07.04.2013 Views

Gamma-Ray Burst Central Engines - Princeton University

Gamma-Ray Burst Central Engines - Princeton University

Gamma-Ray Burst Central Engines - Princeton University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Gamma</strong>-<strong>Ray</strong> <strong>Burst</strong> <strong>Central</strong> <strong>Engines</strong><br />

Brian Metzger<br />

<strong>Princeton</strong> <strong>University</strong> (NASA Einstein Fellow)<br />

In collaboration with<br />

Eliot Quataert (Berkeley)<br />

Todd Thompson (Ohio State)<br />

Tony Piro (Berkeley)<br />

Niccolo Bucciantini (Nordita)<br />

Almudena Arcones (MPIK)<br />

Gabriel Martinez-Pinedo (MPIK)<br />

Dimitrios Giannios (<strong>Princeton</strong>)<br />

Frank N. Bash Symposium<br />

October 19 2009, UT Austin


• <strong>Gamma</strong>-<strong>Ray</strong> <strong>Burst</strong>s:<br />

Constraints on the <strong>Central</strong> Engine<br />

• Long-Duration<br />

– Black Hole (“Collapsar”)<br />

– “Millisecond Magnetar”<br />

• Short-Duration<br />

– Compact Object Mergers<br />

(BH⇔NS, NS⇔NS)<br />

– Accretion-Induced Collapse<br />

(WD ⇒ NS)<br />

Outline<br />

short<br />

long<br />

BATSE <strong>Burst</strong>s (from Nakar 2007)


“When you’ve seen one GRB….<br />

you’ve seen one GRB?”<br />

BATSE <strong>Burst</strong>s<br />

“Short GRBs with<br />

Extended Emission”<br />

GRB 080503<br />

GRB 050709


Relativistic Outflow (Γ >> 1)<br />

~ 10 7 cm<br />

<strong>Central</strong> Engine<br />

GRB Emission: Still Elusive!<br />

GRB / Flaring<br />

1. What is jet’s composition? (kinetic or magnetic?)<br />

Afterglow<br />

2. Where is dissipation occurring? (photosphere? deceleration radius?)<br />

3. How is radiation generated? (synchrotron, inverse-compton, hadronic?)


• Extreme <strong>Burst</strong>s (e.g. 080916C: E iso = 8.8 x 10 54 ergs )<br />

• Distinct GeV Component<br />

– Delayed wrt MeV photons<br />

– Slow Decay ( ~ t -1.5 )<br />

– Both Long and Short <strong>Burst</strong>s (e.g. GRB 090510)<br />

GBM (8 keV - 40 MeV)<br />

LAT (20MeV - 300 GeV)<br />

– Origin: Prompt? Afterglow? (e.g. Kumar & Barniol Duran 09; Ghirlanda+09)<br />

090510<br />

Ghirlanda et al. 2009<br />

090902B (Fermi Collaboration 09)


Constraints on the <strong>Central</strong> Engine<br />

• Cosmological ➙ Huge Energies (~10 49 -10 52 ergs, collimated)<br />

• Energy / Millisecond Variability ➙ Black Hole or Neutron Star<br />

• <strong>Gamma</strong>-<strong>Ray</strong> Spectrum ➙ Ultra-Relativistic (Γ ~ 100-1000, M jet < 10 -5 M )<br />

• Late Flaring (t flare /t GRB ~ 10 2 -10 4 ) ➙ Engine Active Long after GRB<br />

Swift XRT<br />

Nousek+ 2006; O’Brien+ 2006<br />

X-ray Afterglow


Long GRBs = Massive Stellar Death<br />

(Paczynski 98, Galama et al. 98, Bloom et al. 99, Pian et al. 06, Modjaz et al. 06, Woosley & Bloom 06)<br />

HST, Fruchter+ 2006<br />

GRB 030329 ⇔ SN 2003dh (BL Type Ic)<br />

Stanek+ 2003


Courtesy A. MacFadyen


MacFadyen & Woosley (1999)<br />

The Collapsar Model (Woosley 93)<br />

Energy : Accretion / Black Hole Spin<br />

Duration : Stellar Envelope In-Fall<br />

Late Flaring: Fall-Back Accretion?<br />

Bright Supernova: Accretion Disk Winds or<br />

(Extra Nickel) Delayed Black Hole<br />

Zhang, Woosley & Heger (2004)


What Distinguishes GRB Supernovae?<br />

Soderberg et al. 2006, 2007, 2009<br />

“GRB-SNe are not clearly distinguished from ordinary SNe Ibc either by optical<br />

luminosity or photospheric velocities.”


