05.04.2013 Views

SECOND ORDER DIFFERENTIAL EQUATIONS

SECOND ORDER DIFFERENTIAL EQUATIONS

SECOND ORDER DIFFERENTIAL EQUATIONS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIT - V<br />

<strong>SECOND</strong> <strong>ORDER</strong> <strong>DIFFERENTIAL</strong><br />

<strong>EQUATIONS</strong><br />

5.1. Solutionof secondorderdifferentialequationswithconstant 2<br />

d y dy<br />

coefficients in the form a + b + cy = 0.<br />

S imple P roblems<br />

2<br />

dx dx<br />

5.2 Solutionofsecondorderdifferentialequationsintheform 2<br />

d y dy<br />

a + b + cy = f(<br />

x)<br />

. Where a,b and c are constants and<br />

2<br />

dx dx<br />

f(x ) = e mx . Simple problems.<br />

5.3. Solutionofsecondorderdifferentialequationsintheform 2<br />

d y dy<br />

a + b + cy = f(<br />

x).<br />

W here a,b and c are constants a nd f(x ) =<br />

2<br />

dx dx<br />

sinmx or cosmx. Simple problems<br />

5.1 <strong>SECOND</strong> <strong>ORDER</strong> <strong>DIFFERENTIAL</strong> <strong>EQUATIONS</strong><br />

Introduction:<br />

In the last unit, we learnt first order differential equation. In this<br />

unit, we will learn second order differential equation.<br />

The second order differential equation is of the form<br />

2<br />

d y dy<br />

a + b + cy = f(<br />

x).<br />

(1)<br />

2<br />

dx dx<br />

W here a,b and c are real numbers and f(x ) is a function of x .<br />

W e use differential operators D y, D 2 y in (1), w e get<br />

2<br />

d<br />

( aD + bD + c)<br />

y = f(<br />

x)<br />

where D=<br />

dx<br />

Now, w e put f(x ) = 0 in (1), w e get<br />

2<br />

d y dy<br />

a + b + cy = 0<br />

(3)<br />

2<br />

dx dx<br />

297<br />

(2)


The solution of (3) is called complementary function (CF) of (1).<br />

T o solv e (3), we assume a trial solution y = e px for some value of<br />

2<br />

dy px d y 2 px<br />

p. Then = pe and = p e .<br />

dx<br />

2<br />

dx<br />

S ubstituting these v alues in (3), we get<br />

2<br />

px<br />

px<br />

ap e + bpe + ce<br />

px 2<br />

e [ ap + bp + c]<br />

= 0<br />

2<br />

ap + bp + c = 0<br />

px<br />

= 0<br />

T his equation in p is called the A ux illary E quation (A E )<br />

Solving (4), we get two roots say p1 and p2. Then the following<br />

three cases arise.<br />

Case (i)<br />

I f the roots p1 and p2 are real a nd distinct, then the solution of (3) is<br />

Case (ii)<br />

y = Ae +<br />

p1x p2x<br />

Be<br />

I f the roots p1 and p2 are real and equal, then the solution of (3) is<br />

Case (iii)<br />

p1 x<br />

y = e ( Ax + B)<br />

If the roots 1 pand 2 p arecomplexsayp1 = α + i β and p2 = α -iβ, then<br />

the solution of (3) is<br />

y<br />

x<br />

= α<br />

e<br />

[ A cos βx<br />

+ Bsinβx]<br />

I n a ll cases, A a nd B are arbitrary consta nts.<br />

298<br />

(4)


