07.04.2013 Views

Lecture 11 - More Fourier Transform - Electrical Engineering ...

Lecture 11 - More Fourier Transform - Electrical Engineering ...

Lecture 11 - More Fourier Transform - Electrical Engineering ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> <strong>11</strong><br />

Properties of<br />

<strong>Fourier</strong> <strong>Transform</strong><br />

(Lathi 7.3-7.4)<br />

Peter Cheung<br />

Department of <strong>Electrical</strong> & Electronic <strong>Engineering</strong><br />

Imperial College London<br />

URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals<br />

E-mail: p.cheung@imperial.ac.uk<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

Time-Frequency Duality of <strong>Fourier</strong> <strong>Transform</strong><br />

Near symmetry between direct and inverse <strong>Fourier</strong> transforms (Year 1<br />

Comms <strong>Lecture</strong> 5):<br />

Forward FT<br />

Time<br />

Domain<br />

Inverse FT<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

<strong>Lecture</strong> <strong>11</strong> Slide 1<br />

Frequency<br />

Domain<br />

L7.3 p699<br />

<strong>Lecture</strong> <strong>11</strong> Slide 3<br />

If<br />

If<br />

then<br />

then<br />

If is real<br />

then<br />

Linearity & Conjugate Properties<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

If<br />

then<br />

Duality Property<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

Linearity<br />

Conjugate<br />

Conjugate<br />

Symmetry<br />

Proof: From definition of inverse FT (previous slide), we get<br />

Hence<br />

Change t to ω yield, and use definition of forward FT, we get:<br />

L7.3 p700<br />

<strong>Lecture</strong> <strong>11</strong> Slide 2<br />

L7.3 p700<br />

<strong>Lecture</strong> <strong>11</strong> Slide 4


Duality Property Example<br />

Consider the FT of a rectangular function:<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

If<br />

then<br />

Time-Shifting Property<br />

Consider a sinusoidal wave, time shifted:<br />

Obvious that phase shift increases with frequency (To is constant).<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

L7.3 p701<br />

<strong>Lecture</strong> <strong>11</strong> Slide 5<br />

L7.3 p705<br />

<strong>Lecture</strong> <strong>11</strong> Slide 7<br />

If<br />

then for any real constant a,<br />

Scaling Property<br />

That is, compression of a signal in time results in spectral expansion, and<br />

vice versa.<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

Time-Shifting Example<br />

Find the <strong>Fourier</strong> transform of the gate pulse x(t) given by:<br />

This pulse is rect(t/τ) dleayed by 3τ/4 sec.<br />

Use time-shifting theorem, we get<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

L7.3 p703<br />

<strong>Lecture</strong> <strong>11</strong> Slide 6<br />

L7.3 p708<br />

<strong>Lecture</strong> <strong>11</strong> Slide 8


If<br />

then<br />

Frequency-Shifting Property<br />

Multiply a signal by e jω 0 t shifts the spectrum of the signal by ω 0 .<br />

In practice, frequency shifting (or amplitude modulation) is achieved by<br />

multiplying x(t) by a sinusoid:<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

If<br />

then<br />

Convolution Properties<br />

L7.3 p709<br />

<strong>Lecture</strong> <strong>11</strong> Slide 9<br />

Let H(ω) be the <strong>Fourier</strong> transform of the unit impulse response h(t), i.e.<br />

Applying the time-convolution property to y(t)=x(t) * h(t), we get:<br />

That is: the <strong>Fourier</strong> <strong>Transform</strong> of the system impulse response is<br />

the system Frequency Response<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

L7.3 p712<br />

<strong>Lecture</strong> <strong>11</strong> Slide <strong>11</strong><br />

Frequency-Shifting Example<br />

Find and sketch the <strong>Fourier</strong> transform of the signal<br />

where xt ( ) = rectt ( / 4).<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

By definition<br />

xt ()cos10t<br />

Proof of the Time Convolution Properties<br />

The inner integral is <strong>Fourier</strong> transform of x 2 (t-τ), therefore we can use<br />

time-shift property and express this as X 2 (ω) e -jωτ .<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

L7.3 p710<br />

<strong>Lecture</strong> <strong>11</strong> Slide 10<br />

L7.3 p712<br />

<strong>Lecture</strong> <strong>11</strong> Slide 12


Frequency Convolution Example<br />

Find the spectrum of xt ()cos10t<br />

where x( t) = rect( t / 4). using<br />

convolution property.<br />

x<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

1/2<br />

Summary of <strong>Fourier</strong> <strong>Transform</strong> Operations (1)<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

*<br />

1/2<br />

<strong>Lecture</strong> <strong>11</strong> Slide 13<br />

L7.3 p715<br />

<strong>Lecture</strong> <strong>11</strong> Slide 15<br />

If<br />

then<br />

and<br />

Time Differentiation Property<br />

Compare with Lec 6/17, Time-differentiation property of Laplace<br />

transform:<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

Summary of <strong>Fourier</strong> <strong>Transform</strong> Operations (2)<br />

PYKC 20-Feb-<strong>11</strong> E2.5 Signals & Linear Systems<br />

L7.3 p714<br />

<strong>Lecture</strong> <strong>11</strong> Slide 14<br />

L7.3 p715<br />

<strong>Lecture</strong> <strong>11</strong> Slide 16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!