!<br />

Core Collapse with Magnetic Fields & Rotation<br />

(e.g. LeBlanc & Wilson 1970; Bisnovatyi-Kogan 1971; Akiyama et al. 2003)<br />

˙<br />

M IN !<br />

˙<br />

M OUT<br />

Collapsar Requirements:<br />

Angular Momentum<br />

Strong, Ordered Magnetic Field<br />

(e.g. Proga & Begelman 2003; McKinney 2006)<br />

Neutron Star Mass


Millisecond Magnetar Model (Usov 1992; Wheeler+ 2000)<br />

E Rot " 2 #10 52$<br />

P '<br />

& )<br />

% 1 ms(<br />

*2<br />

ergs<br />

Rapid Rotation ⇔ Efficient α-Ω Dynamo ⇔ Strong B-Field at P ~ 1 ms<br />

(Duncan & Thompson 1992; Thompson & Duncan 1993)<br />

!<br />

E "<br />

#10 49$<br />

P '<br />

& )<br />

% 1 ms(<br />

10 15 2<br />

$ '<br />

& ) ergs s<br />

% G(<br />

-1<br />

*4 BDip


Millisecond Magnetar Model (Usov 1992; Wheeler+ 2000)<br />

E Rot " 2 #10 52$<br />

P '<br />

& )<br />

% 1 ms(<br />

*2<br />

ergs<br />

Rapid Rotation ⇔ Efficient α-Ω Dynamo ⇔ Strong B-Field at P ~ 1 ms<br />

(Duncan & Thompson 1992; Thompson & Duncan 1993)<br />

!<br />

Galactic Magnetars exist as<br />

SGRs and AXPs…<br />

E "<br />

#10 49$<br />

P '<br />

& )<br />

% 1 ms(<br />

Magnetar<br />

10 15 2<br />

$ '<br />

& ) ergs s<br />

% G(<br />

-1<br />

*4 BDip<br />

…and can have massive<br />

progenitors<br />

Westerlund I: O7 Stars still present!<br />

Muno +06


Key Insight :<br />

(Thompson, Chang & Quataert 04)<br />

• Neutrinos Heat Proto-NS Atmosphere (e.g. ν e + n ⇒ p + e - )<br />

Burrows, Hayes, & Fryxell 1995<br />

⇒ Drives Thermal Wind Behind SN Shock<br />

(Duncan et al. 1986; Qian & Woosley 1996)<br />

Neutron Stars are Born Hot,<br />

Cool via ν-Emission:<br />

~10 53 ergs in τ KH ~ 10-100 s<br />

!<br />

M ˙ "10 #6 L $<br />

10 51 ergs s -1<br />

% (<br />

' *<br />

& )<br />

5 / 3<br />

% T ( $<br />

' *<br />

& 3 MeV)<br />

10 / 3<br />

M • s #1


Outflow Power (10 51 ergs s -1 )<br />

Proto-Magnetar Wind Evolution<br />

Metzger, Thompson, Quataert 2007, 2008<br />

B = 3x10 15 G, P 0 = 1 ms<br />

M NS = 1.2, 1.4, 2.0 M <br />

(from Pons et al. 1999)<br />

σ ~ Γ<br />

Non-<br />

Relativistic<br />

Relativistic<br />

(GRB)<br />

" ~ # = max ˙ E<br />

M ˙ c 2 $ B2 % 4<br />

L<br />

5/3<br />

T<br />

10/3<br />

&<br />

Ultra-Relativistic<br />

(Normal “Cold” Pulsar)


Collimation : The Tube of Toothpaste Effect<br />

Multi-Wavelength Crab Nebula<br />

PWN<br />

RADIO OPTICAL<br />

X-RAYS<br />

SNR<br />

PULSAR<br />

3C58<br />

(Chandra)