5.1 WORKED EXAMPLES<br />

PART – A<br />

1. If roots of the auxillary equation are<br />

of the differential equation?<br />

1<br />

± i<br />

2<br />

3<br />

, what is the solution<br />

2<br />

Solution:<br />

1<br />

H ere, the roots are complex and α = ,<br />

2<br />

.<br />

β =<br />

3<br />

,<br />

2<br />

. . The solution of differential equation is<br />

1<br />

x<br />

2<br />

y = e [ A cos<br />

3<br />

x + Bsin<br />

2<br />

3<br />

x]<br />

2<br />

2. Find the solution of (D 2 – 81) y = 0<br />

Solution:<br />

The auxillary equation is p 2 –81 = 0<br />

(p+9) (p-9) = 0<br />

p1 = -9, p2 = 9<br />

H ere, the roots are rea l a nd distinct<br />

. . . The solution of differential equation is<br />

y =Ae -9x +Be x 9<br />

2<br />

d y<br />

3. Solve + 64y<br />

= 0<br />

2<br />

dx<br />

Solution:<br />

2<br />

d y<br />

2<br />

Given + 64y<br />

= 0 ( D + 64)<br />

y = 0<br />

2<br />

dx<br />

The auxillary equation is p 2 +64=0<br />

p = ± 8i<br />

H ere, the roots are complex ,α=0 and β = 8<br />

. . . T he solution is y = A cos 8x + B sin 8x<br />

299


4. Solve (D 2 -2D-3)y=0<br />

Solution:<br />

The auxillary equation is p 2 -2p-3=0<br />

(p+1) (p-3) = 0<br />

p1 = -1, p2 = 3<br />

H ere, the roots are rea l a nd distinct<br />

. . . The solution is y = Ae -x + Be 3x<br />

5. Solve (D 2 -4D-1) y =0<br />

Solution:<br />

The auxillary equation is p 2 -4p-1 = 0<br />

H ere a = 1, b = -4, c = -1<br />

P =<br />

=<br />

=<br />

− b ±<br />

b<br />

2a<br />

2 −<br />

2(<br />

1)<br />

4ac<br />

4 ± 16 − 4(<br />

1)(<br />

−1)<br />

4 ± 20<br />

2<br />

4 ± 2 5<br />

= = 2 ± 5<br />

2<br />

So, p1 = 2 + 5andp2= 2 − 5<br />

H ere, the roots are rea l a nd distinct<br />

. . . The solution is<br />

y =Ae (2 + 5 )x + Be<br />

(2 - 5 )x<br />

300


2<br />

d y dy<br />

6. Solve − 6 + 9y<br />

= 0<br />

2<br />

dx dx<br />

Solution:<br />

2<br />

Given:<br />

d y dy<br />

− 6 + 9y<br />

= 0<br />

2<br />

dx dx<br />

<br />

2<br />

( D − 6D<br />

+ 9)<br />

y = 0<br />

The auxillary equation is p 2 –6p+9 = 0<br />

(p-3)(p-3)=0<br />

p1=3, p2 = 3<br />

Here, the roots are real and equal.<br />

.. The solution is y = e 3x [Ax+B]<br />

7. Solve (D 2 +D+2)y =0<br />

Solution:<br />

The auxillary equation is p 2 +p+2 = 0<br />

Here a = 1, b = 1, c = 2<br />

2<br />

− b ± b − 4ac<br />

P =<br />

2a<br />

−1±<br />

1−<br />

4(<br />

1)(<br />

2)<br />

=<br />

2(<br />

1)<br />

−1±<br />

− 7<br />

=<br />

2<br />

−1±<br />

i 7<br />

=<br />

2<br />

−1<br />

7<br />

= ± i<br />

2 2<br />

1<br />

H ere, the roots are complex , α = − , β =<br />

2<br />

−1<br />

. . 7 7<br />

. The solution is y = e [ A cos x Bsin<br />

x<br />

2 2<br />

x<br />

2<br />

+<br />

301<br />

7<br />

2


PART – B<br />

1. Solve (D 2 π<br />

+1) y = 0 when x = 0, y = 2 and x = , y=-2.<br />

2<br />

Solution:<br />

The auxillary equation is p 2 + 1 = 0<br />

p = ± i<br />

H ere, the roots are complex , β = 1<br />

. . . The solution is<br />

y =A cosx +B sinx … 1<br />

When x=0, y=2, the equation (1) becomes<br />

A cos0 + B sin0 = 2<br />

A + 0 = 2<br />

A = 2<br />

π<br />

When x = , y=-2, the equation (1) becomes<br />

2<br />

π π<br />

A cos +B sin = -2<br />

2 2<br />

0 + B = -2<br />

B = -2<br />

. . . The required solution is<br />

y = 2 cosx – 2 sinx<br />

2. Show that the solution of the equation (D 2 + 3D + 2) y = 0 if y(0)<br />

= 1 and y 1 (0) = 0 is y = 2e -x –e -2x<br />

Solution:<br />

The auxillary equation is p 2 +3p+2=0<br />

Here, the roots are real and distinct<br />

(p+1) (p+2) = 0<br />

p1 = -1, p2 = -2<br />

302


. . . The solution is y = Ae -x + Be -2x<br />

… 1<br />

Now, y′ = -A e -x –2Be -2x<br />

… 2<br />

If y(0) = 1, the equation (1) becomes<br />

A +B =1 … 3<br />

I f y’(0) =0 , the equation (2) becomes<br />

A+2B=0 … 4<br />

S olv ing (3) and (4) we get A =2, B=-1<br />

∴The required solution is<br />

y=2e -x -e -2x<br />

5.2. SOLUTION OF <strong>SECOND</strong> <strong>ORDER</strong> <strong>EQUATIONS</strong> IN THE FORM<br />

2<br />

d y dy<br />

a + b + cy = f(<br />

x)<br />

WHERE A,B AND C ARE CONSTANTS<br />

2<br />

dx dx<br />

mx<br />

AND f(x) = e .<br />

Introduction:<br />

In previous section, we find the complementary function . In this<br />

section, we have to find the particular integral (PI) and the general<br />

solution of a second order differentia l equation.<br />

The Solution of Differential equation with Constant Coefficients is<br />

y=CF+PI<br />

Method of finding particular integral<br />

Consider (aD 2 +bD+c)y = e mx where m is a constant.<br />

L et f(D ) = aD 2 +bD+c<br />

1<br />

T hen P I is giv en by<br />

f(<br />

D)<br />

Three cases arise in PI<br />

Case (i)<br />

If f(m) ≠<br />

0<br />

then PI<br />

=<br />

1<br />

f(<br />

D)<br />

e<br />

mx =<br />

e<br />

mx =<br />

303<br />

mx<br />

e<br />

f(<br />

m)<br />

mx<br />

e<br />

f(<br />

m)


