29.03.2013 Views

Apollo-The Last Few Miles Home - AIAA Info

Apollo-The Last Few Miles Home - AIAA Info

Apollo-The Last Few Miles Home - AIAA Info

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Apollo</strong>-<strong>The</strong> <strong>Last</strong> <strong>Few</strong> <strong>Miles</strong> <strong>Home</strong><br />

Charles H. Lowry<br />

May 19, 2012<br />

1


Jules Would Be Pleased<br />

3


Manned Spaceflight Timeline<br />

• 1865—Jules Verne “From <strong>The</strong> Earth To <strong>The</strong> Moon”<br />

• 1869—E. E. Hale “<strong>The</strong> Brick Moon”, Also Proposed “GPS”<br />

• 1897—H. G. Wells “War of <strong>The</strong> Worlds”<br />

• 1948—H. E. Ross, British Planetary Soc. Plan for Lunar Landing and Return<br />

• 1952—Von Braun “Man on <strong>The</strong> Moon, <strong>The</strong> Journey”<br />

• 1954—Von Braun “Can We Go To Mars?”<br />

• 1961—First Manned Mercury Flight<br />

• 1965-- First Manned Gemini Flight<br />

• 1968—First Manned <strong>Apollo</strong> Flight<br />

4


• A Look Around<br />

– $2000 Buys New Car<br />

– Cigarettes 25 Cents/Pack<br />

– Minimum Wage $1.00/Hr<br />

– $15/Night In Nice Hotel<br />

– Many Scientists Believed—to the Moon by end of<br />

Century<br />

• Engineering Profession<br />

– Pipes / Cigars / Starched Shirts / Jackets / Ties<br />

– 1 Secretary/1 Phone Per Group<br />

– No Repro Machines—later <strong>The</strong>rmofax<br />

– Slide Rules / Friden / Marchant Calculators<br />

– IBM 704—not for General use<br />

– 17x 22in /Felt Pen Briefing Charts<br />

– Hey-day Of Aircraft, Escape Systems<br />

• Parachute Profession<br />

– WADC Center Of Excellence<br />

– Dr. Heinrich, <strong>The</strong>o Knacke, Others<br />

– Lots of Basic Research<br />

– Nylon Ruled<br />

– 1956 Parachute Handbook<br />

– MIT, University of Minnesota Conferences<br />

– El Centro<br />

<strong>The</strong> Times--<strong>The</strong> 1950s/1960s<br />

First hp<br />

handheld/baz<br />

5


Space Race Progression<br />

• 57-58 International Geophysical Year—Sputnik/Explorer 1<br />

• July 58 NASA Created<br />

• Apr 61 Yuri Gagarin orbital Vostok 1<br />

• May 61 Alan Shepard sub-orbital Mercury<br />

• Jul 61 Initial NASA <strong>Apollo</strong> ITB<br />

• Nov 61 Announcement NAA Awarded <strong>Apollo</strong> CSM Contract<br />

• Dec 61 NASA SOW<br />

• Dec 61 Northrop Awarded ELS Contract<br />

• Feb 62 John Glenn Orbital Mercury<br />

• Jul 62 LOR Decision<br />

• Jul 62 1 st Main Chute Drop Test<br />

• Nov 62 1 st Main Chute cluster and 1 st Boilerplate Drop<br />

• Sep 63 Lost Boilerplate 3<br />

• Jan 67 <strong>Apollo</strong> 1 Fire<br />

• Oct 68 1 st Manned <strong>Apollo</strong> Flight<br />

• Dec 68 1 st Manned Circumlunar Flight<br />

• Jul 69 1 st Manned Lunar Landing<br />

6


Trip To <strong>The</strong> Moon<br />

• Getting Started<br />

– Contracts/subcontracts for all elements<br />

– Many support studies, universities, etc.<br />

– NASA guidance<br />

– Presidential DX priority<br />

– Money<br />

• Approach<br />

– Start running—figure it out as we go<br />

– Hire people—lots of people<br />

– Build facilities<br />

– Develop organizations<br />

– Develop specs, procedures, system architectures<br />

– Schedules, budgets<br />

– Go Do It<br />

• Reality<br />

