16.04.2013 Views

Li-Ion Batteries Anode Materials (Part 2) - ZSW

Li-Ion Batteries Anode Materials (Part 2) - ZSW

Li-Ion Batteries Anode Materials (Part 2) - ZSW

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong><br />

Lecture<br />

Winter Term 2011/12<br />

<strong>Anode</strong> <strong>Materials</strong> (<strong>Part</strong> 2)<br />

17 November 2011<br />

Mario Wachtler<br />

Zentrum für Sonnenenergie- und Wasserstoff-Forschung<br />

Baden-Württemberg (<strong>ZSW</strong>)


Introduction<br />

<strong>Li</strong> metal<br />

Graphite<br />

Amorphous Carbons<br />

Titanates<br />

<strong>Li</strong>thium storage metals and alloys<br />

Convertible oxides<br />

Transition metal oxides<br />

Summary<br />

-2-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Contents


-3-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Titanates<br />

Overview<br />

<strong>Li</strong>-Ti-Spinel <strong>Li</strong> 4Ti 5O 12 (<strong>Li</strong> 4/3Ti 5/3O 4, LTO, LTS)<br />

<strong>Li</strong>-Ti-Spinel <strong>Li</strong>Ti 2O 4: very difficult to synthesize<br />

TiO 2: (B), anatase, (rutile), ((brookite))<br />

Ramsdellite <strong>Li</strong> 2Ti 3O 7


Very stable structure<br />

Frequently found in nature<br />

Derived from mineral „spinel“ MgAl 2 O 4<br />

-4-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Spinel Structure<br />

General structure: AB 2 O 4<br />

Cubic close-packed (ccp) oxygen lattice<br />

With 1 octahedral interstitial site per oxygen and 2 tetrahedral interstitial sites<br />

per oxygen<br />

A and B occupy octahedral and tetrahedral sites<br />

Normal spinel structure:<br />

Trivalent ions (B) occupying half of the octahedral sites<br />

Divalent ions (A) occupy 1/8 of the tetrahedral sites


-5-<br />

<strong>Li</strong>[<strong>Li</strong> 1/3Ti 5/3]O 4<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

Spinel Structure<br />

<strong>Li</strong> 2[<strong>Li</strong> 1/3Ti 5/3]O 4<br />

charge<br />

+ <strong>Li</strong><br />

(<strong>Li</strong> +1<br />

1<br />

)8a () 16c [<strong>Li</strong> +1<br />

1/3<br />

Ti5/3<br />

+4<br />

]16d (O -2<br />

4<br />

)32e () 8a (<strong>Li</strong> +1<br />

2<br />

)16c [<strong>Li</strong> +1<br />

1/3<br />

Ti5/3<br />

+3.4<br />

]16d (O -2<br />

4<br />

)32e<br />

+ + e- discharge<br />

-<strong>Li</strong> + -e-


-6-<br />

() 8a () 16c [Mn 2 +4 ]16d (O 4 -2 )32e<br />

(discharge) -<strong>Li</strong> + -e - ↓↑ + <strong>Li</strong> + + e - (charge) _<br />

(<strong>Li</strong> 1 +1 )8a () 16c [Mn 2 +3.5 ]16d (O 4 -2 )32e<br />

↓↑<br />

() 8a (<strong>Li</strong> 2 +1 )16c [Mn 2 +3 ]16d (O 4 -2 )32e<br />

Crystallographic sites in Wyckoff notation:<br />

32e positions of oxygen in ccp structure<br />

16d ½ of octahedral sites<br />

16c ½ of octahedral sites<br />

8a ⅛ of tetrahedral sites<br />

Vacant crystallographic sites<br />

Spinel Structure and Capacity<br />

<strong>Li</strong>Mn 2O 4<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Theoretical capacity of <strong>Li</strong>Mn 2 O 4 is limited by the<br />

amount of extractable <strong>Li</strong> + and the oxidation state of<br />

Mn.<br />

Practically only arount 0.9 <strong>Li</strong> or 90% of the<br />

theoretical capacity can be cycled.<br />

Note that λ-Mn 2 O 4 has no true spinel structure.<br />

For <strong>Li</strong>Mn 2 O 4 it is possible to insert further <strong>Li</strong>, at a<br />

potential plateau of around 3.5 V vs. <strong>Li</strong>/<strong>Li</strong> + .<br />

The theoretical capacity is limited by the amount of<br />

vacant octahedral <strong>Li</strong> + insertion sites, and by the<br />

oxidation state of Mn.<br />

Since Mn +3 is a Jahn-Teller ion structural<br />

distortions occur, which deteriorates the cycling<br />

stability. Therefore this region is not used in <strong>Li</strong>-ion<br />

batteries.<br />

Note that <strong>Li</strong> 2 Mn 2 O 4 does not have spinel structure<br />

(tetragonal distortion).


