28.04.2013 Views

Rub & Buzz and Other Irregular Loudspeaker ... - Klippel GmbH

Rub & Buzz and Other Irregular Loudspeaker ... - Klippel GmbH

Rub & Buzz and Other Irregular Loudspeaker ... - Klippel GmbH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion<br />

Product Design Session PD11<br />

133rd AES Convention 2012<br />

by Wolfgang <strong>Klippel</strong>,<br />

KLIPPEL <strong>GmbH</strong><br />

Institute of Acoustics <strong>and</strong> Speech Communication<br />

Dresden University of Technology<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 1


Abstract<br />

<strong>Loudspeaker</strong> defects caused by manufacturing, aging, overload or climate<br />

impact generate special kind of irregular distortion commonly known as<br />

rub & buzz which are highly audible <strong>and</strong> intolerable for the human ear.<br />

Contrary to regular loudspeaker distortions defined in the design process<br />

the irregular distortions are hardly predictable <strong>and</strong> are generated by an<br />

independent process triggered by the input signal. Traditional distortion<br />

measurements such as THD fail in the reliable detection of those defects.<br />

The Tutorial discusses the most important defect classes, new<br />

measurement techniques, audibility <strong>and</strong> the impact on perceived sound<br />

quality.<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 2


Problems addressed here:<br />

• What is <strong>Rub</strong> & <strong>Buzz</strong> ?<br />

• What kinds of symptoms are generated by irregular<br />

loudspeaker defects ?<br />

• Why do straightforward measurements fail in<br />

detecting those defects ?<br />

• Do we need a measurement more sensitive than the<br />

human ear ?<br />

• How to cope with ambient production noise ?<br />

• How to find the root cause <strong>and</strong> how to fix the<br />

problem ?<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 3


Desired <strong>and</strong> Undesired Components ?<br />

Generation of Signal Distortion in an Audio System<br />

Input<br />

Signal<br />

Desired Small<br />

Signal Performance<br />

Desired Large<br />

Signal Performance<br />

Stimulus<br />

Linear Model<br />

Nonlinear<br />

Model<br />

Unpredictable<br />

Dynamics<br />

Regular linear<br />

distortion<br />

Regular nonlinear<br />

distortion<br />

Undesired <strong>Loudspeaker</strong> Defects<br />

• <strong>Rub</strong>bing coils , buzzing parts<br />

• Wire beat, coil bottoming<br />

• Loose particles, air leak noise<br />

• Parasitic vibration of other components<br />

Excessive nonlinear<br />

distortion<br />

Measured<br />

Signal<br />

Noise<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Part 1 Introduction , 4<br />

Output<br />

Signal


<strong>Loudspeaker</strong> Defect: <strong>Buzz</strong> problem<br />

Most defects behave as a nonlinear oscillator<br />

• active above a critical amplitude<br />

• new mode of vibration<br />

• powered <strong>and</strong> synchronized by stimulus<br />

• constant output power<br />

vibration<br />

distortion signal<br />

parasitic resonator<br />

one period<br />

Externally excited<br />

mass<br />

spring<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 5<br />

Loose joint<br />

(Nonlinearity)<br />

time


<strong>Loudspeaker</strong> Defect: Voice Coil Bottoming<br />

Voice coil Voice coil<br />

Voice coil<br />

backplate backplate backplate backplate<br />

distortion signal<br />

Short impulse, deterministic symptom<br />

one period<br />

Voice coil<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 6<br />

time


<strong>Loudspeaker</strong> Defect: Voice Coil <strong>Rub</strong>bing<br />

• signal contains reproducible <strong>and</strong><br />

stochastic components<br />

gap<br />

Voice coil<br />

voice coil rubbing<br />

distortion signal<br />

Cause: rocking mode at 328 Hz<br />

one period<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 7<br />

time


<strong>Loudspeaker</strong> Defect: Air Noise<br />

• stochastic signal<br />

• air pressure is changed by coil displacement<br />

• synchronized with stimulus – signal envelope<br />

one period<br />

Air noise<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 8<br />

gap<br />

cone<br />

leakage<br />

dust cap<br />

time


<strong>Loudspeaker</strong> Defect: Loose Particles<br />

• r<strong>and</strong>om process<br />

• impulsive<br />

• particles are accelerated by cone displacement<br />

• not synchronized with stimulus<br />

• constant output power<br />

bouncing<br />

distortion signal<br />

bouncing<br />

one period<br />

Voice<br />

coil<br />

former<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 9<br />

gap<br />

cone<br />

dust cap<br />

Loose Particle<br />

time


Audibility <strong>and</strong> Impact on Sound Quality<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 10


Searching for a Critical Stimulus<br />

Audibility of Voice Coil <strong>Rub</strong>bing<br />

Signal Stimulus Output<br />

1V<br />

Music<br />

Multi-Tone<br />

20 Hz – 20 kHz<br />

Multi-Tone<br />

20 Hz – 1 kHz<br />

Sinussoidal Sweep<br />

1 s<br />

Most sensitive Stimulus<br />

Output<br />

2V<br />

Output<br />

3V<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 11


Masking of <strong>Loudspeaker</strong> Defects<br />

Masking Threshold<br />

Hearing Threshold<br />

Passed Failed<br />

Air Leak<br />

• irregular distortion produce high frequency components<br />

• no masking from fundamental component at low frequencies<br />

• close to the hearing threshold<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 12


Impact on Sound Quality<br />

Amplitude modulation<br />

(Envelope modulated by the bass signal 20…300 Hz)<br />

Spectrogram <strong>and</strong> time signal of leak noise<br />

time<br />

High-Frequency components<br />

(Increasing spectral power above 3 kHz)<br />

Increased Roughness Increased Sharpness<br />

Sensation: aggressive, unnatural, more noticeable<br />

Degradation of<br />

Sound Quality<br />

Signal spectrum of an intact <strong>and</strong> a defective speaker<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 13<br />

frequency


Auralization of <strong>Irregular</strong> Distortion (<strong>Rub</strong> & buzz)<br />