Case (ii)<br />

Case (iii)<br />

If f(m) = 0<br />

If f(m) = 0<br />

and<br />

f '(m)<br />

and f '(m)<br />

≠ 0then<br />

= 0<br />

and<br />

304<br />

PI =<br />

f ''(m)<br />

mx<br />

x e<br />

f'(<br />

m)<br />

≠ 0 then<br />

5.2 WORKED EXAMPLE<br />

PART – A<br />

PI =<br />

2<br />

mx<br />

x e<br />

f"<br />

( m)<br />

1. Find the complementary function of (D 2 +16)y= e x<br />

Solution:<br />

The auxiliary equation is p 2 +16=0 p=±4i<br />

Here, the roots are complex , β=4<br />

∴C F = A cos 4x + B sin 4x<br />

2. F ind the complementary function of (D 2 -60D+800)y=e 40x<br />

Solution:<br />

The auxiliary equation is p 2 -60p+800=0<br />

(p-40) (P-20) =0<br />

P1=40, P 2=20<br />

H ere the roots are rea l a nd distinct<br />

∴CF = Ae 40x + Be 20x<br />

3. F ind the particular integra l of (D 2 +1) y =1<br />

Solution:<br />

1 1<br />

PI =<br />

= e<br />

2 2<br />

D + 1 D + 1<br />

1 1<br />

= = = 1<br />

0 + 1 1<br />

0


4. F ind the particular integra l of (D 2 +7D+14) = 8e -x<br />

Solution:<br />

1<br />

−x<br />

PI =<br />

8e<br />

2<br />

D + 7D<br />

+ 14<br />

−x<br />

8e<br />

=<br />

2<br />

( −1)<br />

+ 7(<br />

−1)<br />

+ 14<br />

=<br />

−x<br />

8e<br />

8<br />

−x<br />

= e<br />

5. F ind the particular integra l of (D 2 -2D-3)y = e -x<br />

Solution:<br />

1 −x<br />

PI =<br />

e<br />

2<br />

D − 2D<br />

− 3<br />

−x<br />

x e<br />

=<br />

2D<br />

− 2<br />

Since f(<br />

−1)<br />

= 0<br />

−x<br />

x e<br />

=<br />

2(<br />

−1)<br />

− 2<br />

−x<br />

x e<br />

= −<br />

4<br />

PART - B<br />

1. Solve (D 2 +5D+6)y=30<br />

Solution:<br />

The auxiliary equation is p 2 +5p+6=0<br />

(p+2) (P+3) =0<br />

P1=-2, P 2=-3<br />

Here, the roots are real and distinct<br />

∴CF = Ae -2x +Be -3x<br />

1<br />

Now PI =<br />

30<br />

2<br />

D + 5D<br />

+ 6<br />

30e°<br />

=<br />

2<br />

D + 5D<br />

+ 6<br />

30e°<br />

=<br />

2<br />

0 + 5(<br />

0)<br />

+ 6<br />

30<br />

=<br />

6<br />

PI = 5<br />

∴ T he R equired solution is<br />

Y=CF+PI =Ae -2x +Be -3x +5<br />

305


2. Solve (D 2 +6D +5) y =2e x<br />

Solution:<br />

The auxiliary equation is p 2 +6p+5=0<br />

(p+1) (P+5) =0<br />

P1=-1, P 2=-5<br />

H ere the roots are rea l a nd distinct<br />

∴CF = Ae -x +Be -5x<br />

1<br />

x<br />

Now PI =<br />

2e<br />

2<br />

D + 6D<br />

+ 5<br />

x<br />

2e<br />

=<br />

2<br />

1 + 6(<br />

1)<br />

+ 5<br />

x<br />

2e<br />

=<br />

12<br />

x<br />

e<br />

PI =<br />

6<br />

∴The required solution is<br />

Y=CF+PI<br />

x<br />

-x<br />

-5x<br />

e<br />

Ae + Be +<br />

6<br />

3. Solve<br />

x<br />

2<br />

(D + D)<br />

y = e 2<br />

Solution:<br />

The auxiliary equation is p 2 +p=0<br />

p (p+1)=0<br />

P1=0, P 2=-1<br />

H ere the roots are rea l a nd distinct<br />

∴CF = Ae 0 +Be -x =A +Be -x<br />

x<br />

2<br />

1<br />

Now PI =<br />

e<br />

2<br />

D + D<br />

306


x<br />

2<br />

e<br />

=<br />

2<br />

1 <br />

+<br />

2 <br />

e<br />

=<br />

x<br />

2<br />

3<br />

4<br />

x<br />