-7-<br />

Spinel Structure and Capacity<br />

<strong>Li</strong>[Mn 2-xAl x]O 4<br />

↓↑<br />

(<strong>Li</strong> 0.05 +1 )8a () 16c [Mn 1.95 +4 Al0.05 +3 ]16d (O 4 -2 )32e<br />

(discharge) -<strong>Li</strong> + -e - ↓↑ + <strong>Li</strong> + + e - (charge) _<br />

(<strong>Li</strong> 1 +1 )8a () 16c [Mn 1.95 +3.51 Al0.05 +3 ]16d (O 4 -2 )32e<br />

↓↑<br />

() 8a (<strong>Li</strong> 2 +1 )16c [Mn 1.8 +3 Al0.2 +3 ]16d (O 4 -2 )32e<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

In principle there would be further <strong>Li</strong> + left<br />

to be extracted, but there are no transition<br />

metals left which can be further oxidised<br />

(Mn is already completely oxidised to<br />

Mn +4 )<br />

I.e. Theoretical capacity is limited by<br />

oxidation state of transition metals.<br />

Theoretical capacity is limited by<br />

oxidation state of transition metals (Mn +3<br />

cannot be further reduced) and by<br />

amount of vacant octahedral <strong>Li</strong> + insertion<br />

sites (are completely filled).


-8-<br />

↓↑<br />

(<strong>Li</strong> 1 +1 )8a () 16c [<strong>Li</strong> 1/3 +1 Ti5/3 +4 ]16d (O 4 -2 )32e<br />

Spinel Structure and Capacity<br />

<strong>Li</strong> 4/3Ti 5/3O 4<br />

(discharge) -<strong>Li</strong> + -e - ↓↑ + <strong>Li</strong> + + e - (charge) _<br />

() 8a (<strong>Li</strong> 2 +1 )16c [<strong>Li</strong> 1/3 +1 Ti5/3 +3.4 ]16d (O 4 -2 )32e<br />

↓↑<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Further discharge (extraction of <strong>Li</strong> + ) is not<br />

possible, since Ti is already in oxidation state<br />

+4 and cannot be further oxidised.<br />

Though Ti +3.4 could be further reduced to Ti +3 ,<br />

further charge is not possible, since there are<br />

no vacant octahedral sites for <strong>Li</strong> + insertion left.<br />

I.e. Theoretical capacity is limited by amount<br />

of available <strong>Li</strong>-ion insertion sites


Capacity<br />

Theoretical capacity: 175 mAh/g<br />

Practical capacity: ~ 150 mAh/g<br />

→ I.e. half the capacity of graphite<br />

Charge / discharge profile<br />

-9-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

Properties<br />

Charge and discharge occurs at a constant<br />

potential at approx. 1.5 V vs. <strong>Li</strong>/<strong>Li</strong> +<br />

→ I.e. approx. 1.3 V higher than graphite<br />

Energy density<br />

→ Due to lower capacity and higher potential<br />

resulting in lower cell voltage, the energy<br />

density of a <strong>Li</strong>-ion cell with LTO is<br />

significantly reduced compared to a <strong>Li</strong>-ion<br />

cell with graphite.<br />

T. Ohzuku, A. Ueda, N. Yamamot; J. Electrochem. Soc. 142 (1995), 1431.


Cycling stability:<br />

Volume change during <strong>Li</strong> insertion are<br />


Thermal behaviour:<br />

LTO shows a high thermal stability<br />

without strong exothermic peaks<br />

→ Better thermal safety than graphite<br />

-11-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

Properties<br />

DSC – TG of charged anode materials<br />

TG /%<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

TG Exothermal<br />

Graphite<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

100 200 300 400 500<br />

Temperatur /°C<br />

Source: C. Täubert, M. Fleischhammer, H.-Y. Tran, P. Axmann,<br />

M. Wohlfahrt-Mehrens (<strong>ZSW</strong>)<br />

DSC /(mW/mg)<br />

exo<br />

[2]<br />

[1]<br />

[1]<br />

[2]<br />

1.5<br />

1.0<br />

0.5<br />

0.0


Rate capability<br />

LTO works in a potential region where the<br />

electrolyte is stable, and no SEI is formed.<br />

The absence of SEI formation keeps the<br />

electrode impedance low.<br />

(For comparison: graphite and amorphous<br />

carbons are filmed with a SEI giving rise to<br />

additional electrode impedance.)<br />

Due to open spinel structure and absence of<br />

SEI very high rate capabilities are<br />

achievable.<br />

-12-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

Properties<br />

Toshiba Super Charge <strong>Ion</strong> Battery (SCiB)<br />

Product Data Sheet, Toshiba, 2010 (www.toshiba.com/scib)<br />

Stability window of<br />

electrolyte<br />

5<br />

4<br />

<strong>Li</strong>Mn <strong>Li</strong>Mn2O 2O 4<br />

3<br />

2<br />

1<br />

0<br />

<strong>Li</strong><br />

<strong>Li</strong>CoO 2 <strong>Li</strong>(Ni,Mn,Co)O 2<br />

<strong>Li</strong>(Ni,Co,Al)O 2<br />

<strong>Li</strong>FePO 4<br />

Amorphous<br />

carbon<br />

Graphite Si<br />

5<br />

4<br />

3<br />

2<br />

<strong>Li</strong> <strong>Li</strong>4Ti 4Ti5O 5O 12<br />

1<br />

0<br />

SEI-free<br />

SEI film<br />

formation


-13-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

Properties<br />

Electrolyte compatibility and low temperature behaviour<br />

LTO is a SEI-free electrode<br />

Since SEI-formation is not required other electrolyte compositions can be used than for<br />

graphite anodes, and electrolytes with improved low temperature performance can be<br />

used. (For graphite anodes an effective SEI is required, therefore nearly all electrolytes<br />

contain ethylene carbonate (EC) as solvent and often additional film-forming electrolyte<br />

additives).<br />

→ Better low temperature performance achievable than with graphite<br />

Toshiba Super Charge <strong>Ion</strong> Battery (SCiB)<br />

Product Data Sheet, Toshiba, 2010 (www.toshiba.com/scib)


