01.05.2013 Views

Direct CP violation in D meson decays - Rencontres de Moriond

Direct CP violation in D meson decays - Rencontres de Moriond

Direct CP violation in D meson decays - Rencontres de Moriond

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Direct</strong> <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong>meson</strong> <strong><strong>de</strong>cays</strong><br />

Joachim Brod<br />

<strong>in</strong> collaboration with Yuval Grossman, Alexan<strong>de</strong>r L. Kagan, Jure Zupan<br />

Recontres <strong>de</strong> <strong>Moriond</strong>, QCD session<br />

March 13th, 2012<br />

arXiv:1111.5000 [hep-ph]; arXiv:1203.xxxx [hep-ph]<br />

see also A. Kagan, talk at FP<strong>CP</strong> 2011, May 2011<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 1 / 26


Introduction<br />

S<strong>in</strong>gly Cabibbo-suppressed (SCS) D-<strong>meson</strong> <strong><strong>de</strong>cays</strong> D 0 → π + π − ,D 0 → K + K −<br />

<strong>CP</strong> <strong>violation</strong> <strong>in</strong> SCS D-<strong>meson</strong> <strong><strong>de</strong>cays</strong> is<br />

c<br />

ū<br />

V ∗ uq<br />

Vcq W<br />

sensitive to new physics (NP) <strong>in</strong> the up-quark sector<br />

suppressed <strong>in</strong> the standard mo<strong>de</strong>l (SM):<br />

two-generation dom<strong>in</strong>ance<br />

loop suppression (pengu<strong>in</strong> amplitu<strong>de</strong>s)<br />

GIM mechanism<br />

Naively, expect effects of O<br />

VubVcb<br />

VusVcs<br />

u<br />

¯q<br />

q<br />

ū<br />

<br />

αs<br />

π ∼ 0.01%.<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 2 / 26


Def<strong>in</strong>itions<br />

Af ≡ A(D 0 → f) = A T f 1+rfe i(δf−φf) ,<br />

Āf ≡ A(D0 → f) = A T i(δf+φf)<br />

f 1+rfe<br />

rf relative magnitu<strong>de</strong> of sublead<strong>in</strong>g (pengu<strong>in</strong>) amplitu<strong>de</strong> with relative<br />

strong phase δf, weak phase φf.<br />

A dir<br />

Āf| 2<br />

f := |Af| 2 −|<br />

|Af| 2 +|Āf| 2 = 2rf s<strong>in</strong>φf s<strong>in</strong>δf<br />

(Universal) <strong>in</strong>direct contribution A <strong>in</strong>d<br />

f cancels to good approximation <strong>in</strong><br />

∆A<strong>CP</strong> := A dir<br />

K + K− −Adir<br />

π + π− Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 3 / 26


Measurements<br />

First significant measurements of <strong>CP</strong> <strong>violation</strong> <strong>in</strong> the up-quark sector<br />

LHCb [R. Aaij et al., 1112.0938]:<br />

CDF [La Thuile 2012]:<br />

∆A<strong>CP</strong> = (−0.82±0.21±0.11)%<br />

∆A<strong>CP</strong> = (−0.62±0.21±0.10)%<br />

lead<strong>in</strong>g to new world average [La Thuile 2012]:<br />

∆A<strong>CP</strong> = (−0.67±0.16)%<br />

Can it be standard mo<strong>de</strong>l (SM)?<br />

Can it be new physics (NP)?<br />

Can we dist<strong>in</strong>guish NP from SM?<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 4 / 26


So, can it be SM?<br />

“There one typically f<strong>in</strong>ds asymmetries ∼ O(10 −4 ), i.e. somewhat smaller than<br />

the rough benchmark stated above. Yet 10 −3 effects are conceivable, and even<br />

1% effects cannot be ruled out completely.”<br />

[D. Benson et al., hep-ex/0309021]<br />

“This would lead to gigantic <strong>CP</strong> <strong>violation</strong>s, an asymmetry of or<strong>de</strong>r 1. This is of<br />

course very unlikely [...]”<br />

[M. Gol<strong>de</strong>n, B. Gr<strong>in</strong>ste<strong>in</strong>, Phys. Lett. B 222]<br />

Can we be more specific?<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 5 / 26


SM weak effective Hamiltonian<br />

Integrate out MW, mb, evolve down to charm scale µc, use GIM:<br />

H SCS<br />

eff = GF<br />

√2<br />

⎧<br />

⎨<br />

<br />

⎩ VcsV ∗ us Ci<br />

i=1,2<br />

Wilson coefficients: perturbative<br />

<br />

Q ¯ss<br />

i −Q ¯ <br />

dd<br />

i −VcbV ∗ ub<br />

6<br />

i=3<br />

CiQi +C8gQ8g<br />

Matrix elements: lead<strong>in</strong>g power and power corrections <strong>in</strong> 1/mc<br />