2<br />

1<br />

2<br />

4<br />

PI = e<br />

3<br />

∴The required solution is<br />

y=CF+PI<br />

-x<br />

3<br />

= A + Be + e<br />

4<br />

2<br />

4x<br />

4. Solve (D − D − 12)<br />

y = e<br />

Solution:<br />

The auxiliary equation is p 2 -p-12=0<br />

(p-4) (p+3)=0<br />

p1=4, p2=-3<br />

H ere the roots are rea l a nd distinct<br />

∴CF = Ae 4x +Be -3x<br />

1 4x<br />

Now PI =<br />

e<br />

2<br />

D − D − 12<br />

4x<br />

x e<br />

=<br />

2D<br />

− 1<br />

4x<br />

x e<br />

=<br />

2(<br />

4)<br />

−1<br />

4x<br />

x<br />

2<br />

x e<br />

PI =<br />

7<br />

∴ T he required solution is<br />

y=CF + PI<br />

= Ae<br />

4x<br />

+ Be<br />

-3x<br />

x e<br />

+<br />

7<br />

4x<br />

Since f(<br />

4)<br />

307<br />

= 0


5. Solve (D 2 -2D+1) y =e x<br />

Solution:<br />

6<br />

The auxiliary equation is p 2 -2p+1=0<br />

(p-1) (p-1) =0<br />

p1=1, p 2=1<br />

H ere the roots are rea l a nd equa l<br />

∴C F = e x (A x +B)<br />

Now PI<br />

=<br />

D<br />

2<br />

2<br />

x<br />

PI =<br />

2<br />

1<br />

e<br />

− 2D<br />

+ 1<br />

∴The required solution is<br />

Y=CF+PI<br />

Solution:<br />

e<br />

x x<br />

= e +<br />

2<br />

x<br />

( Ax + B)<br />

e<br />

2<br />

x<br />

2<br />

x<br />

Since<br />

308<br />

f ( 1)<br />

d y dy<br />

−2x<br />

Solve −13<br />

+ 12y<br />

= 2e<br />

+ 5e<br />

2<br />

dx dx<br />

Given<br />

2<br />

2<br />

d y dy<br />

−13<br />

+ 12y<br />

= 2e<br />

2<br />

dx dx<br />

−2x<br />

−2x<br />

( D −13D<br />

+ 12)<br />

y = 2e<br />

+ 5e<br />

x<br />

+ 5e<br />

T he aux ilary equa tion is p 2 -13p+12=0<br />

x<br />

=<br />

x<br />

0,<br />

f'(<br />

1)<br />

(p-1) (p-12) =0<br />

p1=1, p2=12<br />

H ere the roots are rea l a nd distinct<br />

∴CF = Ae x +Be 12x<br />

= 0


1<br />

−2x<br />

Now PI1<br />

=<br />

2e<br />

2<br />

D − 13D<br />

+ 12<br />

−2x<br />

2e<br />

=<br />

2<br />

( −2)<br />

− 13(<br />

−2)<br />

+ 12<br />

−2x<br />

2e<br />

=<br />

4 + 26 + 12<br />

−2x<br />

e<br />

=<br />

21<br />

1<br />

x<br />

Now PI2<br />

=<br />

5e<br />

2<br />

D − 13D<br />

+ 12<br />

x<br />

5xe<br />

=<br />

Sincef(<br />

1)<br />

= 0<br />

2D<br />

− 13<br />

x<br />

5xe<br />

=<br />

2(<br />

1)<br />

− 13<br />

x<br />

5xe<br />

= −<br />

11<br />

∴ T he required solution is<br />

Y =CF+PI1+PI2<br />

−2x<br />

x<br />

x 12x e 5xe<br />

= Ae + Be + −<br />

21 11<br />

5.3 SOLUTION OF <strong>SECOND</strong> <strong>ORDER</strong> <strong>DIFFERENTIAL</strong><strong>EQUATIONS</strong><br />

2<br />

d y dy<br />

IN THE FORM a −b + cy = f(<br />

x)<br />

WHERE a,b AND c ARE<br />

2<br />

dx dx<br />

CONSTANTS AND f(x) = sin mx or cos mx where m is a<br />

constant ≠ 0<br />

INTRODUCTION<br />

In this section, we have to find the particular integral when f(x)<br />

=sin mx or cos m x where m is a constant<br />

Methods of finding PI<br />

C onsider f(x ) =sin m x<br />

309


Case (i)<br />

Express f(D) as function of D 2 ,say φ (D 2 ) and then replace D 2 with –m 2<br />

