01.06.2013 Views

bnf in sugarcane, ghg & impact of crop management - Fapesp

bnf in sugarcane, ghg & impact of crop management - Fapesp

bnf in sugarcane, ghg & impact of crop management - Fapesp

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BIOEN WORKSHOP 2012: Session 1:<br />

Biomass / Impacts and Susta<strong>in</strong>ability Divisions<br />

BNF IN SUGARCANE,<br />

GHG & IMPACT OF<br />

CROP MANAGEMENT<br />

Cantarella, Carmo, LaScalla, Rossetto<br />

& Barbosa


2<br />

List <strong>of</strong> projects<br />

08/56.147-1 Cantarella N nutrition <strong>of</strong> <strong>sugarcane</strong> with fertilizers<br />

or N-fix<strong>in</strong>g bacteria<br />

08/57937-6 Barbosa Study <strong>of</strong> the transference <strong>of</strong> fixed<br />

nitrogen from the diazotrophic bacteria to<br />

<strong>sugarcane</strong><br />

08/58029-6 Rossetto Concentrated v<strong>in</strong>asse applied to<br />

<strong>sugarcane</strong>: chemical soil characteristics,<br />

ion leach<strong>in</strong>g and agronomic efficiency<br />

08/55989-9 Carmo N2O, CO2 and CH4 emissions from agrobi<strong>of</strong>uel<br />

production <strong>in</strong> São Paulo state,<br />

Brazil.<br />

08/58187-0 LaScala The <strong>impact</strong> <strong>of</strong> tillage and harvest<br />

Bioen Workshop 2012 (Cantarella)<br />

practices on soil CO2 emission <strong>of</strong>


N nutrition <strong>of</strong> <strong>sugarcane</strong> with<br />

fertilizers or N-fix<strong>in</strong>g bacteria<br />

3<br />

Evidences <strong>of</strong> BNF <strong>in</strong> <strong>sugarcane</strong>: an<br />

<strong>in</strong>oculant conta<strong>in</strong><strong>in</strong>g 5 species <strong>of</strong><br />

bacteria was launched <strong>in</strong> 2008<br />

Can we replace (or decrease) m<strong>in</strong>eral N<br />

fertilization?<br />

Objectives<br />

Determ<strong>in</strong>e the extent <strong>of</strong> the contribution <strong>of</strong> BNF compared<br />

with N fertilization <strong>in</strong> a network <strong>of</strong> field experiments<br />

Identify genetic traits <strong>of</strong> <strong>sugarcane</strong> plants related to BNF<br />

that could be used <strong>in</strong> a breed<strong>in</strong>g program<br />

Identify new microorganisms capable <strong>of</strong> stimulat<strong>in</strong>g plant<br />

growth and carry on BNF<br />

Measure GHGs emissions as affected by N fertilization <strong>of</strong><br />

<strong>in</strong>oculation <strong>of</strong> N-fix<strong>in</strong>g microorganisms<br />

Bioen Workshop 2012 (Cantarella)


BNF and N fertilization: field<br />

studies<br />

4<br />

Stalks, t/ha<br />

Stalks, t/ha<br />

125<br />

120<br />

115<br />

110<br />

105<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

Plant Cane - 5 sites<br />

y = -0.0022N 2 + 0.3975N + 102.6<br />

R² = 0.99<br />

0 20 40 60 80 100<br />

Applied N, kg/ha<br />

Ratoon Cane - 2 sites<br />

y = -0.0009N 2 + 0.2524N + 58.8<br />

R² = 0.98<br />

Bioen Workshop 2012 (Cantarella)<br />

M<strong>in</strong>eral N<br />

Inoculated<br />

N + Inoculation<br />

M<strong>in</strong>eral N<br />

Inoculated<br />

N + Inoculation<br />

0 50 100 150<br />

Applied N, kg/ha<br />

Summary <strong>of</strong> Ma<strong>in</strong> Results:<br />

Mean N fertilizer response: 15 t/ha stalk and 5 t/ha dry<br />

mass<br />

Significant response to N: 3/5 <strong>in</strong> plant cycle and ½ <strong>in</strong><br />

ratoon.<br />

No significant response to <strong>in</strong>oculation <strong>of</strong> N-fix<strong>in</strong>g<br />

bacteria with or without N fertilizer <strong>in</strong> any <strong>of</strong> the<br />

varieties or sites studied<br />

Effect <strong>of</strong> FBN – if significant – may be already built<br />

<strong>in</strong>to the <strong>sugarcane</strong> production system (native<br />

species)<br />

FBN por δ 15 N: 0 to ~70% <strong>of</strong> contribution <strong>of</strong> N from<br />

