09.04.2013 Views

Density and species diversity of trees in four - Makerere University

Density and species diversity of trees in four - Makerere University

Density and species diversity of trees in four - Makerere University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Diversity <strong>and</strong> Distributions, (Diversity Distrib.) (2004) 10, 303–312<br />

Blackwell Publish<strong>in</strong>g, Ltd.<br />

BIODIVERSITY<br />

RESEARCH<br />

*Department <strong>of</strong> Forest Biology <strong>and</strong> Ecosystems<br />

Management, <strong>Makerere</strong> <strong>University</strong>, PO Box<br />

7062, Kampala, Ug<strong>and</strong>a, E-mail:<br />

eilu@forest.mak.ac.ug; †M<strong>in</strong>istry <strong>of</strong> Water,<br />

L<strong>and</strong>s & Environment, PO Box 1752, Kampala,<br />

Ug<strong>and</strong>a; <strong>and</strong> ‡Department <strong>of</strong> Botany, <strong>Makerere</strong><br />

<strong>University</strong>, PO Box 7062, Kampala, Ug<strong>and</strong>a<br />

*Correspondence: Gerald Eilu, Department <strong>of</strong><br />

Forest Biology <strong>and</strong> Ecosystems Management,<br />

<strong>Makerere</strong> <strong>University</strong>, PO Box 7062, Kampala,<br />

Ug<strong>and</strong>a. E-mail: eilu@forest.mak.ac.ug<br />

INTRODUCTION<br />

ABSTRACT<br />

The distribution <strong>of</strong> <strong>trees</strong> <strong>in</strong> the Albert<strong>in</strong>e rift forests <strong>of</strong> western<br />

Ug<strong>and</strong>a is relatively well documented by Polhill (1952) <strong>in</strong> the<br />

Flora <strong>of</strong> Tropical East Africa (FTEA). The forest department<br />

(Howard et al., 1996) <strong>in</strong>ventoried woody plants <strong>in</strong> 60 Ug<strong>and</strong>an<br />

forest reserves <strong>in</strong>clud<strong>in</strong>g forests <strong>of</strong> the Albert<strong>in</strong>e rift but the<br />

relationships between environmental factors <strong>and</strong> tree <strong>species</strong><br />

distribution was not analysed. The major environmental factors<br />

<strong>in</strong>fluenc<strong>in</strong>g tree <strong>species</strong> <strong>diversity</strong> <strong>and</strong> distribution rema<strong>in</strong>ed<br />

unclear. Hamilton (1982, 1989) postulated that the Bw<strong>in</strong>di<br />

Impenetrable forest was richer <strong>in</strong> tree <strong>species</strong> than the other<br />

forests <strong>of</strong> western Ug<strong>and</strong>a because <strong>of</strong> proximity to the Pleistocene<br />

refuge. Other studies from elsewhere (e.g. Nekola, 1999) showed<br />

that colonization history <strong>in</strong>fluenced <strong>species</strong> <strong>diversity</strong> <strong>and</strong> composition.<br />

Studies conducted <strong>in</strong> other parts <strong>of</strong> the tropics have<br />

assessed the relation between tree <strong>species</strong> distribution, <strong>diversity</strong><br />

<strong>and</strong> environmental factors. For example, Vázquez & Givnish<br />

(1998), Lovett et al. (2001) <strong>and</strong> Lieberman et al. (1996) noted<br />

that forest composition varied with altitude whereby <strong>species</strong><br />

numbers generally decl<strong>in</strong>ed with elevation. Tuomisto et al.,<br />

1994), Clark et al. (1999), <strong>and</strong> Stevens & Carson (1999) recorded<br />

associations between plant <strong>species</strong> <strong>and</strong> soil type. Other studies<br />

(Hubbell et al., 1999; Brokaw & Bus<strong>in</strong>g, 2000; De Carvalho et al.,<br />

2000) assessed the relationship between tree <strong>diversity</strong> <strong>and</strong> light-<br />

<strong>Density</strong> <strong>and</strong> <strong>species</strong> <strong>diversity</strong> <strong>of</strong> <strong>trees</strong> <strong>in</strong><br />

<strong>four</strong> tropical forests <strong>of</strong> the Albert<strong>in</strong>e rift,<br />

western Ug<strong>and</strong>a<br />

Gerald Eilu*, David L. N. Hafashimana† <strong>and</strong> John M. Kasenene‡<br />

We assessed tree <strong>species</strong> density <strong>and</strong> <strong>diversity</strong> <strong>in</strong> 12 1-ha plots <strong>in</strong> <strong>four</strong> forests <strong>of</strong> the<br />

Albert<strong>in</strong>e rift, western Ug<strong>and</strong>a. There were 5747 <strong>trees</strong> <strong>of</strong> diameter ≥ 10 cm <strong>in</strong> 53<br />

families, 159 genera, <strong>and</strong> 212 <strong>species</strong>. <strong>Density</strong> ranged between 344 <strong>and</strong> 557 <strong>trees</strong> ha −1<br />

(average 479 <strong>trees</strong> ha −1 ). Tree <strong>species</strong> <strong>diversity</strong> was highest <strong>in</strong> the Bw<strong>in</strong>di <strong>and</strong><br />

Budongo forests. The Euphorbiaceae family was the most <strong>species</strong> rich (25 <strong>species</strong>)<br />

followed by Rubiaceae <strong>and</strong> Meliaceae with 16 <strong>species</strong> each. Canonical Correspondence<br />

Analysis (CCA) showed that major gradients <strong>in</strong> environmental variables<br />

<strong>in</strong>fluenced tree <strong>species</strong> distribution. Sample scores on ord<strong>in</strong>ation axes 1 <strong>and</strong> 2 were<br />

strongly correlated with pH <strong>and</strong> altitude, respectively. Correlated with ra<strong>in</strong>fall <strong>and</strong><br />

other soil factors, pH <strong>and</strong> altitude are presumed to be among the most important <strong>in</strong><br />

<strong>in</strong>fluenc<strong>in</strong>g the distribution <strong>of</strong> tree <strong>species</strong> <strong>in</strong> the Albert<strong>in</strong>e rift forests. Strategies that<br />

take account <strong>of</strong> variations <strong>in</strong> pH <strong>and</strong> elevation are required to conserve tree <strong>species</strong><br />

<strong>in</strong> forests <strong>of</strong> the Albert<strong>in</strong>e rift.<br />

Keywords<br />

Environmental factors, ord<strong>in</strong>ation, soils, <strong>species</strong> distribution, tree <strong>in</strong>ventory.<br />

gap disturbances or canopy gaps. Tuomisto et al. (1995) studied<br />

the relationship between present day habitat heterogeneity <strong>and</strong><br />

<strong>species</strong> distributions <strong>in</strong> tropical forests. Pitman et al. (1999,<br />

2001) analysed the distribution patterns <strong>of</strong> <strong>trees</strong> <strong>in</strong> the Amazon<br />

show<strong>in</strong>g that the majority was geographically widespread <strong>and</strong><br />

occurred at low densities. Mechanisms <strong>of</strong> <strong>species</strong> coexistence <strong>in</strong><br />

the tropical forests have been reviewed by Wright (2002), but<br />

data from African forests were hardly <strong>in</strong>cluded <strong>in</strong> the analyses.<br />

African forests <strong>of</strong> the Albert<strong>in</strong>e rift have <strong>in</strong> the past, received little<br />

attention but the area is now becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly important<br />

for the conservation <strong>of</strong> fauna <strong>and</strong> flora (Plumptre et al., 2003).<br />

The Albert<strong>in</strong>e rift is now recognized as one <strong>of</strong> the most <strong>species</strong>rich<br />

regions <strong>in</strong> Africa for flora <strong>and</strong> fauna, some <strong>of</strong> them endangered.<br />

The study sites are important for primate conservation<br />

<strong>and</strong> conta<strong>in</strong> between them n<strong>in</strong>e primate <strong>species</strong> (Struhsaker,<br />

1981).<br />

In this paper, we analyse tree <strong>species</strong> distribution <strong>in</strong> the Albert<strong>in</strong>e<br />

rift forests <strong>in</strong> relation to soil characteristics (physical <strong>and</strong><br />

chemical) <strong>and</strong> other environmental factors such as canopy<br />

density, slope, ra<strong>in</strong>fall <strong>and</strong> altitude. The aim is to assess the relative<br />

importance <strong>of</strong> the regional variables (e.g. ra<strong>in</strong>fall <strong>and</strong> altitude)<br />

<strong>and</strong> local variables (e.g. soil characteristics, slope <strong>and</strong> canopy<br />

cover). Studies such as Hamilton (1982, 1989) attributed the<br />

patterns <strong>of</strong> tree <strong>species</strong> <strong>diversity</strong> <strong>in</strong> forests <strong>of</strong> the Albert<strong>in</strong>e rift<br />

ma<strong>in</strong>ly to high ra<strong>in</strong>fall, <strong>and</strong> proximity to Pleistocene refugia. The<br />

© 2004 Blackwell Publish<strong>in</strong>g Ltd www.blackwellpublish<strong>in</strong>g.com/ddi 303


G. Eilu et al.<br />

f<strong>in</strong>d<strong>in</strong>gs will be used <strong>in</strong> formulat<strong>in</strong>g scientifically sound management<br />

<strong>and</strong> conservation strategies for the forest ecosystems <strong>in</strong> the<br />

Albert<strong>in</strong>e rift.<br />

STUDY SITE<br />

The study site is the Albert<strong>in</strong>e rift that stretches from the northern<br />

tip <strong>of</strong> Lake Albert to the southern tip <strong>of</strong> Lake Tanganyika.<br />

