25.04.2013 Views

Outcrop/Behind Outcrop Characterization of Deepwater (Turbidite ...

Outcrop/Behind Outcrop Characterization of Deepwater (Turbidite ...

Outcrop/Behind Outcrop Characterization of Deepwater (Turbidite ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2001-02 AAPG Distinguished Lecture<br />

Funded by the AAPG Foundation<br />

through the J. Ben Carsey Memorial Endowment<br />

<strong>Outcrop</strong>/<strong>Behind</strong> <strong>Outcrop</strong><br />

<strong>Characterization</strong> <strong>of</strong> <strong>Deepwater</strong><br />

(<strong>Turbidite</strong>) Petroleum Reservoir<br />

Analogs: Why and How<br />

Roger M. Slatt<br />

University <strong>of</strong> Oklahoma<br />

Norman, Oklahoma


© 2001 The American Association <strong>of</strong><br />

Petroleum Geologists and Roger M. Slatt<br />

No slides, figures, text or other matter<br />

contained herein may be reproduced without<br />

the written permission <strong>of</strong> both the American<br />

Association <strong>of</strong> Petroleum Geologists and<br />

Roger M. Slatt


ENGINEERING DEFINITION: Drilling a well <strong>of</strong>fshore into<br />

a basin fill in present-day water depths greater than 500m<br />

(1500ft) above the mud line (ocean floor).


<strong>Deepwater</strong> (>500m) discovered reserves<br />

1978<br />

1980<br />

Cumulative Gas<br />

Cumulative Oil/Cond.<br />

Cumulative BBOE in Ultra-Deep<br />

Water (>2000m)<br />

Portion <strong>of</strong> BBOE<br />

Developed or under<br />

development<br />

1982<br />

1984<br />

1986<br />

1988<br />

Year<br />

1990<br />

1992<br />

1994<br />

1996<br />

7 BBOE per year<br />

1998<br />

Gas<br />

Oil<br />

Developed<br />

UDW<br />

2000<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

BBOE<br />

Discoveries<br />

mainly from:<br />

Gulf <strong>of</strong> Mexico,<br />

<strong>of</strong>fshore W.<br />

Africa and<br />

Brazil, N. Sea,<br />

SW shelf<br />

Australia, SE<br />

Asia<br />

< 25% Developed<br />

or In Development<br />

Source:<br />

Various


<strong>Deepwater</strong> Discovered Reserves<br />

>500m water depth<br />

as <strong>of</strong> Sept. 2001<br />

4<br />

3,0<br />

10<br />

8,6<br />

US GoM<br />

Taumalipas<br />

& Campeche<br />

Recoverable<br />

Resources in BBOE<br />

(green= oil, red = gas)<br />

Scotian &<br />

Jeanne D’Arc<br />

Trinidad<br />

Brazil<br />

Faroes<br />

White Zone<br />

WoS<br />

Morocco<br />

0,9<br />

10,9<br />

12<br />

0,5<br />

12,4 13<br />

3.6 3,0<br />

Mid-Norway<br />

0,6<br />

Egypt<br />

Nigeria<br />

Eq. Guinea<br />

Gabon<br />

Congo<br />

Angola<br />

S. Africa<br />

Italy<br />

2.0<br />

So. Caspian<br />

2,0 0,9<br />

1,8<br />

2.7<br />

Tanzania<br />

Mozambique<br />

E. India<br />

Total Discovered<br />

57 BBOE<br />

37 BBO + 120 TCF<br />

6,8<br />

7<br />

0,1<br />

NWS & ZOCA<br />

Sakhalin<br />

NW & SE Borneo<br />

Taranaki<br />

Areas <strong>of</strong> Prospective <strong>Deepwater</strong><br />

and Ultra-<strong>Deepwater</strong> Basins<br />

Data Sources: Pettingill (1999), various others


GEOLOGIC DEFINITION: Clastic sediments transported beyond the shelf<br />

edge into deep water by sediment gravity flow processes and deposited on<br />

the continental slope and in the basin. They are later buried and become part<br />