If φ(-m 2 )≠0,then<br />

PI =<br />

1<br />

sin mx<br />

f(<br />

D)<br />

1<br />

= sin mx<br />

2<br />

φ(<br />

D )<br />

1<br />

PI = sin mx<br />

2<br />

φ(<br />

−m<br />

)<br />

Case (ii)<br />

Sometimes we cannot form φ (D 2 ) Then we shall try to get<br />

φ(D,D 2 ) that is a function of D and D 2 . In such cases we proceed as<br />

follows.<br />

For Example<br />

1<br />

Now PI =<br />

sin2x<br />

2<br />

D + 2D<br />

+ 3<br />

1 2 2<br />

=<br />

sin2x<br />

Replace<br />

D by − 2<br />

2<br />

− 2 + 2D<br />

+ 3<br />

1<br />

= Sin 2x<br />

2D<br />

−1<br />

2D<br />

+ 1<br />

= sin2x<br />

multiply anddivide<br />

by 2D<br />

+ 1<br />

2<br />

4D<br />

−1<br />

2D(sin<br />

2x)<br />

+ sin2x<br />

=<br />

2<br />

4(<br />

−2<br />

) −1<br />

4cos<br />

2x<br />

+ sin2x<br />

=<br />

−17<br />

1<br />

= [ 4cos<br />

2x<br />

+ sin2x]<br />

−17<br />

Now consider f(x) = cos m x<br />

1<br />

Case (i): PI = cos mx<br />

2<br />

φ(-m<br />

)<br />

Case(ii): S ame as sin m x method<br />

General Solution:<br />

The general solution is y= CF+PI<br />

310


5.3 WORKED EXAMPLE<br />

PART - A<br />

1. Find the complementary function of (D 2 +49) y= cos 4x<br />

Solution:<br />

The auxiliary equation is p 2 +49=0<br />

p=±7i<br />

Here, the roots are complex ,β =7<br />

∴ C F = A cos 7x +B sin 7x<br />

2. Find the particular integral of (D 2 +14) y = sin 3x<br />

Solution:<br />

1<br />

PI = sin 3x<br />

2<br />

D + 14<br />

1<br />

= sin 3x<br />

2<br />

− 3 + 14<br />

sin 3x<br />

=<br />

5<br />

3. F ind the particular integra l of (D 2 +a 2 ) y = Cos b x<br />

Solution:<br />

1<br />

PI =<br />

2 2<br />

D + a<br />

cos bx<br />

1<br />

=<br />

2 2<br />

− b + a<br />

cos bx<br />

=<br />

2 2<br />

a − b<br />

cos bx<br />

1.) Solve ( − 4)<br />

y = sin2x<br />

Solution:<br />

D 2<br />

PART - B<br />

The auxiliary equation is − 4 = 0<br />

<br />

p<br />

2<br />

p 2<br />

= 4<br />

p = + 2<br />

p = 2,<br />

p = −2<br />

1<br />

2<br />

311


Here, the roots are real and distinct<br />

∴ CF = Ae<br />

2x<br />

+ Be<br />

−2x<br />

Now PI = ( sin2x<br />

)<br />

D<br />

1<br />

2 −<br />

4<br />

1<br />

= sin2x<br />

2<br />

− 2 − 4<br />

sin2x<br />

= −<br />

8<br />

∴ T he R equired solution is<br />

y = CF + PI<br />

= Ae<br />

2x<br />

+ Be<br />

−2x<br />

sin2X<br />

−<br />

8<br />

2.) Solve y = −16sin4x<br />

Solution:<br />

D 2<br />

The auxiliary equation is p 0<br />

2 =<br />

p, 0,<br />

p2<br />

0 = = <br />

Here, the roots are real and equal<br />

∴ CF = e<br />

0<br />

( Ax + B)<br />

= Ax + B<br />

1<br />

Now PI 16 sin4x<br />

2<br />

D<br />

− =<br />

1<br />

16 sin4x<br />

2<br />

4<br />

− =<br />

−<br />

PI= Sin4x<br />

∴ T he R equired solution is<br />

y =<br />

CF + PI<br />

= Ax + B + Sin4x<br />

312


2<br />

d y<br />

2<br />

3.) Solve + 16y<br />

= cos x<br />

2<br />

dx<br />

Solution:<br />

2<br />

d y<br />

2<br />

Given + 16y<br />

= cos x<br />

2<br />

dx<br />

2<br />

2<br />

( D + 16)<br />

y = cos x<br />

2 1 cos 2x<br />

( D + 16)<br />

y = +<br />

2 2<br />

1 0 1<br />

= e + cos 2x<br />

2 2<br />

The auxiliary equation is p 16 0<br />

2<br />

+ =<br />

p = + 4i<br />

Here, the roots are complex, β = 4<br />

∴CF<br />

= A cos 4x<br />

+ BSin4x<br />

1 0<br />

e<br />

PI 2<br />

1 =<br />