This encompasses the natural habitat with<strong>in</strong> about 100 km <strong>of</strong> the<br />

border <strong>of</strong> the Democratic Republic <strong>of</strong> Congo (Plumptre et al.,<br />

2003). The <strong>four</strong> study forests are located approximately along<br />

the same longitude, form<strong>in</strong>g a discont<strong>in</strong>uous belt between 1°8′<br />

South (Bw<strong>in</strong>di Impenetrable National Park, Bw<strong>in</strong>di) through<br />

Kasyoha-Kitomi Forest Reserve (Kasyoha) <strong>and</strong> Kibale National<br />

Park (Kibale) to 1°55′ North (Budongo Forest reserve, Budongo).<br />

The forests cover 331, 399, 760 <strong>and</strong> 793 km 2 , respectively. The<br />

study plots lie between 1000 <strong>and</strong> 1530 m above sea level <strong>in</strong><br />

Budongo <strong>and</strong> Bw<strong>in</strong>di, respectively. The climate is tropical with<br />

two ra<strong>in</strong>fall peaks from March to May <strong>and</strong> September to November.<br />

The mean temperature is between a m<strong>in</strong>imum <strong>of</strong> 7 °C <strong>in</strong><br />

Bw<strong>in</strong>di <strong>and</strong> a maximum <strong>of</strong> 29 °C <strong>in</strong> Budongo. The annual ra<strong>in</strong>fall<br />

ranges between 1100 mm <strong>in</strong> Kasyoha, 1900 mm <strong>in</strong> Bw<strong>in</strong>di.<br />

The ra<strong>in</strong>fall is bimodal with two dist<strong>in</strong>ct ra<strong>in</strong>y seasons. The driest<br />

months <strong>in</strong> Bw<strong>in</strong>di are December–January <strong>and</strong> June–July while<br />

the wet seasons are February to May <strong>and</strong> August to November<br />

(Leggat & Osmaston, 1961). Dry seasons are shorter <strong>and</strong> wet seasons<br />

longer <strong>in</strong> Bw<strong>in</strong>di than <strong>in</strong> Kasyoha where the driest months<br />

are December to March <strong>and</strong> June to August, <strong>and</strong> the wet seasons<br />

are April–May <strong>and</strong> September to November. Further north <strong>in</strong><br />

Kibale, the wet seasons occur <strong>in</strong> March to May <strong>and</strong> September to<br />

November, while the dry seasons occur <strong>in</strong> December to February<br />

<strong>and</strong> June to August (Struhsaker, 1997). In Budongo, most ra<strong>in</strong><br />

falls <strong>in</strong> September to November <strong>and</strong> March to May. January<br />

to March is the driest period <strong>in</strong> Budongo (Sheil, 1996). The<br />

vegetation at the sample sites <strong>in</strong> Bw<strong>in</strong>di <strong>and</strong> Kasyoha is Par<strong>in</strong>ari<br />

mixed forest (Howard, 1991). Study sites <strong>in</strong> Kibale are located<br />

<strong>in</strong> Par<strong>in</strong>ari-dom<strong>in</strong>ated forest <strong>in</strong> the north, Diospyros-Makharmia-<br />

Strombosia-Newtonia mixed forest <strong>in</strong> the central block <strong>and</strong><br />

Pterygota or Cynometra forest <strong>in</strong> the south (Langdale-Brown<br />

et al., 1964). The sample sites <strong>in</strong> Budongo consist <strong>of</strong> Celtis-<br />

Khaya-Cynometra mixed forest (Eggel<strong>in</strong>g, 1947; Howard, 1991).<br />

In Bw<strong>in</strong>di forest, selective timber harvest<strong>in</strong>g covered most<br />

parts except the nature reserves. Kasyoha forest is one <strong>of</strong> the least<br />

disturbed <strong>of</strong> Ug<strong>and</strong>a’s forest reserves where over 80% are considered<br />

<strong>in</strong>tact (Howard, 1991). Selective timber harvest<strong>in</strong>g <strong>in</strong> Kibale<br />

forest covered about 17% <strong>of</strong> the forest while 16% was degraded<br />

by agricultural encroachment. The status <strong>of</strong> 67% <strong>of</strong> the forested<br />

portion <strong>of</strong> Kibale is not well known, but most <strong>of</strong> the forest sampled<br />

is considered relatively <strong>in</strong>tact. In Budongo, about 22% <strong>of</strong> the<br />

forest was affected by selective timber harvest<strong>in</strong>g. The rema<strong>in</strong><strong>in</strong>g<br />

88% was subjected to arboricide treatment to remove ‘undesirable’<br />

tree <strong>species</strong>. Sample plots for the present study were established<br />

<strong>in</strong> the nature reserves that are least disturbed. Although<br />

the status <strong>of</strong> the forests could have changed over the past<br />

10 years, the present study focused on sites considered to be relatively<br />

undisturbed <strong>and</strong> generally away from the forest edges.<br />

METHODS<br />

Data collection<br />

Three plots <strong>of</strong> 20 × 500 m (1 ha) were established <strong>in</strong> subjectively<br />

selected sites <strong>of</strong> relatively <strong>in</strong>tact forest <strong>in</strong> each study site. The plots<br />

are referred to, <strong>in</strong> subsequent text, as Bw<strong>in</strong>di (Bw) 1–3; Kasyoha<br />

(Kk) 1–3; Kibale (Ki) 1–3; <strong>and</strong> Budongo (Bu) 1–3. Assessments<br />

were carried out systematically <strong>in</strong> 20 × 50 m (0.1 ha) subplots.<br />

Data on Overstorey density, altitude, slope <strong>and</strong> annual precipitation<br />

were recorded. Soil samples were collected from 10-cm deep<br />

pits then analysed for pH, particle size, organic matter (Om) <strong>and</strong><br />

Om loss on Ignition (I), N, total P, available P, <strong>and</strong> the exchangeable<br />

bases (Al, K, Na, Ca <strong>and</strong> Mg).<br />

Trees <strong>of</strong> diameter at breast height (d.b.h., 1.3 m) ≥ 10 cm were<br />

enumerated, measured for d.b.h., <strong>and</strong> identified based on the<br />

FTEA (Polhill, 1952). Individuals that could not be identified<br />

were <strong>in</strong>cluded <strong>in</strong> the samples under one family named ‘unknown’.<br />

A representative voucher was collected from each <strong>species</strong> <strong>in</strong><br />

each plot <strong>and</strong> from each site for identification <strong>and</strong> for deposition<br />

<strong>in</strong> herbaria at the Royal Botanic Gardens (Kew), Botanical<br />

Museum (<strong>University</strong> <strong>of</strong> Copenhagen) <strong>and</strong> <strong>Makerere</strong> <strong>University</strong><br />

Herbarium.<br />

Data analysis<br />

The Margalef’s (D Mg), Fisher’s alpha <strong>and</strong> Shannon’s (H′) <strong>diversity</strong><br />

<strong>in</strong>dices (Magurran, 1988), <strong>and</strong> Evenness or equitability (E),<br />

Pielou (1969), were calculated to determ<strong>in</strong>e tree <strong>species</strong> <strong>diversity</strong><br />

<strong>in</strong> the 1 ha plots. The first-order Jackknife estimator <strong>of</strong> <strong>species</strong><br />

richness, Jack1 (Burnham & Overton, 1979; Heltshe & Forrester,<br />

1983; Palmer, 1991) was calculated based on 0.1-ha subunits <strong>of</strong><br />

the 1-ha plots to provide estimates for the entire plots. Total<br />

<strong>species</strong> richness was also estimated us<strong>in</strong>g the Chao 1 (or S1*)<br />

estimate (Colwell & Codd<strong>in</strong>gton, 1994).<br />

Environmental variables were analysed based on 0.1-ha<br />

subunits <strong>of</strong> the plots. Variables measured on different scales were<br />

ranged to enable direct comparison. Rang<strong>in</strong>g transforms variables<br />

onto a 0–1 scale without alter<strong>in</strong>g the relative positions <strong>of</strong><br />

observations. The ranged variables were log transformed prior to<br />

statistical analyses (Økl<strong>and</strong>, 1990).<br />

Canonical Correspondence Analysis (CCA) us<strong>in</strong>g the computer<br />

program canoco version 4.0 (Ter Braak & Smilauer, 1998)<br />

was used to explore patterns <strong>of</strong> variation <strong>in</strong> tree <strong>species</strong> distribution<br />

expla<strong>in</strong>ed by the environmental variables recorded. CCA<br />

comb<strong>in</strong>es aspects <strong>of</strong> direct gradient analysis (regression) <strong>and</strong><br />

<strong>in</strong>direct gradient analysis based on a unimodal response model<br />

(ord<strong>in</strong>ation). Global permutation tests were used to test significance<br />

<strong>of</strong> the relation between tree <strong>species</strong> <strong>and</strong> the environmental variables.<br />