<strong>of</strong> a basin fill: Engineering and geologic ‘deep water’ are usually the same.<br />

Sp<br />

SIX RESERVOIR TYPES


Distal levee or<br />

TYPE III<br />

OVERBANK<br />

OVERBANK SLUMP<br />

SUBMARINE CHANNEL<br />

SYSTEM<br />

AGGRADING CHANNEL-LEVEE<br />

COMPLEX<br />

Splay<br />

CHANNEL PROXIMAL<br />

LEVEE<br />

CHANNEL<br />

LEVEE<br />

(Roberts and Compani,<br />

1996)


3D SEISMIC HORIZON SLICE<br />

Offshore Angola<br />

next picture<br />

(Provided by Kolla)


3D Seismic line, <strong>of</strong>fshore Angola<br />

Black = positive seismic reflection<br />

Purple = negative seismic reflection<br />

Kolla et al., 2001


3D Seismic line, <strong>of</strong>fshore Angola<br />

Black = positive seismic reflection<br />

Purple = negative seismic reflection<br />

Discovery Well<br />

Kolla et al., 2001


APPRAISAL & DEVELOPMENT<br />

• HOW BIG IS THE RESERVOIR?<br />

• HOW WILL THIS RESERVOIR STYLE PERFORM?<br />

• HOW WIDELY MUST WE SPACE OUR<br />

EXPENSIVE DEVELOPMENT WELLS?<br />

• SHOULD WE DRILL A VERTICAL, SLANT, OR<br />

HORIZONTAL WELL??<br />

• HOW CAN WE FAST-TRACK DEVELOPMENT OF<br />

THIS RESERVOIR?<br />

• WHAT WENT WRONG?


HOW CAN OUTCROPS HELP ANSWER<br />

THOSE TOUGH Con QUESTIONS??<br />

BUILDING A SCALED GEOLOGIC MODEL<br />

FROM OUTCROPS:<br />

•Sheet Sandstone Reservoirs<br />

•Leveed Channel Sandstone Reservoirs<br />

Lets study the Cretacous Lewis Shale in Wyoming!!


