez R, Cisneros R, Paranjpe A, Cohenca<br />

N. <strong>Efficacy</strong> of different irrigation <strong>and</strong> activation systems on<br />

the penetration of sodium hypochlorite <strong>in</strong>to simulated lateral<br />

canals <strong>and</strong> up to work<strong>in</strong>g length: An <strong>in</strong> vitro study. J Endod.<br />

2010;36(7):1216-21.<br />

17 Basson N, Tait C. Effectiveness of three root canal<br />

medicaments to elim<strong>in</strong>ate Act<strong>in</strong>omyces israelii from <strong>in</strong>fected<br />

dent<strong>in</strong>al tubules <strong>in</strong> vitro. S A Dent J. 2000;56:499-501.<br />

18 Kruse A, Hellmich N, Luebbers HT, Grätz KW. Neurological<br />

deficit of the facial nerve after root canal treatment. Oral Surg<br />

Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2):e46-8.<br />

19 Paragliola F, Franco V, Fabiani C, et al. F<strong>in</strong>al r<strong>in</strong>se<br />

optimization: Influence of different agitation protocols. J<br />

Endod. 2010;36(2):282-5.<br />

20 Zehnder M. Root canal irrigants review. J Endod.<br />

2006;32:389-98.<br />

21 Naenni N, Thoma K, Zehnder M. Soft tissue dissolution<br />

capacity of currently used <strong>and</strong> potential endodontic irrigants.<br />

J Endod. 2004;30:785-7.<br />

22 Haikel Y, Gorce F, Allemann C, et al. In vitro efficiency of<br />

endodontic irrigation solutions on prote<strong>in</strong> desorption. Int<br />

Endod J. 1994;27:16-20.<br />

23 Spratt DA, Pratten J, Wilson M, et al. An <strong>in</strong> vitro evaluation<br />

of the antimicrobial efficacy of irrigants on biofilms of root<br />

canal isolates. Int Endod J. 2001;34:300-7.<br />

www.<strong>in</strong>eedce.<strong>com</strong> 9


24 Clegg MS, Vertucci FJ, Walker C, Belanger M, Britto LR.<br />

The effect of exposure to irrigant solutions on apical dent<strong>in</strong><br />

biofilms <strong>in</strong> vitro. J Endod. 2006;32(5):434-7.<br />

25 Cotter JL, Fader RC, Lilley C, Herndon DN. Chemical<br />

parameters, antimicrobial activities, <strong>and</strong> tissue toxicity of 0.1<br />

<strong>and</strong> 0.5% sodium hypochlorite solutions. Antimicrob Agents<br />

Chemother. 1985;28:118-22.<br />

26 Christensen CE, McNeal SF, Eleazer P. Effect of lower<strong>in</strong>g the<br />

pH of sodium hypochlorite on dissolv<strong>in</strong>g tissue <strong>in</strong> vitro. J<br />

Endod. 2008;34:449-52.<br />

27 Bloomfield SF, Miles G. The relationship between residual<br />

chlor<strong>in</strong>e <strong>and</strong> dis<strong>in</strong>fection capacity of sodium hypochlorite<br />

<strong>and</strong> sodium dichlorisocyanurate solutions <strong>in</strong> the presence of<br />

E. coli <strong>and</strong> milk. Microbios. 1979;10:33-43.<br />

28 Sirtes G, Waltimo T, Schaetzle M, Zehnder M. The effects<br />

of temperature on sodium hypochlorite short-term stability,<br />

pulp dissolution capacity, <strong>and</strong> antimicrobial efficacy. J<br />

Endod. 2005;31:669-71.<br />

29 Abou-Rass M, Oglesby SW. The effects of temperature,<br />

concentration, <strong>and</strong> tissue type on the solvent ability of<br />

sodium hypochlorite. J Endod. 1981;7:376-7.<br />

30 Cunn<strong>in</strong>gham WT, Joseph SW. Effect of temperature on<br />

the bactericidal action of sodium hypochlorite endodontic<br />

irrigant. Oral Surg Oral Med Oral Pathol. 1980;50:569-71.<br />

31 Cunn<strong>in</strong>gham WT, Balekjian AY. Effect of temperature<br />

on collagen-dissolv<strong>in</strong>g ability of sodium hypochlorite<br />

endodontic irrigant. Oral Surg Oral Med Oral Pathol.<br />

1980;49:175-7.<br />

32 Kamburis JJ, Barker TH, Barfield RD, Eleazer PD. Removal<br />

of organic debris from bov<strong>in</strong>e dent<strong>in</strong> shav<strong>in</strong>gs. J Endod.<br />

2003;29:559-61.<br />

33 Lui JN, Kuah HG, Chen NN. Effect of EDTA with <strong>and</strong><br />

without surfactants or ultrasonics on removal of smear layer.<br />

J Endod. 2007;33:472-5.<br />

34 Giard<strong>in</strong>o L, Ambu E, Becce C, Rimond<strong>in</strong>i L, Morra M.<br />

Surface tension <strong>com</strong>parison of four <strong>com</strong>mon root canal<br />

irrigants <strong>and</strong> two new irrigants conta<strong>in</strong><strong>in</strong>g antibiotic. J<br />

Endod. 2006;32:1091-3.<br />

35 Lester KS, Boyde A. Scann<strong>in</strong>g electron microscopy of<br />

<strong>in</strong>strumented, irrigated <strong>and</strong> filled root canals. Br Dent J.<br />

1977;143:359-67.<br />

36 Nygaard Östby B. Chelation <strong>in</strong> root canal therapy. Odontol<br />

Tidskr. 1957;65:3-11.<br />

37 Gr<strong>and</strong>e NM, Plot<strong>in</strong>o G, Falanga A, Pomponi M, Somma<br />

F. Interaction between EDTA <strong>and</strong> sodium hypochlorite: a<br />

nuclear magnetic resonance analysis. J Endod. 2006;32:460-4.<br />

38 Kishen A, Sum CP, Mathew S, Lim CT. Influence of<br />

irrigation regimens on the adherence of Enterococcus faecalis<br />

to root canal dent<strong>in</strong>. J Endod. 2008;34:850-4.<br />

39 R<strong>in</strong>gel AM, Patterson SS, Newton CW, Miller CH, Mulhern<br />

JM. In vivo evaluation of chlorhexid<strong>in</strong>e gluconate solution<br />

<strong>and</strong> sodium hypochlorite solution as root canal irrigants. J<br />

Endod. 1982;8:200-4.<br />

40 Al-Hadlaq SM, Al-Turaiki SA, Al-Sulami U, Saad AY.<br />

<strong>Efficacy</strong> of a new brush-covered irrigation needle <strong>in</strong><br />

remov<strong>in</strong>g root canal debris: a scann<strong>in</strong>g electron microscopic<br />

study. J Endod. 2006;32:1181-4.<br />

41 H<strong>and</strong> RE, Smith ML, Harrison JW. Analysis of the effect<br />

of dilution on the necrotic tissue dissolution property of<br />

sodium hypochlorite. J Endod. 1978;4(2):60-4.<br />

42 Zehnder M, Schmidl<strong>in</strong> P, Sener B, et al. Chelation <strong>in</strong> root<br />

canal therapy reconsidered. J Endod. 2005;31:817-20.<br />

43 Surapipongpuntr P, Duangcharee W, Kwangsamai S, et al.<br />

Effect of root canal irrigants on cervical dent<strong>in</strong>e permeability<br />

to hydrogen peroxide. Int Endod J. 2008;41:821-7.<br />

44 Soares JA, Roque de Carvalho MA, Cunha Santos SM, et<br />

al. Effectiveness of chemomechanical preparation with<br />

alternat<strong>in</strong>g use of sodium hypochlorite <strong>and</strong> EDTA <strong>in</strong><br />

elim<strong>in</strong>at<strong>in</strong>g <strong>in</strong>tracanal Entercoccus faecalis biofilm. J Endod.<br />