Automatic forward selection <strong>of</strong> environmental variables was carried<br />

out by canoco to identify the most important variables. The<br />

variables were selected <strong>in</strong> order <strong>of</strong> the variance each expla<strong>in</strong>ed<br />

without consider<strong>in</strong>g other environmental variables (marg<strong>in</strong>al<br />

effects, λ 1), <strong>and</strong> <strong>in</strong> order <strong>of</strong> their <strong>in</strong>clusion <strong>in</strong> the model after<br />

successively select<strong>in</strong>g <strong>of</strong> the most important variables (conditional<br />

effects, λ A). This analysis shows the additional variance<br />

304 Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd


Table 1 Tree <strong>species</strong> numbers <strong>and</strong> <strong>diversity</strong> <strong>in</strong> 12 1-ha (20 × 500 m) plots <strong>of</strong> forests <strong>of</strong> the Albert<strong>in</strong>e rift<br />

each variable expla<strong>in</strong>ed, significance <strong>of</strong> the variable, the P-value <strong>and</strong><br />

the test statistic (F-value) at <strong>in</strong>clusion <strong>in</strong> the model. In the CCA<br />

analysis, environmental variables with large variance <strong>in</strong>flation<br />

factors (VIFs) <strong>of</strong> > 20 namely calcium (Ca), magnesium (Mg), s<strong>and</strong><br />

<strong>and</strong> clay were omitted <strong>and</strong> the result<strong>in</strong>g VIFs dropped to < 13<br />

avoid<strong>in</strong>g the multicoll<strong>in</strong>earity problem ( Jongman et al., 1995).<br />

Omitted variables were perfectly correlated to other variables,<br />

had no unique contribution to the regression equation, <strong>and</strong> if<br />

reta<strong>in</strong>ed, the canonical coefficient would not merit <strong>in</strong>terpretation.<br />

Detrended Correspondence Analysis (DCA) was performed on<br />

the same data set. Detrend<strong>in</strong>g was by segments (Hill & Gauch,<br />

1980). The total number <strong>of</strong> active samples was 120 <strong>and</strong> total<br />

number <strong>of</strong> <strong>species</strong> was 212.<br />

RESULTS<br />

Tree <strong>species</strong> richness <strong>and</strong> <strong>diversity</strong><br />

The highest density <strong>of</strong> <strong>trees</strong> <strong>in</strong> the 1-ha plots was recorded <strong>in</strong><br />

Budongo 2 while the lowest was from Bw<strong>in</strong>di 3 (Table 1). Average<br />

stem density for the three plots <strong>in</strong> each forest ranged between<br />

424 <strong>and</strong> 522 <strong>trees</strong> −1 recorded <strong>in</strong> Bw<strong>in</strong>di <strong>and</strong> Budongo, respectively.<br />

Overall average stem density for 12 plots was 479 ha −1 .<br />

Basal area ranged between 14.05 <strong>and</strong> 45.19 m 2 ha −1 (average<br />

34.03 m 2 ). The number <strong>of</strong> <strong>species</strong> ranged between 30 <strong>and</strong> 67 ha −1 .<br />

A similar trend was obta<strong>in</strong>ed with the Jack 1 <strong>and</strong> Chao 1 estimates<br />

<strong>of</strong> <strong>species</strong> richness. Bw<strong>in</strong>di 2 was the most diverse plot<br />

while Budongo 3 (Cynometra forest) was the least. Evenness was<br />

highest <strong>in</strong> Kasyoha 3 followed by Bw<strong>in</strong>di 2. When plot data were<br />

pooled for each forest, Bw<strong>in</strong>di <strong>and</strong> Kibale had the highest<br />

numbers <strong>of</strong> families, genera, <strong>and</strong> <strong>species</strong> (Table 2). Budongo <strong>and</strong><br />

Kibale had the highest numbers <strong>of</strong> <strong>in</strong>dividuals.<br />

In total, we recorded 5747 <strong>in</strong>dividual <strong>trees</strong> compris<strong>in</strong>g 212<br />

<strong>species</strong> <strong>in</strong> 53 families <strong>and</strong> 159 genera from 12 ha. Of these, 22<br />

families were represented by one <strong>species</strong> each, <strong>and</strong> the rema<strong>in</strong>der<br />

was represented by 2–25 <strong>species</strong> each (Table 3). The family<br />

Trees <strong>in</strong> Ug<strong>and</strong>an tropical forests<br />

Plot <strong>Density</strong> Basal area (m 2 ) Species Jack 1 Chao 1 H′ D Mg Fisher’s alpha E<br />

Bw1 480 39.32 56 73 69 3.289 8.91 16.4 0.817<br />

Bw2 449 40.49 66 89 82 3.555* 10.64* 21.3* 0.852*<br />

Bw3 344* 35.83 43 60 60 2.935 7.19 13.0 0.780<br />

Kk1 485 14.50* 53 69 65 3.084 8.41 15.2 0.781<br />

Kk2 448 31.30 47 63 64 3.145 7.54 13.2 0.817<br />

Kk3 446 31.48 51 65 59 3.184 8.20 14.8 0.853*<br />

Ki1 550 31.57 52 74 84 2.686 8.08 14.1 0.680<br />

Ki2 539 39.28 41 56 56 2.749 6.36 10.3 0.740<br />

Ki3 439 25.26 45 64 88 2.826 7.23 12.6 0.742<br />

Bu1 535 45.19* 67* 94* 109 2.811 10.51 20.2 0.673<br />

Bu2 557* 41.09 52 77 117* 2.552 8.07 14.0 0.649<br />

Bu3 475 33.03 30* 41* 43* 1.729* 4.71* 7.1* 0.508<br />

* Indicate the highest <strong>and</strong> lowest values; Jack 1 <strong>and</strong> Chao 1 are estimators <strong>of</strong> total <strong>species</strong> richness; H′, D Mg <strong>and</strong> Fisher’s alpha are the Shannon’s, Margalef’s<br />

<strong>and</strong> Fisher’s alpha <strong>diversity</strong> <strong>in</strong>dices; E represents evenness.<br />

Table 2 Summary <strong>of</strong> taxa <strong>of</strong> <strong>trees</strong> <strong>in</strong> <strong>four</strong> forests <strong>of</strong> the Albert<strong>in</strong>e<br />

rift. The numbers (ha −1 ) are averages computed from data <strong>of</strong> 3 ha<br />

sampled from each forest<br />

Forest Bw<strong>in</strong>di Kasyoha Kibale Budongo<br />

Number <strong>of</strong> <strong>trees</strong> 424 460 509 522<br />

Number <strong>of</strong> families 14 11 12 11<br />

Number <strong>of</strong> genera 28 22 28 27<br />

Number <strong>of</strong> <strong>species</strong> 33 28 32 32<br />

Euphorbiaceae had the highest number <strong>of</strong> <strong>species</strong> followed by<br />

Rubiaceae, Meliaceae, Fabaceae <strong>and</strong> Sapotaceae.<br />

Out <strong>of</strong> the 212 <strong>species</strong>, 16 <strong>species</strong> (7.5%) occurred <strong>in</strong> <strong>four</strong> forests,<br />

29 (13.7%) <strong>in</strong> three forests, 54 (25.5%) <strong>in</strong> two forests <strong>and</strong><br />

the largest proportion <strong>of</strong> 113 (53.3%) <strong>in</strong> one <strong>of</strong> the forests. Of<br />

the <strong>species</strong> occurr<strong>in</strong>g <strong>in</strong> only one forest, 38 were recorded from<br />

Budongo, 31 from Kibale, 27 from Bw<strong>in</strong>di <strong>and</strong> 17 from Kasyoha.<br />

Seventeen <strong>of</strong> the 46 <strong>species</strong> on the IUCN Red list for Ug<strong>and</strong>a<br />

were recorded. Three <strong>of</strong> the <strong>species</strong> (Lovoa swynnertonii, Brazzeia<br />

longipedicellata <strong>and</strong> Dialium excelsum) are endangered, seven<br />

are vulnerable while <strong>four</strong> are listed as lower risk, <strong>and</strong> two <strong>of</strong> them<br />

(Irv<strong>in</strong>gia gabonensis <strong>and</strong> Milicia excelsa) are near threatened.<br />

Factors <strong>in</strong>fluenc<strong>in</strong>g tree <strong>species</strong> distribution<br />

The CCA-biplot <strong>of</strong> <strong>species</strong> <strong>and</strong> environmental variables (Fig. 1)<br />

shows the relationship between tree <strong>species</strong> distribution <strong>and</strong><br />

environmental variables. The eigenvalues <strong>of</strong> CCA <strong>and</strong> DCA, <strong>and</strong><br />

correlations between site scores <strong>of</strong> CCA with environmental<br />

variables (Tables 4 <strong>and</strong> 5) justify an ecological <strong>in</strong>terpretation <strong>of</strong><br />

results ( Jongman et al., 1995). The first DCA axis had a length <strong>of</strong><br />

5.269 st<strong>and</strong>ard deviation (SD) units <strong>of</strong> <strong>species</strong> turnover imply<strong>in</strong>g<br />

that some <strong>species</strong> showed a clear unimodal response along the<br />

Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd 305


G. Eilu et al.<br />

Family<br />

No. <strong>of</strong><br />

Genera<br />

No. <strong>of</strong><br />

Species Family<br />

gradient (Ter Braak & Smilauer, 1998). The first <strong>four</strong> axes <strong>of</strong><br />

CCA <strong>and</strong> DCA, respectively, expla<strong>in</strong>ed 16.2 <strong>and</strong> 19.1% <strong>of</strong> the<br />

cumulative variance <strong>in</strong> <strong>species</strong> data (Table 4). The third <strong>and</strong><br />

<strong>four</strong>th axes with eigenvalues < 0.250 were less important <strong>in</strong> ecological<br />

terms <strong>and</strong> are not considered further. The sample scores<br />

on the first CCA axis were most strongly correlated with pH <strong>and</strong><br />

those <strong>of</strong> the second axis with altitude. Correlations between<br />

environmental variables <strong>and</strong> DCA ord<strong>in</strong>ation axes confirmed<br />

