04.04.2013 Views

solutions

solutions

solutions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

You must show all your work. The number of points earned on<br />

each problem will be determined by how well you have justified your<br />

work.<br />

1. Find the value of k that satisfies the following equation.<br />

———————————————————————-<br />

det<br />

3a1 3a2 3a3<br />

5b1 5b2 5b3<br />

7c1 7c2 7c3<br />

k det<br />

a1 a2 a3<br />

b1 b2 b3<br />

c1 c2 c3<br />

———————————————————————-<br />

By Theorem 3 on page 192, if one row of a matrix is multiplied by a scalar, then the<br />

determinant is also.<br />

3a1 3a2 3a3<br />

a1 a2 a3<br />

det 5b1 5b2 5b3 3det 5b1 5b2 5b3 15det<br />

105det<br />

7c1 7c2 7c3<br />

a1 a2 a3<br />

b1 b2 b3<br />

c1 c2 c3<br />

7c1 7c2 7c3<br />

. Therefore, k 105.<br />

a1 a2 a3<br />

b1 b2 b3<br />

7c1 7c2 7c3<br />

———————————————————————-<br />

2. Let A,B,C be 3 3 matrices. Suppose detA 7,detB 3, and detC 0. Calculate<br />

the following. (Be sure to explain why.)<br />

———————————————————————a.<br />

detAB detAdetB by Theorem 6 on page 196. Therefore, detAB 21<br />

b. detC T detC by Theorem 5 onpage 196. Therefore, detC T 0.<br />

c. detA 1 1<br />

det A by exercise 31 on page 200. Therefore, detA1 1<br />

7 .<br />

———————————————————————-<br />

3. Let W be the set of all vectors of the form<br />

4a 2b<br />

3c<br />

5b 2c<br />

2a 3b c<br />

where a,b, andcrepresent<br />

arbitrary real numbers. Either find a set S of vectors that spans W or give an example to show<br />

that W is not a vector space.<br />

———————————————————————-


The set W can be written as<br />

4a 2b<br />

3c<br />

5b 2c<br />

2a 3b c<br />

4 2 0<br />

Let S <br />

0<br />

0<br />

,<br />

0<br />

5<br />

,<br />

3<br />

2<br />

. Since a,b, andcrepresent arbitrary real<br />

2 3 1<br />

numbers, W is a set of all linear combinations the vectors in S or the span of the vectors in S.<br />