Estimate tree amplitu<strong>de</strong> A T from data<br />

Relate pengu<strong>in</strong> amplitu<strong>de</strong> A P to A T<br />

<br />

+h.c.<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 6 / 26


P/T at lead<strong>in</strong>g power<br />

Lead<strong>in</strong>g power (“Naive factorization” + O(αs) corrections):<br />

r LP<br />

<br />

<br />

f = <br />

A<br />

<br />

P f (lead<strong>in</strong>g power)<br />

AT f (experiment)<br />

<br />

<br />

<br />

<br />

r LP<br />

K + K− ≈ (0.01−0.02)%, rLP<br />

π + π− ≈ (0.015−0.03)%<br />

Expect sign Adir K + K− <br />

dir = −sign A<br />

Cf. global averages [HFAG]<br />

π + π −<br />

(if SU(3)F break<strong>in</strong>g is not too large).<br />

A K + K − = (−0.23±0.17)%, A π + π − = (0.20±0.22)%<br />

For φf = γ ≈ 67 ◦ and O(1) strong phases<br />

∆A<strong>CP</strong>(lead<strong>in</strong>g power) ∼ 4rf = O(0.1%).<br />

Or<strong>de</strong>r of magnitu<strong>de</strong> below measurement!<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 7 / 26


SM: Large pengu<strong>in</strong> power corrections<br />

From SU(3)F fits [Cheng, Chiang, 1001.0987, 1201.0785; Bhattacharya, Gronau, Rosner, 1201.2351;<br />

Pirtskhalava, Uttayarat, 1112.5451] we know<br />

Signals breakdown of 1/mc expansion<br />

O(1) = Tf ∼ Ef = O(1/mc)<br />

Power corrections: look at two specific contributions - <strong>in</strong>sertions of Q4, Q6<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 8 / 26


SM: Large pengu<strong>in</strong> power corrections<br />

Associated pengu<strong>in</strong> contractions of Q1 cancel scheme and scale <strong>de</strong>pen<strong>de</strong>nce<br />

S<strong>in</strong>gle hard gluon exchange leads to “effective Wilson coefficients” C eff<br />

4 and<br />

C eff<br />

6 <strong>de</strong>pend<strong>in</strong>g on the gluon virtuality q2 .<br />

Sett<strong>in</strong>g A T (exp) = Ef <strong>in</strong><br />

and Nc count<strong>in</strong>g leads to<br />

r PC<br />

f =<br />

<br />

<br />

<br />

<br />

A P f<br />

(power correction)<br />

AT f (experiment)<br />

<br />

<br />

<br />

<br />

rf,1 ∼ 2Nc|VcbVubC eff<br />

6 |/(C1s<strong>in</strong>θc),<br />

rf,2 ∼ 2|VcbVub(C eff<br />

4 +C eff<br />

6 )|/(C1s<strong>in</strong>θc).<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 9 / 26


SM: Large pengu<strong>in</strong> power corrections<br />

r π + π − ,i (black) and r K + K − ,i (blue) for µ = 1GeV,mc,mD<br />

∆A<strong>CP</strong>(Pf,1) = O(0.3%), ∆A<strong>CP</strong>(Pf,2) = O(0.2%)<br />

⇒ a SM explanation is plausible.<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 10 / 26


Uncerta<strong>in</strong>ties<br />

Extraction of annihilation amplitu<strong>de</strong>s Ef from data<br />

Neglected contributions to Ef<br />

Nc count<strong>in</strong>g<br />

mo<strong>de</strong>l<strong>in</strong>g of pengu<strong>in</strong> contraction matrix elements<br />

Neglected additional pengu<strong>in</strong> contractions<br />

Cumulative uncerta<strong>in</strong>ty of a factor of a few; much larger effects are unlikely.<br />

Can we trust it?<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 11 / 26


SM: Consistent picture<br />

Another observation: from Br(D 0 → K + K − ) ≈ 2.8×Br(D 0 → π + π − )<br />

|A(D 0 → K + K − )| = 1.8×|A(D 0 → π + π − )|<br />

Should be the same <strong>in</strong> SU(3)F limit<br />

Usually <strong>in</strong>terpreted as a sign of large O(1) SU(3)F break<strong>in</strong>g<br />

But note that<br />

|A(D 0 → K − π + )| = 1.15×|A(D 0 → K + π − )|<br />

for Cabibbo-favored (CF) <strong>de</strong>cay D 0 → K − π + and doubly Cabibbo-suppressed<br />