No. <strong>of</strong><br />

Genera<br />

Euphorbiaceae 16 25 Ochnaceae 2 2<br />

Rubiaceae 12 16 Olacaceae 2 2<br />

Meliaceae 8 16 Verbenaceae 2 2<br />

Fabaceae 12 13 Icac<strong>in</strong>aceae 1 2<br />

Sapotaceae 6 11 Agavaceae 1 1<br />

Sap<strong>in</strong>daceae 7 8 Alangiaceae 1 1<br />

Apocynaceae 5 8 Aquifoliaceae 1 1<br />

Moraceae 5 8 Araliaceae 1 1<br />

Ulmaceae 4 8 Arecaceae 1 1<br />

Flacourtiaceae 6 7 Asteraceae 1 1<br />

Sterculiaceae 5 7 Balanitaceae 1 1<br />

Annonaceae 4 6 Canellaceae 1 1<br />

Unknown 1 5 Chrysobalanaceae 1 1<br />

Anacardiaceae 4 4 Cyatheaceae 1 1<br />

Clusiaceae 4 4 Dichapetalaceae 1 1<br />

Simarubaceae 4 4 Ebenaceae 1 1<br />

Rutaceae 3 4 Hypericaceae 1 1<br />

Tiliaceae 3 4 Loganiaceae 1 1<br />

Rhizophoraceae 1 4 Melastomataceae 1 1<br />

Bignoniaceae 3 3 Melianthaceae 1 1<br />

Capparidaceae 3 3 Monimiaceae 1 1<br />

Oleaceae 3 3 Myristicaceae 1 1<br />

Rhamnaceae 3 3 Myrtaceae 1 1<br />

Borag<strong>in</strong>aceae 2 2 Rosaceae 1 1<br />

Cecropiaceae 2 2 Theaceae 1 1<br />

Celastraceae 2 2 Violaceae 1 1<br />

Lauraceae 2 2 — — —<br />

No. <strong>of</strong><br />

Species<br />

Table 3 Tree families, numbers <strong>of</strong> genera <strong>and</strong><br />

<strong>species</strong> recorded from Bw<strong>in</strong>di, Kasyoha, Kibale<br />

<strong>and</strong> Budongo forests <strong>of</strong> the Albert<strong>in</strong>e Rift<br />

Table 4 Eigenvalues <strong>of</strong> the first <strong>four</strong> axes <strong>of</strong> canonical correspondence analysis (CCA) <strong>and</strong> Detrended correspondence analysis (DCA) <strong>of</strong> all<br />

plots <strong>and</strong> the amount <strong>of</strong> variance expla<strong>in</strong>ed <strong>of</strong> the <strong>species</strong> data <strong>and</strong> <strong>of</strong> the <strong>species</strong>-environment relation by the CCA axes. The length <strong>of</strong> gradient<br />

is shown for DCA<br />

Axes 1 2 3 4 Total <strong>in</strong>ertia<br />

Eigenvalues (CCA) 0.480 0.259 0.228 0.128 6.757<br />

(DCA) 0.709 0.251 0.207 0.149 6.879<br />

Lengths <strong>of</strong> gradient (DCA) 5.259 2.772 2.700 2.191 —<br />

Species-environment correlations (CCA) 0.861 0.820 0.950 0.755 —<br />

Cumulative percentage variance <strong>of</strong> <strong>species</strong> data (CCA) 7.1 10.9 14.3 16.2 —<br />

(DCA) 10.3 14.0 17.0 19.1 —<br />

Cumulative percentage variance <strong>of</strong> the <strong>species</strong>-environment<br />

relation (CCA)<br />

30.1 46.4 60.7 68.7 —<br />

Sum <strong>of</strong> all unconstra<strong>in</strong>ed eigenvalues (CCA) — — — — 6.757<br />

(DCA) — — — — 6.757<br />

Sum <strong>of</strong> all canonical eigenvalues (CCA) — — — — 1.593<br />

results <strong>of</strong> CCA analysis with axis 1 most strongly correlated with<br />

pH (r = 0.565).<br />

Automatic forward selection <strong>of</strong> environmental variables by<br />

canoco (Table 6) showed that pH expla<strong>in</strong>ed the most variance<br />

(0.39) while silt expla<strong>in</strong>ed the least (0.08%). After select<strong>in</strong>g pH,<br />

altitude, ra<strong>in</strong>fall, loss <strong>of</strong> organic matter on Ignition, potassium<br />

(K), available phosphorus <strong>and</strong> slope contributed significantly (at<br />

5% level) to the model <strong>of</strong> already <strong>in</strong>cluded variables.<br />

306 Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd


Figure 1 Canonical Correspondence<br />

Analysis ord<strong>in</strong>ation diagrams <strong>of</strong> tree <strong>species</strong><br />

<strong>and</strong> environmental variables. A: biplot <strong>of</strong><br />

<strong>species</strong> <strong>and</strong> environmental variables jo<strong>in</strong>tly<br />

reflect<strong>in</strong>g <strong>species</strong>’ distributions along<br />

gradients <strong>of</strong> environmental variables.<br />

Variables on axis 1 expla<strong>in</strong>ed more variation<br />

than those on axis 2. The importance <strong>of</strong><br />

variables is proportional to the length <strong>of</strong> the<br />

arrows. B: scatter <strong>of</strong> <strong>species</strong> only. The codes<br />

refer to <strong>species</strong> listed <strong>in</strong> Appendix 1.<br />

Trees <strong>in</strong> Ug<strong>and</strong>an tropical forests<br />

Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd 307


G. Eilu et al.<br />

Table 5 Canonical coefficients <strong>and</strong> <strong>in</strong>terset correlations between the site scores on the first <strong>four</strong> constra<strong>in</strong>ed axes <strong>and</strong> environmental variables<br />

generated by canonical correspondence analysis <strong>of</strong> 120 subplots. The strongest correlations are <strong>in</strong>dicated with asterisks<br />

Environmental<br />

DISCUSSION<br />

Canonical coefficients variable Interset correlations variable<br />

axis 1 axis 2 axis 3 axis 4 axis 1 axis 2 axis 3 axis 4<br />

Altitude (m)* 0.296 −0.336 −0.170 0.214 0.009 −0.703 0.022 0.312<br />

Ra<strong>in</strong>fall (mm)* 0.150 −0.152 0.504 −0.146 −0.041 −0.285 0.869 0.099<br />

pH* 0.622 −0.067 0.076 −0.046 0.675 0.472 0.025 −0.120<br />

Exc. Al −0.268 −0.147 0.082 −0.181 −0.673 −0.431 −0.110 0.024<br />

Av P (mg/kg) 0.100 −0.143 0.018 0.026 0.185 −0.288 −0.171 −0.018<br />

Organic C (%) 0.211 0.038 0.013 0.145 −0.073 −0.488 −0.457 −0.137<br />

Total N (%) 0.077 −0.003 −0.010 0.009 0.018 −0.459 −0.491 −0.168<br />

K (me/100 g) −0.005 −0.103 0.016 −0.277 0.448 −0.100 −0.263 −0.436<br />

Na (me/100 g) 0.029 −0.035 0.012 −0.061 0.181 0.154 −0.128 −0.239<br />

Slope (°) −0.030 −0.021 0.042 −0.022 −0.026 −0.039 0.525 −0.043<br />

Silt (%) 0.053 0.050 0.003 0.075 −0.122 0.037 −0.137 0.369<br />

Total P (%) −0.017 0.048 0.027 0.075 0.294 −0.136 −0.061 0.228<br />

Loss on ignition (%) 0.000 −0.178 −0.071 −0.260 −0.099 −0.477 −0.506 −0.204<br />

Canopy density (%) −0.061 0.013 0.008 −0.054 −0.064 0.000 0.360 −0.108<br />

Marg<strong>in</strong>al effects Conditional effects<br />

Variable* λ 1 Variable λ A P F<br />

pH 0.39 pH 0.36 0.005 7.02<br />

Exc. Al (me/100 g) 0.37 Altitude 0.26 0.005* 4.99<br />

Ra<strong>in</strong>fall (mm) 0.23 Ra<strong>in</strong>fall 0.23 0.005* 4.37<br />

Altitude (m) 0.22 Loss on Ignition 0.13 0.005* 2.58<br />

K (me/100 g) 0.21 K 0.09 0.005* 1.82<br />

Loss on Ignition (%) 0.19 Av. P 0.08 0.020* 1.59<br />

Organic C (%) 0.18 Slope 0.08 0.025* 1.48<br />

Total N (%) 0.17 Canopy density 0.06 0.080 1.28<br />

Slope (Deg.) 0.11 Total N 0.06 0.180 1.12<br />

Av. P (mg/kg) 0.11 Organic C 0.05 0.380 1.03<br />

Total P% 0.11 Exc. Al 0.05 0.420 0.99<br />

Canopy density (%) 0.08 Silt 0.05 0.445 1.00<br />

Na (me/100 g) 0.08 Total P 0.04 0.585 0.91<br />

Silt (%) 0.08 Na 0.05 0.790 0.84<br />

*Variables are arranged <strong>in</strong> descend<strong>in</strong>g order <strong>of</strong> variance expla<strong>in</strong>ed by each variable. λ 1 shows<br />

variance expla<strong>in</strong>ed without consider<strong>in</strong>g other variables; λ A shows variance expla<strong>in</strong>ed after<br />

successively select<strong>in</strong>g the most important variables.<br />

Compared with other studies from tropical forests, the Albert<strong>in</strong>e<br />

rift forests are considered ‘low’ <strong>in</strong> <strong>species</strong> richness (Turner, 2001).<br />