Example 1 : Headphone, sinusoidal sweep as stimulus<br />

35<br />

Distortion to 30 Mask Ratio = 45dB<br />

dB<br />

55<br />

50<br />

45<br />

40<br />

35<br />

Distortion to Mask 30 Ratio = 22dB<br />

dB<br />

55<br />

50<br />

45<br />

40<br />

Perceptual Attributes:<br />

Change of Sharpness 25 = 130 %<br />

Discolouration 20 =130 %<br />

Modulation = 1200<br />

15<br />

10<br />

Perceptual Attributes:<br />

5<br />

Change of Sharpness 25 = 27%<br />

Discolouration 20=16<br />

%<br />

Modulation = 1000<br />

15<br />

10<br />

5<br />

Distortion (Ref) Masking pattern Internal noise<br />

102 103 104 f in Hz<br />

Distortion (Ref) Masking pattern Internal noise<br />

102 103 104 f in Hz<br />

KLIPPEL<br />

S Dis =0dB<br />

KLIPPEL<br />

S Dis =-24dB<br />

20<br />

Discolouration =50 %<br />

15<br />

Modulation = 1200<br />

10<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 14<br />

dB<br />

dB<br />

55<br />

50<br />

45<br />

40<br />

35<br />

10<br />

5<br />

55<br />

50<br />

45<br />

40<br />

35<br />

Perceptiual Attributes:<br />

30<br />

Distortion to Mask Ratio = 32dB<br />

25<br />

Change of Sharpness = 55 %<br />

5<br />

Distortion (Ref) Masking pattern Internal noise<br />

102 103 104 f in Hz<br />

Perceptual Attributes:<br />

30<br />

Distortion to Mask Ratio = 7dB<br />

25<br />

Change of Sharpness = 7 %<br />

20<br />

Discolouration =4 %<br />

15<br />

Modulation = 700<br />

Distortion (Ref) Masking pattern Internal noise<br />

102 103 104 f in Hz<br />

KLIPPEL<br />

S Dis =-12dB<br />

KLIPPEL<br />

S Dis =-36dB


Example 2: Automotive Audio System<br />

organ music in woofer channel, <strong>Irregular</strong> distortion<br />

Door <strong>Buzz</strong>ing<br />

End-of-line testing Off-line<br />

Processing<br />

Test with sweep for loudspeaker<br />

defects <strong>and</strong> parasitic vibration<br />

Recording of reproduced music<br />

stimulus if defect is detected<br />

reference<br />

Engineering<br />

S DIS = 24 dB S DIS = 12 dB S DIS = -6 dB<br />

S DIS = 0 dB<br />

Measurement<br />

results<br />

recorded<br />

wave-file<br />

Auralization +<br />

Perceptive<br />

Evaluation<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Part 13 Specification in R&D <strong>and</strong> QC, 15<br />

S DIS = -12 dB<br />

Marketing<br />

Management


ated sound quality<br />

10 = „high“<br />

0 = „low“<br />

Sensations of <strong>Irregular</strong> Nonlinearities<br />

while increasing the distortion signal<br />

audibilty<br />

100%<br />

75%<br />

„improves bass<br />

sensation“<br />

audibilty<br />

threshold<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 16<br />

psychometric<br />

function of<br />

audibility<br />

5 = „medium“ 50%<br />

Kms(x)<br />

distortion<br />

voice coil rubbing<br />

distortion ratio


Engineering<br />

Subjective <strong>and</strong> Objective Evaluation<br />

in <strong>Loudspeaker</strong> Development<br />

Objective<br />

Evaluation<br />

Physical Data<br />

• Distortion, Maximal Output<br />

• Displacement, Temperature<br />

• Evaluation of Design Choices<br />

• Clues for Improvements<br />

Listening Test + Auralization<br />

Perceptive Modeling<br />

Performance/cost ratio<br />

Subjective<br />

Evaluation<br />

S DIS<br />

Audibility of distortion<br />

Perference,<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 17<br />

Marketing<br />

Management<br />

• Defining target specification<br />

• Tuning to the market


Are loudspeaker defects are acceptable<br />

which are inaudible for a human ear in a<br />

production environment ?<br />

NO !<br />

• some loudspeaker defects become worse over time<br />

(after break-in of the suspension)<br />

• some loudspeaker defects generate r<strong>and</strong>om symptoms<br />

(loose particles)<br />

• the production noise masks the symptoms of the defect<br />

(air leakage)<br />

• the end user may use a more critical stimulus (low<br />

frequency bass)<br />

• Significant loss of sound quality if symptoms detected by<br />

customer<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 18


Consequences of Subjective Testing at<br />

the Assembling Line<br />

• Need for trained operators more sensitive than the end<br />

user<br />

• Avoiding fatigue of the human ears (regular breaks, low<br />

SPL)<br />

• Operating the loudspeaker under similar condition as in<br />

the final application (listening distance, amplitude, load)<br />

• Sufficient time for human inspection (flexible <strong>and</strong> long<br />

cycle times)<br />

Human testing is expensive, not reliable <strong>and</strong> highly subjective !<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 19


Need for Objective Measurements<br />

which<br />

• are faster<br />

• can be integrated in an automated line<br />

• give reproducible, reliable results<br />

• are more sensitive than the human ear<br />

• are comparable with R&D, target performance<br />

• are immune against ambient noise<br />

• show the root cause of the defect<br />

• are the basis for process control<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 20


Generation<br />

of Stimulus<br />

Basic Requirements to detect<br />

<strong>Irregular</strong> <strong>Loudspeaker</strong> Defects<br />

Measurement of<br />

State Variables<br />

Analysis<br />

Symptoms<br />

• High displacement x <strong>and</strong>/or velocity v is required<br />

Stimulus with sufficient low frequency content<br />

• Defects produce only acoustical symptoms<br />

Sensitive microphone required<br />

• Defects produce high frequency components<br />

Low-pass filtered stimulus <strong>and</strong> high-pass filtered microphone<br />

signal<br />

• Defects are similar to ambient noise<br />

Microphone is located close to the source (near-field<br />

measurement)<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 21


[V]<br />

5,0<br />

2,5<br />

0,0<br />

-2,5<br />

-5,0<br />

Optimal Stimulus<br />

Stimulus (t)<br />

Excitation of <strong>Irregular</strong> <strong>Loudspeaker</strong> Defect<br />