(DCS) <strong>de</strong>cay D 0 → K + π − .<br />

H CF<br />

eff = GF<br />

√2 VcsV ∗ ud<br />

<br />

i=1,2<br />

CiQ ¯ ds<br />

i +h.c.<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 12 / 26


c<br />

ū<br />

Weak Hamiltonian, written differently<br />

TKK = T s KK +P T,s<br />

KK −PT,d<br />

KK<br />

Tππ = −T d ππ +P T,s<br />

ππ −P T,d<br />

ππ<br />

Broken pengu<strong>in</strong> Pbreak violates U sp<strong>in</strong> (s ↔ d)<br />

s+d<br />

−VcbV ∗ ub<br />

H SCS<br />

eff = GF<br />

√2<br />

⎡<br />

⎣ <br />

i=1,2<br />

Ci<br />

u<br />

¯q<br />

q<br />

ū<br />

⎧<br />

⎨<br />

⎩ (VcsV ∗ us −VcdV ∗ ud) <br />

<br />

Q ¯ss<br />

i +Q ¯ <br />

dd<br />

i /2+<br />

6<br />

i=3<br />

i=1,2<br />

c<br />

ū<br />

Ci<br />

s−d<br />

CiQi +C8gQ8g<br />

Pengu<strong>in</strong> P violates <strong>CP</strong><br />

<br />

Q ¯ss<br />

i −Q ¯ <br />

dd<br />

i /2<br />

⎤⎫<br />

⎬<br />

⎦<br />

⎭ +h.c.<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 13 / 26<br />

u<br />

¯q<br />

q<br />

ū


D 0 → K − π + ,K + K − ,π + π − ,K + π −<br />

U-sp<strong>in</strong> <strong>de</strong>composition<br />

Assume nom<strong>in</strong>al U-sp<strong>in</strong> break<strong>in</strong>g ∝ ǫU ∼ 0.2−0.3<br />

Additional assumption: T = O(1), P = O(1/ǫ), where ǫ ∼ 0.2−0.3<br />

For ǫ ∼ 0.3 we have naturally<br />

rf = |VcbVub| P<br />

|VcsVus| T<br />

Right or<strong>de</strong>r of magnitu<strong>de</strong> to expla<strong>in</strong> ∆A<strong>CP</strong><br />

|VcbVub| 1<br />

∼ ∼ 0.2%<br />

|VcsVus| ǫ<br />

Pbreak = ǫUP ∼ ǫU/ǫ ∼ O(1) expla<strong>in</strong>s Br(K + K − ) = 2.8×Br(π + π − )<br />

Test by perform<strong>in</strong>g a fit to branch<strong>in</strong>g ratios and <strong>CP</strong> asymmetries.<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 14 / 26


Pbreak T<br />

Fit to data<br />

nom<strong>in</strong>al ǫU<br />

P ∼ T/ǫ<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 15 / 26


∆A<strong>CP</strong> from fit<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 16 / 26


By exchang<strong>in</strong>g the spectator quark,<br />

D + → K + K 0<br />

D + s → π + K 0<br />

receive contributions from<br />

Relations to other mo<strong>de</strong>s<br />

⇒ expect direct <strong>CP</strong> asymmetries of same or<strong>de</strong>r<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 17 / 26


NP: viable mo<strong>de</strong>ls<br />

Constra<strong>in</strong>ts from D mix<strong>in</strong>g, Kaon mix<strong>in</strong>g, direct searches ...<br />

(More) Mo<strong>de</strong>l-<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt operator analysis<br />

[Isodori, Kamenik, Ligeti, Perez 1111.4987]<br />

Supersymmetric examples (Q8g = −gs/4π 2 mcūLσµνG µν cR)<br />

[Grossman, Kagan, Nir hep-ph/0609178; Giudice, Isidori, Paradisi 1201.6204]<br />

[Diagrams by A. Kagan]<br />

Tree-level exchanges<br />

[Hochberg, Nir 1112.5268; Altmannshofer, Primulando, Yu, Yu 1202.2866]<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 18 / 26


How to dist<strong>in</strong>guish NP from SM<br />

NP mo<strong>de</strong>ls that have ∆I = 3/2 contributions:<br />

SM tree operators have both ∆I = 1/2 and ∆I = 3/2 contributions<br />

SM pengu<strong>in</strong> operators (∝ ¯qq,g) have only ∆I = 1/2 contributions<br />

E.g. D + → π + π 0 has I = 2 f<strong>in</strong>al state ⇒ no SM contribution to A dir .<br />