The Neotropical wet forests such as those <strong>in</strong> Ecuador <strong>and</strong><br />

Colombia are richer than the present study sites.<br />

The present results emphasise the importance <strong>of</strong> soil physicochemical<br />

properties <strong>in</strong> <strong>in</strong>fluenc<strong>in</strong>g tree <strong>species</strong> richness. There<br />

were slight differences <strong>in</strong> tree <strong>species</strong> composition from south to<br />

north with <strong>species</strong> <strong>in</strong> Bw<strong>in</strong>di be<strong>in</strong>g tolerant to lower pH through<br />

Kasyoha, to Kibale <strong>and</strong> Budongo with the least acid soils. This<br />

may expla<strong>in</strong> the postulated south to north gradient <strong>in</strong> <strong>species</strong><br />

Table 6 Variables expla<strong>in</strong><strong>in</strong>g the tree<br />

<strong>species</strong>-environment relation selected by<br />

Canonical Correspondence Analysis us<strong>in</strong>g<br />

automatic forward selection<br />

composition <strong>in</strong> Ug<strong>and</strong>a proposed by Hamilton (1974, 1982)<br />

but attributed to the existence <strong>of</strong> a Pleistocene refugium close<br />

to forests <strong>of</strong> south-western Ug<strong>and</strong>a. Hall & Swa<strong>in</strong>e (1976) noted<br />

that <strong>in</strong> closed canopy forests <strong>of</strong> Ghana, soil factors such as pH<br />

<strong>and</strong> richness <strong>in</strong> bases that showed notable variation with<br />

<strong>species</strong> distribution were dependent on ra<strong>in</strong>fall. Importance <strong>of</strong><br />

pH <strong>in</strong> forest soils is <strong>in</strong> terms <strong>of</strong> <strong>in</strong>fluence on the availability <strong>of</strong><br />

phosphorus, calcium, magnesium, <strong>and</strong> trace elements. Tanner<br />

(1977) noted that the limit<strong>in</strong>g factor <strong>in</strong> one <strong>of</strong> <strong>four</strong> montane<br />

ra<strong>in</strong> forests <strong>of</strong> Jamaica (Mor Ridge forest) was the extremely<br />

low pH, a factor that may be considered limit<strong>in</strong>g <strong>in</strong> our study<br />

sites.<br />

308 Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd


A number <strong>of</strong> studies (e.g. Wolf, 1994; Lieberman et al., 1996;<br />

Vázquez & Givnish, 1998; Lovett et al., 2001) showed the<br />

<strong>in</strong>fluence <strong>of</strong> altitud<strong>in</strong>al gradients on tree <strong>species</strong> distribution.<br />

Although the altitude gradient <strong>in</strong> the present study was short<br />

(530 m), it played a major role <strong>in</strong> distribution <strong>of</strong> tree <strong>species</strong><br />

demonstrated by the P-value <strong>of</strong> 0.005 <strong>in</strong> the automatic forward<br />

selection by canoco. This is ma<strong>in</strong>ly through its relationship with<br />

ra<strong>in</strong>fall <strong>and</strong> pH. Ra<strong>in</strong>fall was highest <strong>in</strong> Bw<strong>in</strong>di (with the highest<br />

elevation) while pH conformed to the reverse trend over this<br />

altitud<strong>in</strong>al range. Hall & Swa<strong>in</strong>e (1976) noted that altitude was<br />

important <strong>in</strong> <strong>in</strong>fluenc<strong>in</strong>g tree <strong>species</strong> distribution, but ma<strong>in</strong>ly <strong>in</strong><br />

the wetter forests. Friis (1992) showed that critical altitudes<br />

existed for groups <strong>of</strong> taxa (based on <strong>trees</strong>) <strong>in</strong> north-eastern tropical<br />

Africa <strong>and</strong> Hamilton (1975) noted that the number <strong>of</strong> <strong>species</strong><br />

<strong>and</strong> families <strong>of</strong> <strong>trees</strong> decl<strong>in</strong>ed with altitude. Friis (1992) noted that<br />

<strong>in</strong>teraction between ra<strong>in</strong>fall <strong>and</strong> altitude made correlation with<br />

<strong>diversity</strong> complex. The correlation between altitude <strong>and</strong> ra<strong>in</strong>fall<br />

<strong>of</strong> 0.394 <strong>in</strong> the present data set was not particularly strong.<br />

Dry season length at the study sites ranged between a total <strong>of</strong><br />

4–7 months <strong>and</strong> may <strong>in</strong>fluence the results, but the magnitude<br />

<strong>of</strong> this <strong>in</strong>fluence could not be established because <strong>of</strong> the slight<br />

variation between sites.<br />

The southernmost sites <strong>in</strong> this study were the wettest progress<strong>in</strong>g<br />

towards the drier sites north. There were many <strong>species</strong>,<br />

particularly <strong>in</strong> Bw<strong>in</strong>di, that were favoured by high ra<strong>in</strong>fall, while<br />

<strong>in</strong> Budongo some <strong>species</strong> tolerated lower levels <strong>of</strong> ra<strong>in</strong>fall. Hall &<br />

Swa<strong>in</strong>e (1976) found that tree <strong>species</strong> were most related to the<br />

ra<strong>in</strong>fall gradient. Decrease <strong>in</strong> precipitation northwards expla<strong>in</strong>s<br />

part <strong>of</strong> the floristic impoverishment <strong>in</strong> forests <strong>of</strong> western Ug<strong>and</strong>a<br />

along a south–north gradient.<br />

Effects <strong>of</strong> regional variables such as annual ra<strong>in</strong>fall <strong>and</strong> altitude<br />

on distribution have been proved <strong>in</strong> many studies <strong>and</strong> are<br />

not discussed further. When effects <strong>of</strong> pH, altitude <strong>and</strong> ra<strong>in</strong>fall<br />

are accounted for (Table 6), loss <strong>of</strong> organic carbon on ignition, K,<br />

available P <strong>and</strong> slope contributed significantly to the model <strong>of</strong><br />

already <strong>in</strong>cluded variables. In <strong>in</strong>dividual forests geographical<br />

position (Plumptre, 1996) <strong>in</strong>fluenced tree <strong>species</strong> composition<br />

possibly as a reflection <strong>of</strong> major gradients <strong>in</strong> environmental<br />

factors. Walaga (1993) noted that forest compartments <strong>of</strong> Budongo<br />

had differences <strong>in</strong> tree <strong>species</strong> composition attributed to differences<br />

<strong>in</strong> exchangeable potassium, nitrogen, sodium, <strong>and</strong> s<strong>and</strong>.<br />

The differences were attributed to accumulation <strong>of</strong> organic<br />

matter, m<strong>in</strong>eral decomposition, leach<strong>in</strong>g losses <strong>and</strong> erosion <strong>of</strong><br />

topsoil. In the present study, the Budongo plots <strong>and</strong> Kibale 3 had<br />

<strong>species</strong> (occurr<strong>in</strong>g <strong>in</strong> Cynometra forest) that tolerate relatively<br />

high levels <strong>of</strong> exchangeable potassium, high pH (less acid soils),<br />

gentle slopes, relatively low elevations <strong>and</strong> low ra<strong>in</strong>fall. This cluster<br />

<strong>of</strong> plots <strong>in</strong>cluded tree <strong>species</strong> requir<strong>in</strong>g relatively high levels <strong>of</strong><br />

potassium as suggested by Walaga (1993).<br />

Accord<strong>in</strong>g to Walaga (1993), 11 soil variables expla<strong>in</strong>ed 8.9%<br />

<strong>of</strong> the variation <strong>in</strong> tree <strong>species</strong> distribution. The present study<br />

expla<strong>in</strong>ed about twice this percentage, emphasis<strong>in</strong>g the relative<br />

importance <strong>of</strong> environmental factors recorded. The present<br />

study did not assess the <strong>in</strong>fluence <strong>of</strong> disturbance but considered<br />

only sites <strong>of</strong> <strong>in</strong>tact forest where impacts <strong>of</strong> human disturbance<br />

were m<strong>in</strong>imal.<br />

Trees <strong>in</strong> Ug<strong>and</strong>an tropical forests<br />

Environmental factors measured therefore only partly expla<strong>in</strong>ed<br />

tree <strong>species</strong> richness <strong>and</strong> <strong>diversity</strong> <strong>in</strong> forests <strong>of</strong> the Albert<strong>in</strong>e rift.<br />

For example, Hall (1977) noted that soil type was the basis for the<br />

ma<strong>in</strong> division <strong>of</strong> forest <strong>in</strong>to groups, with discont<strong>in</strong>uous forest<br />

variation reflect<strong>in</strong>g the presence <strong>of</strong> two contrast<strong>in</strong>g major soil<br />

units <strong>in</strong> Nigerian forests. Tree <strong>species</strong> richness <strong>and</strong> <strong>diversity</strong> is<br />

therefore <strong>in</strong>fluenced by geographical position (Plumptre, 1996),<br />

soil depth <strong>and</strong> composition, length <strong>and</strong> frequency <strong>of</strong> ra<strong>in</strong>fall (or<br />

dry season), successional stage, <strong>and</strong> management history. Soil<br />

depth may be limit<strong>in</strong>g because <strong>of</strong> <strong>in</strong>adequate support provided<br />

by very shallow soil (Tanner, 1977).<br />

In conclusion, local environmental variables (e.g. soil factors)<br />

as well as regional environmental factors (e.g. ra<strong>in</strong>fall <strong>and</strong><br />

altitude) played important roles <strong>in</strong> <strong>in</strong>fluenc<strong>in</strong>g tree <strong>species</strong> distribution<br />