Stimulus (t) vs time<br />

0 100 200 300 400 500<br />

Time [ms]<br />

600 700 800 900 1000<br />

Continous sweep with<br />

speed profile<br />

Why using continuous sweep?<br />

• Defects may be resonators with high Q-factor<br />

• Missed, if not excited exactly<br />

• Critical: Stepped excitation with low resolution<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 22<br />

0,2<br />

0,1<br />

0,0<br />

-0,1<br />

-0,2<br />

-0,3<br />

[V]<br />

0,50<br />

0,25<br />

-0,00<br />

-0,25<br />

-0,50<br />

Y1 (t)<br />

Response<br />

0 500 1000 1500<br />

Time [ms]<br />

2000 2500<br />

Fund. Buffer<br />

Response Detail<br />

6*101 8*101 102 2*102 Frequency [Hz]<br />

Defect


Stimulus:<br />

Sound Pressure [dB]<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Voice Coil <strong>Rub</strong>bing<br />

multi-tone complex 20 Hz – 20 kHz<br />

Noise Floor<br />

Fundamental 3V<br />

Multitone Distortion<br />

KLIPPEL<br />

10 2 10 3 10 4<br />

Frequency [Hz]<br />

Regular distortion masked higher-order harmonics<br />

Multi-tone distortion is not sensitive for coil rubbing <strong>and</strong> other defects<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 23<br />

2V<br />

1V<br />

3V


Voice Coil <strong>Rub</strong>bing<br />

Measurement of Incoherence with a music stimulus<br />

Percent<br />

100<br />

10<br />

1<br />

Defect speaker<br />

Good speaker<br />

KLIPPEL<br />

10 2 10 3 10 4<br />

Frequency [Hz]<br />

Distortion from regular nonlinearities mask symptoms from rub <strong>and</strong> buzz<br />

Incoherence measurement is not sensitive for impulsive distortion<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 24


Sound Pressure [dB]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

Sound Pressure [dB]<br />

Sound Pressure [dB]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

Frequency Response<br />

2<br />

10<br />

THD Max<br />

Frequency Response<br />

THD Max<br />

3<br />

10<br />

Frequency [Hz]<br />

THD<br />

THD<br />

Voice Coil <strong>Rub</strong>bing<br />

Stimulus: sinusoidal sweep<br />

KLIPPEL<br />

210 310 Frequency [Hz]<br />

410<br />

KLIPPEL<br />

4<br />

10<br />

1V<br />

2V<br />

Frequency Response<br />

THD Max<br />

100 1000 10000<br />

Frequency [Hz]<br />

•THD measures the rms value<br />

of all harmonics<br />

•Regular distortion are<br />

dominant<br />

•Distortion of defects have not<br />

much energy<br />

THD is not sensitive for coil<br />

rubbing <strong>and</strong> other irregular<br />

defects !!<br />

THD<br />

KLIPPEL<br />

<strong>Klippel</strong>, Sound Quality of Audio Systems, Diagnostics on <strong>Irregular</strong> <strong>Loudspeaker</strong> Defects, 25<br />

3V


Sound Pressure Level of Signal Components<br />

Voltage at<br />

Terminals<br />

Input<br />

Signal<br />

Measured<br />

Signal<br />

130 dB<br />

Linear System SPL at Mic<br />

Regular<br />

Harmonics<br />

<strong>Irregular</strong><br />

Harmonics<br />

(Defects)<br />

90 dB<br />

50 dB<br />

Noise<br />

40 - 60 dB<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 26


Symptoms of a <strong>Loudspeaker</strong> Defect<br />

loudspeaker with <strong>and</strong> without rubbing coil<br />

- 80 dB<br />

Masked by<br />

noise <strong>and</strong><br />

regular<br />

distortion<br />

IN1 [V] (rms)<br />

10-1<br />

10-2<br />

10-3<br />

10-4<br />

10<br />

-5<br />

10-6<br />

10-7<br />

with failure without failure Fundamental<br />

KLIPPEL<br />

-0 500 1000 1500<br />

Frequency [Hz]<br />

2000 2500 3000<br />

Fundamental<br />

50 Hz<br />

Regular<br />

nonlinear<br />

distortion<br />

<strong>Loudspeaker</strong><br />

Defect<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 27


Frequency Domain Analysis<br />

60 Hz Tone reproduced by a good <strong>and</strong> bad speaker<br />

fundamental<br />

High Pass Filtering<br />

2nd 3rd<br />

required to suppress<br />

fundamental <strong>and</strong> low order<br />

harmonics<br />

ambient noise<br />

Failed<br />

Passed<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 28


Simple Approach<br />

exploiting amplitude of higher-order harmonics only<br />

SPL<br />

fundam ental<br />

Regular<br />

distortion higher order<br />

harmonics<br />

RMS value of<br />

Higherharmonics<br />

amplitude<br />

spectrum<br />

frequency<br />

PROBLEMS:<br />

• considering deterministic defects only<br />

• each harmonic is close to the noise level<br />

• insensitive to loose particles <strong>and</strong> air leakage noise<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 29


SPL<br />

SPL<br />

360<br />

180<br />

0<br />

RMS value<br />

(MHD)<br />

fundamental<br />

fundamental<br />

Time Domain Analysis<br />

Regular<br />

Regular<br />

distortion<br />

distortion higher order<br />

harmonics<br />

FFT -1<br />

peak-value<br />

rms-value<br />

Crest factor<br />

amplitude<br />

spectrum<br />

frequency<br />

phase<br />

spectrum<br />

time<br />

Peak value<br />

(PHD)<br />

Solution back to the time domain<br />

exploiting amplitude <strong>and</strong> phase of<br />

higher-harmonics <strong>and</strong> all non-harmonic<br />

components<br />

peak value reveals small transients<br />

(clicks)<br />

Sensitive for all loudspeaker defects<br />

most loudspeaker defects generate symptoms with<br />

high crest factor<br />

but<br />

regular loudspeaker distortions, electrical <strong>and</strong><br />

microphone noise have lower crest factor<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 30