BNF<br />

Next: 4 new fields harvested <strong>in</strong> 2012<br />

N stock <strong>in</strong> soil (long term effect) to be evaluated<br />

2012


New microrganisms isolated<br />

from <strong>sugarcane</strong> fields: BNF and<br />

PGP<br />

5<br />

Genetic diversity <strong>of</strong> isolates (162) by Box PCR<br />

(From Jaú, SP, cane cultivar IAC-5000)<br />

Isolado - espécie PMSPA<br />

Bioen Workshop 2012 (Cantarella)<br />

g<br />

Redutase<br />

Nitrato<br />

N acum. AIA P Sol. nifH<br />

µmol NO2 g -1 -1<br />

mg pl<br />

µg mg -1<br />

prote<strong>in</strong><br />

mg<br />

mg -1<br />

Delftia acidovorans 11,5a 0,05 131a 2,47 nd -<br />

Delftia acidovorans 10,6a 0,04 143a 0,49 nd -<br />

B Pantoea dispersa 11,0a 0,11 134a 0.04 nd -<br />

Enterobacter cloacae 12,4a 0,03 157a 0.34 nd -<br />

Pantoea dispersa 11,8a 0,04 142a 0,07 1,02 -<br />

A Pantoea dispersa 13,2a 0,07 167a 0,07 1,04 -<br />

Pantoea dispersa 11,3a 0,04 137a 3,73 2,08 -<br />

Herbaspirillum fris<strong>in</strong>gense 12,0a 0,23 152a 0,98 nd -<br />

B Burkholderia caledonica 11,8a 0,14 137a 0,09 3,98 -<br />

Pseudomonas sp. 11,6a 0,03 114b 5,37 nd -<br />

A Enterobacter asburiae 13,4a 0,09 146a 1,91 nd -<br />

B Enterobacter asburiae 11,8a 0,06 137a 1,91 nd -<br />

Methylobacterium fujisawaense 10,4a 0,10 119b 3,43 nd -<br />

Controle 8,0b 0,05 99b -<br />

Ma<strong>in</strong> isolates will be <strong>in</strong>oculated <strong>in</strong><br />

mi<strong>crop</strong>ropaged <strong>sugarcane</strong> plants<br />

168 stra<strong>in</strong>s<br />

89% with BNF capacity<br />

59% with effect similar to aux<strong>in</strong>es


Inoculation <strong>of</strong> 5-bacteria mix to<br />

meristem micro-propagated<br />

<strong>sugarcane</strong> plants<br />

6<br />

60,0<br />

50,0<br />

40,0<br />

30,0<br />

20,0<br />

10,0<br />

0,0<br />

Plant height (cm) 56 days<br />

after <strong>in</strong>oculation<br />

sem <strong>in</strong>ocluante<br />

Bioen Workshop 2012 (Cantarella)<br />

Response to <strong>in</strong>oculation is varietydependent.<br />

Early stage results (PGPB) are good<br />

but it is not clear whether or how they<br />

could be ma<strong>in</strong>ta<strong>in</strong>ed<br />

New cane cultivars are be<strong>in</strong>g tested<br />

Gene expression will be evaluated<br />

IACSP95-5094<br />

No <strong>in</strong>oculation (38.1 cm) Inoculated (52.0 cm)


Study <strong>of</strong> the transference <strong>of</strong> fixed nitrogen<br />

from the diazotrophic bacteria to <strong>sugarcane</strong><br />

7<br />

Several new microorganisms associated<br />

with <strong>sugarcane</strong> have been isolated,<br />

present<strong>in</strong>g different effects and functions<br />

Results presented refer to most recent<br />

research (not published yet).<br />

Sugarcane-bacterial <strong>in</strong>teractions are<br />

promis<strong>in</strong>g areas, to be further studied<br />

Bioen Workshop 2012 (Cantarella)<br />

H. Barbosa et all.


CO-CULTURES AS A MODEL TO STUDY INTERACTIONS BETWEEN<br />

SUGARCANE CALUSES AND DIAZOTROPHIC ENDOPHYFITIC<br />

BACTERIA.<br />

R. C. R. MARTINS AND H. R. BARBOSA<br />

Callus<br />

Co-culture<br />

8<br />

• Influence <strong>of</strong> callus on bacterial growth – STIMULATION x INHIBITION<br />

Callus<br />

log CFU.mL -1<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Enterobacter sp. (ICB117)<br />