2<br />

D + 16<br />

0<br />

1 e<br />

=<br />

2 0 + 16<br />

1<br />

=<br />

32<br />

1 cos 2x<br />

PI 2 = .<br />

2 2 D + 16<br />

1 cos 2x<br />

= .<br />

2 2 − 2 + 16<br />

cos 2x<br />

=<br />

24<br />

∴ T he R equired solution is<br />

y =<br />

CF + PI<br />

1 cos 2x<br />

= A cos 4x<br />

+ BSin4x<br />

+ +<br />

32 24<br />

313


4.) Solve ( + 3D<br />

+ 2)<br />

y = sin2x<br />

D 2<br />

Solution:<br />

The auxiliary equation is p 3p<br />

2 0<br />

2<br />

+ + =<br />

( p + 2)(<br />

p + 1)<br />

= 0<br />

p1<br />

= −2,<br />

p2<br />

= −1<br />

Here, the roots are real and distinct<br />

−2x<br />

−x<br />

∴CF<br />

= Ae + Be<br />

1<br />

Now, PI =<br />

. Sin2x<br />

2<br />

D + 3D<br />

+ 2<br />

1<br />

=<br />

. Sin2x<br />

2<br />

− 2 + 3D<br />

+ 2<br />

1<br />

= . Sin2x<br />

3D<br />

− 2<br />

3D<br />

=<br />

9D<br />

2<br />

+ 2<br />

. Sin2x<br />

− 4<br />

3D<br />

+ 2<br />

= . Sin2x<br />

− 36 − 4<br />

3D(<br />

sin2x<br />

) + 2sin2x<br />

=<br />

− 40<br />

6cos<br />

2x<br />

+ 2sin2x<br />

=<br />

− 40<br />

−1<br />

=<br />

20<br />

[ 3cos<br />

2x<br />

+ sin2x]<br />

∴ T he R equired solution is<br />

y = CF + PI<br />

= Ae<br />

−2x<br />

+ Be<br />

−x<br />

1<br />

−<br />

20<br />

[ 3cos<br />

2x<br />

+ sin2x]<br />

314


5.) Solve ( − 2D<br />

− 8)<br />

y = 4cos<br />

3x<br />

Solution:<br />

D 2<br />

Solution: The auxiliary equation is − 2p<br />

− 8 = 0<br />

Here, the roots are real and distinct<br />

4x<br />

−2x<br />

∴CF<br />

= Ae + Be<br />

1<br />

Now, PI =<br />

4cos<br />

3x<br />

2<br />

D − 2D<br />

− 8<br />

1<br />

=<br />

4cos<br />

3x<br />

2<br />

− 3 − 2D<br />

− 8<br />

1<br />

= 4cos<br />

3x<br />

− 2D<br />

−17<br />

1 <br />

= −4<br />

4cos<br />

3x<br />

2D<br />

+ 17 <br />

2D<br />

−17<br />

<br />

= −4<br />

cos 3x<br />

2<br />

<br />

4D<br />

− 289 <br />

2D<br />

= −4<br />

<br />

( cos 3x)<br />

315<br />

p 2<br />

<br />

p<br />

−17cos<br />

3x<br />

<br />

− 325<br />

<br />

<br />

− 6sin3x<br />

−17cos<br />

3x<br />

<br />

= −4<br />

325<br />

<br />

−<br />

<br />

− 4<br />

= [ 6sin3x<br />

+ 17cos<br />

3x]<br />

325<br />

∴ T he R equired solution is<br />

y = CF + PI<br />

= Ae<br />

4x<br />

+ Be<br />

−2x<br />

4<br />

−<br />

325<br />

( p − 4)(<br />

p + 2)<br />

1<br />

=<br />

[ 6sin3x + 17cos3x ]<br />

4,<br />

p<br />

2<br />

= 0<br />

= −2


EXERCISE<br />

PART - A<br />

1.) If roots of the aux ilary equation are 2,7 what is the solution of the<br />

differential equation?<br />

2.) If roots of the aux ilary equation are 0,1 what is the solution of the<br />

differential equation?<br />

3.) If roots of the auxilary equation are -2,± i, what is the solution of<br />

the differential equation?<br />

4.) Find the solution of ( − 1)<br />

y = 0<br />

D 2<br />

d y<br />

5.) Find the solution of − 16y<br />

= 0<br />

2<br />

dx<br />

6.) Solve ( + 9)<br />

y = 0<br />

D 2<br />

7.) Find the solution of ( + 100)<br />

y = 0<br />

2<br />

D 2<br />

8.) Solve ( + 4D<br />

− 1020)<br />

y = 0<br />

D 2<br />

9.) Solve ( D − 5D<br />

+ 2)<br />

y = 0<br />

3 2<br />

10.) Solve ( D − 7D<br />

− 6)<br />

y = 0<br />

3 2<br />

d y dy<br />

11.) Solve + = 0<br />

2<br />

dx dx<br />

2<br />

12.) Solve ( − D −1)<br />

y = 0<br />

D 2<br />