Introduction<br />

<strong>Li</strong> metal<br />

Graphite<br />

Amorphous Carbons<br />

Titanates<br />

<strong>Li</strong>thium storage metals and alloys<br />

Convertible oxides<br />

Transition metal oxides<br />

Summary<br />

-14-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Contents


-15-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong>thium Storage Metals<br />

Principle:<br />

Reversible “alloy” formation<br />

More correctly: formation of intermetallic compounds<br />

M + x <strong>Li</strong> + + x e − <strong>Li</strong> x M


-16-<br />

Capacities<br />

Background columns: specific charge referred to mass of unlithiated material<br />

Foreground columns: specific charge referred to mass of lithiated materials<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong>thium Storage Metals<br />

Background columns: charge density referred to volume of unlithiated material<br />

Foreground columns: charge density referred to volume of lithiated materials<br />

Volume changes during<br />

charge / discharge<br />

Background columns: volume per charge for lithiated materials<br />

Foreground columns: volume per charge for unlithiated materials<br />

The large volume changes cause problems<br />

with mechanical stability (cracking, crumbling<br />

= “decrepitation”) and limit cycling stability.


Course Sn<br />

-17-<br />

Before cycling<br />

Fine Sn<br />

<strong>Li</strong>thium Storage Metals<br />

Electrode Disintegration Due to Volume Changes<br />

After 2 cycles<br />

Before cycling After 2 cycles<br />

After 23 cycles<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

After 5 cycles<br />

J. Yang, M. Wachtler, M. Winter, J.O. Besenhard, 26. GDCh-Hauptversammlung und 100-Jahrfeier der GÖCh; Wien, 1997


-18-<br />

<strong>Li</strong>thium Storage Metals and “Alloys”<br />

Increase of cycling stability:<br />

• Smaller particle size<br />

• Thin films<br />

• Nano-structuring<br />

• Amorphous materials<br />

• „Dilution“ or stabilisation in<br />

compounds with active or inactive<br />

secondary components (e.g.<br />

oxides<br />

• Reactive binders, which form<br />

strong bonds with active material<br />

and hold material together<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Example: Si nanowires<br />

C.K. Chan, H.L. Peng, G. <strong>Li</strong>u, K. McIlwrath, X.F. Zhang,<br />

R.A. Huggins, Y. Cui, Nature Nanotech. 3 (2008), 31.


-19-<br />

<strong>Li</strong>thium Storage Metals and “Alloys”<br />

Ultrahigh capacities (Sn up to 1000 mAh/g, Si up to<br />

3600 mAh/g)<br />

Usually low cycling stabilities due to large volume<br />

changes (several 100%) during charge/discharge,<br />

which may result in mechanical destruction of<br />

electrode material<br />

Improvement of cycling stability by using finely<br />

dispersed materials or thin films and by using<br />

amorphous materials (single phase reactions<br />

instead of two phase reactions)<br />

Often high irreversibly capacities<br />

Potential region between 1 und 0 V vs. <strong>Li</strong>/<strong>Li</strong> +<br />

depending on metal (e.g. Si: 600 – 0 mV)<br />

Safety behaviour not fully assessed yet<br />

Often used in composites with carbon / graphite or<br />

as oxide (in order to „dilute“ volume changes and<br />

stabilise structure and morphology of metal / alloy)<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Potential / V vs. <strong>Li</strong>/<strong>Li</strong> +<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Sn<br />

0,0<br />

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6<br />

Capacity / Ah g(AM) -1<br />

M. Wachtler, M. Winter, J.O. Besenhard; J. Power<br />

Sources 105 (2002), 151.<br />

Si<br />

C.K. Chan, H.L. Peng, G. <strong>Li</strong>u, K. McIlwrath, X.F. Zhang,<br />

R.A. Huggins Y. Cui; Nature Nanotech. 3 (2008), 31.


-20-<br />

room temperature<br />

overcharge<br />

(<strong>Li</strong> plating)<br />

Reaction Mechanism of Sn<br />

fully charged<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

charge<br />

discharge<br />

fully discharged<br />

Binary alloy phase diagrams<br />

(2nd edition plus updates,<br />

electronic release); ASM Int.,<br />

<strong>Materials</strong> Park, OH, USA, 1996.