Collimation : The Tube of Toothpaste Effect<br />

Multi-Wavelength Crab Nebula<br />

PWN<br />

RADIO OPTICAL<br />

X-RAYS<br />

Ω<br />

SNR<br />

PULSAR WIND<br />

MAGNETIC FIELD<br />

ELONGATES NEBULA!<br />

(Begelman & Li 1992)<br />

PULSAR<br />

3C58<br />

(Chandra)<br />

Ω


Proto-Magnetar<br />

Jet Formation<br />

Assume<br />

Successful SN (35<br />

M ZAMS Prognenitor)<br />

B = 3 x 10 15 G,<br />

P 0 = 1 ms<br />

Inner BCs from<br />

Proto-NS Wind<br />

Calculations<br />

(Metzger+ 2007)<br />

Collimation via<br />

Inertial<br />

Confinement of<br />

Stellar Envelope<br />

(see also Uzdensky &<br />

MacFadyen 06)<br />

T = 1.6 s<br />

T = 3 s (Zoomed Out)<br />

T = 5 s<br />

Density Pressure Velocity<br />

Bucciantini+ 07,08,09


Next Step:<br />

Light Curves & Spectra<br />

σ ~ Γ<br />

Power (10 51 ergs s -1 )<br />

GRB Diversity: B 0, P 0, M NS<br />

10 16 G<br />

Internal Shocks<br />

P0= 1 ms<br />

3 10 15 G<br />

10 15 G<br />

Magnetic Reconnection<br />

Metzger & Giannios (in prep)<br />

Metzger, Thompson & Quataert 2008


Property<br />

Total Energy<br />

Lorentz Factor<br />

SN Association<br />

Collimation<br />

Duration<br />

Late Flaring<br />

Particle<br />

Composition<br />

Black Hole Vs. Magnetar<br />

Black Hole<br />

0.1 M acc c 2 (huge)<br />

???<br />

Delayed BH or<br />

Accretion Disk Wind<br />

Disks Produce Jets<br />

Stellar In-Fall Time<br />

Late-Time Fallback<br />

Pairs or Baryons?<br />

Proto-Magnetar<br />

E max ~ 3x10 52 ergs<br />

(max rotation rate)<br />

Γ ~ 10 2 - 10 3 for t~10-100 s<br />

Higher L γ ⇔ Higher Γ<br />

Neutron Stars Make<br />

Supernovae<br />

Collimation via Stellar<br />

Confinement (θ jet ~ 5 o )<br />

NS Cooling Phase (~10-300 s)<br />

Magnetar Remains!<br />

Baryons during first ~ 30-100<br />

seconds


Part II: Short-Duration GRB<br />

<strong>Central</strong> <strong>Engines</strong>


GRB050509b<br />

Short GRB Host Galaxies<br />

KECK Bloom+06<br />

SFR < 0.1 M yr-1 Berger +05<br />

z = 0.225<br />

Bloom+ 06<br />

GRB050724<br />

GRB050709<br />

z = 0.258<br />

SFR < 0.03 M yr -1<br />

z = 0.16<br />

SFR = 0.2 M yr -1<br />

HUBBLE Fox+05<br />

Berger+05


GRB050509b<br />

Short GRB Host Galaxies<br />

z = 0.225<br />

KECK Bloom+06<br />

SFR < 0.1 M yr-1 Berger +05<br />

Bloom +06<br />

No Supernova!<br />

• Lower redshift*<br />

(z ~ 0.1-1) GRB050724<br />

• Eiso ~ 10<br />

GRB050724<br />

49-51 ergs*<br />

• Older Progenitor<br />

Population (Consistent<br />

with tracing total stellar<br />

mass; Berger 09)<br />

GRB050709<br />

z = 0.258<br />

SFR < 0.03 M yr -1<br />

z = 0.16<br />

SFR = 0.2 M yr -1<br />

HUBBLE Fox+05<br />

Berger+05


Merging Compact Objects (NS-NS or BH-NS)<br />

Paczynski 1986; Goodman 1986; Eichler+1989; Narayan+ 1992, …<br />

Inspiral “Chirp”<br />

Gravitational Waves<br />

• Target for Advanced LIGO<br />

t = 0.7 ms<br />

t = 3 ms<br />

• Disk left behind w/ mass ~ 10 -3 - 0.1 M & size ~ 10-100 km<br />

• M ˙ ~ 10 ⇒ cooling via neutrinos: (τγ >>1, τν ~ 1 )<br />

"2 "10M• s -1<br />

Shibata & Taniguchi 2006


Accretion-Induced Collapse (AIC)<br />

• “Failed” Type Ia SN<br />

• Collapse of rapidly-rotating WD ⇒<br />

Disk around PNS: M disk ~ 10 -2 - 0.3 M <br />

• Evolution similar to NS merger disks<br />

(Metzger+ 08,09)<br />

Circinus X-1<br />

(Chandra)<br />

Neutron Star Circinus X-1<br />

Γ > 15 ! (Fender et al. 2004)


