28.03.2013 Views

Influence of bedding planes to EDZ-evolution and the ... - Andra

Influence of bedding planes to EDZ-evolution and the ... - Andra

Influence of bedding planes to EDZ-evolution and the ... - Andra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

P/<strong>EDZ</strong>/1<br />

INFLUENCE OF BEDDING PLANES<br />

TO <strong>EDZ</strong>-EVOLUTION AND THE COUPLED HM<br />

PROPERTIES OF OPALINUS CLAY<br />

INTERNATIONAL MEETING, SEPTEMBER 17...>...18, 2007, LILLE, FRANCE<br />

CLAYS IN NATURAL &ENGINEERED BARRIERS<br />

FOR RADIOACTIVE WASTE CONFINEMENT<br />

Till Popp, Klaus Salzer &Wolfgang Minkley<br />

Institut für Gebirgsmechanik GmbH, 02479 Leipzig, Germany ( till.popp@ifg-leipzig.de)<br />

INTRODUCTION<br />

Besides o<strong>the</strong>r host rocks argillaceous clay rock formations are considered for <strong>the</strong> long term s<strong>to</strong>rage <strong>of</strong><br />

radioactive waste <strong>to</strong> exclude athreat <strong>to</strong>actual <strong>and</strong> future generations. Since <strong>the</strong> transport properties <strong>of</strong> <strong>the</strong><br />

clay rock are responsible for <strong>the</strong> dem<strong>and</strong>ed integrity, knowledge about <strong>the</strong> relationship between <strong>the</strong><br />

development <strong>of</strong> damage (dilatancy) <strong>and</strong> hydraulical properties is <strong>of</strong> utmost importance. Determination <strong>of</strong><br />

<strong>the</strong> stress dependent onset <strong>of</strong> dilatancy, i.e. described by <strong>the</strong> criteria “dilatancy boundary”, is aprerequisite<br />

for an appraisal <strong>of</strong>barrier properties <strong>of</strong> solid rocks. But clay rocks are inherently anisotropic, which means<br />

that <strong>the</strong> sedimentary <strong>and</strong> tec<strong>to</strong>nically induced <strong>bedding</strong> can act as preferential flow paths <strong>and</strong> mechanical<br />

weakness <strong>planes</strong>. Both overlapping effects are particularly important during rock stress redistribution in <strong>the</strong><br />

<strong>EDZ</strong>. Using Opalinus clay as reference material we will highlight <strong>the</strong> following <strong>to</strong>pics:<br />

1) Mechanical<strong>and</strong> transport properties <strong>of</strong> <strong>the</strong> rock matrix <strong>and</strong> <strong>bedding</strong> <strong>planes</strong><br />

2) Determination <strong>of</strong> onset <strong>of</strong> dilatancy <strong>and</strong> its <strong>evolution</strong> (healing <strong>and</strong> damage)<br />

3) Derivation <strong>of</strong> material lawparameters referring <strong>to</strong> matrix <strong>and</strong> <strong>bedding</strong> plane properties<br />

4) Case studywith numerical modelling <strong>of</strong> <strong>EDZ</strong> phenomenafor <strong>the</strong> MontTerrisite<br />

RESULTS AND INTERPRETATION<br />

Concerning <strong>the</strong> mechanical properties, it has been confirmed that <strong>the</strong> strength behaviour is strongly<br />

anisotropic referred <strong>to</strong> <strong>the</strong> <strong>bedding</strong> <strong>and</strong> increases with increasing minimal stress. However, detection <strong>of</strong><br />

initial micro cracking in indurated clay under lab conditions is not asimple task due <strong>to</strong> <strong>the</strong> dominating<br />

effects <strong>of</strong> matrix compaction <strong>and</strong> depends, <strong>the</strong>refore, mainly on <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> measured physical<br />

parameter (e.g. Popp &Salzer, 2006).<br />

Importantly, <strong>the</strong> velocity decrease <strong>of</strong>radially measured p-waves or s-waves (oscillation direction ⊥ <strong>to</strong> crack<br />

<strong>planes</strong>) shows initial crack opening at 50 –60% <strong>of</strong><strong>the</strong> failure stress. However, only at ~90% <strong>of</strong><strong>the</strong> failure<br />

stress an increase <strong>of</strong>volumetric strain was observed associated with increasing permeability. Consequently,<br />

two pronounced damage-related stress boundaries exist:<br />

σ initial damage ≈ 0.5 -0.6 *speak resp. σ dilatancy ≈ 0.8 -0.9 * σ peak<br />

In conclusion, although <strong>the</strong> relevancy <strong>of</strong> <strong>the</strong> term „dilatancy“ regarding its importance for describing <strong>the</strong><br />