2010;36(5):894-8.<br />

45 Salzgeber M, Brilliant LD. An <strong>in</strong> vivo evaluation of the<br />

penetration of an irrigat<strong>in</strong>g solution <strong>in</strong> root canals. J Endod.<br />

1974;3(10):394-8.<br />

46 Nielsen BA, Baumgartner JC. Comparison of the endovac<br />

system to needle irrigation of root canals. J Endod.<br />

2007;33:611-5.<br />

47 Bahcall J, Olsen FK. Cl<strong>in</strong>ical <strong>in</strong>troduction of a plastic<br />

rotatory endodontic f<strong>in</strong>ish<strong>in</strong>g file. Endo Prac. 2007;10:17-20.<br />

48 Chopra S, Murray PE, Namerow KN. A scann<strong>in</strong>g electron<br />

microscopic evaluation of the effectiveness of the F-file<br />

versus ultrasonic activation of a K-file to remove smear layer.<br />

J Endod. 2008;34:1243-5.<br />

49 Rödig T, Bozkurt M, Konietschke F, Hülsmann M.<br />

Comparison of theVibr<strong>in</strong>ge System with syr<strong>in</strong>ge <strong>and</strong> passive<br />

ultrasonic irrigation <strong>in</strong> remov<strong>in</strong>g debris from simulated root<br />

canal irregularities. J Endod. 2010;36(8):1410-3.<br />

50 Dovgyallo GI, Migun NP, Prokhorenko PP. The <strong>com</strong>plete<br />

fill<strong>in</strong>g of dead-end conical capillaries with liquid. J Eng Phy.<br />

1989;56:395-7.<br />

51 Migun NP, Azuni MA. Fill<strong>in</strong>g of one-side-closed capillaries<br />

immersed <strong>in</strong> liquids. J Coll Interf Sci. 1996;181:337-40.<br />

52 Pesse AV, Warrier GR, Dhir VK. An experimental study of<br />

the gas entrapment process <strong>in</strong> closed-end microchannels.<br />

Int J Heat Mass Transfer. 2005;48:5150-65.<br />

53 Senia ES, Marshall FJ, Rosen S. The solvent action of<br />

sodium hypochlorite on pulp tissue of extracted teeth. Oral<br />

Surg Oral Med Oral Pathol. 1971;31:96-103.<br />

54 de Gregorio C, Estevez R, Cisneros R, Heilborn C, Cohenca<br />

N. Effect of EDTA, sonic, <strong>and</strong> ultrasonic activation on the<br />

penetration of sodium hypochlorite <strong>in</strong>to simulated lateral<br />

canals: an <strong>in</strong> vitro study. J Endod. 2009;35:891-5.<br />

55 K<strong>in</strong>etics mechanisms hypochlorite oxidation alpha<br />

am<strong>in</strong>o acids time water dis<strong>in</strong>fection. Available at: http://<br />

eurekamag.<strong>com</strong>/research/005/782/k<strong>in</strong>etics-mechanismshypochlorite-oxidation-alpha-am<strong>in</strong>o-acids-time-waterdis<strong>in</strong>fection.php<br />

56 Schoeffel GJ. The EndoVac method of endodontic irrigation:<br />

part 2—efficacy. Dent Today. 2008;27:82,84,86-87.<br />

57 BaumgartnerJC,MaderCL.Ascann<strong>in</strong>gelectronmicroscopic<br />

evaluation of four root canal irrigation regimens. J Endod.<br />

1987;13:147-57.<br />

58 O’Connell MS, Morgan LA, Beeler WJ, Baumgartner JC.<br />

A <strong>com</strong>parative study of smear layer removal us<strong>in</strong>g different<br />

salts of EDTA. J Endod. 2000;26:739-43.<br />

10 www.<strong>in</strong>eedce.<strong>com</strong>


59 Albrecht LJ, Baumgartner JC, Marshall JG. Evaluation<br />

of apical debris removal us<strong>in</strong>g various sizes <strong>and</strong> tapers of<br />

ProFile GT files. J Endod. 2004;30:425-8.<br />

60 Tay FR, Gu LS, Schoeffel GJ, et al. Effect of vapor lock on root<br />

canal debridement by us<strong>in</strong>g a side-vented needle for positivepressure<br />

irrigant delivery. J Endod. 2010;36(4):745-50.<br />

61 Torab<strong>in</strong>ejad M, Cho Y, Khademi AA, Bakl<strong>and</strong> LK,<br />

Shabahang S. The effect of various concentrations of sodium<br />

hypochlorite on the ability of MTAD to remove the smear<br />

layer. J Endod. 2003;29(4):233-9.<br />

62 T<strong>in</strong>az AC, Alacam T, Uzun O, Maden M, Kayaoglu G.<br />

The effect of disruption of apical constriction on periapical<br />

extrusion. J Endod. 2005;31(7):533-5.<br />

63 van der Sluis LW, Gambar<strong>in</strong>i G,Wu MK,Wessel<strong>in</strong>k PR. The<br />

<strong>in</strong>fluence of volume, type of irrigant <strong>and</strong> flush<strong>in</strong>g method on<br />

remov<strong>in</strong>g artificially placed dent<strong>in</strong>e debris from the apical<br />

root canal dur<strong>in</strong>g passive ultrasonic irrigation. Int Endod J.<br />

2006;39(6):472-6.<br />

64 Fukumoto Y, Kikuchi I, Yoshioka T, Kobayashi C, Suda H.<br />

An ex vivo evaluation of a new root canal irrigation technique<br />

with <strong>in</strong>tracanal aspiration. Int Endod J. 2006;39(2):93-9.<br />

65 Usman N, Baumgartner JC, Marshall JG. Influence of<br />

<strong>in</strong>strument size on root canal debridement. J Endod.<br />

2004;30(2):110-2.<br />

66 Berutti E, Mar<strong>in</strong>i R. A scann<strong>in</strong>g electron microscopic<br />

evaluation of the debridement capability of sodium<br />

hypochlorite at different temperatures. J Endod.<br />

1996;22(9):467-70.<br />

67 Chow TW. Mechanical effectiveness of root canal irrigation.<br />

J Endod. 1983;9:475-479.<br />

68 Ram Z. Effectiveness of root canal irrigation. Oral Surg Oral<br />

Med Oral Pathol. 1977;44:306-12.<br />

69 Pelka M, Petschelt A. Permanent mimic musculature<br />

<strong>and</strong> nerve damage caused by sodium hypochlorite: a case<br />

report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.<br />

2008;106(3):e80-3.<br />

70 Machtou P. Irrigation <strong>in</strong>vestigation <strong>in</strong> endodontics. Paris VII<br />

University, Paris, France: Master’s thesis; 1980.<br />

71 McGill S, Gulabivala K, Mordan N, Ng YL. The efficacy<br />

of dynamic irrigation us<strong>in</strong>g a <strong>com</strong>mercially available<br />

system (R<strong>in</strong>sEndo) determ<strong>in</strong>ed by removal of a collagen<br />