– Much chaos—slowly settled<br />

– Many changes, weights, management directives/tools<br />

– Driven by what’s on pad<br />

7


<strong>Apollo</strong> VAB-Launch Complex<br />

8


• Use Existing Technology<br />

• Robust Designs<br />

• Try Alternate Designs<br />

• Extensive Acceptance Testing<br />

• Extensive Off-Limit Testing<br />

• Attention to Details<br />

• Control Changes<br />

• Analysis of Discrepancies<br />

• Personal Responsibility<br />

• Management Honesty<br />

• Customer Close to Us<br />

• Tangible Proof of System Integrity<br />

<strong>Apollo</strong> Hallmarks<br />

9


<strong>Apollo</strong> Stack<br />

10


CSM<br />

11


CM/Boilerplate Dimensions<br />

12


Max Rate of Descent-2 mains<br />

Orig—30fps at 5000ft<br />

Later—35fps at sea level<br />

Finally—38fps at sea level<br />

Performance Requirements<br />

Drogue and Main Chute<br />

Deployment Envelope<br />

Reliability<br />

Tolerate 1 Drogue/1 main out<br />

Goal--.99994<br />

CM Weight Growth<br />

History<br />

13


Early <strong>Apollo</strong> ELS Architecture<br />

14


ELS Configuration Evolution<br />

• Pre-block 1—started out<br />

– Boilerplates, 7,800-8,150 lbs.<br />

– Single 13.7 ft. drogue<br />

– 3 pilot chutes, 10 ft. diameter<br />

– 3 mains, 88.1 ft. diameter, 72 gore, 1.0 D O lines, single reefing<br />

– 4-leg harness attached to top of tunnel, textile risers, confluence fitting<br />

• Block 1<br />

– No docking provisions, 9,500 lbs., intended 1 st manned flight<br />

– 7.2 ft. diameter pilot chutes<br />

– Slotted mains, 83.5 ft. diameter, 68 gores, midgore reefing, 1.4 D O lines<br />

– 2-leg harness on deck<br />

– Dual drogues, reefed 8 seconds<br />

• Block 2<br />

– Docking provisions, redesigned forward compartment, 11,000 lbs.<br />

– Steel risers<br />

– Flowerpot<br />

• Block 2 HW<br />

– 13,000-13,500 lbs.<br />

– High density packing<br />

– Special materials<br />

– 2-stage main reefing, 6 & 10 seconds<br />

– Larger (16.5 ft.) drogues reefed 10 seconds<br />

– Beefed up pilots<br />

15


Normal Landing Sequence<br />

16


Abort Landing Sequence<br />

17


ELS Installation<br />

18


-Y Bay<br />

19


+Z Bay<br />

20


-Y to +Z Bays<br />

21


+Y Bay<br />

22


Flowerpot/Steel Risers (-Z Bay)<br />

23


Steel Cable Risers<br />

24


• 1 x 7.2ft Ringslot, perm reefed<br />

Forward Heatshield Jettison<br />

25


ELS Schematic<br />

27


6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

<strong>Apollo</strong> Component Environmental Acceptance Test Failure Rates<br />

Vibration ATP Percent Failure<br />

Design Workmanship Total<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

<strong>The</strong>rmal ATP Percent Failure<br />

Design Workmanship Total<br />

11447 tests on 166 different components 3685 tests on 127 different components


Mode Percent Failed<br />

Electrical<br />

Mechanical<br />

Contamination<br />

Other<br />

Total<br />

<strong>Apollo</strong> Component Failures<br />

57.3<br />

27.4<br />

11.6<br />

3.8<br />

100<br />

<strong>Apollo</strong> 7 22<br />

<strong>Apollo</strong> 8 8<br />

CSM LM<br />

<strong>Apollo</strong> 9 14 12<br />

<strong>Apollo</strong> 10 23 15<br />

<strong>Apollo</strong> 11 9 13<br />

Environmental ATP Failure Modes Number of <strong>Apollo</strong> Flight Anomalies