Binary alloy phase diagrams (2nd edition plus<br />

updates, electronic release); ASM Int., <strong>Materials</strong><br />

Park, OH, USA, 1996.<br />

-21-<br />

Reaction Mechanism of Sn<br />

charge<br />

discharge<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

RT<br />

(a)<br />

Potential / V vs. <strong>Li</strong>/<strong>Li</strong> +<br />

1.2<br />

1.0<br />

0.8<br />

1<br />

20.6<br />

3<br />

0.4<br />

0.2<br />

0.0<br />

4<br />

0.02 mA cm -2<br />

0.05 mA cm -2<br />

0.1 mA cm -2<br />

0.2 mA cm -2<br />

0.5 mA cm -2<br />

4<br />

3 2<br />

0<br />

-2 0 2 4 6<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6<br />

Time / min<br />

Capacity / Ah g(AM) -1<br />

M. Wachtler, M. Winter, J.O. Besenhard, J. Power Sources<br />

105 (2002), 151.<br />

(1) Sn, (2) <strong>Li</strong> 2 Sn 5 , (3) <strong>Li</strong>Sn, (4) <strong>Li</strong> 22 Sn 5 *<br />

(12) Sn + 0,4 <strong>Li</strong> + + 0,4 e − 0,2 <strong>Li</strong> 2 Sn 5<br />

(2 3) 0,2 <strong>Li</strong> 2 Sn 5 + 0,6 <strong>Li</strong> + + 0,6 e − <strong>Li</strong>Sn<br />

(34) <strong>Li</strong>Sn + 3,4 <strong>Li</strong> + + 3,4 e − … 0,2 <strong>Li</strong> 22 Sn 5<br />

*sometimes different stoichiometries are given for fully<br />

lithiated state: <strong>Li</strong> 17 Sn 4 , <strong>Li</strong> 21 Sn 5<br />

1<br />

OCV / mV<br />

200<br />

150<br />

100<br />

50


-22-<br />

<strong>Li</strong>thium Storage “Alloys” (Intermetallic Phases)<br />

Containing 2 or more constituents<br />

Active/active composites:<br />

both constituents can form an alloy with <strong>Li</strong><br />

e.g. SnSb 1 / 5 <strong>Li</strong> 22 Sn 5 + <strong>Li</strong> 3 Sb<br />

Active/inactive composites:<br />

only one constituent forms an alloy with <strong>Li</strong><br />

e.g. Cu 6 Sn 5 <strong>Li</strong> 22 Sn 5 + 6 Cu<br />

Multiphase active/inactive composites:<br />

only one phase reacts with <strong>Li</strong><br />

e.g. Sn 2 Fe/SnFe 3 C 2 / 5 <strong>Li</strong> 22 Sn 5 + Fe + SnFe 3 C<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW


-23-<br />

Reconstitution Reactions /<br />

Conversion Reactions<br />

Some phases grow and others disappear<br />

Formation React.<br />

A + B = AB<br />

Compound AB is formed<br />

from ist atomic<br />

constituents<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Reaction Mechanisms<br />

General Overview<br />

Displacement<br />

Reactions<br />

A + BX = AX + B<br />

One component is<br />

displaced from lattice<br />

while another is inserted<br />

Extrusion<br />

Reactions<br />

A + BX = AX + B<br />

Displacement reactions,<br />

where one interstitial<br />

species is extruded from<br />

stable host lattice and<br />

replaced by newly<br />

inserted species<br />

Insertion Reactions<br />

Topotactic insertion of guest species into<br />

interstitial sites of host lattice; structure of<br />

host lattice does not change significantly<br />

Multiphase<br />

Insertion React.<br />

xA + BX = A x BX<br />

Two phases with different<br />

concentrations of guest<br />

species in equilibrium;<br />

motion of 2-phase<br />

interface<br />

Intercalation<br />

Reactions<br />

Insertion reactions with<br />

2-dimensional character<br />

Single-Phase<br />

Insertion React. /<br />

Solid Solution R.<br />

δA + BX = A δ BX<br />

0 ≤ δ≤x<br />

Continuous change of<br />

phase composition by<br />

gradual insertion of guest<br />

species


-24-<br />

<strong>Li</strong>thium Storage “Alloys” (Intermetallic Phases)<br />

Reaction Mechanisms<br />

For intermetallic phases („alloys“) both insertion and conversion reactions are observed.<br />

Insertion reactions:<br />

Topotactic reactions (i.e. crystal structure does not change)<br />

Low volume changes<br />

Good reversibility (cycling stability)<br />

But for intermetallic phases insertion reactions are limited to small amounts of inserted <strong>Li</strong>,<br />

i.e. to small capacity<br />

Conversion reactions:<br />

Recrystallisation of system<br />

Usually larger volume differences between product and educt phases mismatch of<br />

crystalline phases<br />

Lower cycling stability<br />

High capacity<br />

In conclusion, it would be desirable to limit cycling to pure inserion range, but the practical<br />

capacities are too low.<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW


SnSb<br />

(rhombohedrally distorted<br />

rock-salt structure)<br />

-25-<br />

<strong>Li</strong>thium Storage “Alloys” (Intermetallic Phases)<br />

Reaction Mechanism of SnSb<br />

Sb<br />

Sn<br />

<strong>Li</strong><br />

Insertion<br />

+ 2 <strong>Li</strong> + + 2 e –<br />

Extrusion<br />

+ 3 <strong>Li</strong> + + 3 e –<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

<strong>Li</strong> 2 SnSb<br />

+ <strong>Li</strong> + + e –<br />

<strong>Li</strong> 3 Sb<br />

Extrusion<br />

+ Sn<br />

Formation<br />

+ x <strong>Li</strong> + + x e –<br />

<strong>Li</strong> x Sn


-26-<br />

<strong>Li</strong>thium Storage “Alloys” (Intermetallic Phases)<br />

Reaction Mechanisms<br />

SnSb:<br />

No ternary phases <strong>Li</strong>xSnSb observed No insertion<br />

SnSb + 3 <strong>Li</strong> + + 3 e – ↔ <strong>Li</strong>3Sb + Sn Extrusion<br />