<strong>in</strong> the Albert<strong>in</strong>e rift forests. Differences <strong>in</strong> tree <strong>species</strong><br />

distribution observed over the soil nutrient gradients <strong>and</strong> over<br />

gradients <strong>of</strong> other environmental factors should be taken <strong>in</strong>to<br />

account when design<strong>in</strong>g management strategies. The most<br />

important variable <strong>in</strong> forests <strong>of</strong> the Albert<strong>in</strong>e rift is therefore soil<br />

pH which is correlated with mechanical soil properties <strong>and</strong> gross<br />

climate. Major environmental gradients cut across forests <strong>and</strong><br />

strategies for manag<strong>in</strong>g forests <strong>of</strong> the Albert<strong>in</strong>e rift should be<br />

designed at the l<strong>and</strong>scape level.<br />

ACKNOWLEDGEMENTS<br />

The study was funded by the Danish International Development<br />

Agency (DANIDA) under the ‘Bio<strong>diversity</strong> Research <strong>and</strong> Tra<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> Tanzania <strong>and</strong> Ug<strong>and</strong>a’ project through the <strong>Makerere</strong>–<br />

Copenhagen <strong>University</strong> Enhancement <strong>of</strong> Research Capacity<br />

(ENRECA) project. I. Friis, J.M. Kasenene <strong>and</strong> A.D. Poulsen supervised<br />

the work. M. Rejmánek <strong>and</strong> three anonymous referees<br />

provided comments that greatly improved the manuscript.<br />

Various staff at the Kew herbarium, particularly K. Vollesen, B.<br />

Verdcourt, M. Lock <strong>and</strong> D. Bridson helped with identification<br />

<strong>of</strong> specimens. D.N. Nkuutu, J. Kyomuhendo <strong>and</strong> S. Kimuli<br />

collected the specimens.<br />

REFERENCES<br />

Brokaw, N. & Bus<strong>in</strong>g, T. (2000) Niche versus chance <strong>and</strong> tree<br />

<strong>diversity</strong> <strong>in</strong> forest gaps. Trends <strong>in</strong> Ecology <strong>and</strong> Evolution, 15,<br />

183–188.<br />

Burnham, K.P. & Overton, W.S. (1979) Robust estimation <strong>of</strong> population<br />

size when capture probabilities vary among animals.<br />

Ecology, 60, 927–936.<br />

Clark, D.B., Palmer, M.W. & Clark, D.A. (1999) Edaphic factors<br />

<strong>and</strong> the l<strong>and</strong>scape-scale distributions <strong>of</strong> tropical ra<strong>in</strong> forest<br />

<strong>trees</strong>. Ecology, 80, 2662–2675.<br />

Colwell, R.K. & Codd<strong>in</strong>gton, J.A. (1994) Estimat<strong>in</strong>g terrestrial<br />

bio<strong>diversity</strong> through extrapolation. Philosophical Transactions<br />

<strong>of</strong> the Royal Society <strong>of</strong> London B, 345, 101–118.<br />

De Carvalho, L.M.T., Fontes, M.A.L. & De Oliviera-Filho, A.T.<br />

(2000) Tree <strong>species</strong> distribution <strong>in</strong> canopy gaps <strong>and</strong> mature<br />

forest <strong>in</strong> an area <strong>of</strong> cloud forest <strong>of</strong> the Ibitipoca range, southeastern<br />

Brazil. Plant Ecology, 149, 9–22.<br />

Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd 309


G. Eilu et al.<br />

Eggel<strong>in</strong>g, W.J. (1947) Observations on the ecology <strong>of</strong> the<br />

Budongo ra<strong>in</strong> forest, Ug<strong>and</strong>a. Journal <strong>of</strong> Ecology, 34, 20–87.<br />

Friis, I. (1992) Forests <strong>and</strong> forest <strong>trees</strong> <strong>of</strong> north-east tropical Africa.<br />

Kew bullet<strong>in</strong> additional series, XV. Her Majesty’s Stationery<br />

Office, London.<br />

Hall, J.B. (1977) Forest types <strong>in</strong> Nigeria: an analysis <strong>of</strong> preexploitation<br />

forest enumeration data. Journal <strong>of</strong> Ecology, 65,<br />

187–199.<br />

Hall, J.B. & Swa<strong>in</strong>e, M.D. (1976) Classification <strong>and</strong> ecology <strong>of</strong><br />

closed-canopy forest <strong>in</strong> Ghana. Journal <strong>of</strong> Ecology, 64, 913–951.<br />

Hamilton, A.C. (1974) Distribution patterns <strong>of</strong> forest <strong>trees</strong> <strong>in</strong><br />

Ug<strong>and</strong>a <strong>and</strong> their historical significance. Vegetatio, 29, 21–35.<br />

Hamilton, A.C. (1975) A quantitative analysis <strong>of</strong> altitud<strong>in</strong>al<br />

zonation <strong>in</strong> Ug<strong>and</strong>a forests. Vegetatio, 30, 99–106.<br />

Hamilton, A.C. (1982) Environmental history <strong>of</strong> East Africa.<br />

Academic Press, New York, NY.<br />

Hamilton, A.C. (1989) Tropical ra<strong>in</strong> forest ecosystems. Ecosystems<br />

<strong>of</strong> the world, 14B (ed. by H. Leith <strong>and</strong> M.J. Werger), pp. 155–<br />

182. Elsevier, Amsterdam.<br />

Heltshe, J.F. & Forrester, N.E. (1983) Estimat<strong>in</strong>g <strong>species</strong> richness<br />

us<strong>in</strong>g the Jackknife procedure. Biometrics, 39, 1 – 12.<br />

Hill, M.O. & Gauch, H.G. (1980) Detrended correspondence<br />

analysis: an improved ord<strong>in</strong>ation technique. Vegetatio, 42, 47–58.<br />

Howard, P.C. (1991) Nature conservation <strong>in</strong> Ug<strong>and</strong>a’s tropical<br />

forest reserves. IUCN, Gl<strong>and</strong>, Switzerl<strong>and</strong>.<br />

Howard, P.C., Davenport, T. & Mathews, R. (1996) Bio<strong>diversity</strong><br />

reports Nos 1–33. Forest Department, Kampala.<br />

Hubbell, S.P., Forster, R.B., O’Brien, S.T., Harms, K.E., Condit, R.,<br />

Wechsler, B., Wright, J. & Loo de Lao, S. (1999) Light-gap<br />

disturbances, recruitment limitation, <strong>and</strong> tree <strong>diversity</strong> <strong>in</strong> a<br />

neotropical forest. Science, 283, 554–557.<br />

Jongman, R.H.G., Ter Braak, C.J.F. & van Tongeren, O.F.R.<br />

(1995) Data Analysis <strong>in</strong> community <strong>and</strong> l<strong>and</strong>scape ecology.<br />

Cambridge <strong>University</strong> Press, Cambridge.<br />

Langdale-Brown, I., Osmaston, H.A. & Wilson, J.G. (1964) The<br />

vegetation <strong>of</strong> Ug<strong>and</strong>a <strong>and</strong> its bear<strong>in</strong>g on l<strong>and</strong> use. Government<br />

<strong>of</strong> Ug<strong>and</strong>a, Entebbe.<br />

Leggat, G.J. & Osmaston, H.A. (1961) Work<strong>in</strong>g Plan for the<br />

Impenetrable Central Forest Reserve, Kigezi District, western<br />

Ug<strong>and</strong>a, 1961–71. Ug<strong>and</strong>a Forest Department, Entebbe.<br />

Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G.S. (1996)<br />

Tropical forest structure <strong>and</strong> composition on a large-scale<br />

altitud<strong>in</strong>al gradient <strong>in</strong> Costa Rica. Journal <strong>of</strong> Ecology, 84, 137–152.<br />

Lovett, J.C., Clarke, G.P., Moore, R. & Morrey, G.H. (2001)<br />

Elevational distribution <strong>of</strong> restricted range forest tree taxa <strong>in</strong><br />

eastern Tanzania. Bio<strong>diversity</strong> <strong>and</strong> Conservation, 10, 541–550.<br />

Magurran, A.E. (1988) Ecological <strong>diversity</strong> <strong>and</strong> its measurement.<br />

Chapman & Hall, London.<br />

Nekola, J.C. (1999) Palaeorefugia <strong>and</strong> Neorefugia: the <strong>in</strong>fluence<br />

<strong>of</strong> colonization history on community pattern <strong>and</strong> process.<br />

Ecology, 80, 2459–2473.<br />

Økl<strong>and</strong>, R.H. (1990) Vegetation ecology: theory, methods <strong>and</strong><br />

applications with reference to Fennosc<strong>and</strong>ia. Sommerfeltia<br />

Suppl., 1, 4–233.<br />

Palmer, M.W. (1991) Estimat<strong>in</strong>g <strong>species</strong> richness: the secondorder<br />

jackknife reconsidered. Ecology, 72, 1512–1513.<br />

Pielou, E.C. (1969) An <strong>in</strong>troduction to mathematical ecology.<br />

Wiley, New York.<br />

Pitman, N.C.A., Terborgh, J., Silman, M.R. & Nunêz, P.V. (1999)<br />

Tree <strong>species</strong> distributions <strong>in</strong> an upper Amazonian Forest.<br />