Single tone with varying<br />

frequency f (chirp)<br />

Sinusoidal<br />

Generator<br />

~<br />

Sound Pressure [dB]<br />

Peak value Contra rms-Value<br />

Amplifier<br />

Drive<br />

Unit<br />

Microphone<br />

instantaneous frequency f<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

peak value (PHD)<br />

rms value (MHD)<br />

Frequency Response<br />

High-pass<br />

cut-off frequency fc > 10f<br />

Tracking<br />

Filter<br />

100 1000<br />

Frequency [Hz]<br />

10000<br />

squarer<br />

integrator<br />

peak<br />

detector<br />

High-pass filtered<br />

Distortion<br />

rms value<br />

(MHD)<br />

peak value<br />

(PHD)<br />

Peak value (PHD) is a sensitive<br />

measure for most irregular defects<br />

such as „rub <strong>and</strong> buzz“, loose<br />

particles !!<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 31


[V]<br />

0,03<br />

0,02<br />

0,01<br />

0,00<br />

-0,01<br />

-0,02<br />

-0,03<br />

Distortion Signal in the Time Domain<br />

output of the high-pass filter f c=20f<br />

ZOOM<br />

Total sound pressure<br />

50<br />

Model error<br />

distortion signal<br />

Period<br />

Frequency [Hz]<br />

• Regular distortion have high energy<br />

• Disturbances have low energy<br />

• Disturbances are concentrated in time during a period<br />

impulsive distortion (high crest factor)<br />

Active compensation is useful<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 32<br />

KLIPPEL


Sound Pressure [dB]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

3V<br />

Frequency Response Response Max Response Min THD<br />

THD Max <strong>Rub</strong>+<strong>Buzz</strong> <strong>Rub</strong>+<strong>Buzz</strong> Max<br />

2<br />

10<br />

Sound Pressure [dB]<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

3<br />

10<br />

Frequency [Hz]<br />

KLIPPEL<br />

4<br />

10<br />

PHD<br />

Voice Coil <strong>Rub</strong>bing<br />

Stimulus: sinusoidal sweep<br />

1V<br />

PHD Max<br />

Sound Pressure [dB]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

Frequency Response Response Max Response Min THD<br />

THD Max <strong>Rub</strong>+<strong>Buzz</strong> <strong>Rub</strong>+<strong>Buzz</strong> Max<br />

Frequency Response<br />

KLIPPEL<br />

102 103 104 Frequency [Hz]<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 33<br />

KLIPPEL<br />

210 310 410<br />

Frequency [Hz]<br />

2V<br />

Peak value of highpass<br />

filtered<br />

distortion exceeds<br />

limit by 40 dB !!


Sinusoidal<br />

Stimulus<br />

Defect: Loose Particle<br />

Sound Pressure [dB]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

PHD<br />

Peak Value of high-pass<br />

50<br />

filtered distortion<br />

exceeds limit by 40 dB<br />

!!<br />

Frequency Response<br />

PHD Max<br />

Response Max<br />

Response Min<br />

THD<br />

THD Max<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 34<br />

KLIPPEL<br />

102 103 104 Frequency [Hz]


Sinusoidal<br />

Stimulus<br />

Very Small Loose Particle<br />

Sound Pressure [dB]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

Peak Value of high-pass<br />

filtered distortion50 exceeds<br />

limit by 10 dB !!<br />

one grain of fine salt<br />

PHD Max<br />

Response Max<br />

Response Min<br />

PHD<br />

Frequency Response<br />

THD Max<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 35<br />

KLIPPEL<br />

102 103 104 Frequency [Hz]<br />

MHD


Crest factor of high-pass filtered distortion (CHD)<br />

Stimulus: Sinusoidal sweep<br />

[dB]<br />

20,0<br />

17,5<br />

15,0<br />

12,5<br />

10,0<br />

7,5<br />

5,0<br />

2,5<br />

CHD<br />

CHD ( f ) <br />

rub & buzz, other disturbances<br />

50 100 200 500<br />

Frequency [Hz]<br />

PHD<br />

MHD<br />

peak-value within one period<br />

Rms-value averaged over one period<br />

regular distortion<br />

KLIPPEL<br />

CHD can be interpreted on an absolute scale !<br />

CHD expoits the phase information of all high frequency components<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 36<br />

12 dB


ICHD<br />

Instantaneous crest factor of<br />

high-pass filtered distortion ICHD(f,x)<br />

good 12 dB bad<br />

Frequency of sine sweep<br />

time<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 37


<strong>Loudspeaker</strong> Defect or Noise ?<br />

dB<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

Fund. mean<br />

3rd<br />

THD<br />

2nd<br />

PHD<br />

CHD<br />

MHD<br />

Fundamental<br />

PHD limit<br />

(-40dB)<br />

10 20 50 100 200 500 1k 2k 5k 10k<br />

Frequency [Hz]<br />

Symptoms of a significant defect:<br />

1. Sufficient amplitude: peak value PHD > FUND mean - 40dB<br />

2. Impulsive: crest factor CHD > 12dB<br />

Check for coincidence !<br />

(microphone noise is not<br />

impulsive)<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 38<br />

is not an<br />

audibility<br />

threshold<br />

!