Sn + 22 / 5 <strong>Li</strong> + + 22 / 5 e – ↔ … ↔ 1 / 5 <strong>Li</strong>22Sn5 Formation<br />

M. Wachtler, M. Winter, J.O. Besenhard; J. Power Sources 105 (2002), 151.<br />

InSb:<br />

InSb + x <strong>Li</strong> + + x e – ↔ <strong>Li</strong>xInSb with x = 0.27 Insertion<br />

<strong>Li</strong>xInSb + (3-x) <strong>Li</strong> + + (3-x) e – ↔ <strong>Li</strong>3Sb + In Extrusion<br />

In + 7 / 4 <strong>Li</strong> + + 7 / 4 e – ↔ … ↔ 1 / 4 <strong>Li</strong>7In4 Formation<br />

K.C. Hewitt, L.Y. Beaulieu, J.R. Dahn; Electrochem. Solid-State Lett. 3 (2000), 13.<br />

Cu 2 Sb:<br />

Cu 2 Sb + <strong>Li</strong> + + e – ↔ <strong>Li</strong>CuSb + Cu Extrusion<br />

<strong>Li</strong>CuSb + x <strong>Li</strong> + + x e – ↔ <strong>Li</strong> 1+x CuSb (with 0 < x < ~0.5) Insertion<br />

<strong>Li</strong> 1+x CuSb + (2-x) <strong>Li</strong> + + (2-x) e – ↔ <strong>Li</strong> 3 Sb + Cu Extrusion<br />

S. Matsuno, M. Noji, T. Kashiwagi, M. Nakayama, M. Wakihara; J. Phys. Chem. C 111 (2007), 7548.<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW


Indication of relative<br />

atomic composition:<br />

A xB yC z<br />

with x + y + z = 1<br />

-27-<br />

Isothermal Ternary Phase Diagrams<br />

Triangular Coordinate System<br />

x (concentration of A)<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

1,0<br />

0,0<br />

0,0<br />

A<br />

0,2 0,4 0,6 0,8 1,0<br />

B<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

0,0<br />

C<br />

1,0<br />

0,8<br />

y (concentration of B)<br />

0,6<br />

0,4<br />

z (concentration of C)<br />

0,2


-28-<br />

2-phase tie-line:<br />

mixture of phases<br />

A 2 BC and A<br />

Isothermal Ternary Phase Diagrams<br />

Phases and Multiphase-Regions<br />

Ternary phase A 2 BC<br />

0,8<br />

0,6<br />

0,4<br />

A 2BC<br />

0,2<br />

1,0<br />

0,0<br />

0,0<br />

A<br />

0,2 0,4 0,6<br />

AB<br />

0,8 1,0<br />

B<br />

2-phase tie-line:<br />

mixture of phases A 2 BC and AB<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

0,0<br />

C<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Binary phase AB<br />

3-phase region:<br />

mixture of phases<br />

A 2 BC and A and B<br />

3-phase region:<br />

mixture of phases<br />

A 2 BC and AB and B


-29-<br />

0,8<br />

NaCl<br />

0,6<br />

0,4<br />

0,2<br />

Isothermal Ternary Phase Diagrams<br />

Construction from Thermodynamic Data<br />

0,0<br />

Cl<br />

1,0<br />

0,0<br />

0,0<br />

Na<br />

0,2 0,4 0,6 0,8 1,0<br />

Ni<br />

1,0<br />

0,8<br />

NiCl 2<br />

0,6<br />

0,4<br />

0,2<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Assume a ternary system Na, Ni, Cl with two binary<br />

phases NaCl and NiCl, and without ternary phases.<br />

(ZEBRA battery Na | Na-β-alumina | NaAlCl 4 , NiCl 2 )<br />

Total diagram must be divided into triangles.<br />

Here there are two possibilities:<br />

Tieline between NaCl and Ni or<br />

Tieline between NiCl 2 and Na<br />

Formulate virtual reaction (in intersection):<br />

2 Na + NiCl 2 = 2 NaCl + Ni<br />

Calculate standard Gibbs free energy change for this<br />

reaction:<br />

ΔG r ° = 2ΔG f ° (NaCl) – ΔG f ° (NiCl2)<br />

= 2(–360,25 kJ/mol) – (–221,12 kJ/mol)<br />

= –137,12 kJ/mol<br />

ΔGr° < 0, therefore reaction will tend to go to the<br />

right, and tieline between NaCl and Ni will be more<br />

stable than tieline between NiCl 2 and Na.


