07.04.2013 Views

Chapter 5

Chapter 5

Chapter 5

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ch 5.1 : More on verifying identities<br />

In this section, we prove (more) trig. identities.<br />

Theorem (Pythagorean identities)<br />

sin 2 t + cos 2 t = 1<br />

tan 2 t + 1 = sec 2 t<br />

1 + cot 2 t = csc 2 t<br />

Proof. Let (x, y) be a point on the Unit circle.


Verifying symmetry of sine, cosine, and tangent functions<br />

Theorem (Identities due to symmetry)<br />

sin(−t) = − sin(t)<br />

cos(−t) = cos(t)<br />

tan(−t) = − tan(t)<br />

Proof. Let (x, y) be a point on the Unit circle.


Example 1<br />

Prove that<br />

(1 − tan t) 2 = sec 2 (t) + 2 tan(−t)


Example 2<br />

Prove that<br />

sin 2 t · tan 2 t = tan 2 t − sin 2 t


Example 3<br />

Prove that<br />

cos t<br />

1 + sec t<br />

= 1 − cos t<br />

tan 2 t


Example 4<br />

Prove that<br />

sec x<br />

sin x<br />

sin x<br />

−<br />

sec x = tan2 x + cos2 x<br />

tan x


Class Exercises<br />

Verify the following identities.<br />

1−cos x sin x<br />

1. sin x = 1+cos x<br />

1 2. cos2 1 + x sin2 x = csc2 x sec2 x<br />

3.<br />

= csc x<br />

1+cos(−x)<br />

sin x−cos x sin(−x)


5.2: The Sum and Difference Identities<br />

Theorem<br />

sin(α ± β) = sin α cos β ± cos α sin β<br />

Note: ± ⇒ ±<br />

Examples:<br />

◮ sin( π<br />

4<br />

◮ sin( π<br />

4<br />

◮ sin( 5π<br />

12<br />

+ π<br />

6<br />

− π<br />

6<br />

) =<br />

◮ sin(− π<br />

12<br />

) = sin( π<br />

4<br />

) =<br />

) =<br />

) cos( π<br />

6<br />

) + cos( π<br />

4<br />

π ) sin( 6 ) =


5.2: The Sum and Difference Identities<br />

Theorem<br />

cos(α ± β) = cos α cos β ∓ sin α sin β<br />

Note: ± ⇒ ∓<br />

Examples:<br />

◮ cos( π<br />

4<br />

◮ cos( π<br />

4<br />

◮ cos( 5π<br />

12<br />

◮ cos( π<br />

12<br />

+ π<br />

6<br />

− π<br />

6<br />

) =<br />

) =<br />

) = cos( π<br />

4<br />

) =<br />

) cos( π<br />

6<br />

) − sin( π<br />

4<br />

π ) sin( 6 ) =


Cofunction identities<br />

Theorem (The Cofunction Identities)<br />

cos( π<br />

− t) = sin t, sin(π − t) = cos t<br />

2 2<br />

Example) Using the cofunction identities, verify that<br />

cos( π π<br />

6 ) = sin( 3 ).<br />

Proof(s) of theorem.


Sum and difference identities for Tangent<br />

Theorem<br />

Example) tan( π<br />

12 ) =<br />

Proof of theorem:<br />

tan(α ± β) =<br />

tan α ± tan β<br />

1 ∓ tan α tan β


Example 3<br />

Given sin α = 5<br />

13 with the terminal side in the 1st quadrant, and<br />

tan β = − 24<br />

7 with the terminal side in the 2nd quadrant, compute<br />

the value of cos(α + β).


Example 4<br />

Use the sum or difference identity for tangent to find the exact<br />

value of tan 11π<br />

12 .


Example 6<br />

Prove that<br />

sin(α + β) sin(α − β) = sin 2 α − sin 2 β


Class Exercise<br />

Given α and β are acute angles, with cos α = 8<br />

find<br />

1. sin(α + β)<br />

2. cos(α − β)<br />

3. tan(α + β)<br />

17<br />

and sec β = 25<br />

7 ,


Ch 5.3 : The Double-Angle and Half-Angle Identities<br />

Theorem (The Double-Angle Identities)<br />

◮ cos(2α) = cos 2 α − sin 2 α = 1 − 2 sin 2 α = 2 cos 2 α − 1<br />

◮ sin(2α) = 2 sin α cos α<br />

◮ tan(2α) =<br />

2 tan α<br />

1−tan 2 α<br />

Let’s verify these identities.


Example 2 : Combining sum and double-angle identities<br />

Prove that<br />

Proof:<br />

cos 3θ = 4 cos 3 θ − 3 cos θ


Example 3 : Using double-angle identity<br />

Find the exact value of sin π π<br />

8 cos 8 .


The power reduction identities<br />

Theorem<br />

cos 2 α = 1+cos(2α)<br />

2 , sin 2 α = 1−cos(2α)<br />

2 , tan 2 α = 1−cos(2α)<br />

1+cos(2α)<br />

Proof.


Example 4<br />

Prove that<br />

8 sin 4 x = 3 − 4 cos(2x) + cos(4x)


Half-Angle Identities<br />

Theorem<br />

◮ cos( u<br />

2<br />

◮ sin( u<br />

2<br />

<br />

1+cos u<br />

) = ±<br />

2<br />

<br />

1−cos u<br />

) = ± 2<br />

◮ tan( u<br />

<br />

1−cos u<br />

2 ) = ± 1+cos u<br />

Proof.<br />

= 1−cos u<br />

sin u<br />

= sin u<br />

1+cos u


Example 5<br />

Use the half-angle identities to find exact values for a) sin π<br />

12 and<br />

b) tan π<br />

12 .


Example 6<br />

For cos θ = − 7<br />

25<br />

sin θ<br />

2<br />

and b) cos θ<br />

2 .<br />

, and θ in the 3rd quadrant, find exact values of a)


Ch 5.4 : The Product-to-Sum Identities<br />

Proof.<br />

cos α cos β = 1<br />

[cos(α + β) + cos(α − β)]<br />

2<br />

sin α sin β = 1<br />

[cos(α − β) − cos(α + β)]<br />

2


The Product-to-Sum Identities<br />

Proof.<br />

sin α cos β = 1<br />

[sin(α + β) + sin(α − β)]<br />

2<br />

cos α sin β = 1<br />

[sin(α + β) − sin(α − β)]<br />

2


Example<br />

Rewrite the following product as a sum using the product-to-sum<br />

identities.<br />

2 sin(3x + y) cos(3x − y)


The Sum-to-Product Identities (for cosines)<br />

Proof.<br />

<br />

u + v u − v<br />

cos u + cos v = 2 cos cos<br />

2<br />

2<br />

<br />

u + v u − v<br />

cos u − cos v = −2 sin sin<br />

2<br />

2


The Sum-to-Product Identities (for sines)<br />

Proof.<br />

<br />

u + v u − v<br />

sin u + sin v = 2 sin cos<br />

2<br />

2<br />

<br />

u + v u − v<br />

sin u − sin v = 2 cos sin<br />

2<br />

2


Example<br />

Write the sum as a product using a sum-to-product identity.<br />

sin(14k) + sin(41k)


Class Exercise<br />

Verify the following identity.<br />

<br />

sin(m) + sin(n) m + n<br />

= tan<br />

cos(m) + cos(n) 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!