Characteristics for Diagnostics<br />

Single-valued parameter derived from PHD <strong>and</strong> CHD<br />

Batch of TRF measurements<br />

6V<br />

8V<br />

10V<br />

12V<br />

voltage<br />

dB dB - - [V] [V] (rms)<br />

(rms)<br />

Fundamental Fundamental + + Harmonic Harmonic distortion distortion components components (SHAPED (SHAPED STIMULUS)<br />

STIMULUS)<br />

130<br />

130<br />

120<br />

120<br />

120<br />

110<br />

110<br />

110<br />

100<br />

100<br />

100<br />

90<br />

90<br />

90<br />

80<br />

80<br />

80 80<br />

70<br />

70<br />

70 70<br />

60 60<br />

60 60<br />

50 50<br />

CHD > 12dB<br />

impulsive<br />

Signal Signal<br />

Signal at at<br />

IN1<br />

IN1<br />

Fundamental Fundamental<br />

Fundamental THD THD<br />

THD 2nd<br />

2nd<br />

2nd Harmonic Harmonic<br />

Harmonic 3rd 3rd<br />

Harmonic<br />

Harmonic<br />

Absolute Absolute<br />

Absolute PHD<br />

PHD<br />

PHD Fund. Fund.<br />

Fund. mean<br />

mean<br />

mean (100<br />

(100<br />

(100 to to<br />

to 500 500<br />

500 Hz) Hz)<br />

PHD PHD<br />

limit limit<br />

(-40dB)<br />

(-40dB)<br />

f r&b<br />

-40 dB<br />

KLIPPEL KLIPPEL<br />

50 40<br />

50 40<br />

10 10 20 20 50 50 100 100 200 200 500 500 500<br />

1k 1k<br />

2k 2k 2k<br />

5k 5k 5k<br />

10k 10k<br />

10k<br />

Frequency Frequency<br />

Frequency [Hz] [Hz]<br />

[Hz]<br />

Significant<br />

defect (R&B)<br />

PHD > FUNDmean - 40dB<br />

high amplitude<br />

12V<br />

Conditions:<br />

Rms Voltage U r&b = 12 V<br />

Peak displacement X r&b= 4mm<br />

Frequency f r&b = 65 Hz<br />

Inst. Displacement x in, r&b = 3.8 mm<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 39


Diagnostics on <strong>Irregular</strong> Defect (1 st example)<br />

Conditions:<br />

• Positive peak displacement at 0.5 mm below f s<br />

• above a terminal voltage of 0.9 V<br />

Root Cause: Bottoming<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 40


Diagnostics on <strong>Irregular</strong> Defect (2 nd example)<br />

Conditions:<br />

• Negative turning point of voice coil excursion above f s<br />

• maximal acceleration Tilting of voice coil former<br />

• independent of displacement<br />

Root Cause: Voice coil <strong>Rub</strong>bing<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 41


Clues for Diagnostics of Defects<br />

derived from ICHD(f,u) measured versus frequency f <strong>and</strong> voltage u<br />

• Coil rubbing initiated by a tilting of the voice coil former occurs at maximal acceleration<br />

corresponding with the positive <strong>and</strong> negative maxima of the displacement. This occurs<br />

usually at frequencies above resonance where the acceleration is maximal while the<br />

amplitude of the displacement decreases. When the voltage is increased the coil rubbing will<br />

also occur at the turning points of the voice coil at higher displacement values.<br />

• <strong>Buzz</strong>ing part generates high ICHD for particular (reproducible) values of frequencies <strong>and</strong><br />

displacement because it behaves like a coupled nonlinear resonator. Above a critical voltage<br />

when it starts this defect is almost independent on the peak displacement.<br />

• Coil bottoming at the rear plate generates high ICHD at a clearly defined negative<br />

displacement independent of frequency. Increasing the voltage of the excitation the maximal<br />

negative displacement is constant but the loudspeaker generates a dc displacement shifting<br />

the coil in the opposite direction.<br />

• Limiting surround generates high ICHD at maximal positive or negative displacement<br />

independent of the excitation frequency. The instantaneous displacement where ICHD > 12<br />

dB raises by increasing the voltage because the suspension behaves not as a hard limiting<br />

nonlinearity like coil bottoming.<br />

• Tensile slap generates a high value of ICHD at reproducible values of displacement <strong>and</strong><br />

frequency because the wire behaves as a coupled mechanical system having its own<br />

vibration mode <strong>and</strong> natural frequency.<br />

• Air leakage in a dust cap generates a high ICHD for frequencies below resonance f< fs<br />

where the sound pressure of the enclosed air is high.<br />

• Loose particles generate ICHD > 12 dB at r<strong>and</strong>om values of frequencies <strong>and</strong> instantaneous<br />

displacement.<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 42


Basic Classification of <strong>Loudspeaker</strong> Defects<br />

Coil hitting<br />

backplate<br />

Waveform is<br />

completely<br />

reproducible<br />

<strong>Buzz</strong>ing loose<br />

joint<br />

vibration<br />

<strong>Rub</strong>bing<br />

voice coil<br />

Envelope is<br />

reproducible<br />

(Waveform is not)<br />

Flow noise at air<br />

leak<br />

Loose particle<br />

hitting<br />

membrane<br />

Semi‐r<strong>and</strong>om<br />

Deterministic R<strong>and</strong>om<br />

(mixed characteristic)<br />

Waveform is not<br />

reproducible<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 43<br />

Loose particle


Exploiting all Symptoms of the Defect<br />

SPL<br />

fundamental<br />

2nd<br />

3rd<br />

Regular<br />

distortion<br />

4th<br />

High-pass filtered<br />

symptoms <strong>and</strong> noise<br />

SPL<br />

f<br />

Symptoms of<br />

defects<br />

noise level<br />

frequency<br />

High-pass Filter<br />

cut-off frequency f c > 10f<br />

SPL<br />

Comb Filter<br />

Order n > 10th<br />

frequency<br />

Deterministic part<br />

(higher-order harmonics)<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 44<br />

SPL<br />

Inverse Comb Filter<br />

frequency<br />

R<strong>and</strong>om part<br />

(non-harmonics)