‘bio-molecular film’ from an ex vivo model. Int Endod J.<br />

2008;41:602-8.<br />

72 Huang TY, Gulabivala K, Ng Y-L. A bio-molecular film exvivo<br />

model to evaluate the <strong>in</strong>fluence of canal dimensions <strong>and</strong><br />

irrigation variables on the efficacy of irrigation. Int Endod J.<br />

2008;41:60-71.<br />

73 Pitt WG. Removal of oral biofilm by sonic phenomena. Am<br />

J Dent. 2005;18:345-52.<br />

74 Ahmad M, Pitt Ford TR, Crum LA. Ultrasonic debridement<br />

of root canals: an <strong>in</strong>sight <strong>in</strong>to the mechanisms <strong>in</strong>volved. J<br />

Endod. 1987;13:93-101.<br />

75 Ruddle CJ. <strong>Endodontic</strong> dis<strong>in</strong>fection: tsunami irrigation.<br />

Endod Pract. 2008;7-15.<br />

76 Walmsley AD, Williams AR. Effects of constra<strong>in</strong>t on the<br />

oscillatory pattern of endosonic files. J Endod. 1989;15:189-94.<br />

77 Weller RN, Brady JM, Bernier WE. <strong>Efficacy</strong> of ultrasonic<br />

clean<strong>in</strong>g. J Endod. 1980;6:740-3.<br />

78 Sab<strong>in</strong>s RA, Johnson JD, Hellste<strong>in</strong> JW. A <strong>com</strong>parison of the<br />

clean<strong>in</strong>g efficacy of short-term sonic <strong>and</strong> ultrasonic passive<br />

irrigation after h<strong>and</strong> <strong>in</strong>strumentation <strong>in</strong> molar root canals. J<br />

Endod. 2003;29:674-8.<br />

79 Goodman A, Reader A, Beck M, Melfi R, Meyers W.<br />

An <strong>in</strong> vitro <strong>com</strong>parison of the efficacy of the step-back<br />

technique versus a step-back/ultrasonic technique <strong>in</strong> human<br />

m<strong>and</strong>ibular molars. J Endod. 1985;11:249-56.<br />

80 Cameron JA. The synergistic relationship between<br />

ultrasound <strong>and</strong> sodium hypochlorite: a scann<strong>in</strong>g electron<br />

microscope evaluation. J Endod. 1987;13:541-5.<br />

81 Lee SJ, Wu MK, Wessel<strong>in</strong>k PR. The effectiveness of syr<strong>in</strong>ge<br />

irrigation <strong>and</strong> ultrasonics to remove debris from simulated<br />

irregularities with<strong>in</strong> prepared root canal walls. Int Endod J.<br />

2004;37:672-8.<br />

82 Cameron JA. The use of ultrasonics <strong>in</strong> the removal of the<br />

smear layer: a scann<strong>in</strong>g electron microscope study. J Endod.<br />

1983;9:289-92.<br />

83 Alacam T. Scann<strong>in</strong>g electron microscope study <strong>com</strong>par<strong>in</strong>g<br />

the efficacy of endodontic irrigat<strong>in</strong>g systems. Int Endod J.<br />

1987;20:287-94.<br />

84 Huque J, Kota K,Yamaga M, Iwaku M, Hosh<strong>in</strong>o E. Bacterial<br />

eradication from root dent<strong>in</strong>e by ultrasonic irrigation with<br />

sodium hypochlorite. Int Endod J. 1998;31:242-50.<br />

85 Mart<strong>in</strong> H, Cunn<strong>in</strong>gham WT, Norris JP, Cotton WR.<br />

Ultrasonic versus h<strong>and</strong> fil<strong>in</strong>g of dent<strong>in</strong>: a quantitative study.<br />

Oral Surg Oral Med Oral Pathol. 1980;49:79-81.<br />

86 Cunn<strong>in</strong>ghamWT, Mart<strong>in</strong> H, ForrestWR. Evaluation of root<br />

canal debridement by the endosonic ultrasonic synergistic<br />

system. Oral Surg Oral Med Oral Pathol. 1982;53:401-4.<br />

87 Cunn<strong>in</strong>gham WT, Mart<strong>in</strong> H, Pelleu GB Jr., Stoops DE. A<br />

<strong>com</strong>parison of antimicrobial effectiveness of endosonic <strong>and</strong><br />

h<strong>and</strong> root canal therapy. Oral Surg Oral Med Oral Pathol.<br />

1982;54:238-41.<br />

88 Spoleti P, Siragusa M, Spoleti MJ. Bacteriological evaluation<br />

of passive ultrasonic activation. J Endod. 2003;29:12-4.<br />

89 Weber CD, McClanahan SB, Miller GA, Diener-West M,<br />

Johnson JD. The effect of passive ultrasonic activation of<br />

2% chlorhexid<strong>in</strong>e or 5.25% sodium hypochlorite irrigant<br />

on residual antimicrobial activity <strong>in</strong> root canals. J Endod.<br />

2003;29:562-4.<br />

90 Cameron JA. The use of 4 per cent sodium hypochlorite,<br />

with or without ultrasound, <strong>in</strong> cleans<strong>in</strong>g of un<strong>in</strong>strumented<br />

immature root canals: SEM study. Aust Dent J. 1987;32:204-13.<br />

91 Metzler RS, Montgomery S. Effectiveness of ultrasonics<br />

<strong>and</strong> calcium hydroxide for the debridement of human<br />

m<strong>and</strong>ibular molars. J Endod. 1989;15:373-8.<br />

92 Cheung GS, Stock CJ. In vitro clean<strong>in</strong>g ability of root<br />

canal irrigants with <strong>and</strong> without endosonics. Int Endod J.<br />

1993;26:334-43.<br />

93 Schoeffel GJ. The EndoVac method of endodontic irrigation,<br />

part 3: system <strong>com</strong>ponents <strong>and</strong> their <strong>in</strong>teraction. Dent Today.<br />

2008;27(106):8-11.<br />

94 Hockett JL, Dommisch JK, Johnson JD, Cohenca N.<br />

Antimicrobial efficacy of two irrigation techniques <strong>in</strong> tapered<br />

<strong>and</strong> nontapered canal preparations: an <strong>in</strong> vitro study. J<br />

www.<strong>in</strong>eedce.<strong>com</strong> 11


Endod. 2008;34:1374-7.<br />

95 Gutarts R, Nusste<strong>in</strong> J, Reader A, Beck M. In vivo<br />

debridement efficacy of ultrasonic irrigation follow<strong>in</strong>g h<strong>and</strong>rotary<br />

<strong>in</strong>strumentation <strong>in</strong> human m<strong>and</strong>ibular molars. J<br />

Endod. 2005;3:166-170.<br />

96 Pouch D, Bohne W, et al. Clean<strong>in</strong>g qualities of R<strong>in</strong>sendo: an<br />

<strong>in</strong> vitro study. Eur Cells Mater. 2007;13:7.<br />

97 Desai P, Himel V. Comparative safety of various <strong>in</strong>tracanal<br />

irrigation systems. J Endod. 2009;35(4):545-9.<br />

98 Hülsmann M, Hahn W. Complications dur<strong>in</strong>g root canal<br />

irrigation: literature review <strong>and</strong> case reports. Int Endod J.<br />