TOOLS AND TECHNIQUES FOR<br />

OUTCROP CHARACTERIZATON<br />

STANDARD RECENT ADDITIONS<br />

•Brunton Compass •Photomosaics on Workstation<br />

•Hand Lens •<strong>Outcrop</strong> gamma-ray/sonic logs<br />

•Jacobs Staff •<strong>Behind</strong>-outcrop logging/coring<br />

•Tape Measure •Ground Penetrating Radar (GPR)<br />

•Rock Hammer •Global Positioning System (GPS)<br />

•Camera •Ultra-shallow seismic behind<br />

outcrop<br />

•<strong>Outcrop</strong> Minipermeameter<br />

•3D Imaging


West<br />

Cretaceous Lewis Shale, Wyoming<br />

“Bashful outcrops”<br />

12<br />

Spine I<br />

S1 and S2 are continuous Lewis sheet sandstones<br />

CC is Lewis leveed channel complex on Spine I<br />

F is shallow marine Fox Hills<br />

North


West<br />

Cretaceous Lewis Shale, Wyoming<br />

Spine I<br />

S1 and S2 are continuous Lewis sheet sandstones<br />

CC is Lewis leveed channel complex on Spine I<br />

F is shallow marine Fox Hills<br />

North


Sheet Sandstones:<br />

Laterally continuous<br />

for miles: i.e. good<br />

potential reservoir<br />

facies; individual<br />

sandstone intervals<br />

are separated by<br />

shales.<br />

(Witton, 1999)<br />

Lith<strong>of</strong>acies A<br />

Sheet Sandstones


West<br />

Cretaceous Lewis Shale, Wyoming<br />

Spine I<br />

Laterally continuous shales in between<br />

Laterally continuous sandstones<br />

S1 and S2 are continuous Lewis sheet sandstones<br />

CC is Lewis leveed channel complex on Spine I<br />

F is shallow marine Fox Hills<br />

North


West<br />

Cretaceous Lewis Shale, Wyoming<br />

Spine I<br />

S1 and S2 are continuous Lewis sheet sandstones<br />

CC is Lewis leveed channel complex on Spine I<br />

F is shallow marine Fox Hills<br />

North


Channel-fill #1<br />

Sandstone<br />

Spine I<br />

(yellow line is app. 450m on ground; 120m <strong>of</strong> strat. section)<br />

Well-------<br />

#2 #3 #4 #5 #6<br />

10 Channel-fill sandstones, each separated<br />

by shale/mudstone breaks:i.e. discontinuous<br />

reservoirs; not so easy to develop as reservoirs


<strong>Behind</strong>-outcrop drilling for logs and core


Gamma Ray<br />

Where’s the<br />

10 sands??<br />

Core<br />

GR<br />

Bulk Density<br />

Sonic Dt<br />

Neutron Porosity<br />

Core Porosity<br />

CSM Strat<br />

Test #61<br />

Core and<br />

Log Data<br />

<strong>Outcrop</strong><br />

Subcrop


Channel-fill #1<br />

Sandstone<br />

Well-------<br />

#2 #3 #4 #5 #6<br />

Where did the Channel-fill #1 Sandstone go?? Meander loop <strong>of</strong><br />

sinuous channel??


Channel-fill #1<br />

Sandstone<br />

Well-------<br />

#2 #3 #4 #5 #6<br />

Where did the Channel-fill #1 Sandstone go?? Meander loop <strong>of</strong><br />

sinuous channel??


Thin-bedded,<br />

extra-channel<br />

or levee<br />

facies<br />

Rain gulley


Spine I, Lewis Shale<br />

Sinuosity not<br />

shown in model<br />

#4<br />

#3<br />

Channel-fill #1<br />

Sandstone -----------<br />

Width <strong>of</strong> channel<br />

Complex app. 500m<br />

#6 #7 #8<br />

#9<br />

#10<br />

#2<br />

#5<br />

CSM Strat Test well<br />

Sheet sandstones<br />

Thin levee beds<br />

not shown in<br />

model<br />

Channel complex


Laterally discontinuous<br />

channel-fill sandstone<br />

Channel-fill #1<br />

Sandstone<br />

(150m across in outcrop)


Channel-fill #1 Sandstone; oblique view<br />

across channel-fill<br />

X-bedded sands<br />

Massive sands w/ fluid escape structures<br />

Red = shale clast cong. Brown = sandy debrites


Cross-bedded sandstone


Shale clast conglomerate(debrite)<br />

Interbedded turbidites and debrites<br />

<strong>Turbidite</strong>


Laterally discontinuous<br />

channel-fill sandstone<br />

Channel-fill #1<br />

Sandstone<br />

(150m across in outcrop)


Margin <strong>of</strong> Channel Sandstone #1<br />

Ground-penetrating radar (GPR) line across channel margin<br />

showing sharp channel boundary and internal channel-slump<br />

features<br />

(Young et al,, 1999)