-30-<br />

<strong>Li</strong>thium Storage “Alloys” (Intermetallic Phases)<br />

Reaction Mechanism of Cu 2Sb<br />

Isothermal ternary phase diagram<br />

(room temperature)<br />

S. Matsuno, M. Noji, T. Kashiwagi, M. Nakayama, M. Wakihara;<br />

J. Phys. Chem. C 111 (2007), 7548.<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

(1)<br />

(2) (3)<br />

Proposed reaction mechnism:<br />

(1) Cu 2 Sb + <strong>Li</strong> <strong>Li</strong>CuSb + Cu<br />

3-phase region (flat potential)<br />

from graphite as<br />

conductive<br />

additive, not from<br />

Cu 2 Sb).<br />

(2) <strong>Li</strong>CuSb + x <strong>Li</strong> <strong>Li</strong> 1+x CuSb (with 0 < x < ~0.5)<br />

Solid solution reaction (sloping potential profile)<br />

(3) <strong>Li</strong> 1+x CuSb + (2-x) <strong>Li</strong> <strong>Li</strong> 3 Sb + Cu (with x = ~0.5)<br />

3-phase region (flat potential)


-31-<br />

Composites of Graphite / Carbon with<br />

<strong>Li</strong>thium Storage Metals / Alloys<br />

Motivation:<br />

Combine cycling stability of graphite with high capacity of metal / alloy.<br />

In reality:<br />

Increase of capacity of graphite by adding metal / alloy with high storage capacity<br />

Better cycling stability than for pure metal / alloy (but lower than for pure graphite):<br />

- since overall volume expansion remains low (metal / alloy is diluted by graphite)<br />

- graphite can act as buffer for expanding metal / alloy<br />

- since aggregation of metal (Sn) during cycling is prevented by second phase<br />

(graphite)<br />

Usually higher irreversible capacity than for graphite<br />

Examples:<br />

Graphite + Si, SiO x , Sn, SnO x , SnSb, …<br />

Amorphous carbon + Si, …<br />

Graphite + amorphous carbon + Si, …<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW


-32-<br />

Composites of Graphite with <strong>Li</strong>thium Storage Metals<br />

Graphite / Si Composite<br />

7.1 wt.% nano-sized Si deposited on graphite<br />

M. Holzapfel, H. Buqa, F. Krumeich, P. Novák, F.-M. Petrat, C. Veit; Electrochem. Solid-State Lett. 8 (2005), A516.<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Higher capacity than graphite<br />

Better cycling stability than pure Si


Introduction<br />

<strong>Li</strong> metal<br />

Graphite<br />

Amorphous Carbons<br />

Titanates<br />

<strong>Li</strong>thium storage metals and alloys<br />

Convertible oxides<br />

Transition metal oxides<br />

Summary<br />

-33-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Contents


Compounds:<br />

-34-<br />

Convertible Oxides<br />

Oxides of Main Group Elements: Sn, Si, Sb, …<br />

Oxides of <strong>Li</strong> storage metals: SnO, SnO 2 , SiO 2 , GeO 2 , PbO, ZnO, CdO, B 2 O 3 , Al 2 O 3 ,<br />

Sb 2 O 3 , …<br />

Amorphous oxides and glasses: e.g. SnB x P y Al z O w ATCO (amorphous tin composite<br />

oxide, Fuji Industries)<br />

Sulphides, Selenides, …<br />

Reaction Mechanism:<br />

1 st step: Irreversible reduction of oxide to metal and <strong>Li</strong> 2 O:<br />

MO x + 2x <strong>Li</strong> + + 2x e – M + x <strong>Li</strong> 2 O<br />

2 nd step: Reversible alloy formation of metal with <strong>Li</strong><br />

M + y <strong>Li</strong> + + y e – <strong>Li</strong> y M<br />

E.g.: SnO 2 : SnO 2 + 4 <strong>Li</strong> + + 4 e – Sn + 2 <strong>Li</strong> 2 O<br />

5 Sn + 22 <strong>Li</strong> + + 22 e – … <strong>Li</strong> 22 Sn 5<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW


-35-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Convertible Oxides<br />

Properties<br />

Large irreversible capacities during first charge due to irreversible reduction of<br />

oxide.<br />

Lower reversible capacity than for pure <strong>Li</strong> storage metal, since additional<br />

inactive compounds are present which contribute weight without adding <strong>Li</strong><br />

storage capacity.<br />

Improved cycling stability compared to pure <strong>Li</strong> storage metal:<br />

Metal is present as nano-grains which are finely dispersed in a <strong>Li</strong> 2 O matrix.<br />

Small grain size keeps absolute volume changes of single particles/grains<br />

small<br />

Inactive <strong>Li</strong> 2 O matrix buffers volume changes of Sn during charge/discharge.<br />

For Sn: Inactive components help to keep Sn grains separated and to prevent<br />

growth of Sn grains. (Pure nano-dispersed Sn tends to agglomerate during<br />

repeated cycling and to form larger particles. Large particle may cause<br />

problems with low cycling stability due to large volume changes.)


Sn:<br />

-36-<br />

Sn, SnO, SnO 2<br />

Theoretical Reversible and Irreversible Capacities<br />

Sn + 22/5 <strong>Li</strong> + + 22/5 e – … 1/5 <strong>Li</strong> 22 Sn 5<br />

Capacity (reversible): 994 mAh/g (Sn)<br />

SnO:<br />

SnO + 2 <strong>Li</strong> + + e – Sn + <strong>Li</strong> 2 O<br />

Capacity (irreversible): 398 mAh/g (SnO)<br />

Sn + 22/5 <strong>Li</strong> + + 22/5 e – … 1/5 <strong>Li</strong> 22 Sn 5<br />

Capacity (reversible): 876 mAh/g (SnO)<br />

SnO 2 :<br />

SnO 2 + 4 <strong>Li</strong> + + 4 e – Sn + 2 <strong>Li</strong> 2 O<br />

Capacity (irreversible): 711 mAh/g (SnO2)<br />

Sn + 22/5 <strong>Li</strong> + + 22/5 e – … 1/5 <strong>Li</strong> 22 Sn 5<br />