2000;33:186-93.<br />

99 Sh<strong>in</strong> SJ, Kim HK, Jung IY, Lee CY, Lee SJ, Kim E.<br />

Comparison of the clean<strong>in</strong>g efficacy of a new apical negative<br />

pressure irrigat<strong>in</strong>g system with conventional irrigation<br />

needles <strong>in</strong> the root canals. Oral Surg Oral Med Oral Pathol<br />

Oral Radiol Endod. 2010 Mar;109(3):479-84.<br />

100 Klyn SL, Kirkpatrick TC, Rutledge RE. In vitro <strong>com</strong>parisons<br />

of debris removal of the EndoActivator System, the F File,<br />

ultrasonic irrigation, <strong>and</strong> NaOCl irrigation alone after h<strong>and</strong>rotary<br />

<strong>in</strong>strumentation <strong>in</strong> human m<strong>and</strong>ibular molars. J<br />

Endod. 2010;36(8):1367-71.<br />

101 Sus<strong>in</strong> L, Parente JM, Loush<strong>in</strong>e RJ, et al. Canal <strong>and</strong> isthmus<br />

debridement efficacies of two irrigant agitation techniques <strong>in</strong><br />

a closed system. Int Endod J. 2010;43(12):1077-90.<br />

102 Mehdipour O, Kleier DJ, Averbach RE. Anatomy of<br />

sodium hypochlorite accidents. Compend Cont<strong>in</strong> Educ Dent.<br />

2007;28(10):544-6.<br />

103 Pashley EL, Birdsong NL, Bowman K, Pashley DH.<br />

Cytotoxic effects of sodium hypochlorite on vital tissue. J<br />

Endod. 1985;11:525- 8.<br />

104 Bowden JR, Ethun<strong>and</strong>an M, Brennan PA. Life-threaten<strong>in</strong>g<br />

airway obstruction secondary to hypochlorite extrusion<br />

dur<strong>in</strong>g root canal treatment. Oral Surg Oral Med Oral<br />

Pathol Oral Radiol Endod. 2006;101(3):402-4.<br />

105 Markose G, Cotter CJ, Hislop WS. Facial atrophy follow<strong>in</strong>g<br />

accidental subcutaneous extrusion of sodium hypochlorite.<br />

Br Dent J. 2009;206(5):263-4.<br />

106 L<strong>in</strong>den J. When Irrigation Leads to Litigation. Dental<br />

Products Report. Sept. 2010, 75-81.<br />

107 Hülsmann M, Rödig T, Nordmeyer S. Complications dur<strong>in</strong>g<br />

root canal. Endo Topics. 2009;16:27-63.<br />

108 Boutsioukis C, Verhaagen B, Versluis M, Kastr<strong>in</strong>akis E,<br />

Wessel<strong>in</strong>k PR, van der Sluis PR. Evaluation of irrigant<br />

flow <strong>in</strong> the root canal us<strong>in</strong>g different needle types by an<br />

unsteady <strong>com</strong>putational fluid dynamics model. J Endod.<br />

2010;36(5):875-97.<br />

109 Mitchell RP, Yang SE, Baumgartner JC. Comparison of<br />

apical extrusion of NaOCl us<strong>in</strong>g the EndoVac or needle<br />

irrigation of root canals. J Endod. 2010;36(2):338-41.<br />

110 Gondim E Jr., Setzer F, dos Carmo CD, Kim S. Postoperative<br />

pa<strong>in</strong> after the application of two different irrigation devices<br />

<strong>in</strong> a prospective r<strong>and</strong>omized cl<strong>in</strong>ical trial. J Endod.<br />

2010;36;(8):1295-1301.<br />

111 Siu C, Baumgartner JC. Comparison of the debridement<br />

efficacy of the EndoVac irrigation system <strong>and</strong><br />

conventional needle root canal irrigation <strong>in</strong> vivo. J Endod.<br />

2010;36(11):1782-5.<br />

112 Parente JM, Loush<strong>in</strong>e RJ, Sus<strong>in</strong> L, Gu L, Looney SW,Weller<br />

RN, et al. Root canal debridement us<strong>in</strong>g manual dynamic<br />

agitation or the EndoVac for f<strong>in</strong>al irrigation <strong>in</strong> a closed system<br />

<strong>and</strong> an open system. Int Endod J. 2010;43(11):1001-12.<br />

113 Cohenca N, Heilborn C, Johnson JD, Flores DS, Ito IY,<br />

da Silva LA. Apical negative pressure irrigation versus<br />

conventional irrigation plus triantibiotic <strong>in</strong>tracanal dress<strong>in</strong>g<br />

on root canal dis<strong>in</strong>fection <strong>in</strong> dog teeth. Oral Surg Oral Med<br />

Oral Pathol Oral Radiol Endod. 2010;109(1):e42-6.<br />

114 da Silva LA, Nelson-Filho P, da Silva RA, et al.<br />

Revascularization <strong>and</strong> periapical repair after endodontic<br />

treatment us<strong>in</strong>g apical negative pressure irrigation versus<br />

conventional irrigation plus triantibiotic <strong>in</strong>tracanal dress<strong>in</strong>g<br />

<strong>in</strong> dogs’ teeth with apical periodontitis. Oral Surg Oral Med<br />

Oral Pathol Oral Radiol Endod. 2010;109(5):779-87.<br />

115 Eickholz P, Kim TS, Bürkl<strong>in</strong> T, et al. Nonsurgical periodontal<br />

therapy with adjunctive topical doxycycl<strong>in</strong>e: a double-bl<strong>in</strong>d<br />

r<strong>and</strong>omized controlled multicenter study. J Cl<strong>in</strong> Periodontol.<br />

2002;29:108-17.<br />

116 de Paz S, Perez A, Gomez M, Trampal A, Dom<strong>in</strong>guez<br />

Lazaro A. Severe hypersensitivity reaction to m<strong>in</strong>ocycl<strong>in</strong>e. J<br />

Invest Allergol Cl<strong>in</strong> Immunol. 1999;9:403-4.<br />

117 Schoeffel GJ. The EndoVac method of endodontic irrigation:<br />

Part 4, Cl<strong>in</strong>ical Use. Dent Today. 2009;28(6):64, 66-67.<br />

Author Profile<br />

Gary Glassman DDS, FRCD(C)<br />

Dr. Gary Glassman graduated from<br />

the University of Toronto School<br />

of Dentistry <strong>in</strong> 1984 <strong>and</strong> graduated<br />

from the Endodontology Program<br />

at Temple University <strong>in</strong> 1987 where<br />

he received the Louis I. Grossman<br />

Study Club Award for academic<br />

<strong>and</strong> cl<strong>in</strong>ical proficiency <strong>in</strong> <strong>Endodontic</strong>s.<br />

The author of numerous publications, Dr. Glassman<br />

lectures globally on endodontics <strong>and</strong> is on staff at the<br />

University of Toronto, Faculty of Dentistry <strong>in</strong> the graduate<br />

department of endodontics. Gary is a Fellow of the Royal<br />

College of Dentists of Canada, <strong>and</strong> the endodontic editor<br />

for Oral Health dental journal. He ma<strong>in</strong>ta<strong>in</strong>s a private practice,<br />