13.) Solve ( + 4D<br />

+ 4)<br />

y = 0<br />

D 2<br />

2<br />

d y dy<br />

14.) Solve − 12 + 36y<br />

= 0<br />

2<br />

dx dx<br />

15.) Solve ( + D + 1)<br />

y = 0<br />

D 2<br />

16.) Solve ( D − D + 1)<br />

y = 0<br />

3 2<br />

2<br />

x<br />

17.) Find the Complementary function of ( D +<br />

13D<br />

− 90)<br />

y = e<br />

316


2<br />

x<br />

18.) Find the Particular integral of ( D − 3D<br />

+ 2)<br />

y = e<br />

2<br />

2x<br />

19.) Find the Particular integral of ( D + D + 4)<br />

y = 10e<br />

2<br />

3x<br />

20.) Find the Particular integral of ( D − 8D<br />

+ 15)<br />

y = e<br />

2<br />

5x<br />

21.) Find the Particular integral of ( D + 10D<br />

+ 25)<br />

y = e<br />

22.) Find the Complementary integral of ( + 25)<br />

y = cos ax<br />

23.) Find the Particular integral of ( + 25)<br />

y = Sinx<br />

24.) Find the Particular integral of ( + 10)<br />

y = sin3x<br />

d y<br />

25.) Find the Particular integral of − 4y<br />

= cos 4x<br />

2<br />

dx<br />

D 2<br />

D 2<br />

2<br />

PART - B<br />

1.) Solve ( 36)<br />

y = 0 when y(<br />

0)<br />

= 2<br />

D 2<br />

2<br />

317<br />

D 2<br />

+ and ( 0)<br />

= 12<br />

d y<br />

dy<br />

2.) Solve + y = 0 giv en that = 2and<br />

y=1 when x=0<br />

2<br />

dx<br />

dx<br />

3.) Solve ( 2D<br />

− 15)<br />

y = 0<br />

x=0<br />

D 2<br />

4.) Solve ( D − 20)<br />

y = 0<br />

D 2<br />

5.) Solve ( + 7D<br />

+ 12)<br />

y = 3<br />

D 2<br />

dy d y<br />

− given that = 0 and = 2 when<br />

2<br />

dx dx<br />

dy<br />

− giv en that y=5 and = −2<br />

when x =0<br />

dx<br />

2<br />

x<br />

6.) Solve ( )<br />

D + 3D<br />

+ 2 y = 2e<br />

2<br />

x<br />

7.) Solve ( D + 12D<br />

+ 36)<br />

y = e<br />

2<br />

8.) Solve ( ) 2<br />

D + D + 4 y = e<br />

2<br />

2x<br />

9.) Solve ( D − 3D<br />

+ 2)<br />

y = e<br />

2<br />

4x<br />

10.) Solve ( )<br />

D +<br />

6D<br />

+ 8 y = e<br />

x<br />

−<br />

y 1<br />

−<br />

−<br />

2


11.) Solve<br />

2<br />

d y<br />

−<br />

2<br />

dx<br />

dy<br />

4 + 4y<br />

= e<br />

dx<br />

2x<br />

2<br />

2 ax<br />

12.) Solve ( )<br />

D<br />

+ 2aD<br />

+ a<br />

y = e<br />

2<br />

7x<br />

13.) Solve ( )<br />

D<br />

+ 14D<br />

+ 49 y = 4e<br />

2<br />

x<br />

14.) Solve ( D − 2D<br />

+ 4)<br />

y = 5 + 3e<br />

15.) Solve<br />

2<br />

d y<br />

+<br />

2<br />

dx<br />

−<br />

dy<br />

8 + 15y<br />

= e<br />

dx<br />

−<br />

−<br />

−3x<br />

+ e<br />

2<br />

5x<br />

5x<br />

16.) Solve ( D + 10D<br />

+ 25)<br />

y = e + e<br />

17.) Solve ( + 16)<br />

y = sin9x<br />

D 2<br />

18.) Solve ( − 25)<br />

y = sin5x<br />

D 2<br />

19.) Solve ( + 100)<br />

y = cos 2x<br />

D 2<br />

2<br />

d y<br />

20.) Solve − 2y<br />

= cos 3x<br />

2<br />

dx<br />

21.) Solve ( + 2D<br />

− 3)<br />

y = sinx<br />

D 2<br />

22.) Solve ( + D − 2)<br />

y = Sin3x<br />

D 2<br />

23.) Solve ( + 4D<br />

+ 13)<br />

y = 4cos<br />

3x<br />

D 2<br />

24.) Solve ( − 8D<br />

+ 9)<br />

y = 8cos<br />

5x<br />

D 2<br />

25.) Solve ( − 2D<br />

− 8)<br />

y = 4cos<br />

2x<br />

1.)<br />

D 2<br />

2x<br />

7x<br />

318<br />

−<br />

3x<br />

ANSWERS<br />

PART - A<br />

y = Ae + Be<br />

2.)<br />

2x<br />

3.) y = e [ A cos x + Bsinx]<br />

−<br />

5.)<br />

4x<br />

−4x<br />

4.)<br />

y = A + Be<br />