Capacity (reversible): 783 mAh/g (SnO2)<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW


Isothermal Ternary Phase Diagram<br />

R.A. Huggins: Advanced <strong>Batteries</strong>,<br />

Springer, New York (USA), 2009, pp. 154-156.<br />

-37-<br />

SnO<br />

Thermodynamic Considerations<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Theoretical coulometric titration curves at 25°C<br />

Calculation of Equilibrium Potentials:<br />

2 <strong>Li</strong> + SnO = Sn + <strong>Li</strong> 2 O<br />

Δ r G° = Δ f G°(<strong>Li</strong> 2 O) – Δ f G°(SnO)<br />

= –562,1 – (–256,8) kJ/mol = –305.3 kJ/mol<br />

E = –Δ r G°/zF<br />

= – (–306,0 kJ/mol) / (2 · 96485 As/mol) = 1.58 V<br />

Sn + 22/5 <strong>Li</strong> + + 22/5 e – … 1/5 <strong>Li</strong> 22 Sn 5<br />

… as for pure Sn


-38-<br />

SnO<br />

Theoretical and Practical Charge / Discharge Profiles<br />

Theoretical coulometric titration curves at 25°C Practical charge / discharge profile<br />

~400 ~800 ~1200 mAh/g<br />

R.A. Huggins: Advanced <strong>Batteries</strong>;<br />

Springer, New York (USA), 2009, p. 156.<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

I.A. Courtney, J.R. Dahn;<br />

J. Electrochem. Soc. 144 (1997), 2045.


Introduction<br />

<strong>Li</strong> metal<br />

Graphite<br />

Amorphous Carbons<br />

Titanates<br />

<strong>Li</strong>thium storage metals and alloys<br />

Convertible oxides<br />

Transition metal oxides<br />

Summary<br />

-39-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Contents


Oxides of transition metals: Mn, Fe, Co, Ni,<br />

Cu, …<br />

MOx + 2x <strong>Li</strong> + + 2x e – M + x <strong>Li</strong>2O <br />

z.B: CoO: CoO + 2 <strong>Li</strong> + + 2 e – Co + <strong>Li</strong>2O <br />

• High discharge potential<br />

• Large hysteresis between charge and<br />

discharge (low energy efficiency)<br />

-40-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Transition Metal Oxides<br />

Formation of a „mosaic“ of nano-scale<br />

metal in a <strong>Li</strong> 2 O matrix<br />

e.g. HRTEM image of lithiated CuO:<br />

Upper right: P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, B. Beaudoin, J.-<br />

M. Tarascon; C. R. Acad. Sci. Paris, Série II2, Chimie 3 (2000), 681.<br />

Bottom right: A. Débart, L. Dupont, P. Poizot, J.-B. Leriche, J.M. Tarascon,<br />

J. Electrochem. Soc. 148 (2001), A1266.


Introduction<br />

<strong>Li</strong> metal<br />

Graphite<br />

Amorphous Carbons<br />

Titanates<br />

<strong>Li</strong>thium storage metals and alloys<br />

Convertible oxides<br />

Transition metal oxides<br />

Summary<br />

-41-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Contents


-42-<br />

Material<br />

Graphite<br />

Amorphous Carbon /<br />

Hard Carbon<br />

LTO<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

Si<br />

<strong>Li</strong> *<br />

Comparison of <strong>Anode</strong> <strong>Materials</strong><br />

Energy<br />

Density<br />

Power<br />

density<br />

* Requires special, charged cathode materials<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Safety<br />

Cycling<br />

stability<br />

Costs<br />

per Ah<br />

Very good Very bad


Graphite<br />

<strong>Li</strong> + C 6 = <strong>Li</strong>C 6<br />

<strong>Li</strong> 4 Ti 5 O 12<br />

<strong>Li</strong> 4 Ti 5 O 12 + <strong>Li</strong> = <strong>Li</strong> 7 Ti 5 O 12<br />

-43-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Reaction Mechanisms<br />

Examples<br />

insertion, intercalation<br />

insertion<br />

Sn<br />

<strong>Li</strong> + Sn = <strong>Li</strong> x Sn reconstitution / conversion, formation<br />

Sb<br />

<strong>Li</strong> + Sb = <strong>Li</strong> 3 Sb reconstitution / conversion, formation<br />

SnSb<br />

<strong>Li</strong> + SnSb = <strong>Li</strong> 3 Sb + Sn extrusion<br />

<strong>Li</strong> + Sn = <strong>Li</strong> x Sn reconstitution / conversion, formation<br />

Cu 6 Sn 5<br />

<strong>Li</strong> + Cu 6 Sn 5 = <strong>Li</strong> 2 CuSn + Cu insertion with slight lattice rearrangement, extrusion<br />

<strong>Li</strong> + <strong>Li</strong> 2 CuSn = <strong>Li</strong> x Sn + Cu reconstitution<br />

SnO 2 , SnO<br />

<strong>Li</strong> + SnO x = Sn + <strong>Li</strong> 2 O reconstitution / conversion, displacement<br />

<strong>Li</strong> + Sn = <strong>Li</strong> x Sn reconstitution / conversion, formation<br />

Study of reaction mechanisms with ex-situ or in-situ XRD, Mössbauer spectroscopy, etc.