<strong>Endodontic</strong> Specialists, <strong>in</strong> Toronto, Ontario, Canada.<br />

He can be reached through his website www.rootcanals.ca.<br />

Disclaimer<br />

The author of this course has no <strong>com</strong>mercial ties with the<br />

sponsors or the providers of the unrestricted educational<br />

grant for this course.<br />

Reader Feedback<br />

We encourage your <strong>com</strong>ments on this or any PennWell course.<br />

For your convenience, an onl<strong>in</strong>e feedback form is available at<br />

www.<strong>in</strong>eedce.<strong>com</strong>.<br />

12 www.<strong>in</strong>eedce.<strong>com</strong>


Onl<strong>in</strong>e Completion<br />

Use this page to review the questions <strong>and</strong> answers. Return to www.<strong>in</strong>eedce.<strong>com</strong> <strong>and</strong> sign <strong>in</strong>. If you have not previously purchased the program select it from the “Onl<strong>in</strong>e Courses” list<strong>in</strong>g <strong>and</strong> <strong>com</strong>plete the<br />

onl<strong>in</strong>e purchase. Once purchased the exam will be added to your Archives page where a Take Exam l<strong>in</strong>k will be provided. Click on the “Take Exam” l<strong>in</strong>k, <strong>com</strong>plete all the program questions <strong>and</strong> submit your<br />

answers. An immediate grade report will be provided <strong>and</strong> upon receiv<strong>in</strong>g a pass<strong>in</strong>g grade your “Verification Form” will be provided immediately for view<strong>in</strong>g <strong>and</strong>/or pr<strong>in</strong>t<strong>in</strong>g. Verification Forms can be viewed<br />

<strong>and</strong>/or pr<strong>in</strong>ted anytime <strong>in</strong> the future by return<strong>in</strong>g to the site, sign <strong>in</strong> <strong>and</strong> return to your Archives Page.<br />

1. <strong>Endodontic</strong> success rates of up to _______<br />

are be<strong>in</strong>g achieved.<br />

a. 68%<br />

b. 78%<br />

c. 88%<br />

d. 98%<br />

2. There is clear evidence that apical<br />

periodontitis is a _______ disease.<br />

a. fungal<br />

b. viral<br />

c. biofilm-<strong>in</strong>duced<br />

d. all of the above<br />

3. The root canal system conta<strong>in</strong>s _______.<br />

a. cul-de-sacs<br />

b. arborizations<br />

c. isthmuses<br />

d. all of the above<br />

4. _______ from the root canal is one of<br />

the challenges for successful endodontic<br />

treatment.<br />

a. The removal of pulp tissue<br />

b. The removal of debris <strong>and</strong> the smear layer<br />

c. The removal of microorganisms <strong>and</strong> microtox<strong>in</strong>s<br />

d. all of the above<br />

5. The nickel-titanium <strong>in</strong>struments currently<br />

available act on the _______ of the<br />

root canal.<br />

a. isthmi<br />

b. central body<br />

c. lateral body<br />

d. all of the above<br />

6. _______ penetrates deep <strong>in</strong>to the dent<strong>in</strong>al<br />

tubules.<br />

a. Act<strong>in</strong>omyces israelii<br />

b. C<strong>and</strong>ida albicans<br />

c. Enterococcus faecalis<br />

d. a <strong>and</strong> c<br />

7. To be effective, root canal irrigants must<br />

_______.<br />

a. elim<strong>in</strong>ate bacterial contam<strong>in</strong>ation<br />

b. remove the smear layer<br />

c. dissolve the organic <strong>com</strong>ponent of the dental pulp<br />

d. all of the above<br />

8. _______ is a desired attribute for a root<br />

canal irrigant.<br />

a. Bacterial decontam<strong>in</strong>ation<br />

b. A broad antimicrobial spectrum<br />

c. The ability to enter deep <strong>in</strong>to dent<strong>in</strong>al tubules<br />

d. all of the above<br />

9. _______ is currently used as a root canal<br />

irrigant.<br />

a. Chlorhexid<strong>in</strong>e gluconate<br />

b. Hydrogen peroxide<br />

c. Sodium hypochlorite<br />

d. all of the above<br />

Questions<br />

10. Chlorhexid<strong>in</strong>e gluconate _______.<br />

a. offers a wide antimicrobial spectrum<br />

b. is bio<strong>com</strong>patible<br />

c. lacks the ability to dissolve necrotic tissue<br />

d. all of the above<br />

11. Hydrogen peroxide _______.<br />

a. is an effective antibacterial irrigant<br />

b. exhibits no tissue toxicity<br />

c. dissolves necrotic tissue<br />

d. a <strong>and</strong> c<br />

12. The irrigant that satisfies most of the<br />

requirements for a root canal irrigant is<br />

_______.<br />

a. polyalkenoic acid<br />

b. sodium hypochlorite<br />

c. sal<strong>in</strong>e<br />

d. chlorhexid<strong>in</strong>e gluconate<br />

13. Sodium hypochlorite _______.<br />

a. dissolves necrotic tissue<br />

b. dissolves the organic <strong>com</strong>ponents of the smear<br />

layer<br />

c. kills sessile endodontic pathogens<br />

d. all of the above<br />

14. EDTA has been re<strong>com</strong>mended as an<br />

adjuvant <strong>in</strong> root canal therapy because it<br />

is a _______.<br />

a. rem<strong>in</strong>eraliz<strong>in</strong>g agent<br />

b. dilutant<br />

c. dem<strong>in</strong>eraliz<strong>in</strong>g agent<br />

d. b <strong>and</strong> c<br />

15. The <strong>com</strong>b<strong>in</strong>ation of _______ has been<br />

used worldwide for antisepsis of root canal<br />

systems.<br />

a. sodium hypochlorite <strong>and</strong> calcium chloride<br />

b. EDTA <strong>and</strong> chlorhexid<strong>in</strong>e gluconate<br />

c. sodium hypochlorite <strong>and</strong> EDTA<br />

d. all of the above<br />

16. _______ is a general safety precaution<br />

prior to root canal irrigation.<br />

a. Use of a rubber dam<br />

b. Protect<strong>in</strong>g the patient’s eyes with safety glasses<br />

c. Use of a temporary seal<strong>in</strong>g material if deep caries is<br />

present adjacent to a rubber dam<br />

d. all of the above<br />

17. Apical extrusion of an endodontic<br />

irrigant _______ occurs.<br />

a. never<br />

b. rarely<br />

c. rout<strong>in</strong>ely<br />

d. always<br />

18. Root canal irrigation systems are available<br />

that work us<strong>in</strong>g _______.<br />

a. manual agitation techniques<br />

b. manual rotation techniques<br />

c. mach<strong>in</strong>e-assisted agitation techniques<br />

d. a <strong>and</strong> c<br />

19. When irrigat<strong>in</strong>g the root canal system, it<br />

is important to consider if _______.<br />

a. the irrigation system can deliver the irrigant to the<br />

whole extent of the root canal system<br />

b. the irrigant can debride areas that cannot be<br />

reached mechanically<br />

c. the irrigant conta<strong>in</strong>s any dye<br />

d. a <strong>and</strong> b<br />

20. An apical vapor lock effect _______.<br />

a. prevents the flow of irrigant <strong>in</strong>to the apical region of<br />