15<br />

ft<br />

Complex Channel margin<br />

S N<br />

P5<br />

Station 26<br />

0<br />

6.5<br />

9.8<br />

13<br />

16<br />

Channel margin is slumped,<br />

with channel sand injections<br />

into adjacent thin-beds<br />

Approximate depth<br />

(ft)<br />

H:V ~ 1:1


Thin bedded Sandstones/Mudstones<br />

Slumped<br />

beds<br />

Channel Sandstone


Thin bedded Sandstones/Mudstones<br />

Slumped<br />

beds<br />

Channel Sandstone<br />

No communication<br />

across slumped zone<br />

in reservoir analogs


Spine I, Lewis Shale<br />

#4<br />

#3<br />

Channel-fill #1<br />

Sandstone -----------<br />

Width <strong>of</strong> channel<br />

Complex app. 500m<br />

#6 #7 #8<br />

#9<br />

#10<br />

#2<br />

#5<br />

CSM Strat Test well<br />

Sheet sandstones<br />

Channel complex


Spine I, Lewis Shale<br />

#4<br />

#3<br />

Channel-fill #1<br />

Sandstone -----------<br />

Width <strong>of</strong> channel<br />

Complex app. 500m<br />

#6 #7 #8<br />

#9<br />

#10<br />

#2<br />

#5<br />

CSM Strat Test well<br />

Sheet sandstones<br />

Channel complex


Spine I, Lewis Shale<br />

#4<br />

#3<br />

Channel-fill #1<br />

Sandstone -----------<br />

Width <strong>of</strong> channel<br />

Complex app. 500m<br />

#6 #7 #8<br />

#9<br />

#10<br />

#2<br />

#5<br />

CSM Strat Test well<br />

Sheet sandstones<br />

Channel complex<br />

Complex channel<br />

margin


3D Seismic line, <strong>of</strong>fshore Angola<br />

Black = positive seismic reflection<br />

Purple = negative seismic reflection<br />

Multiple channel sandstones separated<br />

by mudstones<br />

Sheet Sandstones separated by mudstones<br />

Kolla et al., 2001


3D Seismic line, <strong>of</strong>fshore Angola<br />

Black = positive seismic reflection<br />

Purple = negative seismic reflection<br />

Discovery Well<br />

Kolla et al., 2001


Well<br />

Black = positive seismic reflection<br />

Purple = negative seismic reflection<br />

Kolla et al., 2001


Con<br />

HOW CAN OUTCROPS HELP ANSWER<br />

THOSE TOUGH QUESTIONS??<br />

BUILDING A SCALED GEOLOGIC MODEL<br />

FROM OUTCROPS:<br />

•Thin-bedded levee reservoirs<br />

Lets study the Miocene Mt. Messenger Formation<br />

in New Zealand!!


Distal levee or<br />

TYPE III<br />

OVERBANK<br />

OVERBANK SLUMP<br />

SUBMARINE CHANNEL<br />

SYSTEM<br />

AGGRADING CHANNEL-LEVEE<br />

COMPLEX<br />

Splay<br />

CHANNEL PROXIMAL<br />

LEVEE<br />

CHANNEL<br />

LEVEE<br />

(Roberts and Compani,<br />

1996)


Miocene Mt. Messenger Formation, Taranaki Basin,<br />

New Zealand: Cliff is 250m high and several km long<br />

Two<br />

Wells<br />

H.R.<br />

Seismic<br />

PHOTOMOSAICS FROM HELICOPTER; WELLS; CORES; LOGS; HIGH-<br />

RESOLUTION SHALLOW SEISMIC; MEASURED SECTIONS


Depositional interval or bed scale


Pleistocene-----------<br />

(brown)<br />

--D<br />

C = channel fill (upward dip decrease); P = proximal<br />

levee (high & variable angle dips); D = distal levee;<br />

C<br />

P


Distal levee bed sets (lower & uniform dip angles)


<strong>Behind</strong>outcrop<br />

dipmeter<br />

logs (by<br />

Schlumberger)<br />

Channel<br />

fill<br />

Distal levee/<br />

overbank<br />

Proximal<br />

levee<br />

(Slatt et al.,<br />

1998)