Ecology, 80, 2651–2661.<br />

Pitman, N.C.A., Terborgh, J., Silman, M.R., Nunêz, P.V., Neil, D.A.,<br />

Cerón, C.E., Palacios, W.A. & Aulestia, M. (2001) Dom<strong>in</strong>ance<br />

<strong>and</strong> distribution <strong>of</strong> tree <strong>species</strong> <strong>in</strong> upper Amazonian Terra<br />

Firme forests. Ecology, 82, 2101–2117.<br />

Plumptre, A.J. (1996) Changes follow<strong>in</strong>g 60 years <strong>of</strong> selective<br />

timber harvest<strong>in</strong>g <strong>in</strong> the Budongo Forest Reserve, Ug<strong>and</strong>a.<br />

Forest Ecology <strong>and</strong> Management, 89, 101–113.<br />

Plumptre, A.J., Behangana, M., Davenport, T., Kah<strong>in</strong>do, C.,<br />

Kityo, R., Ndomba, E., Ssegawa, P., Eilu, G., Nkuutu, D. &<br />

Owiunji, I. (2003) The Bio<strong>diversity</strong> <strong>of</strong> the Albert<strong>in</strong>e Rift.<br />

Albert<strong>in</strong>e rift technical reports no. 3. World Conservation Society,<br />

New York.<br />

Polhill, R.M., ed. (1952) Flora <strong>of</strong> tropical East Africa. A. A.<br />

Balkema, Rotterdam.<br />

Sheil, D. (1996) The ecology <strong>of</strong> long term change <strong>in</strong> a Ug<strong>and</strong>an<br />

ra<strong>in</strong> forest. PhD Thesis, <strong>University</strong> <strong>of</strong> Oxford, Oxford.<br />

Stevens, M.H.T. & Carson, W.P. (1999) Plant density determ<strong>in</strong>es<br />

<strong>species</strong> richness along an experimental fertility gradient.<br />

Ecology, 80, 455–465.<br />

Struhsaker, T.T. (1981) Forest <strong>and</strong> primate conservation <strong>in</strong> East<br />

Africa. African Journal <strong>of</strong> Ecology, 19, 99–114.<br />

Struhsaker, T.T. (1997) Ecology <strong>of</strong> an African ra<strong>in</strong> forest. Logg<strong>in</strong>g<br />

<strong>in</strong> Kibale <strong>and</strong> the conflict between conservation <strong>and</strong> exploitation.<br />

<strong>University</strong> Press <strong>of</strong> Florida, Ga<strong>in</strong>esville.<br />

Tanner, E.V.J. (1977) Four montane ra<strong>in</strong> forests <strong>of</strong> Jamaica: a<br />

quantitative characterisation <strong>of</strong> the floristics, the soils <strong>and</strong> the<br />

foliar m<strong>in</strong>eral levels, <strong>and</strong> a discussion <strong>of</strong> the <strong>in</strong>terrelations.<br />

Journal <strong>of</strong> Ecology, 65, 883–918.<br />

Ter Braak, C.J.F. & Smilauer, P. (1998) canoco reference manual<br />

<strong>and</strong> user’s guide to canoco for W<strong>in</strong>dows: s<strong>of</strong>tware for canonical<br />

community ord<strong>in</strong>ation Version 4. Microcomputer Power, Ithaca,<br />

NY, USA.<br />

Tuomisto, H. & Ruokola<strong>in</strong>en, K. (1994) Distribution <strong>of</strong> Pteridophyta<br />

<strong>and</strong> Melastomataceae along an edaphic gradient <strong>in</strong> an<br />

Amazonian ra<strong>in</strong> forest. Journal <strong>of</strong> Vegetation Science, 5, 25–34.<br />

Tuomisto, H., Ruokola<strong>in</strong>en, K., L<strong>in</strong>na, A., Danjoy, W. & Rodriguez,<br />

Z. (1995) Dissect<strong>in</strong>g Amazonian bio<strong>diversity</strong>. Science, 269, 63–66.<br />

Turner, I.M. (2001) Ra<strong>in</strong>forest ecosystems plant <strong>diversity</strong>. Encyclopaedia<br />

<strong>of</strong> bio<strong>diversity</strong>, Vol. 5, pp. 13–23. Academic Press, San<br />

Diego.<br />

Vázquez, J.A. & Givnish, T.J. (1998) Altitud<strong>in</strong>al gradients <strong>in</strong><br />

tropical forest composition, structure <strong>in</strong> Sierra de Manantlán.<br />

Journal <strong>of</strong> Ecology, 86, 999–1020.<br />

Walaga, C. (1993) Species distribution <strong>and</strong> the development <strong>of</strong><br />

the climax vegetation <strong>of</strong> the Budongo Forest reserve. MSc Thesis,<br />

<strong>Makerere</strong> <strong>University</strong>, Kampala.<br />

Wolf, J.H.D. (1994) Factors controll<strong>in</strong>g the distribution <strong>of</strong> vascular<br />

<strong>and</strong> non-vascular epiphytes <strong>in</strong> the northern Andes. Vegetatio,<br />

112, 15–28.<br />

Wright, S.J. (2002) Plant <strong>diversity</strong> <strong>in</strong> tropical forests: a review <strong>of</strong><br />

mechanisms <strong>of</strong> <strong>species</strong> coexistence. Oecologia, 130, 1–14.<br />

310 Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd


Trees <strong>in</strong> Ug<strong>and</strong>an tropical forests<br />

Appendix 1 Tree <strong>species</strong> with at least five <strong>in</strong>dividuals recorded <strong>in</strong> <strong>four</strong> forests <strong>of</strong> the Albert<strong>in</strong>e rift, western Ug<strong>and</strong>a (<strong>species</strong> codes <strong>and</strong> number<br />

<strong>of</strong> <strong>in</strong>dividuals <strong>in</strong> 12 ha are shown)<br />

Code Tree taxon Family Budongo Bw<strong>in</strong>di Kasyoha Kibale<br />

Aidimicra Aidia micrantha (K. Schum.) F. White Rubiaceae — 22 83 —<br />

Alanch<strong>in</strong> Alangium ch<strong>in</strong>ense (Lour.) Harms Alangiaceae 3 3 — —<br />

Albigumm Albizia gummifera (J.F. Gmel.) C.A.Sm. Fabaceae — 5 1 2<br />

Alchlaxi Alchornea laxiflora (Benth.) Pax & K. H<strong>of</strong>fm. Euphorbiaceae 5 — — —<br />

Allakimb Allanblackia kimbiliensis Spirlet Clusiaceae — 22 — —<br />

Allodumm Allophylus dummeri Bak. f. Sap<strong>in</strong>daceae 4 — — 1<br />

Alstboon Alstonia boonei De Wild. Apocynaceae 15 — — —<br />

Antrmicr Antrocaryon micraster A. Chev. & Guill. Anacardiaceae — 5 1 —<br />

Aphasene Aphania senegalensis (Juss. ex Poir.) Radlk. Sap<strong>in</strong>daceae — — — 8<br />

Baphparv Baphiopsis parviflora Bak. Fabaceae — 28 36 90<br />

Beilugan Beilschmiedia ug<strong>and</strong>ensis Rendle Lauraceae — 34 26 1<br />

Belohypo Belonophora hypoglauca (Welw. ex Hiern) A. Chev Rubiaceae 22 — — —<br />

Bequobla Bequaertiodendron oblanceolatum S. Moore Sapotaceae 4 — — 8<br />

Bligunij Blighia unijugata Bak. Sap<strong>in</strong>daceae 1 2 5 1<br />

Caragran Carapa gr<strong>and</strong>iflora Sprague Meliaceae — 78 142 1<br />

Casebatt Casearia battiscombei R. E. Fr. Flacourtiaceae — — 6 —<br />

Caseengl Casearia engleri Gilg Flacourtiaceae 1 8 1 1<br />

Casscong Cassipourea congoensis DC. Rhizophoraceae — 6 11 —<br />

Cassruwe Cassipourea ruwensorensis (Engl.) Alston Rhizophoraceae — 1 — 8<br />

Casssp. Cassipourea sp. Rhizophoraceae — 1 13 —<br />

Celtdura Celtis dur<strong>and</strong>ii Engl. Ulmaceae 11 4 4 183<br />

Celtmild Celtis mildbraedii Engl. Ulmaceae 213 — — 1<br />

Celtwigh Celtis wightii Planch. Ulmaceae 109 — — —<br />

Celtzenk Celtis zenkeri Engl. Ulmaceae 46 — — —<br />

Chaearis Chaetacme aristata Planch. Ulmaceae 3 — — 17<br />

Chryalbi Chrysophyllum albidum G. Don Sapotaceae 20 — — 117<br />

Chrygoru Chrysophyllum gorungosanum Engl. Sapotaceae — 6 — —<br />

Chryperp Chrysophyllum perpulchrum Hutch. & Dalz. Sapotaceae 11 — — —<br />

Colapier Cola pierlottii R. Germa<strong>in</strong> Sterculiaceae — 12 — —<br />

Cordmill Cordia millenii Bak. Borag<strong>in</strong>aceae 3 — — 2<br />

Cyatmann Cyathea manniana Cyatheaceae — 7 19 —<br />

Cynoalex Cynometra alex<strong>and</strong>ri C. H. Wright Fabaceae 89 — — 17<br />

Depldewe Desplatsia dewevrei (De Wild. & T. Dur.) Burret Tiliaceae 5 — — —<br />

Dictarbo Dicty<strong>and</strong>ra arborescens Welw. ex Benth. & Hook. f. Rubiaceae 1 1 14 17<br />