Similar Systems - Distinct Origins<br />

NS-NS / BH-NS<br />

Mergers<br />

Accretion-<br />

Induced<br />

Collapse<br />

BH<br />

M ~ 0.01-0.1 M <br />

R ~ 100 km<br />

NS<br />

consistent with short<br />

GRB durations


Short GRBs with Extended X-<strong>Ray</strong> Emission<br />

GRB050709<br />

GRB080503<br />

S EE /S GRB ~ 30<br />

Perley et al. 2008<br />

~25% of Swift <strong>Burst</strong>s (may be 2 classes)<br />

Energy 1-30 x Prompt Spike<br />

BATSE Examples (Norris & Bonnell 2006)


Local Disk Mass πΣr 2 (M )<br />

Evolution of the Remnant Disk<br />

Metzger, Piro, Quataert 2008, 2009 (see also Beloborodov 2009; Lee et al. 2009)<br />

1-D Time-Dependent Models<br />

(α viscosity; realistic ν-cooling)<br />

J = (GM • R) 1/ 2 M D


• α-Particle Formation<br />

Late-Time Outflows<br />

At t ~ 0.1-1 seconds: R ~ 500 km, M ~ 0.3 Minitial, initial,<br />

T ~ 1 MeV<br />

EBIND BIND ~ GM BH mn/2R /2R ~ 3 MeV nucleon<br />

ΔENUC NUC ~ 7 MeV nucleon -1<br />

nucleon -1<br />

• Thick Disks Marginally Bound<br />

(Narayan & Yi 94; Blandford & Begelman 99)<br />

BH<br />

} ⇒<br />

Powerful Winds<br />

Blow Apart<br />

Disk<br />

~20-40% of the Initial Disk is Ejected Back into Space!


Late-Time Activity from Fall-Back Accretion?


Late-Time Activity from Fall-Back Accretion?


-Process Nucleosynthesis in NS Merger Ejecta<br />

+<br />

a<br />

(Lattimer & Schramm 1974; Eichler et al. 1989; Metzger et al. 2009)<br />

!<br />

!<br />

VS.<br />

˙<br />

Q r" process ~ 1" 3 MeV/nuc/s<br />

E B ~ GM BH<br />

over t heat ~ t β ~ 1 s<br />

2a ~ 1 MeV/nuc t # & fall"back<br />

% (<br />

$ 1 s '<br />

"2 / 3


The Effects of r-Process Heating on Fall-back Accretion<br />

Metzger, Arcones, Quataert, Martinez-Pinedo 2009<br />

Either: Complete Suppression of Fall-Back after t ~ 1 sec<br />

OR “Gap” of Δt ~ seconds opened<br />

???


???


Magnetar Spin-Down<br />

Metzger, Quataert & Thompson 08<br />

Following:<br />

Accretion-Induced<br />

Collapse<br />

NS-NS Merger with<br />

long-lived NS remnant<br />

???<br />

Internal Shock Emission<br />

P0= 1 ms<br />

10 16 G<br />

3 10 15 G<br />

GRB060614 Overlaid<br />

10 15 G


Long-Duration GRBs:<br />

Summary<br />

• Black Holes and Proto-Magnetars both remain viable models<br />

• Magnetar model quantitatively explains (1) energy, (2) time<br />

scale, (3) mass-loading (Lorentz factor), (4) collimation<br />

• Renewed Challenge: Relate dE/dt, Γ, σ ⇒ γ-<strong>Ray</strong>s<br />

Short-Duration GRBs:<br />

• Swift Revolution: Afterglows and Host Galaxies<br />

• Merging Compact Objects Remains Promising Model<br />

– Accretion Disk Explodes at Late Times<br />

⇒ 100 second X-<strong>Ray</strong> Emission Remains a Major Problem<br />

• AIC: Promising Alternative Model

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!