Example:<br />

tensile slap, bottoming<br />

Deterministic Distortion<br />

Results of three measurements<br />

Symptoms:<br />

• Reproducible, repeatable<br />

• Related with stimulus<br />

• impulsive distortion<br />

• Deterministic amplitude <strong>and</strong><br />

phase of higher-order ha FAIL<br />

high-pass<br />

PASS<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 45


SPL<br />

Defects Masked by Regular Nonlinearities<br />

@ 5 Volt stimulus<br />

fundamental<br />

Regular<br />

distortion<br />

order > 10<br />

Symptoms of<br />

defects<br />

frequency<br />

SPL<br />

fundamental<br />

Where are the limits of a human tester ?<br />

@ 10 Volt stimulus<br />

Regular distortion<br />

Symptoms<br />

of defects<br />

order > 50<br />

frequency<br />

• Symptoms of some defects have almost constant energy<br />

• Distortion of regular nonlinearities rise with amplitude<br />

• Defects are masked (become inaudible at higher amplitudes)<br />

• Increasing high-pass frequency less energy noise problems<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 46


Stimulus<br />

Solution: Active Compensation<br />

DUT<br />

Model<br />

p(t)<br />

p’(t)<br />

Isolated<br />

Defect<br />

Distortion<br />

classificator<br />

Fail/Pass<br />

Meta-Hearing Technology<br />

• Regular distortion are deterministic <strong>and</strong> predictable<br />

• Modeling of regular distortion (adaptive learning)<br />

• Masking by regular distortion can be removed actively<br />

active compensation<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 47


SPL<br />

Meta-Hearing Technology<br />

@ 10 Volt stimulus<br />

fundamental<br />

Regular<br />

distortion<br />

residual<br />

Symptoms of defects<br />

frequency<br />

• Exploiting symptoms masked by regular distortion<br />

• Test of driver at maximal amplitude becomes possible<br />

• Detection of defects with low energy (loose particles)<br />

• Detect failures even if they are inaudible<br />

(getting worse in final application)<br />

More energy can be used !<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 48


110<br />

100<br />

90<br />

dB<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

2*10 1 20<br />

Benefits of Active Compensation<br />

Without compensation<br />

regular<br />

PHD<br />

Limit<br />

Loose particle not detected<br />

50 100<br />

Frequency [Hz]<br />

200<br />

400<br />

90<br />

dB<br />

80<br />

Simple definition of PASS / FAIL thresholds<br />

Measurement below the hearing threshold<br />

110<br />

100<br />

70<br />

60<br />

50<br />

40<br />

30<br />

2*10 1 20<br />

With meta-hearing technology<br />

Limit<br />

Meta-hearing<br />

PHD<br />

Meta-hearing<br />

regular<br />

Loose particle detected<br />

50 100<br />

Frequency [Hz]<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 49<br />

200<br />

400


Example:<br />

Turbulent air noise generated at<br />

leaks, coil rubbing<br />

Symptoms:<br />

• Distortion are NOT reproducible<br />

• Distortion occur at particular<br />

times<br />

• Dense spectrum (cover audio<br />

b<strong>and</strong> <strong>and</strong> beyond)<br />

Semi-R<strong>and</strong>om Distortion<br />

high-pass<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 50


Averaging of Air Leakage Noise<br />

Multiple realizations<br />

Averaged realizations<br />

Air noise<br />

• High pressure generates high air velocity at the leakage<br />

• Turbulences generate a noise signal modulated by the air pressure<br />

• Noise is almost r<strong>and</strong>om<br />

Problem: Averaging suppresses the r<strong>and</strong>om noise signal<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 51<br />

time<br />

time


Generation of Turbulent Air Distortion<br />

u(t)<br />

voltage<br />

x(t)<br />

pbox(t)<br />

q(t)<br />

Generation of High Volume velocity q(t)<br />

Voltage displacement sound pressure volume velocity<br />

Linear System<br />

Generation of Turbulent Noise<br />

qmod(t,rs)<br />

Nonlinear System<br />

(Modulation Process)<br />

Linear sound propagation<br />

Linear System<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 52<br />

p(t)<br />

sound pressure


u(t)<br />

voltage<br />

Modeling by a Signal Flow Chart<br />

Hpre(j? )<br />

Low-pass filter<br />

Linear System<br />

pbox(t)<br />

Linear<br />

System<br />

Regular<br />

Nonlinearities<br />

(motor, suspension)<br />

Transducer Defects<br />

(rub&buzz)<br />

N(pbox)<br />

Static nonlinearity<br />

Noise<br />

Source<br />

n(t)<br />

q(t,rs)<br />

Nonlinear System<br />

(modulation process)<br />

pa(t)<br />

Ambient noise<br />

pmod(t)<br />

qmod(t,rs)<br />

Hpost(j? )<br />

Sound propagation<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 53<br />

)<br />

p(t)<br />

sound pressure<br />

Linear System


Why Are Traditional Measurements<br />

Not Sensitive for Air Leaks ?<br />

Deterministic<br />

第一次测量<br />

1st measurement<br />

1st measurement<br />

2nd measurement<br />

第二次测量<br />

2nd measurement 128次结果平均<br />

Averaged 120 times<br />

Averaged 128 times<br />

Noise is attenuated by averaging !!<br />

Deterministic<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 54


Envelope of the Modulated Noise<br />

Multiple realizations<br />

Averaged Envelope<br />

Air noise<br />

• Envelope of the modulated noise is deterministic<br />

• Averaging of the envelope increases signal to noise ratio<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 55<br />

time<br />

time


Single tone<br />

p(t)<br />

Comb-Filter<br />

Demodulation<br />

p r(t)<br />

e(t)<br />

p f(t)<br />

Comb-Filter<br />

How to Calculate the Envelope ?<br />

P f<br />

P f<br />

P r<br />

E<br />

fundamental<br />

regular<br />

Envelope<br />

Envelope<br />

frequency<br />

frequency<br />

frequency<br />

frequency<br />

p r(t)<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 56<br />

p(t)<br />

p f(t)<br />

e(t)<br />

time<br />

time<br />

time<br />

Envelope<br />

time


MOD<br />

abs<br />

fundamental<br />

Absolute Modulation Level<br />

Peak value of the<br />

envelope<br />

e<br />

10 lg<br />

<br />

2 p<br />

max 2<br />

0<br />

Harmonics<br />

<br />

<br />

<br />

<br />

Absolute hearing threshold p 0<br />

deterministic components<br />

• Shows the peak value of the envelope<br />

• is in dB referred to the absolute hearing<br />

threshold p0 • good for PASS/FAIL decisions<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 57<br />

