27.03.2013 Views

Computational & Applied Mathematics

Computational & Applied Mathematics

Computational & Applied Mathematics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Computational</strong> & <strong>Applied</strong> <strong>Mathematics</strong><br />

Understanding our World<br />

0<br />

0.5<br />

1<br />

1.5<br />

2<br />

0 0.5 1 1.5 2<br />

Martin J. Gander<br />

Department of <strong>Mathematics</strong> and Statistics<br />

McGill University<br />

On leave at the University of Geneva, 2002/2003<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.1/31


Optimal Intercept Time<br />

y<br />

x0<br />

Suspect Vessel: speed v<br />

Police Boat: speed u<br />

y0<br />

What direction does the police boat have to choose<br />

to approach the suspect vessel up to a distance R as<br />

quickly as possible ?<br />

x<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.2/31


Geometric Solution<br />

y<br />

x0<br />

y0<br />

Imagine the police boat going into all directions at the<br />

same time =⇒ y 2 0 + (vt − x0) 2 = (ut + R) 2 .<br />

In “Note on the Optimal Intercept Time of Vessels to a Nonzero Range”<br />

G, SIAM Review Vol. 40, No. 3, 1998.<br />

R<br />

x<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.3/31


The Donut Problem<br />

Top View<br />

Side View<br />

What is the maximum number of pieces one can get<br />

from a donut when cutting it with three planar cuts ?<br />

Starting with an apple, how many pieces can we get ?<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.4/31


First Cut<br />

Top view First cut<br />

The most we can get with a single planar cut is two<br />

pieces.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.5/31


Second Cut<br />

Top view<br />

First and second cut<br />

We get six pieces in total, each of the first two is cut<br />

twice.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.6/31


Third Cut<br />

How many pieces do we have now ?<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.7/31


The Total Number of Pieces is<br />

4<br />

Upper top octant:<br />

5<br />

3 pieces<br />

1<br />

2<br />

3<br />

Lower top octant:<br />

2 pieces<br />

Upper left octant:<br />

8<br />

6<br />

7<br />

Lower left octant:<br />

1 piece<br />

15 Pieces with 3 planar cuts.<br />

2 pieces 1 piece<br />

Upper right octant:<br />

10<br />

9<br />

14<br />

Lower right octant:<br />

1 piece<br />

Upper bottom octant:<br />

15<br />

11<br />

3 pieces<br />

12<br />

13<br />

Lower bottom octant:<br />

2 pieces<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.8/31


Is this Solution Really Correct ?<br />

The answer is NO, the maximum number of pieces<br />

one can get is 13 ! How ?<br />

An article by Martin Gardner in the “Scientific<br />

American” contains the general result for a torus in n<br />

dimensions and m cuts along hyperplanes.<br />

Suppose you are allowed to move the pieces between<br />

the cuts, what is now the maximum number of pieces<br />

you can get ?<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.9/31


Circular Billiard<br />

In which direction do you have to push the red ball so<br />

that it bounces of the rim exactly once and then hits<br />

the blue ball ?<br />

Is there more than one solution ? <strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.10/31


Circular Billiard: Algebraic Solution<br />

PSfrag replacements<br />

b<br />

y<br />

θ<br />

−c a<br />

f(θ) = (1 + c cos θ) (a − cos θ) 2 + (b − sin θ) 2<br />

− (1 − a cos θ − b sin θ) (c + cos θ) 2 + (sin θ) 2<br />

γ<br />

1<br />

x<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.11/31


cements<br />

f(θ)<br />

Solution for the Given Example<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

PSfrag replacements<br />

θ<br />

−0.3<br />

0 1 2 3 4 5 6 7<br />

θ<br />

f(θ)<br />

Are there always four solutions ?<br />

150<br />

210<br />

120<br />

240<br />

90<br />

180 0<br />

270<br />

0.4<br />

0.2<br />

1<br />

0.8<br />

0.6<br />

60<br />

300<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.12/31<br />

30<br />

330


The Geometric Point of View<br />

PSfrag replacements<br />

m2<br />

y<br />

−e m1<br />

θ<br />

α<br />

We need to find an ellipse which touches the circle tan-<br />

gentially.<br />

e<br />

1<br />

x<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.13/31


Number of Solutions<br />

An example with 4 solutions and one with 2 only.<br />

Q(u) = (m2−m2m1)u 4 +(2m1−2m 2 1 +2e2 +2m 2 2 )u3 +6u 2 m2m1<br />

+ (−2m 2 2 + 2m 2 1 + 2m1 − 2e 2 )u − m2m1 − m2 = 0<br />

where θ = 2 arctan(u). Q(u) is a 4th degree<br />

polynomial, there can not be more than four solutions.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.14/31


Dependence on the Ball Position<br />

A numerical experiment: fixing the position of one<br />

ball and varying the position of the second ball.<br />

Counting the number of solutions gives the gray<br />

shade:<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.15/31


Dependence on the Ball Position<br />

The separatrix (x,y) can be computed analytically (t parameter):<br />

x(t) = − c<br />

h<br />

(1 + c)t 6 + 3(1 + 3c)t 4 + 3(1 − 3c)t 2 + (1 − c) ,<br />

y(t) = 16<br />

h c2 t 3 , h = (1 + 3c + 2c 2 )t 6 + 3(1 + c + 2c 2 )t 4 +<br />

+3(1 − c + 2c 2 )t 2 + (1 − 3c + 2c 2 )<br />

where c is the position of the fixed ball on the x axis.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.16/31