Diosabys Diospyros abyss<strong>in</strong>ica (Hiern) F. White Ebenaceae 1 1 6 146<br />

Dombkirk Dombeya kirkii Mast. Sterculiaceae 1 — — 21<br />

Dovysp. Dovyalis sp. Flacourtiaceae — — — 8<br />

Drypgerr Drypetes gerrardii Hutch var gerrardii Euphorbiaceae — 4 54 —<br />

Drypgerr Drypetes gerrardii Hutch var gr<strong>and</strong>ifolia Euphorbiaceae — 26 28 —<br />

Drypugan Drypetes ug<strong>and</strong>ensis (Rendle) Hutch. Euphorbiaceae 10 33 109 —<br />

Entaango Ent<strong>and</strong>rophragma angolense (Welw.) C.DC. Meliaceae 4 — — 1<br />

Entacyli Ent<strong>and</strong>rophragma cyl<strong>in</strong>dricum (Sprague) Sprague Meliaceae 3 1 4 —<br />

Erytsuav Erythrophleum suaveolens (Guill. & Perr.) Brenan Fabaceae 5 — — —<br />

Funtafri Funtumia africana (Benth.) Stapf Apocynaceae 5 45 35 114<br />

Funtelas Funtumia elastica (Preuss) Stapf Apocynaceae 59 — — —<br />

Garcsp. Garc<strong>in</strong>ia sp. nov. Clusiaceae — 5 — —<br />

Greesuav Greenwayodendron suaveolens (Engl. & Diels) Verd Annonaceae 15 — 92 —<br />

Grewmild Grewia mildbraedii Burret Tiliaceae — 110 — —<br />

Guarcedr Guarea cedrata (A. Chev.) Pellegr. Meliaceae 7 1 11 —<br />

Guarmayo Guarea mayombensis Pellegr. Meliaceae — 16 32 —<br />

Hannlong Hannoa longipes (Sprague) G. Gilbert Simaroubaceae — 28 2 —<br />

Harrabys Harrisonia abyss<strong>in</strong>ica Oliv Simaroubaceae — — — 11<br />

Hologran Holoptelea gr<strong>and</strong>is (Hutch.) Mildbr. Ulmaceae 15 — — —<br />

Khayanth Khaya anthotheca (Welw.) C.DC. Meliaceae 15 — — —<br />

Klaigabo Kla<strong>in</strong>edoxa gabonensis Pierre ex Engl. Irv<strong>in</strong>giaceae 5 — 2 —<br />

Lasimild Lasiodiscus mildbraedii Engl. Rhamnaceae 313 — — —<br />

Leptdaph Leptaulus daphnoides Benth. Icac<strong>in</strong>aceae 2 34 19 —<br />

Leptmild Leptonychia mildbraedii Engl. Sterculiaceae — — — 64<br />

L<strong>in</strong>dmild L<strong>in</strong>dackeria mildbraedii Gilg Flacourtiaceae 1 1 — 6<br />

Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd 311


G. Eilu et al.<br />

Appendix 1 Cont<strong>in</strong>ued<br />

Code Tree taxon Family Budongo Bw<strong>in</strong>di Kasyoha Kibale<br />

Lovoswyn Lovoa swynnertonii Bak. f. Meliaceae — — 6 1<br />

Lychcero Lychnodiscus cerospermus Radlk. Sap<strong>in</strong>daceae 3 — — 3<br />

Macabart Macaranga barteri Muell. Arg. Euphorbiaceae — 32 61 —<br />

Macakili Macaranga kilim<strong>and</strong>scharica Pax Euphorbiaceae — — 16 —<br />

Maesem<strong>in</strong> Maesopsis em<strong>in</strong>ii Engl. Rhamnaceae — 9 — —<br />

Maesflor Maesobotrya floribunda Verdcourt var hirtella Euphorbiaceae — 5 — —<br />

Margdisc Margaritaria discoidea (Baill.) Webster Euphorbiaceae 3 3 3 —<br />

Marklute Markhamia lutea K. Schum Bignoniaceae 1 2 — 48<br />

Maytsp. Maytenus sp. Celastraceae — — — 14<br />

Mearduch Maerua duchesnei (de Wild.) F. White Capparidaceae 6 — — —<br />

Milldura Milletia dura Dunn Fabaceae — 3 8 1<br />

Mimubags Mimusops bagshawei S. Moore Sapotaceae 4 1 — 15<br />

Musaleo- Musanga leo-errerae Hauman <strong>and</strong> J. Leonard Moraceae — 14 10 —<br />

Myrihols Myrianthus holstii Engl. Moraceae 7 12 3 1<br />

Newtbuch Newtonia buchananii (Baker) Gilb. & Bout. Fabaceae — 10 3 3<br />

Oleacape Olea capensis L<strong>in</strong>n. Oleaceae 2 — — 7<br />

Oxyaspec Oxyanthus speciosus Hook. f. Rubiaceae 1 7 12 8<br />

Pachbrev Pachystela brevipes(Baker) Engl. Sapotaceae — 9 — 1<br />

Pancturb Pancovia turb<strong>in</strong>ata Radlk. Sap<strong>in</strong>daceae — 1 4 5<br />

Pariexce Par<strong>in</strong>ari excelsa Sab<strong>in</strong>e Rosaceae — 3 23 5<br />

Paurdewe Pauridiantha dewevrei Bremek. Rubiaceae — — 40 —<br />

Piptafri Piptadeniastrum africanum (Hook. f) Brenan Fabaceae 1 18 1 12<br />

Pleipycn Pleiocarpa pycnantha (K. Schum.) Stapf Apocynaceae — 1 4 3<br />

Polyfulv Polyscias fulva (Hiern) Harms Araliaceae — 10 — —<br />

Premango Premna angolensis Guerke Verbenaceae 2 1 3 7<br />

Pseumicr Pseudospondias microcarpa (A. Rich.) Engl. Anacardiaceae 3 1 1 6<br />

Ptermild Pterygota mildbraedii Engl. Sterculiaceae 2 — — 13<br />

Raphfari Raphia far<strong>in</strong>ifera (Gaertn.) Hyl<strong>and</strong>er Palmae 7 — — —<br />

Rawsluci Rawsonia lucida Harv. & Sond. Flacourtiaceae 1 88 143 14<br />

R<strong>in</strong>obeni R<strong>in</strong>orea beniensis Engl. Violaceae 117 — 1 —<br />

Ritcalbe Ritchiea albersii Gilg Capparidaceae — 9 2 —<br />

Rothurce Rothmannia urcelliformis (Hiern) Bullock ex Robyns Rubiaceae — — 1 8<br />

Sapielli Sapium ellipticum (Hochst. ex Krauss) Pax Euphorbiaceae — 6 6 2<br />

Strosche Strombosia scheffleri Engl. Olacaceae — 136 98 43<br />

Strotetr Strombosiopsis tetr<strong>and</strong>ra Engl. Olacaceae — 42 — —<br />

Strymiti Strychnos mitis S. Moore Loganiaceae 5 — — 3<br />

Sympglob Symphonia globulifera L. f. Clusiaceae — 7 4 5<br />

Syzygu<strong>in</strong> Syzygium gu<strong>in</strong>eense (Willd.) DC. Myrtaceae — 21 9 —<br />

Tabehols Tabernaemontana holstii K. Schum. Apocynaceae 7 6 22 55<br />

Tabeodor Tabernaemontana odoratissima Stapf Apocynaceae — 5 2 17<br />

Tapufisc Tapura fischeri (Engl.) Engl. Chailletiaceae 13 — — —<br />

Tetrdidy Tetrorchidium didymostemon (Baill.) Pax & K. H<strong>of</strong>fm. Euphorbiaceae 1 26 — —<br />

Tremorie Trema orientalis (L.) Bl. Ulmaceae — 6 4 —<br />

Tricanom Tricalysia anomala var montana Rubiaceae — 6 — —<br />

Tricdreg Trichilia dregeana Sond. Meliaceae 1 23 19 —<br />

Tricmart Trichilia mart<strong>in</strong>eaui Aubrev. <strong>and</strong> Pellegr. Meliaceae — 10 5 —<br />

Tricrube Trichilia rubescens Oliv. Meliaceae 31 16 11 1<br />

Triculug Trichoscypha ulugurensis Mildbr. Anacardiaceae — 19 12 —<br />

Trilmada Trilepisium madagascariense DC. Moraceae 16 51 3 149<br />

Unkndead Unknown sp. Unknown 1 11 9 3<br />

Unknsp. Unknown sp. Unknown — 17 — —<br />

Unknsp. Unknown sp. Unknown 1 7 2 —<br />

Uvarcong Uvariopsis congensis Robyns <strong>and</strong> Ghequiere Annonaceae 252 — — 128<br />

Veprgran Vepris gr<strong>and</strong>ifolia (Engl.) W.Mziray Rutaceae 2 — — 5<br />

Veprnobi Vepris nobilis (Delile) W.Mziray Rutaceae 2 3 1 26<br />

Vernconf Vernonia conferta Benth. Compositae — 5 — —<br />

Vismsp. Vismia sp. nov. Hypericaceae — 6 — —<br />

Xylostau Xylopia staudtii Engl. Annonaceae — 3 7 —<br />

Xymamono Xymalos monospora (Harv.) Warb. Monimiaceae — 6 23 5<br />

Zantlepr Zanthoxyllum leprieurii Guill. & Perr. Rutaceae 2 4 8 —<br />

312 Diversity <strong>and</strong> Distributions, 10, 303–312, © 2004 Blackwell Publish<strong>in</strong>g Ltd

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!