the root canal<br />

b. results <strong>in</strong> gas entrapment at the apical third<br />

c. resists displacement by <strong>in</strong>strumentation<br />

d. all of the above<br />

21. The _______ of sodium hypochlorite<br />

liberates ammonia <strong>and</strong> carbon dioxide.<br />

a. dessication<br />

b. hydrolysis<br />

c. cross-l<strong>in</strong>k<strong>in</strong>g<br />

d. none of the above<br />

22. An apical vapor lock occurs <strong>in</strong> root<br />

canals with _______.<br />

a. an open-ended channel<br />

b. a close-ended channel<br />

c. multiple isthmuses<br />

d. all of the above<br />

23. _______ have confirmed the presence of<br />

apical vapor lock.<br />

a. Histological tests<br />

b. Micro-CT scans<br />

c. Radiographs<br />

d. a <strong>and</strong> b<br />

24. For a root canal irrigant to be<br />

mechanically effective <strong>in</strong> remov<strong>in</strong>g all the<br />

particles, it has to _______.<br />

a. reach the apex<br />

b. create a current<br />

c. carry the particles away<br />

d. all of the above<br />

25. The apical vapor lock <strong>and</strong> consideration<br />

for the patient’s safety has always<br />

prevented the thorough clean<strong>in</strong>g of the<br />

_______.<br />

a. apical 3 mm<br />

b. lateral 3 mm<br />

c. apical 5 mm<br />

d. lateral 5 mm<br />

26. The most <strong>com</strong>mon <strong>and</strong> conventional set<br />

of irrigation techniques is _______.<br />

a. mechanical irrigation<br />

b. manual irrigation<br />

c. hydrodynamic theory irrigation<br />

d. all of the above<br />

www.<strong>in</strong>eedce.<strong>com</strong> 13


27. Manual dynamic irrigation produces<br />

_______.<br />

a. a hydrodynamic effect<br />

b. effervescence<br />

c. significant irrigant exchange<br />

d. a <strong>and</strong> c<br />

28. Sonic activation has been shown to be<br />

an effective root canal irrigation method,<br />

operat<strong>in</strong>g at frequencies of _______.<br />

a. 1-6 kHz<br />

b. 2-7 kHz<br />

c. 3-8 kHz<br />

d. none of the above<br />

29. Ultrasonic energy _______.<br />

a. produces higher frequencies than sonic energy<br />

b. produces low amplitudes<br />

c. results <strong>in</strong> oscillations at frequencies of 25-30 kHz<br />

d. all of the above<br />

30. The literature <strong>in</strong>dicates that it is more<br />

advantageous to apply ultrasonics<br />

_______.<br />

a. as an alternative to conventional <strong>in</strong>strumentation<br />

b. after <strong>com</strong>pletion of canal preparation<br />

c. after <strong>in</strong>itial root canal preparation<br />

d. a <strong>and</strong> c<br />

31. Passive ultrasonic irrigation _______.<br />

a. operates without simultaneous irrigation<br />

b. allows energy to be transmitted from an oscillat<strong>in</strong>g<br />

file or smooth wire to the irrigant<br />

c. is the only type of ultrasonic irrigation<br />

d. a <strong>and</strong> b<br />

32. Passive ultrasonic irrigation _______.<br />

a. effectively removes pulpal tissue remnants<br />

b. effectively removes dent<strong>in</strong> debris<br />

c. results <strong>in</strong> a significant reduction of the number of<br />

bacteria<br />

d. all of the above<br />

33. Studies have demonstrated that effective<br />

delivery of irrigants to the apical third can<br />

be enhanced by us<strong>in</strong>g _______ devices.<br />

a. ultrasonic<br />

b. sonic<br />

c. air abrasion<br />

d. a <strong>and</strong> b<br />

34. Acoustic microstream<strong>in</strong>g is def<strong>in</strong>ed as<br />

the movement of _______.<br />

a. sound along cell membranes<br />

b. fluids along cell membranes<br />

c. gases along cell membranes<br />

d. all of the above<br />

35. Once a sonic or ultrasonically activated tip<br />

leaves the irrigant <strong>and</strong> enters the apical vapor<br />

lock, _______ be<strong>com</strong>es physically impossible.<br />

a. acoustic microstream<strong>in</strong>g<br />

b. cavitation<br />

c. cell death<br />

d. a <strong>and</strong>/or b<br />

Questions<br />

36. Ultrasonics _______.<br />

a. can effectively clean bacteria from the root canal<br />

system<br />

b. can effectively clean debris from the root canal<br />

system<br />

c. cannot effectively get through the apical vapor lock<br />

d. all of the above<br />

37. _______ is a <strong>com</strong>mon reason given for<br />

not us<strong>in</strong>g sonic or ultrasonic fil<strong>in</strong>g.<br />

a. The time required for set-up<br />

b. An unwill<strong>in</strong>gness to <strong>in</strong>cur the equipment costs<br />

c. Lack of awareness of the benefits of this f<strong>in</strong>al<br />

<strong>in</strong>strumentation step<br />

d. all of the above<br />

38. Sonic or ultrasonic activation might<br />

allow a better removal of _______.<br />

a. pulpal tissue remnants<br />

b. debris from isthmi<br />

c. debris from f<strong>in</strong>s<br />

d. all of the above<br />

39. An apical negative pressure system<br />

conta<strong>in</strong>s a _______.<br />

a. Master Delivery Tip<br />

b. MacroCannula<br />

c. MicroCannula<br />

d. all of the above<br />

40. A pressure alternation device consists of<br />

_______.<br />

a. a h<strong>and</strong>piece<br />

b. a cannula with a 7 mm exit aperture<br />

c. a syr<strong>in</strong>ge carry<strong>in</strong>g irrigant<br />

d. all of the above<br />

41.With an apical negative pressure system,<br />

the cannulae <strong>in</strong> the canal _______.<br />

a. exert negative pressure<br />

b. pull irrigant from its fresh supply <strong>in</strong> the<br />

chamber, down the canal to the tip of the<br />

cannula<br />

c. pull irrigant <strong>in</strong>to the cannula <strong>and</strong> out through the<br />

suction hose<br />

d. all of the above<br />

42. Apical negative pressure has been shown<br />

to _______.<br />

a. enable irrigants to reach the apical third<br />

b. help over<strong>com</strong>e the issue of apical vapor lock<br />

c. remove the risk of sodium hypochlorite <strong>in</strong>cidents<br />

d. all of the above<br />

43. A sodium hypochlorite <strong>in</strong>cident occurs<br />

when the irrigant _______.<br />

a. extrudes through the root canal foramen<br />

b. is at a concentration above 3%<br />

c. is mixed with a second irrigant<br />

d. all of the above<br />

44. Re<strong>com</strong>mendations for avoid<strong>in</strong>g sodium<br />

hypochlorite <strong>in</strong>cidents <strong>in</strong>clude _______.<br />

a. not b<strong>in</strong>d<strong>in</strong>g the needle <strong>in</strong> the canal<br />

b. not plac<strong>in</strong>g the needle close to work<strong>in</strong>g length<br />