10<br />

9<br />

8<br />

Erw<strong>in</strong>ia sp. (ICB409)<br />

0<br />

0 200 400 600 800 1000 1200<br />

time (h)<br />

log CFU.mL -1<br />

log CFU.mL -1<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 200 400 600<br />

time (h)<br />

• Influence <strong>of</strong> bacteria on calluses– INCREASE OF PROTEIN<br />

CONTENT-through N-fixation<br />

Culture medium<br />

N comb<strong>in</strong>ed-free<br />

Bioen Workshop 2012 (Cantarella)<br />

prote<strong>in</strong> content <strong>of</strong> calluses<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Callus + Erw<strong>in</strong>ia sp.<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

Time (h)<br />

Callus +<br />

Enterobacter sp.<br />

Callus control


Massa fresca foliar (g)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

9<br />

Comprimento foliar (cm)<br />

Inoculation <strong>of</strong> Enterobacter sp. <strong>in</strong> <strong>sugarcane</strong> plantlets S. Ichiwaki, F. I. Ferrara I and<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

H. R. Barbosa<br />

Fertilization:<br />

Leaf lenght Root volume<br />

a a a a<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

Orgânico Convencional Sem adubação<br />

Tramamento (60 DPI)<br />

Não <strong>in</strong>oculado Enterobacter<br />

Organic x Conventional<br />

b<br />

a<br />

Vol Radicular (cm³)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

b<br />

a<br />

b<br />

Orgânico Convencional Sem adubação<br />

a<br />

Tratamentos (60 DPI)<br />

b<br />

a<br />

Clor<strong>of</strong>ila<br />

Growth parameters: organic = conventional<br />

Prote<strong>in</strong> content: Enterobacter sp. + organic = conventional<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

a<br />

Chlorophyll<br />

a a a a<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

Leaf fresh weigh Root fresh weigh Leaf dry weigh<br />

Root dry weigh<br />

a a a a<br />

Control<br />

Inoculated x Fertilized<br />

b<br />

Bioen Workshop 2012 (Cantarella)<br />

c<br />

Massa fresca radicular (g)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

a<br />

b b b<br />

a c<br />

Orgânico Convencional Sem adubação<br />

Tratamento (60DPI)<br />

Massa seca foliar (g)<br />

1<br />

0,8<br />

Não 0,6 <strong>in</strong>oculado<br />

Enterobacter<br />

0,4<br />

0,2<br />

0<br />

a a<br />

a a<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

b<br />

a<br />

Massa seca radicular (g)<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

b<br />

a a a a a<br />

b<br />

Orgânico Convencional Sem adubação<br />

Tratamentos (60 DPI)<br />

Growth parameters and prote<strong>in</strong> content: Always the lowest<br />

Growth parameters: Inoculated = organic and conventional<br />

Prote<strong>in</strong> content: Inoculated = Enterobacter sp. + organic<br />

and conventional


10<br />

Leaf size<br />

O EO C EC S ES<br />

Comparação entre comprimentos foliares de plântulas não <strong>in</strong>oculadas e <strong>in</strong>oculadas 60<br />

DPI.<br />

Clorose<br />

O C S<br />

Diferença na pigmentação foliar em plântulas<br />

não <strong>in</strong>oculadas.<br />

Foto por: Ichiwaki (2012).<br />

Enterobacter<br />

EC EO ES S Foto por: Ichiwaki (2012).<br />

Diferença entre os comprimentos foliares de plântulas de canade-açúcar<br />

<strong>in</strong>oculadas com Enterobacter sp. ICB481 e plântula<br />

do grupo sem adubação, após 60 DPI.<br />

EO EC ES<br />

Ausência de amarelecimento foliar nos grupos<br />

<strong>in</strong>oculados com Enterobacter sp. ICB481 aos 60 DPI.<br />

Legenda: Grupos Orgânico (O), Enterobacter-orgânico (EO) / Convencional (C), Enterobacter-convencional / Sem<br />

adubação (S) e ES= Enterobacter-sem adubação.<br />

Foto por: Ichiwaki (2012).<br />

Foto por: Ichiwaki (2012).