-44-<br />

Manufacturer<br />

Toyota<br />

Panasonic<br />

JCS (Johnson Controls & SAFT)<br />

Hitachi *<br />

AESC (Nissan & NEC)<br />

Sanyo *<br />

GS Yuasa *<br />

A123<br />

LG Chem<br />

Samsung *<br />

SK<br />

Toshiba & EnerDel<br />

AltairNano<br />

LIB for Automotive Applications<br />

Type<br />

metal, elliptic, wound<br />

metal, elliptic, wound<br />

metal, cylindric, wound<br />

metall, cyl./ell., wound<br />

pouch, prismatic, stacked<br />

metal, cylindric, wound<br />

metal, elliptic, wound<br />

metall/pouch, cyl., wound<br />

pouch, prismatic, stacked<br />

metal, cylindric, wound<br />

pouch, prismatic, wound<br />

pouch/metal, prism., wound<br />

pouch, prismatic, stacked<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Cathode<br />

NCA<br />

NMC<br />

NCA<br />

LMO / NMC<br />

LMO / NCA<br />

NMC / LMO<br />

LMO / NMC<br />

LFP<br />

LMO<br />

NMC / LMO<br />

LMO<br />

LMO<br />

LMO<br />

<strong>Anode</strong><br />

graphite<br />

amorph. carbon<br />

graphite<br />

hard carbon<br />

hard carbon<br />

graphite<br />

hard carbon<br />

graphite<br />

amorph. carbon<br />

graphite<br />

graphite<br />

LTO<br />

LTO<br />

Electrolyte<br />

liquid<br />

liquid<br />

liquid<br />

liquid<br />

liquid<br />

liquid<br />

liquid<br />

liquid<br />

gel<br />

liquid<br />

liquid<br />

liquid<br />

liquid<br />

<strong>Li</strong>-Tec (Evonik & Daimler) pouch, prismatic, stacked NMC graph. / hard carbon liquid<br />

Gaia<br />

Leclanché <strong>Li</strong>thium<br />

metal, cylindric, wound NCA / LFP graphite liquid<br />

pouch, prismatic, stacked various graphite / LTO liquid<br />

Source: M. Anderman: Tutorial E: Value Proposition Analysis for <strong>Li</strong>thium-<strong>Ion</strong> <strong>Batteries</strong>; Advanced Automotive <strong>Batteries</strong> Conference, 2009<br />

Complemented by data for German LIB manufacturers<br />

* Data unconfirmed


-45-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Improvement of <strong>Anode</strong><br />

Actual R&D Trends<br />

Increase of energy density of LIB<br />

→ Further decrease of electrode potential is not possible (e.g. for graphite),<br />

since already near potential of <strong>Li</strong> metal deposition<br />

→ Increase of capacity:<br />

Higher utilisation of theoretical capacity (e.g. for graphite)<br />

New materials: <strong>Li</strong> storage metals and alloys (<strong>Li</strong> x Sn, <strong>Li</strong> x Si, etc.)<br />

Rechargeable <strong>Li</strong> metal anode (solve problem of dendritic <strong>Li</strong> deposition)<br />

Increase of power density of LIB<br />

<strong>Materials</strong> with fast <strong>Li</strong> insertion (amorphous carbons, titanates with tailored<br />

morphology, etc.)<br />

SEI-free materialis (e.g. lithium titanium spinell), but lower cell voltage<br />

<strong>Materials</strong> with optimised SEI of low impedance (e.g. artificial SEI)<br />

Improvement of safety of LIB<br />

New anode materials with lower reactivity<br />

Decrease of surface area (e.g. coating of graphite)


-46-<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Further Reading<br />

<strong>Anode</strong>s<br />

R.A. Huggins: Advanced batteries; Springer, New York (USA), 2009.<br />

J.O. Besenhard (ed.): Handbook of battery materials; Wiley-VCh, Weinheim (Germany),<br />

1999.<br />

R.A. Huggins: <strong>Li</strong>thium Alloy <strong>Anode</strong>s, pp. 359-382.<br />

M. Winter, J.O. Besenhard: <strong>Li</strong>thiated Carbons; pp. 383-418.<br />

E.Peled, D. Golodnitzky, J. Pencier: The <strong>Anode</strong>/Electrolyte Interface; pp. 419-456.<br />

M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak: Insertion Electrode <strong>Materials</strong> for<br />

Rechargeable <strong>Li</strong>thium <strong>Batteries</strong>; Adv. Mater. 10 (1998), 725.


Thank you for your attention!<br />

Stuttgart<br />

Photovoltaics -47- & Solab<br />

Energy Policy & Energy Carriers<br />

mario.wachtler@zsw-bw.de<br />

www.zsw-bw.de<br />

Zentrum für Sonnenenergie- und Wasserstoff-Forschung<br />

Baden-Württemberg<br />

Helmholtzstraße 8, 89081 Ulm<br />

Widderstall<br />

Solar test-field<br />

111117 | <strong>Li</strong>-<strong>Ion</strong> <strong>Batteries</strong> 2011/12 | <strong>Anode</strong> <strong>Materials</strong> 2 | MW<br />

Ulm<br />

Electrochemical Energy<br />

Technologies<br />

Ulm<br />

eLab

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!