c. us<strong>in</strong>g a gentle flow rate<br />

d. all of the above<br />

45. _______ is a sequela of a sodium<br />

hypochlorite <strong>in</strong>cident.<br />

a. Life-threaten<strong>in</strong>g airway obstruction<br />

b. Permanent paresthesia<br />

c. Facial disfigurement<br />

d. all of the above<br />

46. Based on the evidence from actual<br />

sodium hypochlorite <strong>in</strong>cidents <strong>and</strong> the<br />

location of the associated tissue trauma,<br />

it would appear that an _______may be<br />

the cause.<br />

a. anatomical anomaly<br />

b. <strong>in</strong>travenous <strong>in</strong>jection<br />

c. arterial <strong>in</strong>jection<br />

d. a <strong>and</strong> b<br />

47. In an <strong>in</strong> vitro study <strong>com</strong>par<strong>in</strong>g<br />

<strong>in</strong>tracanal irrigation delivery devices, only<br />

the use of a device us<strong>in</strong>g _______ resulted<br />

<strong>in</strong> no extrusion at the apex.<br />

a. ultrasonics<br />

b. apical positive pressure<br />

c. apical negative pressure<br />

d. sonics<br />

48. The presence of a sealed apical foramen<br />

was shown <strong>in</strong> one study to adversely affect<br />

debridement efficacy when _______ was<br />

used.<br />

a. manual dynamic agitation<br />

b. apical negative pressure<br />

c. water<br />

d. all of the above<br />

49. The only method yet discovered to<br />

elim<strong>in</strong>ate the apical vapor lock is to<br />

evacuate it via _______.<br />

a. apical positive pressure<br />

b. apical negative pressure<br />

c. acoustic microstream<strong>in</strong>g<br />

d. all of the above<br />

50. Proper root canal irrigation should result<br />

<strong>in</strong> _______.<br />

a. safe delivery of the irrigat<strong>in</strong>g agent(s)<br />

b. removal of 100% of the organic tissue <strong>in</strong> the canal(s)<br />

c. removal of 100% of the microbial contam<strong>in</strong>ants<br />

d. all of the above<br />

14 www.<strong>in</strong>eedce.<strong>com</strong>


ANSWER SHEET<br />

<strong>Safety</strong> <strong>and</strong> <strong>Efficacy</strong> <strong>Considerations</strong> <strong>in</strong> <strong>Endodontic</strong> Irrigation<br />

Name: Title: Specialty:<br />

Address: E-mail:<br />

City: State: ZIP: Country:<br />

Telephone: Home ( ) Office ( ) Lic. Renewal Date:<br />

Requirements for successful <strong>com</strong>pletion of the course <strong>and</strong> to obta<strong>in</strong> dental cont<strong>in</strong>u<strong>in</strong>g education credits: 1) Read the entire course. 2) Complete all<br />

<strong>in</strong>formation above. 3) Complete answer sheets <strong>in</strong> either pen or pencil. 4) Mark only one answer for each question. 5) A score of 70% on this test will earn<br />

you 3 CE credits. 6) Complete the Course Evaluation below. 7) Make check payable to PennWell Corp. For Questions Call 216.398.7822<br />

Educational Objectives<br />

1. List <strong>and</strong> describe the challenges for successful endodontic treatment<br />

2. List <strong>and</strong> describe the different types of root canal irrigants, their relative advantages <strong>and</strong> disadvantages<br />

3. List <strong>and</strong> describe root canal irrigation systems<br />

4. Describe <strong>and</strong> expla<strong>in</strong> a sodium hypochlorite <strong>in</strong>cident<br />

5. List <strong>and</strong> describe the steps that can be taken to avoid a sodium hypochlorite <strong>in</strong>cident<br />

Course Evaluation<br />

Please evaluate this course by respond<strong>in</strong>g to the follow<strong>in</strong>g statements, us<strong>in</strong>g a scale of Excellent = 5 to Poor = 0.<br />

1.Were the <strong>in</strong>dividual course objectives met? Objective #1: Yes No Objective #3: Yes No<br />

Objective #2: Yes No Objective #4: Yes No<br />

Objective #5: Yes No<br />

2.To what extent were the course objectives ac<strong>com</strong>plished overall? 5 4 3 2 1 0<br />

3. Please rate your personal mastery of the course objectives. 5 4 3 2 1 0<br />

4. How would you rate the objectives <strong>and</strong> educational methods? 5 4 3 2 1 0<br />

5. How do you rate the author’s grasp of the topic? 5 4 3 2 1 0<br />

6. Please rate the <strong>in</strong>structor’s effectiveness. 5 4 3 2 1 0<br />

7.Was the overall adm<strong>in</strong>istration of the course effective? 5 4 3 2 1 0<br />

8. Do you feel that the references were adequate? Yes No<br />

9.Would you participate <strong>in</strong> a similar program on a different topic? Yes No<br />

10. If any of the cont<strong>in</strong>u<strong>in</strong>g education questions were unclear or ambiguous, please list them.<br />

___________________________________________________________________<br />

11.Was there any subject matter you found confus<strong>in</strong>g? Please describe.<br />

___________________________________________________________________<br />

___________________________________________________________________<br />

12.What additional cont<strong>in</strong>u<strong>in</strong>g dental education topics would you like to see?<br />

___________________________________________________________________<br />

___________________________________________________________________<br />

If not tak<strong>in</strong>g onl<strong>in</strong>e, mail <strong>com</strong>pleted answer sheet to<br />

Academy of Dental Therapeutics <strong>and</strong> Stomatology,<br />

A Division of PennWell Corp.<br />

P.O. Box 116, Chesterl<strong>and</strong>, OH 44026<br />

or fax to: (440) 845-3447<br />

AUTHOR DISCLAIMER<br />

The author of this course has no <strong>com</strong>mercial ties with the sponsors or the providers of the<br />

unrestricted educational grant for this course.<br />

SPONSOR/PROVIDER<br />

This course was made possible through an unrestricted educational grant from Discus<br />

Dental. No manufacturer or third party has had any <strong>in</strong>put <strong>in</strong>to the development of<br />

course content. All content has been derived from references listed, <strong>and</strong> or the op<strong>in</strong>ions<br />

of cl<strong>in</strong>icians. Please direct all questions perta<strong>in</strong><strong>in</strong>g to PennWell or the adm<strong>in</strong>istration of<br />

this course to Machele Galloway, 1421 S. Sheridan Rd., Tulsa, OK 74112 or macheleg@<br />

pennwell.<strong>com</strong>.<br />

COURSE EVALUATION <strong>and</strong> PARTICIPANT FEEDBACK<br />

We encourage participant feedback perta<strong>in</strong><strong>in</strong>g to all courses. Please be sure to <strong>com</strong>plete the<br />

survey <strong>in</strong>cluded with the course. Please e-mail all questions to: macheleg@pennwell.<strong>com</strong>.<br />

PLEASE PHOTOCOPY ANSWER SHEET FOR ADDITIONAL PARTICIPANTS.<br />

INSTRUCTIONS<br />

All questions should have only one answer. Grad<strong>in</strong>g of this exam<strong>in</strong>ation is done<br />

manually. Participants will receive confirmation of pass<strong>in</strong>g by receipt of a verification<br />

form. Verification forms will be mailed with<strong>in</strong> two weeks after tak<strong>in</strong>g an exam<strong>in</strong>ation.<br />