e max


MOD<br />

Relative Modulation Level<br />

Peak value of deterministic part<br />

Rms value of r<strong>and</strong>om components<br />

deterministic components<br />

fundamental<br />

e<br />

10 lg<br />

r<br />

max<br />

rel ~ 2<br />

harmonics<br />

<br />

<br />

<br />

R<strong>and</strong>om components<br />

• Considers the ratio of deterministic <strong>and</strong><br />

r<strong>and</strong>om parts of the envelope<br />

• Shows significant modulation (MODrel > 0)<br />

• Is in dB<br />

• good for PASS/FAIL decisions<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 58<br />

e max


Influence of Excitation Voltage<br />

Box with leak<br />

Generation of<br />

turbulences<br />

Box without leak<br />

MOD rel= 0 dB<br />

indicates no<br />

modulation<br />

Box with leak<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 59<br />

Box without leak<br />

•Turbulent air leakage noise set in abruptly if the velocity of the air at the leak<br />

exceeds a critical value.<br />

• Search for the critical voltage of the stimulus !!


Influence of Measurement Time<br />

MOD abs<br />

MOD rel<br />

The relative<br />

modulation level<br />

MOD rel rises by 3dB<br />

for doubling the<br />

measurement time!<br />

A 1s stimulus of 100 Hz will increase the sensitivity by 20 dB for semi-r<strong>and</strong>om distortion !<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 60


How to Separate Port <strong>and</strong> Leak Noise ?<br />

Leak Noise<br />

30 dB<br />

Port Noise<br />

Inset of leak<br />

turbulences<br />

Inset of port<br />

turbulences<br />

• Close the port for leakage detection (if possible)<br />

• Select optimal excitation voltage (e.g. 1-2 Volt) between inset of leak <strong>and</strong> port<br />

turbulences<br />

• Shield test microphone from port noise<br />

• Choose optimal microphone position<br />

• Use directional microphone<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 61<br />

Leak Noise<br />

Port Noise


Combining Subjective <strong>and</strong> Objective Assessment<br />

Stethoscope<br />

Noise<br />

Detection<br />

Objectives:<br />

• Auralization of <strong>Irregular</strong><br />

Distortion<br />

• Ear Protection<br />

• Signal Transformation<br />

• Defect Localization<br />

• Diagnostics<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 62


Air<br />

Leak<br />

Localization of <strong>Loudspeaker</strong> Defects<br />

relative<br />

Modulation<br />

Good Bad<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 63


A sensitive Measurement system is<br />

not sufficient !<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 64


Voltage at<br />

Terminals<br />

Coping with Ambient Noise<br />

Sound Pressure Level of Signal Components<br />

130 dB<br />

Linear System SPL at Mic<br />

Regular<br />

Nonlinearities<br />

<strong>Irregular</strong><br />

Defects<br />

90 dB<br />

Noise<br />

50 dB 40 - 60 dB, Peaks<br />

Problems:<br />

• Symptoms of defects are very small (but still audible)<br />

• Ambient noise in a production environment has similar properties<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 65


Professional Test Boxes<br />

Photos by courtesy of Phase Design<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 66


Solution: Ambient Noise Microphone<br />

• Measure loudspeaker in the near field<br />

• Measure noise / vibration in the far field<br />

• Predict noise at test microphone<br />

• Calculate impact on measured characteristics<br />

• Store valid part of the measurement<br />

• Repeat measurement automatically<br />

Full noise immunity for r<strong>and</strong>om ambient noise<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 67


Merging Technique<br />

repeating measurement automatically <strong>and</strong> accumulating valid parts<br />

Ambient noise generated by permanent h<strong>and</strong> clapping<br />

28 % valid<br />

62% accumulated<br />

85% accumulated<br />

100% valid<br />

Full immunity against r<strong>and</strong>om noise<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 68


Sound Quality in the Car Interior<br />

ambient noise source<br />

Progress in Data Acquisition<br />

test microphone inside the car<br />

fundamental<br />

rub <strong>and</strong> buzz<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 69


tambourine<br />

Simulation of Door <strong>Buzz</strong>ing<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 70<br />

reliable detection<br />

of the defect


How to fix the problem?<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 71


Root Cause Analysis of <strong>Loudspeaker</strong> Defects<br />

Bottoming<br />

Asymmetrical<br />

Suspension<br />

<strong>Buzz</strong>ing<br />

vibration<br />

Glue dispenser<br />

Problem<br />

Coil <strong>Rub</strong>bing<br />

mass distribution<br />

on the cone<br />

Air Leak<br />

Missing screw<br />

Design<br />

Supplier<br />

Qualtiy Inspection<br />

of Incoming Parrts<br />

Loose particle<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 72<br />

dirty storage condition<br />

Manufacturing<br />

(Process Control)


Automatic Learning from Manufacturing<br />

1st step: Automatic clustering of the raw data<br />

2nd step: Prototype selection (best representative of the cluster)<br />

3rd step: Human inspection <strong>and</strong> tagging of the defect<br />

4th step: Updating the knowledge base for on-line diagnostics<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 73


Clustering is a statistical<br />

process of separating<br />

devices under test (DUTs)<br />

into subgroups wherein<br />

all members of one<br />

cluster have similar<br />

properties but are very<br />

different to the members<br />

of other clusters.<br />

Results of the formal cluster analysis:<br />

• Total number of defect classes<br />

• Devices representing each class<br />

• Properties of the good units<br />

• Significant features<br />

• Related or similar defects<br />

tagging<br />

Clustering of the DUTs<br />

in the Feature Space<br />

Feature 1 (R (Re) e)<br />

P 3<br />

Similarity<br />

P 5<br />

(distance)<br />

Feature 2 (f (fs) s)<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 74<br />