<strong>evolution</strong> <strong>of</strong> <strong>the</strong> <strong>EDZ</strong> in indurated clays needs <strong>to</strong>be discussed, <strong>the</strong> general reliability <strong>of</strong> <strong>the</strong> “dilatancy<br />

concept” regarding onset <strong>of</strong> damage respectively sealing (i.e. decrease <strong>of</strong>permeability) isdemonstrated.<br />

Concerning <strong>the</strong> hydraulical properties, both, seismic moni<strong>to</strong>ring <strong>and</strong> permeability measurements clearly<br />

indicate pre-damage <strong>of</strong> <strong>the</strong> investigated core samples, <strong>and</strong>, in addition, only partial saturation due <strong>to</strong> sample<br />

disturbances during sample recovery <strong>and</strong> preparation whereby <strong>the</strong> relation <strong>to</strong> <strong>the</strong> <strong>bedding</strong> is apparent.<br />

Increase <strong>of</strong> confining stress contributes largely <strong>to</strong> compaction whereby sealing is most efficient<br />

perpendicular <strong>to</strong><strong>the</strong> <strong>bedding</strong>.<br />

In consequence, gas transport in Opalinus clay is affected by 2-phase flow whereby capillary gas threshold<br />

pressure isafunction <strong>of</strong> permeability. Based on our data asimple coupling between mechanical (e.g.<br />

Page 521


P/<strong>EDZ</strong>/1<br />

Rock matrix<br />

(Visco-)elas<strong>to</strong>-plastic material model<br />

it describes as afunction <strong>of</strong> <strong>the</strong> plastic strain :<br />

Axial stress σ 1 (MPa )<br />

Volumetric strain V/V (%)<br />

60,0<br />

40,0<br />

30,0<br />

20,0<br />

10,0<br />

St<strong>of</strong>fansatz :<br />

Minkley, W.; Menzel, W.; Konietzky, H.;<br />

te Kamp, L.(2001)<br />

Figure 1: Our modelling approach <strong>to</strong> describe <strong>the</strong> mechanical <strong>evolution</strong> <strong>of</strong> <strong>the</strong> <strong>EDZ</strong> for aspecific drift<br />

situation at <strong>the</strong> Mont Terri site.<br />

damage) <strong>and</strong> hydraulical properties seems unlikely. Gas-transport is controlled by two-phase flow. In<br />

addition, aunique permeability /porosity relationship is not available.<br />

Finally, asshown inFigure 1,anew modelling approach ispresented consisting <strong>of</strong> two parts, i.e. <strong>of</strong> a<br />

(visco-)elas<strong>to</strong>-plastic constitutive model, comprising <strong>the</strong> hardening/s<strong>of</strong>tening behaviour <strong>and</strong> dilatancy<br />

effects <strong>of</strong> <strong>the</strong> rock mass, <strong>and</strong> aspecific friction model, which described displacement- <strong>and</strong> velocitydependent<br />

shear strength s<strong>of</strong>tening for <strong>the</strong> <strong>bedding</strong> <strong>planes</strong> (Minkley &Mühlbauer, 2007). Using our sitespecific<br />

material parameters, <strong>EDZ</strong> phenomena for alocal drift situation in <strong>the</strong> Mont Terri lab could be<br />

nicely simulated.<br />

However, literature results reveal alarge scattering <strong>of</strong> mechanical strength date <strong>of</strong>indurated clay, e.g. from<br />

<strong>the</strong> Mont Terri Site, which isattributed besides o<strong>the</strong>rs mainly <strong>to</strong><strong>the</strong> possible influence <strong>of</strong>pore pressures<br />

or de-saturation. From <strong>the</strong> experimental point <strong>of</strong> view <strong>the</strong> knowledge regarding coupling between<br />

mechanical (e.g. damage) <strong>and</strong> hydraulical properties is not sufficient i.e. <strong>the</strong> effective Biot-coefficient is<br />

unknown. Preliminary tests with application <strong>of</strong> pore pressures demonstrate <strong>the</strong> difficulty ensuring stable<br />

conditions in short term tests due <strong>to</strong> <strong>the</strong> low rock permeability. This implies that more experimental work<br />

is necessary <strong>to</strong> quantify <strong>the</strong> respective parameters <strong>and</strong> processes.<br />