EDUCATIONAL DISCLAIMER<br />

The op<strong>in</strong>ions of efficacy or perceived value of any products or <strong>com</strong>panies mentioned<br />

<strong>in</strong> this course <strong>and</strong> expressed here<strong>in</strong> are those of the author(s) of the course <strong>and</strong> do not<br />

necessarily reflect those of PennWell.<br />

Complet<strong>in</strong>g a s<strong>in</strong>gle cont<strong>in</strong>u<strong>in</strong>g education course does not provide enough <strong>in</strong>formation<br />

to give the participant the feel<strong>in</strong>g that s/he is an expert <strong>in</strong> the field related to the course<br />

topic. It is a <strong>com</strong>b<strong>in</strong>ation of many educational courses <strong>and</strong> cl<strong>in</strong>ical experience that<br />

allows the participant to develop skills <strong>and</strong> expertise.<br />

COURSE CREDITS/COST<br />

All participants scor<strong>in</strong>g at least 70% on the exam<strong>in</strong>ation will receive a verification<br />

form verify<strong>in</strong>g 3 CE credits. The formal cont<strong>in</strong>u<strong>in</strong>g education program of this sponsor<br />

is accepted by the AGD for Fellowship/Mastership credit. Please contact PennWell for<br />

current term of acceptance. Participants are urged to contact their state dental boards<br />

for cont<strong>in</strong>u<strong>in</strong>g education requirements. PennWell is a California Provider. The California<br />

Provider number is 4527. The cost for courses ranges from $49.00 to $110.00.<br />

Many PennWell self-study courses have been approved by the Dental Assist<strong>in</strong>g National<br />

Board, Inc. (DANB) <strong>and</strong> can be used by dental assistants who are DANB Certified to meet<br />

DANB’s annual cont<strong>in</strong>u<strong>in</strong>g education requirements. To f<strong>in</strong>d out if this course or any other<br />

PennWell course has been approved by DANB, please contact DANB’s Recertification<br />

Department at 1-800-FOR-DANB, ext. 445.<br />

For immediate results,<br />

go to www.<strong>in</strong>eedce.<strong>com</strong> to take tests onl<strong>in</strong>e.<br />

answer sheets can be faxed with credit card payment to<br />

(440) 845-3447, (216) 398-7922, or (216) 255-6619.<br />

Payment of $59.00 is enclosed.<br />

(Checks <strong>and</strong> credit cards are accepted.)<br />

If pay<strong>in</strong>g by credit card, please <strong>com</strong>plete the<br />

follow<strong>in</strong>g: MC Visa AmEx Discover<br />

Acct. Number: ______________________________<br />

Exp. Date: _____________________<br />

Charges on your statement will show up as PennWell<br />

31.<br />

32.<br />

33.<br />

34.<br />

35.<br />

36.<br />

37.<br />

38.<br />

39.<br />

40.<br />

41.<br />

42.<br />

43.<br />

44.<br />

45.<br />

46.<br />

47.<br />

48.<br />

49.<br />

50.<br />

AGD Code 074<br />

RECORD KEEPING<br />

PennWell ma<strong>in</strong>ta<strong>in</strong>s records of your successful <strong>com</strong>pletion of any exam. Please contact our<br />

offices for a copy of your cont<strong>in</strong>u<strong>in</strong>g education credits report. This report, which will list<br />

all credits earned to date, will be generated <strong>and</strong> mailed to you with<strong>in</strong> five bus<strong>in</strong>ess days<br />

of receipt.<br />

CANCELLATION/REFUND POLICY<br />

Any participant who is not 100% satisfied with this course can request a full refund by<br />

contact<strong>in</strong>g PennWell <strong>in</strong> writ<strong>in</strong>g.<br />

© 2011 by the Academy of Dental Therapeutics <strong>and</strong> Stomatology, a division<br />

of PennWell<br />

SAFE0111DE<br />

www.<strong>in</strong>eedce.<strong>com</strong> Customer Service 216.398.7822 15


Kills microbes dead.<br />

100% Safe. * 100% Kill. 1 S<strong>in</strong>gle Visit.<br />

S<strong>in</strong>gle-Visit Dis<strong>in</strong>fection is now a Reality<br />

Time is valuable for both your patients <strong>and</strong> your practice. Fortunately,<br />

the EndoVac is cl<strong>in</strong>ically proven to deliver 100% bacterial kill levels 1<br />

with <strong>com</strong>plete safety 2 <strong>and</strong> significantly less post-operative pa<strong>in</strong> 3<br />

for your patients. EndoVac delivers dead-on success, the first time<br />

around. If the bugs are dead, close the case.<br />

“...the present results demonstrated that reliable dis<strong>in</strong>fection can be achievable with<br />

efficient <strong>and</strong> safer irrigation delivery systems, such as the EndoVac system, <strong>and</strong> that<br />

the use of <strong>in</strong>tracanal antibiotics might not be necessary.”<br />

Cohenca OOOOE 2010 Jan;109:e42-46<br />

Irrigation Protocol. Easy as 1, 2, 3...<br />

1. EndoVac Master Delivery Tip<br />

— Gross Debridement<br />

& Dis<strong>in</strong>fection<br />

Provides a constant flow of<br />

irrigant without the risk of<br />

overflow. The MDT is used<br />

after each <strong>in</strong>strument change<br />

to remove gross debris aris<strong>in</strong>g<br />

from <strong>in</strong>strumentation.<br />

Call today to schedule an <strong>in</strong>-office demo.<br />

(800) 451-8176<br />

discusdental.<strong>com</strong><br />

2. EndoVac MacroCannula —<br />

Debridement & Dis<strong>in</strong>fection<br />

Deep <strong>in</strong> the Canal<br />

Removes coarse debris<br />

deep <strong>in</strong>side the canal after all<br />

<strong>in</strong>strumentation is <strong>com</strong>pleted.<br />

SPECIAL<br />

IntroduCtory<br />

offEr!<br />

Mention Code:<br />

SP2017<br />

3. EndoVac MicroCannula<br />

— Complete Apical<br />

Debridement & Dis<strong>in</strong>fection<br />

at Work<strong>in</strong>g Length<br />

Maximum microbial control<br />

us<strong>in</strong>g a 0.32 mm cannula<br />

<strong>and</strong> negative pressure to<br />

safely draw irrigants to the<br />

apical term<strong>in</strong>ation <strong>and</strong> create<br />

a vortex-like clean<strong>in</strong>g of the<br />

apical third.<br />

(1) Journal of <strong>Endodontic</strong>s 2008;34:1374-1377<br />

(2) Journal of <strong>Endodontic</strong>s 2009;35:545-549<br />

(3) Journal of <strong>Endodontic</strong>s 2010;36:1295-1301<br />

* The claim “100% Safe” refers to the f<strong>in</strong>d<strong>in</strong>g that the EndoVac MicroCannula <strong>and</strong> MacroCannula<br />

produced no extrusion of irrigant apically <strong>in</strong> the study reported <strong>in</strong> J Endod 2009;35:545-549.<br />

The EndoVac is <strong>in</strong>tended only for the irrigation of root canals dur<strong>in</strong>g endodontic treatment <strong>and</strong> only<br />

for use accord<strong>in</strong>g to manufacturer’s <strong>in</strong>structions.<br />

© 2010 Discus Dental, LLC. All rights reserved. ADV-3172 120910 20-2653

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!