<strong>Apollo</strong> CM –to—LEM Docking<br />

30


<strong>Apollo</strong> Docking System<br />

31


<strong>Apollo</strong> Docking System Removal<br />

32


<strong>Apollo</strong> Soyuz Test Project<br />

33


ASTP Docking System--USA<br />

34


<strong>Apollo</strong> CM Uprighting System<br />

35


ELS Test Programs<br />

• Lab Tests<br />

– Humidity, thermal cycle, thermal vacuum, vib, accel, structural<br />

– Wind tunnel<br />

• 1/10 th scale drogues<br />

• Scaled and full size mains<br />

• Drop Tests<br />

– C-119, C-130, B-57, B-66, B-52, C-133<br />

– Mostly El Centro, CA,-joint test facility<br />

– Northrop ran tests with military<br />

• NAA / Rockwell, NASA participation<br />

– High visibility test program (July 1963 to July 1968)<br />

• Block 1, 93 dev, 12 qual (70 total planned)<br />

• Block 2, 6 dev, 4 qual<br />

• Block 2HW, 25 dev, 7 qual<br />

38


Instrumented Bomb Test Vehicle<br />

39


PTVs<br />

40


Boilerplate rigged for drop.<br />

Note external programmer chute<br />

Boilerplate Drop Equipment<br />

C-133 with boilerplate<br />

installed-ready to drop<br />

41


Programmer Parachute<br />

42


Boilerplate Drop Test<br />

43


• 6 WSMR Launches<br />

– Launch Escape System<br />

– All Abort Modes<br />

– 5 B/P, 1 CM, all Block 1<br />

• 4 KSC Block 1 CM Launches<br />

– Aero<br />

– Heatshield<br />

– RCS<br />

– G & N<br />

• 1 st Manned, Block 2<br />

– System Verification<br />

• 2 nd Manned<br />

– Circumlunar<br />

• 5 th Manned<br />

– Lunar Landing<br />

• 15 Total Manned Flights<br />

<strong>Apollo</strong> ELS Progression to Manned Flight<br />

44


• Chutes are different<br />

Chutes Are Harder<br />

• Chutes operate to a narrow set of precise rules<br />

– Except when they don’t<br />

• It’s mostly about deployment<br />

• Complex systems require Hi fidelity mock-up<br />

• Flight test lots and at higher levels of assembly<br />

• Program management doesn’t know or believe all this


• Vehicle Stability<br />

– Boilerplate 3<br />

– Steel Cables<br />

• Vehicle Weight Growth<br />

– Stowage Volume<br />

– High Density Packing<br />

– Vt=30fps @5kft to 38fps @ SL<br />

Big Problems Within ELS<br />

46


• Cluster Non-Uniformity<br />

– 3 Mains—40-30-30%<br />

– 2 mains—65-35%<br />

Big Problems Within ELS<br />

47


• Forward heat shield re-contact<br />

– Never understood wake<br />

– Added parachute<br />

• Block 1<br />

• Block 2<br />

Big Problems Within ELS<br />

48


• <strong>Apollo</strong> 15<br />

Big Problems Within ELS<br />

– Effects of Reaction Control System<br />

– Crew Technique<br />

49


Lessons Learned<br />

• Be wary of programs that think<br />

– Vehicle is stable<br />

– Weight will not increase and volume will not decrease<br />

– Wake is understood<br />

• Its mostly about deployment<br />

– Simplicity, neatness=reliability<br />

– Rounded corners/ no snags<br />

– HiFi mockups required<br />

– Installation training/closeout photos<br />

• How to live with steel risers<br />

• Drop tests—important but difficult<br />

– Need lots of tests to “wring out” system<br />

– Get to system level as soon as possible<br />

– Skipped stage/structural/attitude hard to do<br />

– Free-fall is dangerous<br />

– Must budget for significant retests & lost vehicles<br />

• More Ringsail development needed re lead/lag<br />

• Pilot riser dynamics<br />

• Better analytical tools needed<br />

• Many failures materials & processes<br />

• Intra-system influences can be serious<br />

50


What Makes Programs Successful?<br />

• <strong>Apollo</strong> 20,000 firms, 400,000 people—George Low says<br />

– Reliable hardware<br />

• Design<br />

• Test<br />

• Control of changes<br />

• Interpretation of discrepancies<br />

– Flt missions well planned and executed<br />

– Flt crews skilled and well trained<br />

• Also Emphasized<br />

– Attention to detail<br />

– Dedication to getting the job done<br />

51


What About the SR-71----How Did <strong>The</strong>y Do It?<br />

• Urgent National Need<br />

• Visionary Government and Industry<br />

• Willingness to Take Risks<br />

• Tolerance for Failure<br />

• Minimum People and Paperwork<br />

• Individual Responsibility<br />

• Cradle to Grave Ownership of Design<br />

Skunk Works, Ben Rich, 1994<br />

• Started Work 1959<br />

• Mach 3, 90,000 ft. alt<br />

52


Looking Back On <strong>Apollo</strong><br />

• National goal & priority<br />

• Excellent, experienced management & technical<br />

• Work ethic<br />

• Attention to detail<br />

• Block 2 was a God-send, Block 2HW was not<br />

• Lots of testing including pre-qual<br />

• Always driven by something on pad<br />

• Need tolerance for failure<br />

• Wish we would have had Kevlar<br />

• Intra-sys effects<br />

• Worry a lot<br />

53


Interesting Experiences / Failures<br />

• Contamination<br />

• Metallurgical problems<br />

• Human failures<br />

• Lack of robustness<br />

• Exterior influences<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!