References:<br />

Popp, T.&Salzer, K., 2006. Anisotropy <strong>of</strong> seismic <strong>and</strong> mechanical properties <strong>of</strong> Opalinus clay during<br />

triaxial deformation in amulti-anvil apparatus. Proceedings International Symposium: "Using Natural<br />

<strong>and</strong> Engineered Clay-based Barriers for <strong>the</strong> Containment <strong>of</strong> Radioactive Waste ",Tours, 14-18 March<br />

2005. Physics <strong>and</strong> Chemistry <strong>of</strong> <strong>the</strong> Earth, Parts A/B/C, available online 6Oc<strong>to</strong>ber 2006.<br />

Minkley, W.&Mühlbauer, J., 2007. Constitutive models <strong>to</strong>describe <strong>the</strong> mechanical behavior <strong>of</strong> salt rocks<br />

<strong>and</strong> <strong>the</strong> imbedded weakness <strong>planes</strong>. In Proc. 6th Conference on<strong>the</strong> Mechanical Behaviour <strong>of</strong> Salt,<br />

Hannover, 22-25 May 2007, in press. Rotterdam: Balkema.<br />

Page 522<br />

⎛<br />

50,0<br />

σ Max − σ ⎞ D<br />

σ1= σ D + ⎜ 1 +<br />

⎟ σ 3<br />

⎝ σ ϕ + σ<br />

⎟<br />

3 ⎠<br />

⋅<br />

⎛<br />

50,0<br />

σ Max − σ ⎞ D<br />

σ1= σ D + ⎜ 1 +<br />

⎟ σ 3<br />

⎝ σ ϕ + σ<br />

⎟<br />

3 ⎠<br />

⋅<br />

⎛<br />

50,0<br />

σ Max − σ ⎞ D<br />

σ1= σ D + ⎜ 1 +<br />

⎟ σ 3<br />

⎝ σ ϕ + σ<br />

⎟<br />

3 ⎠<br />

⋅<br />

0% plast. Verformung<br />

0,04% plast. Verformung<br />

0,1% plast. Verformung<br />

0,24 plast. Verformung<br />

0,4% plast Verformung<br />

ε p (%) 0,00 0,04 0,10 0,24 0,40<br />

σ D (MPa ) 10,5 8,6 6,0 2,0 0,0<br />

σ φ (MPa (MPa (MPa ) 5,0 5,0 5,0 5,0 5,0<br />

σ Max (MPa ) 55,0 48,0 43,0 38,0 35,0<br />

0,0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

Confining stress σ 3 (MPa )<br />

ε p (%) 0,00 0,04 0,10 0,24 0,4<br />

σ ψ (MPa ) 3,2 3,1 2,9 2,5 2,0<br />

tan β° 0,15 0,3 0,5 1,0 2,0<br />

0% plast. strain<br />

0,04% plast. strain<br />

0,1% plast. strain<br />

0,24 plast. strain<br />

0,4% plast strain<br />

0,0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Confining pressure σ 3 (MPa )<br />

• hardening<br />

• s<strong>of</strong>tening<br />

• dilatancy<br />

⇒ Implementation<br />

<strong>of</strong> pore pressures ?<br />

(Konietzky, 2001)<br />

Bedding plane properties<br />

Newdeveloped shear model<br />

<strong>to</strong> describe <strong>the</strong> behaviour <strong>of</strong>weakeness <strong>planes</strong><br />

on <strong>the</strong> basis <strong>of</strong>:<br />

τ = μ 1 + Δ μ ⋅ σ +<br />

μ K<br />

adhesion<br />

=kinetic friction<br />

Δμ =adhesive friction<br />

c =cohesion<br />

K<br />

( ) c<br />

τ<br />

Shear stress (MPa )<br />

INTERNATIONAL MEETING, SEPTEMBER 17...>...18, 2007, LILLE, FRANCE<br />

CLAYS IN NATURAL &ENGINEERED BARRIERS<br />

FOR RADIOACTIVE WASTE CONFINEMENT<br />

N<br />

σ N<br />

Normal Normal stress<br />

stress<br />

σ σ Ν Ν = = 10 10 MPa<br />

MPa<br />

Shear displacement (mm)<br />

Medium Medium 1<br />

1<br />

Medium Medium 2<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!