Levee beds<br />

3D Seismic line, <strong>of</strong>fshore Angola<br />

Black = positive seismic reflection<br />

Purple = negative seismic reflection<br />

Multiple channel sandstones separated<br />

by mudstones<br />

Levee beds<br />

Sheet Sandstones separated by mudstones<br />

Kolla et al., 2001


Well<br />

Black = positive seismic reflection<br />

Purple = negative seismic reflection<br />

Kolla et al., 2001


L Sand, Ram/Powell Field, Gulf <strong>of</strong> Mexico: comprises channel,<br />

proximal, & distal levee facies.<br />

West Ram/Powell Field<br />

East<br />

4.0 s<br />

4.5 s<br />

Tertiary Cretaceous Unconformity<br />

J sand L sand<br />

3363 ft<br />

N sand<br />

M sand<br />

(Clemenceau et al., 2000)


west east<br />

channel<br />

wet<br />

datum base <strong>of</strong> sand<br />

Ram Powell ‘L’ Sand<br />

proximal levee distal levee<br />

100 ft<br />

low resistivity gas pay<br />

(Clemenceau et al, 2000)<br />

2 ohms


west east<br />

channel<br />

wet<br />

datum base <strong>of</strong> sand<br />

Ram Powell ‘L’ Sand<br />

Inferred complex<br />

channel margin<br />

proximal levee distal levee<br />

100 ft<br />

low resistivity gas pay<br />

(Clemenceau et al, 2000)<br />

2 ohms


west east<br />

channel<br />

wet<br />

datum base <strong>of</strong> sand<br />

Ram Powell ‘L’ Sand<br />

Inferred complex<br />

channel margin<br />

proximal levee distal levee<br />

100 ft<br />

low resistivity gas pay<br />

(Clemenceau et al, 2000)<br />

2 ohms


(Clemenceau et al., 2000)


Amplitude<br />

proximal levee<br />

Channel<br />

high<br />

low<br />

3 miles<br />

A<br />

B<br />

C<br />

A-1(horizontal)<br />

Seismic line Fig. 5<br />

Ram Powell ‘L’ Sand<br />

E<br />

D<br />

GOC<br />

A<br />

B<br />

C<br />

D<br />

E<br />

L-1 LKO<br />

wet well<br />

A5<br />

A8st1<br />

A8st2<br />

A17<br />

957-1st2<br />

well test<br />

distal<br />

levee-overbank<br />

Drilling Strategy: Horizontal well in proximal levee beds, parallel to channel:<br />

“Well performance N exceeded expectations with a peak flow rate <strong>of</strong> 105mmcfgd<br />

and 9600 bopd”<br />

100 ft contour interval<br />

(Clemenceau et al, 2000)


WHAT IF YOU DON’T HAVE<br />

SEISMIC????<br />

BOREHOLE IMAGE LOGS WILL ALLOW YOU TO<br />

DIFFERENTIATE FACIES FOR VOLUMETRICS<br />

AND DRILLING STRATEGY (i.e. conventional<br />

well logs won’t differentiate facies with any degree<br />

<strong>of</strong> certainty)<br />

-Wellbore and behind-outcrop borehole image logs<br />

(STAR TM and FMI tm ) verify this in Lewis Shale<br />

and Mt. Messenger!!<br />

TM Baker-Hughes<br />

tm Schlumberger


Borehole<br />

Image<br />

Log,<br />

Lewis Sh.<br />

Debrites<br />

and<br />

<strong>Turbidite</strong>s =<br />

Channel -fill<br />

sandstones<br />

(Witton, 2000)


Borehole<br />

Image<br />

Log,<br />

Lewis Sh.<br />

<strong>Turbidite</strong>s<br />

only =<br />

Sheet<br />

Sandstones<br />

(Witton, 2000)


Levee beds<br />

from Mt.<br />

Messenger<br />

Fm. New<br />

Zealand


Well<br />

Well


Well<br />

Well


YET ANOTHER USE OF OUTCROPS<br />

Con<br />

•3D GEOLOGIC MODELING FOR<br />

VISUALIZATION, RESERVOIR<br />

PERFORMANCE PREDICTION &<br />

WELL PLACEMENT<br />

Lets study the Penn. Jackfork Group in Arkansas!!