Dependence on the Ball Position<br />

Top view of a coffee mug with a point source of light<br />

emulating the circular billiard game<br />

(Drexler and G, SIAM review Vol. 40, No. 2, 1998)<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.17/31


Digital Signal Processing<br />

A periodic signal f(t) can be decomposed into its<br />

Fourier components:<br />

f(t) =<br />

∞<br />

k=−∞<br />

ˆfke ikt .<br />

Discrete version: for the vector f of length n, where<br />

fj := f(tj), tj = j∆t, ∆t = 2π/n, we have<br />

fj =<br />

n−1<br />

k=0<br />

ˆfke iktj .<br />

What if the signal is an image, or a piece of music?<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.18/31


Population Dynamics<br />

Joint work with Antonio Steiner, Il Volterriano<br />

1997-2003<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.19/31


The Lotka Volterra System<br />

We consider rabbits and foxes living in a common<br />

habitat. If x denotes the rabbit population and y the<br />

fox population, the Lotka Volterra model states<br />

˙x = x − xy<br />

˙y = −y + xy<br />

Approximating the derivative using its definition:<br />

x(tn+1) − x(tn)<br />

∆t<br />

y(tn+1) − y(tn)<br />

∆t<br />

= x(tn) − x(tn)y(tn)<br />

= −y(tn) + x(tn)y(tn)<br />

We get a discrete dynamical system. <strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.20/31


Solutions<br />

The exact solutions are cycles, but in general exact<br />

solutions can not be found. Numerical solutions<br />

spiral:<br />

y<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

x<br />

y<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 0.5 1 1.5<br />

x<br />

2 2.5 3<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.21/31


A Symplectic Method<br />

A very small change in the original method, instead of<br />

x(tn+1) − x(tn)<br />

∆t<br />

y(tn+1) − y(tn)<br />

∆t<br />

= x(tn) − x(tn)y(tn)<br />

= −y(tn) + x(tn)y(tn)<br />

changing in the second line tn to tn+1,<br />

x(tn+1) − x(tn)<br />

∆t<br />

y(tn+1) − y(tn)<br />

∆t<br />

= x(tn) − x(tn)y(tn)<br />

= −y(tn) + x(tn+1)y(tn)<br />

leads to a method for which one can prove that the<br />

approximate solution is cyclic like the exact solution.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.22/31


Success...<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−1 0 1 2 3 4 5 6<br />

The approximate solutions are also cycles, like the<br />

mathematically exact or “biological” ones.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.23/31


and Failure of the new method<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−25 −20 −15 −10 −5 0 5 10<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−1 0 1 2 3 4 5 6<br />

But here, in spite of the proof of cyclic behavior, the<br />

method failed. On the right one can see why with the<br />

zoom!<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.24/31


So When does the Method Work?<br />

0<br />

0.5<br />

1<br />

1.5<br />

2<br />

0 0.5 1 1.5 2<br />

The boundary beteween where the method works and<br />

where it does not is very complicated: it is a fractal.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.25/31


Room Temperature in Montreal<br />

∂u<br />

∂t (x, t) = ∂2u ∂x2 (x, t)+ ∂2u ∂y2 (x, t)+ ∂2u ∂z<br />

2 (x, t)+f(x, t)<br />

Room temperature<br />

in our living room<br />

in Montreal (outside<br />

temperature up to -47<br />

degrees): the heat equation.<br />

Insulated walls, not<br />

well insulated windows<br />

and doors.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.26/31


Why a Turntable in the Microwave ?<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

The physical model is Maxwell’s equation<br />

∇ × E = −µHt,<br />

∇ × H = εEt + σE<br />

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.27/31


Why a Turntable in the Microwave ?<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

The physical model is Maxwell’s equation<br />

∇ × E = −µHt,<br />

∇ × H = εEt + σE<br />

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.27/31


Noise Levels in a VOLVO S90<br />

Noise simulation on a parallel<br />

computer to improve<br />

passenger comfort<br />

14<br />

2<br />

6<br />

12<br />

10<br />

4 3 5<br />

8<br />

16<br />

7<br />

11<br />

15<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.28/31<br />

9<br />

13<br />

1


Radiation Therapy for Cancer<br />

For cancer treatment it is important to have a very pre-<br />

cise model of the body part that will be exposed to ra-<br />

diation.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.29/31


Aircraft Industry: B-747 in Flight<br />

Simulation of a B-<br />

747 flying through a<br />

thunderstorm, computation<br />

of the ice<br />

accumulation on the<br />

wings and around<br />

the engine intake.<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.30/31


The Fundamental Role of CAM<br />

Physics:<br />

− Fluid Dynamics<br />

− Aero Dynamics<br />

− Radiation<br />

− Particle Physics<br />

Engineering:<br />

− Circuits Simulation<br />

− Active Noise Cancellation<br />

− Cellular Phone Systems<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

<strong>Computational</strong><br />

AND<br />

<strong>Applied</strong> <strong>Mathematics</strong><br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Biology:<br />

− Population Dynamics<br />

− Antibiotics<br />

− Micromachines<br />

0<br />

0.5<br />

1<br />

1.5<br />

2<br />

0 0.5 1 1.5 2<br />

Pure <strong>Mathematics</strong>:<br />

− Geometry<br />

− Asymptotics<br />

− Existence<br />

See also: www.math.mcgill.ca/mgander<br />

<strong>Computational</strong> and <strong>Applied</strong> <strong>Mathematics</strong> – p.31/31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!