Can construct more sophisticated sum rules [Grossman, Kagan, Zupan; work <strong>in</strong> progress]<br />

Example: S<strong>in</strong>gle scalar exchange could expla<strong>in</strong> both AFB(t¯t) and ∆A<strong>CP</strong><br />

[Hochberg, Nir 1112.5268]<br />

NP mo<strong>de</strong>ls that have only ∆I = 1/2 contributions:<br />

Build mo<strong>de</strong>ls and look for colli<strong>de</strong>r signatures. In many cases allowed<br />

parameters are close to experimental sensitivity<br />

[Altmannshofer, Primulando, Yu, Yu 1202.2866; see also Feldmann, Nandi, Soni 1202.3795]<br />

Example: LR contributions to Q8g <strong>in</strong> SUSY<br />

[Grossman, Kagan, Nir hep-ph/0609178; Giudice, Isidori, Paradisi 1201.6204]<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 19 / 26


Conclusion<br />

Enhanced pengu<strong>in</strong> contributions <strong>in</strong> the SM can naturally expla<strong>in</strong> both ∆A<strong>CP</strong><br />

and Br(K + K − ) = 2.8×Br(π + π − ) – plausible and consistent<br />

NP contributions not exclu<strong>de</strong>d, viable and testable mo<strong>de</strong>ls exist<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 20 / 26


Backup sli<strong>de</strong>s<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 21 / 26


Experiments measure<br />

CDF: A <strong>in</strong>d<br />

f<br />

Def<strong>in</strong>itions<br />

Af := Γ(D0 → f)−Γ(D 0 → f)<br />

Γ(D0 → f)+Γ(D 0 ≈ Adir f +<br />

→ f) 〈t(f)〉<br />

τ A<strong>in</strong>d f<br />

= (−0.02±0.22)%<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 22 / 26


Pengu<strong>in</strong> matrix elements<br />

Pf,1 = GF<br />

√2VcbV ∗ ubC6 ×〈f|−2(ūu)S+P ⊗ A (ūc)S−P|D 0 〉<br />

Pf,2 = GF<br />

√2VcbV ∗ ub2(C4 +C6)×〈f|(¯qαqβ)V±A ⊗ A (ūβcα)V−A|D 0 〉<br />

C eff 2<br />

4(6) µ,q = C4(6)(µ)+C1(µ) αs<br />

<br />

1 1<br />

+<br />

2π 6 3 log<br />

<br />

mc<br />

−<br />

µ<br />

1<br />

8 G<br />

2 ms m2 c<br />

〈f|(ūu)S+P ⊗A (ūc)S−P|D 0 〉<br />

〈f|(¯sαsβ − ¯ dαdβ)V−A ⊗A (ūβcα)V−A|D 0 = O(Nc),<br />

〉<br />

〈f|(ūαuβ)V±A ⊗A (ūβcα)V−A|D 0 〉<br />

〈f|(¯sαsβ − ¯ dαdβ)V−A ⊗A (ūβcα)V−A|D 0 = O(1).<br />

〉<br />

, m2 d<br />

m2, c<br />

q2<br />

m2 <br />

c<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 23 / 26


<strong>CP</strong> asymmetries from fit<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 24 / 26


U-sp<strong>in</strong> <strong>de</strong>composition<br />

A( ¯ D 0 → K + π − ) =VcsV ∗ udT(1− 1<br />

2 ǫ′ 1T),<br />

A(¯D 0 → π + π − ) = 1<br />

A(¯D 0 → K + K − ) = 1<br />

2 (VcdV ∗ ud −VcsV ∗ us) T(1+ 1<br />

1<br />

2ǫ1T)−Pbreak(1− 2ǫ(2) sd )<br />

−V ∗ cbVub(T/2(1+ 1 1<br />

2ǫ1T)+P(1− 2ǫP)), 2 (VcsV ∗ us −VcdV ∗ ud) T(1− 1<br />

1<br />

2ǫ1T)+Pbreak(1+ 2ǫ(2) sd )<br />

−V ∗ cbVub(T/2(1− 1 1<br />

2ǫ1T)+P(1+ 2ǫP)), A( ¯ D 0 → π + K − ) =VcdV ∗ usT(1+ 1<br />

2ǫ′ 1T).<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 25 / 26


(Barbieri-Giudice-) F<strong>in</strong>e tun<strong>in</strong>g<br />

Joachim Brod (University of C<strong>in</strong>c<strong>in</strong>nati) <strong>CP</strong> <strong>violation</strong> <strong>in</strong> D <strong><strong>de</strong>cays</strong> 26 / 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!