Dipping sheet<br />

sands (colors)<br />

separated<br />

by shales<br />

Gulf <strong>of</strong> Mexico stacked sheet sand reservoirs<br />

(Kendrick, 2000)


CAVE<br />

3D Seismic data<br />

volume<br />

Person<br />

Dorn et.al, 2001<br />

Walk-in CAVE’s are excellent, but expensive!!


GEOLOGIC MODELING AREA, ARKANSAS: THE INEXPENSIVE<br />

CAVE IS CALLED AN OUTCROP!!!<br />

55


OUTCROP GEOLOGIC MODELING AREA, ARKANSAS<br />

55<br />

A


OUTCROP GEOLOGIC ‘RESERVOIR’ MODEL<br />

‘UNCONFORMITY TOPSEAL’<br />

‘Sealing<br />

A B C<br />

Shale’<br />

‘RESERVOIR SANDSTONES’<br />

‘OIL-WATER CONTACT’<br />

OUTCROP ‘A’<br />

“Imagination is more powerful than knowledge”<br />

Albert Einstein


A<br />

Zone Net/Gross Por.(%) Perm.(md) Sw (%)<br />

A 0.70 29 1000 20<br />

B 0.40 26 300 20<br />

C 0.95 29 1000 20<br />

D 0.96 30 2000 20<br />

Oil/water contact<br />

C SHALE<br />

D<br />

B<br />

FAULT<br />

GEOLOGIC<br />

RESERVOIR<br />

MODEL FOR<br />

SIMULATION:<br />

Dipping sandstones<br />

with unconformity<br />

topseal; Layers<br />

separated by<br />

sealing shales


Zone Net/Gross Por.(%) Perm.(md) Sw (%)<br />

A 0.70 29 1000 20<br />

B 0.40 26 300 20<br />

C 0.95 29 1000 20<br />

D 0.96 30 2000 20<br />

Oil/water<br />

contact<br />

GEOLOGIC<br />

RESERVOIR<br />

MODEL FOR<br />

SIMULATION:<br />

Dipping sandstones<br />

with unconformity<br />

topseal; Layers<br />

separated by<br />

sealing shales


A<br />

Oil/water contact<br />

C<br />

B<br />

WELL PLACEMENT<br />

FOR SIMULATION:<br />

On each fault block:<br />

-Vertical well thru D<br />

-Vertical well thru B<br />

-Horizontal well thru<br />

B,C,D.<br />

D<br />

Sh


A<br />

Oil/water contact<br />

C<br />

B<br />

AFTER SIMULATION:<br />

Most oil out <strong>of</strong> horizontal<br />

well, then Zone D, then<br />

Zone B.<br />

D<br />

SH


VALUE OF OUTCROPS<br />

Con<br />

•SEEING IS BELIEVING<br />

•BUILD SCALED GEOLOGIC MODEL<br />

FOR SUBSURFACE PREDICTION:<br />

-FACIES<br />

-TRENDS<br />

-GEOMETRIES<br />

-DIMENSIONS<br />

-CONTINUITY/CONNECTIVITY<br />

•3D GEOLOGIC MODELING FOR SIMULATION<br />

•IMPROVED & MORE ECONOMIC:<br />

-WELL SPACING & PLACEMENT<br />

-RESERVOIR PERFORMANCE PREDICTION


2001-02 AAPG Distinguished Lecture<br />

Funded by the AAPG Foundation<br />

through the J. Ben Carsey Memorial Endowment<br />

<strong>Outcrop</strong>/<strong>Behind</strong> <strong>Outcrop</strong><br />

<strong>Characterization</strong> <strong>of</strong> <strong>Deepwater</strong><br />

(<strong>Turbidite</strong>) Petroleum Reservoir<br />

Analogs: Why and How<br />

Roger M. Slatt<br />

University <strong>of</strong> Oklahoma<br />

Norman, Oklahoma

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!