P 2<br />

P 1<br />

P 4<br />

Volume<br />

(deviation)<br />

Prototype<br />

(mean value)


Sound Pressure [dB]<br />

Sound Pressure [dB]<br />

120<br />

110<br />

100<br />

Raw Measurement Data (300 DUTs)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

Curve Bulk<br />

Curve Bulk<br />

Frequency Response<br />

102 103 104 Frequency [Hz]<br />

<strong>Rub</strong>+<strong>Buzz</strong><br />

102 103 Frequency [Hz]<br />

Clustering<br />

KLIPPEL<br />

Good<br />

Sound Pressure [dB]<br />

Sound Pressure [dB]<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

Results of the Clustering<br />

Frequency Response<br />

1: GOOD (SD) 2: Low SPL (SD) 3: not connected (SD)<br />

4: high THD @ 1.5 kHz (SD) 5: lower fs (SD) 6: not connected (SD)<br />

7: <strong>Rub</strong>+<strong>Buzz</strong> (SD)<br />

Good<br />

Low SPL<br />

102 103 104 Frequency [Hz]<br />

<strong>Rub</strong>+<strong>Buzz</strong><br />

1: GOOD (SD) 2: Low SPL (SD) 3: not connected (SD)<br />

4: high THD @ 1.5 kHz (SD) 5: lower fs (SD) 6: not connected (SD)<br />

7: <strong>Rub</strong>+<strong>Buzz</strong> (SD)<br />

Coil rubbing<br />

Low SPL<br />

102 103 Frequency [Hz]<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 75<br />

Surround<br />

Resonance<br />

Coil rubbing<br />

Not Connected<br />

Surround<br />

Resonance<br />

Not Connected


Automatic Classification of Defects<br />

1st source: theoretical<br />

knowledge in engineering<br />

(static)<br />

2nd source: practical<br />

experience in<br />

manufacturing<br />

(dynamic)<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 76


<strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion<br />

Summary<br />

• are related with loudspeaker defects<br />

• not found in approved prototypes, golden reference unit<br />

• are caused by manufacturing, overload, ambient conditions<br />

• are not directly related to cost, size, weight<br />

• are difficult to model <strong>and</strong> not predictable<br />

• depend on the operation condition (e.g. orientation + loose<br />

particles)<br />

• are time variant (aging) <strong>and</strong> usually become worse over time<br />

• generate impulsive distortion with high crest factor but low energy<br />

• are inacceptable if detected by customer<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 77


Conclusions<br />

• Defective loudspeakers with irregular distortion should not be<br />

shipped to the customer even if the symptoms are inaudible<br />

• Sensitive Measurement techniques are required more<br />

sensitive than the ear of the customer<br />

• Time domain analysis is required to consider transient<br />

properties of the symptoms<br />

• Reliable measurements require automatic detection of invalid<br />

tests corrupted by ambient noise in a production environment<br />

• Production limits depend on the target application<br />

• The human operator works on the diagnostic station <strong>and</strong><br />

provides information for the knowledge base<br />

• Automatic defect classification shows the root cause of the<br />

defect<br />

• Process control ensures high yield rate in production<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 78


Many thanks !<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 79


References<br />

• W. <strong>Klippel</strong>, Tutorial: <strong>Loudspeaker</strong> Nonlinearities - Causes, Parameters,<br />

Symptoms J. Audio Eng. Society 54, No. 10 pp. 907-939 (2006 Oct.).<br />

• W. <strong>Klippel</strong>, „Measurement of Impulsive Distortion, <strong>Rub</strong> <strong>and</strong> <strong>Buzz</strong> <strong>and</strong><br />

other Disturbances”, presented at the 114th Convention of the Audio<br />

Engineering Society, 2003 March 22–25, Amsterdam, The Netherl<strong>and</strong>s,<br />

preprint # 5734.<br />

• S. Temme, et. al., “Loose Particle Detection in <strong>Loudspeaker</strong>s,”<br />

presented at the 115 th Convention of the Audio Eng. Soc., September<br />

2003, preprint 5883.<br />

• W. <strong>Klippel</strong>, et. al. , “<strong>Loudspeaker</strong> Testing at the Production Line,”<br />

presented at the 120 th Convention of the Audio Eng. Soc., Paris<br />

(France), September 2006, May 20-23, preprint 6845.<br />

• W. <strong>Klippel</strong>, J. Schlechter, „Fast Measurement of Motor <strong>and</strong> Suspension<br />

Nonlinearities in <strong>Loudspeaker</strong> Manufacturing,“ presented at the 127 th<br />

Convention of the Audio Eng. Soc., New York, USA, October 9-12<br />

2009, preprint 7903<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 80


Application Notes <strong>and</strong> Templates<br />

Application Notes:<br />

AN 24: Measuring Telecommunication Drivers, Micro-speaker, Headphones<br />

AN 22 <strong>Rub</strong> & <strong>Buzz</strong> Detection without Golden Unit<br />

R&D Operation Templates available for Transfer Function Module<br />

TRF RUB + <strong>Buzz</strong> without Golden Unit Speaker 1 (woofer)<br />

TRF RUB + <strong>Buzz</strong> without Golden Unit Speaker 2 (headphone)<br />

Object Template:<br />

Diagnostics <strong>Rub</strong> + <strong>Buzz</strong> Distortion Sp1 (woofer)<br />

Diagnostics <strong>Rub</strong> + <strong>Buzz</strong> Distortion SP2 (micro-speaker, headphone)<br />

Further information under www.klippel.de<br />

<strong>Klippel</strong>, <strong>Rub</strong> & <strong>Buzz</strong> <strong>and</strong> <strong>Other</strong> <strong>Irregular</strong> <strong>Loudspeaker</strong> Distortion, 81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!