a<br />

4<br />

0<br />

0<br />

2<br />

b<br />

2<br />

0<br />

5<br />

3<br />

———————————————————————-<br />

4. Prove that the set of all vectors of the form a<br />

1<br />

1<br />

0<br />

b<br />

subspace of 3 . Use the definition of subspace on page 220.<br />

i) 0 0<br />

1<br />

1<br />

0<br />

ii) Let u a1<br />

0<br />

1<br />

0<br />

———————————————————————-<br />

0<br />

1<br />

1<br />

0<br />

0<br />

1<br />

0<br />

b1<br />

so the zero vector is in the given set.<br />

0<br />

1<br />

0<br />

and v a2<br />

1 0<br />

1 0<br />

a1 1 b1 1 a2 1 b2 1<br />

0 0<br />

0 0<br />

which has the required form. So, u v is in the required set.<br />

1 0<br />

iii) u a 1 b 1 . Then<br />

0 0<br />

2<br />

1<br />

1<br />

0<br />

b2<br />

0<br />

1<br />

0<br />

c<br />

0<br />

3<br />

2<br />

1<br />

,a,b , forms a<br />

a1 a2<br />

. Then u v <br />

1<br />

1<br />

0<br />

.<br />

b1


1 0<br />

1 0<br />

ku k a 1 b 1 ak 1 bk 1<br />

0 0<br />

0 0<br />

which again has the required form. So, ku is in the required set.<br />

By the definition on page 220 the set is a subset of 3 .<br />

———————————————————————-<br />

2 4<br />

0<br />

5. Let A <br />

and w .<br />

1 7<br />

9<br />

———————————————————————-<br />

Is w in NulA?<br />

Aw <br />

NulA.<br />

2 4<br />

1 7<br />

Is w in ColA?<br />

0<br />

9<br />

36<br />

63<br />

. Since the product is not the zero vector, w is not in<br />

Solving the equation Ax b or x we write the augmented matrix:<br />

1 0 2<br />

0 1 1<br />

. Since the system is consistent w is in ColA.<br />

———————————————————————-<br />

2 4 0<br />

1 7 9<br />

6. Assume that A is row equivalent to B. Find bases for NulA and ColA.<br />

5 15 2 26 3<br />

1 3 0 4 1<br />

A 2 6 0 8 2 , B 0 0 1 3 4<br />

1 3 8 28 31<br />

0 0 0 0 0<br />

———————————————————————-<br />

AbasisforNulA :<br />

3


x2<br />

1 3 0 4 1<br />

0 0 1 3 4<br />

0 0 0 0 0<br />

3<br />

1<br />

0<br />

0<br />

0<br />

x4<br />

4<br />

0<br />

3<br />

1<br />

0<br />

<br />

x5<br />

Therefore the nullspace basis is<br />

x1<br />

x2<br />

x3<br />

x4<br />

x5<br />

1<br />

0<br />

4<br />

0<br />

1<br />

<br />

.<br />

3x2 4x4 x5<br />

x2<br />

3x4 4x5<br />

x4<br />

x5<br />

3 4<br />

1 0<br />

0 , 3 ,<br />

0 1<br />

0 0<br />

AbasisofColA :<br />

Since there are pivots in columns 1 and 3, we choose columns 1 and 3 from A to form the<br />

basis of ColA.<br />

5 2<br />

That is ColA 2 , 0<br />

1 8<br />

———————————————————————-<br />

7. The set B 1,1 t,t t2 ,t t3is a basis for P3 . Find the coordinate vector of<br />

pt 2t t2 8t3 .<br />

———————————————————————-<br />

The change of coordinate matrix, PB <br />

x B ,weusetheaugmentedmatrix<br />

4<br />

1<br />

0<br />

4<br />

0<br />

1<br />

1 1 0 0<br />

0 1 1 1<br />

0 0 1 0<br />

0 0 0 1<br />

1 1 0 0 0<br />

0 1 1 1 2<br />

0 0 1 0 1<br />

0 0 0 1 8<br />

<br />

<br />

. To find the coordinate vector<br />

1 0 0 0 5<br />

0 1 0 0 5<br />

0 0 1 0 1<br />

0 0 0 1 8<br />

.


Therefore, x B <br />

5<br />

5<br />

1<br />

8<br />

———————————————————————-<br />

8.<br />

———————————————————————a.<br />

Suppose a 5 8matrixAhas 5 pivot columns.<br />

What is dimNulA? There are 3 free variables and therefore dimNulA 3.<br />

What is rankA? Since there are 5 pivot columns rankA 5.<br />

b. The null space of a 20 18 matrix A is 10-dimensional.<br />

What is the dimension of ColA?<br />

Since there are 18 columns, i.e., n 18, rankA n dimNulA 18 10 8.<br />

c. If A is a 200 50 matrix, what is the largest possible dimension of the row space?<br />

By Theorem 14, the Rank Theorem, the dimension of the column space equals the<br />

dimension of the row space. There are at most 50 pivots, so the largest dimension of the<br />

column and row spaces is 50.<br />

What is the smallest possible dimension of NulA?<br />

Since the greatest dimension of the column space is 50, and<br />

rankA dimNulA n 50, the smallest possible dimension of NulA 0.<br />

d. A 38 50 matrix A has rank 30.<br />

Find dimNulA.<br />

By the Rank Theorem, rankA dimNulA n <br />

30 dimNulA 50 dimNulA 20.<br />

Find dimRowA.<br />

By the Rank Theorem, the dimension of the column space equals the dimension of the row<br />

space. This implies RowA 30.<br />

Find RankA T .<br />

RankA T dimColA T dimRowA 30.<br />

5<br />

Explain all.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!