24.04.2013 Views

Micronutrient Interactions: Impact on Child Health and ... - Idpas.org

Micronutrient Interactions: Impact on Child Health and ... - Idpas.org

Micronutrient Interactions: Impact on Child Health and ... - Idpas.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Effects of Riboflavin Deficiency <strong>on</strong> the H<strong>and</strong>ling of Ir<strong>on</strong><br />

Strategies for improving the micr<strong>on</strong>utrient<br />

status of infants <strong>and</strong> children in developing<br />

countries should include steps to<br />

normalize riboflavin deficiency. In view of<br />

the importance of an adequate riboflavin<br />

status to normalize ir<strong>on</strong> ec<strong>on</strong>omy, strategies<br />

to improve ir<strong>on</strong> status in particular<br />

should c<strong>on</strong>sider riboflavin. As has been<br />

pointed out elsewhere, the relatively low cost<br />

of this vitamin, coupled with a negligible risk<br />

of toxicity, are arguments for its inclusi<strong>on</strong><br />

in fortificati<strong>on</strong> programs (Liu et al. 1993).<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Riboflavin depleti<strong>on</strong> disturbs the normal<br />

h<strong>and</strong>ling of ir<strong>on</strong>. This is true whether the<br />

deficiency is induced at around weaning or<br />

in adulthood. It impairs absorpti<strong>on</strong> <strong>and</strong> increases<br />

the rate of gastrointestinal loss of<br />

endogenous ir<strong>on</strong>. It may also reduce the efficiency<br />

of ir<strong>on</strong> use for heme synthesis. The<br />

effects <strong>on</strong> absorpti<strong>on</strong> <strong>and</strong> gastrointestinal<br />

loss appear to result from a hyperproliferati<strong>on</strong><br />

of crypt cells <strong>and</strong> an increased rate<br />

of transit of enterocytes al<strong>on</strong>g the villi, probably<br />

leading to functi<strong>on</strong>ally immature villi.<br />

A failure to increase villus number in the<br />

small intestine, observed after weaning when<br />

there is riboflavin deficiency, reduces the<br />

absorptive surface area <strong>and</strong> c<strong>on</strong>tributes to<br />

the effect <strong>on</strong> ir<strong>on</strong> absorpti<strong>on</strong>. An increase in<br />

villus length may be an adaptati<strong>on</strong> to the<br />

observed failure to increase villus number.<br />

The effects of changes in the small intestine<br />

are unlikely to be specific to ir<strong>on</strong>.<br />

Ethical C<strong>on</strong>siderati<strong>on</strong>s<br />

All studies involving human subjects were<br />

carried out with the approval of the University<br />

of L<strong>on</strong>d<strong>on</strong> or University of Cambridge<br />

Ethics Committee.<br />

Acknowledgments<br />

Financial support for some of the studies<br />

referred to here was provided by The Medical<br />

Research Council; Hoffmann-La Roche,<br />

Ltd; <strong>and</strong> The Wellcome Trust (035705/Z).<br />

References<br />

Adelekan DA, Thurnham DI (1986a) Effects of combined<br />

riboflavin <strong>and</strong> ir<strong>on</strong> deficiency <strong>on</strong> the<br />

haematological status <strong>and</strong> tissue ir<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s<br />

of the rat. J Nutr 116:1257–1265<br />

Adelekan DA, Thurnham DI (1986b) The influence of<br />

riboflavin deficiency <strong>on</strong> absorpti<strong>on</strong> <strong>and</strong> liver storage<br />

of ir<strong>on</strong> in the growing rat. Br J Nutr 56:171–<br />

179<br />

Bamji MS, Bhaskarham P, Jacob CM (1987) Urinary<br />

riboflavin excreti<strong>on</strong> <strong>and</strong> erythrocytes glutathi<strong>on</strong>e<br />

reductase activity in preschoolchildren suffering<br />

from upper respiratory infecti<strong>on</strong>s <strong>and</strong> measles. Ann<br />

Nutr Metab 31:191–196<br />

Bates CJ (1987) Human riboflavin requirements, <strong>and</strong><br />

metabolic effects of deficiency in man <strong>and</strong> animals.<br />

World Rev Nutr Diet 50:215–265<br />

Bates CJ, Prentice AM, Paul AA, et al (1981) Riboflavin<br />

status in Gambian pregnant <strong>and</strong> lactating women<br />

<strong>and</strong> its implicati<strong>on</strong>s for recommended dietary allowances.<br />

Am J Clin Nutr 34:928–935<br />

Bates CJ, Prentice AM, Paul AA, et al (1982) Riboflavin<br />

status in infants born in rural Gambia, <strong>and</strong> the effect<br />

of a weaning food supplement. Trans Roy Soc Trop<br />

Med Hyg 76:253–258<br />

Butler F, Topham RW (1993) Comparis<strong>on</strong> of changes<br />

in the uptake <strong>and</strong> mucosal processing of ir<strong>on</strong> in<br />

riboflavin-deficient rats. Biochem Mol Biol Int<br />

30:53–61<br />

Buzina R, Jusic M, Milanovic N, et al (1979) The effects<br />

of riboflavin administrati<strong>on</strong> <strong>on</strong> ir<strong>on</strong> metabolism<br />

parameters in a school-going populati<strong>on</strong>. Int J<br />

Vitam Nutr Res 49:136–143<br />

Charoenlarp P, Pholphothi T, Chatpunyaporn P, Schelp<br />

FP (1980) The effect of riboflavin <strong>on</strong> the hematologic<br />

changes in ir<strong>on</strong> supplementati<strong>on</strong> of schoolchildren.<br />

Southeast Asian J Trop Med Publ <strong>Health</strong><br />

11:97–103<br />

Cricht<strong>on</strong> R, Roman F, Wauters M (1975) Reductive<br />

mobilisati<strong>on</strong> of ferritin ir<strong>on</strong> by reduced nicotinamide<br />

adenine dinucleotide via flavin m<strong>on</strong><strong>on</strong>ucleotide.<br />

Biochem Soc Trans 3:946–948<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!