y = Ae<br />

x<br />

x −x<br />

+ Be<br />

y = Ae + Be<br />

6.) y = A cos 3x<br />

+ B sin3x<br />

7.) y = A cos10x<br />

+ B sin10x<br />

8.) y =<br />

Ae<br />

30x<br />

+ Be<br />

−34x


9.)<br />

11.)<br />

2 x<br />

x<br />

Be 3<br />

y = Ae +<br />

10.) y = Ae<br />

−x<br />

y = A + Be<br />

12.) y = Ae<br />

2x<br />

13.) y = e ( Ax + B)<br />

−<br />

15.)<br />

16.)<br />

17.)<br />

y<br />

= −x<br />

2<br />

e<br />

<br />

A cos<br />

<br />

<br />

3<br />

x + Bsin<br />

2<br />

3 <br />

x <br />

2 <br />

<br />

x <br />

<br />

<br />

11 11<br />

y = e 6 A cos x + Bsin<br />

x <br />

<br />

<br />

6<br />

6 <br />

5x<br />

−18x<br />

CF = Ae + Be<br />

18.)<br />

6<br />

xe x 3<br />

319<br />

3x<br />

+ Be<br />

1 5 <br />

<br />

+<br />

x<br />

2 <br />

<br />

−2<br />

x<br />

3<br />

+ Be<br />

6x<br />

14.) y = e ( Ax + B)<br />

e x −<br />

20.) −<br />

2<br />

21.)<br />

x −5x<br />

e<br />

2<br />

22.) CF=Acos5x+Bsin5x 23.)<br />

sinx<br />

24<br />

24.) Sin3x<br />

Cos4x<br />

25.) −<br />

20<br />

Part-B<br />

2<br />

19.)<br />

1.) y = 2cos<br />

6x<br />

+ 2sin6x<br />

2.) y = cos x + 2sin<br />

x<br />

3.)<br />

5.)<br />

1 5x<br />

1 −3x<br />

y = e + e<br />

4.) y = 2e<br />

20 2<br />

y = Ae<br />

y<br />

e<br />

−4x<br />

6x<br />

= −<br />

+ Be<br />

−3x<br />

7.) ( ) 49<br />

8.)<br />

+<br />

e<br />

Ax + B +<br />

1<br />

4<br />

x<br />

6.)<br />

x <br />

2 15 15 <br />

y = e A<br />

cos x + Bsin<br />

x<br />

+<br />

<br />

2<br />

2 <br />

−<br />

x<br />

2x<br />

y =<br />

Ae + Be + xe<br />

2x<br />

y = Ae<br />

4<br />

19<br />

e<br />

x<br />

2<br />

5x<br />

−x<br />

9.)<br />

+ 3e<br />

+ Be<br />

−4x<br />

−2x<br />

1 5 <br />

<br />

−<br />

x<br />

2 <br />

<br />

2x<br />

e<br />

x<br />

e<br />

+<br />

3


−4x<br />

10.)<br />

−4x<br />

−2x<br />

xe<br />

y = Ae + Be −<br />

2<br />

11.)<br />

2<br />

2x<br />

x 2x<br />

y = e ( Ax + B)<br />

+ e<br />

2<br />

12.)<br />

2<br />

−ax<br />

x −ax<br />

y = e ( Ax + B)<br />

+ e<br />

2<br />

13.)<br />

−7x<br />

2 −7x<br />

y = e ( Ax + B)<br />

+ 2x<br />

e<br />

14.)<br />

x<br />

y = e ( A cos 3x<br />

+ Bsin<br />

5 3 −x<br />

3x)<br />

+ + e<br />

4 7<br />

15.)<br />

−3x<br />

3x<br />

−3x<br />

−5x<br />

xe e<br />

y = Ae + Be + +<br />

2 48<br />

16.)<br />

5x<br />

2 −5x<br />

−5x<br />

e x e<br />

y = e ( Ax + B)<br />

+ +<br />

100 2<br />

17.)<br />

sin9x<br />

y = A cos 4x<br />

+ B sin 4x<br />

−<br />

65<br />

18.)<br />

5x<br />

−5x<br />

sin5x<br />

y = Ae + Be −<br />

50<br />

19.)<br />

cos 2x<br />

y = A cos10x<br />

+ Bsin10x<br />

+<br />

96<br />

20.) y = Ae<br />

2x<br />

−<br />

+ Be<br />

2x<br />

cos 3x<br />

−<br />

11<br />

21.)<br />

−3x<br />

x 1<br />

y = Ae + Be − ( cos x + 2sinx<br />

)<br />

10<br />

1<br />

130<br />

x −2x<br />

22.) y = Ae + Be − ( 3cos<br />

3x<br />

+ 11sin3x<br />

)<br />

2x<br />

= −<br />

1<br />

10<br />

23.) y e ( A cos 3x<br />

+ Bsin3x<br />

) + 3sin3x<br />

+ cos 3x<br />

1<br />

29<br />

24.) ( 4+<br />

7 ) x ( 4−<br />

7 ) x<br />

y = Ae + Be − ( 5sin5x<br />

+ 2cos<br />

5x)<br />

1<br />

10<br />

4x<br />

−2x<br />

25.) y = Ae + Be − ( sin2x<br />

+ 3cos<br />

2x)<br />

320

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!