11<br />

GHGs emission: suste<strong>in</strong>ability <strong>of</strong><br />

ethanol production<br />

GHG emissions reduction due to<br />

ethanol replacement <strong>of</strong> fossil fuels<br />

51 – 65% (Boddey et al., 2008)<br />

85% (Börjesson, 2009)<br />

81 and 24% to 1 st and 2 nd generation (Luo et al.,<br />

2009)<br />

Emission associated with<br />

fertilizer use<br />

N 2O releas<strong>in</strong>g from soils/fertilizers<br />

could <strong>of</strong>fset the benefits <strong>of</strong> avoid<strong>in</strong>g<br />

CO 2 from fossil fuels (Scharlemann &<br />

Laurence, 2008; Crutzen et al., 2008).<br />

High N 2O values found <strong>in</strong> other<br />

important cane producer countries<br />

(Denmead et al., 2009; Allen et al., 2010)<br />

IPCC Bioen Workshop standard: 2012 (Cantarella) 1% (IPCC, 2006)


N 2O (mg N m -2 )<br />

CH 4 (mg N m -2 )<br />

12<br />

GHGs emission: fertilizer X<br />

<strong>in</strong>oculation<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Nitrous Oxide<br />

N0 N0+I N100 N150<br />

N0 N0+I N100 N150<br />

Methane<br />

Jaú (Burned)<br />

Clay: 17.8%; Sand: 76.6%<br />

Bulk density: 1.39 g cm -3<br />

Carbon: 2114 g C m -2<br />

Bioen Workshop 2012 (Cantarella)<br />

N 2O (mg N m -2 )<br />

CH 4 (mg C m -2 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

Nitrous Oxide<br />

N0 N0+I N100 N150<br />

N0 N0+I N100 N150<br />

Methane<br />

Piracicaba (Unburned)<br />

Clay: 51.9%; Sand: 31.4%<br />

Bulk density: 1.49 g cm -3<br />

Carbon: 4090 g C m -2<br />

N 2O emission <strong>in</strong>creased<br />

with N fertilizer application<br />

but was not affected by<br />

<strong>in</strong>oculation with diazotrhopic<br />

bacteria<br />

Emission factor ≤ IPCC<br />

Vargas et al, 2012)


Emission factor (fertilizer, trash,<br />

v<strong>in</strong>asse)<br />

13<br />

Trash rate V<strong>in</strong>asse<br />

Mg ha-1 Mg ha-1 Added<br />

N<br />

£ Added N<br />

emission factor<br />

kg ha-1 kg ha (%)<br />

-1 (%)<br />

§ CO2<br />

equivalent<br />

kg CO2 eq. ha-1 kg CO2 eq. ha-1 yr-1 yr-1 0 With 142 0.59±0.29 1,289<br />

Without 120 0.68±0.41 382<br />

7 With 142 1.19±0.84 1,620<br />

Without 120 0.96±0.46 540<br />

14 With 142 1.89±1.00 3,005<br />

Without 120 0.76±0.30 427<br />

21 With 142 3.03±1.22 3,060<br />

Without 120 2.03±1.15 1,141<br />

Bioen Workshop 2012 (Cantarella)<br />

Carmo et al. 2012 (GCB-Bioenergy)


N 2O Emission, kg N-N 2O/ha<br />

4<br />

3<br />

2<br />

1<br />

0<br />

N 2O = 0,0056x 2 + 0,0207x + 0,78<br />

R² = 0,99<br />

N 2O = 0,0496x + 0,692<br />

R² = 0,62<br />

0 5 10 15 20 25<br />

Sugarcane trash, t/ha<br />

Trash+v<strong>in</strong><br />

Trash<br />

N 2O emission from N<br />

fertilizer <strong>in</strong> <strong>sugarcane</strong> is<br />

with<strong>in</strong> or bellow the<br />

IPPC default value but<br />

the addition <strong>of</strong> organic<br />

residues caused<br />

<strong>in</strong>crease N 2O emission.<br />

Remov<strong>in</strong>g excess trash<br />

from the field (for<br />

energy production) may<br />

avoid high N 2O emission<br />

Increase <strong>of</strong> N emission factor for fertilizer N (ammonium nitrate surface-applied):<br />

Trash 0,04% per t/ha <strong>of</strong> trash left on soil<br />

Trash+v<strong>in</strong>asse 0,12% per t/ha trash left on soil


15<br />

Nitrification <strong>in</strong>hibitor<br />

decreases N 2O emission<br />

Trash<br />

(Mg ha -1 ) + N<br />

(100 kg/ha)<br />

Bioen Workshop 2012 (Cantarella)<br />

Days after fertilization<br />

N2O emission (mg N/m 2 ) Reduction <strong>in</strong> N2O<br />

emission due to<br />

No DCD With DCD<br />

DCD<br />

0 10,89 bA § 3,85 aB 65%<br />

8 15,92 bA 5,91 aB 63%<br />

16 32,04 aA 8,44 aB 74%<br />

(Vargas et al, 2012)


Concentrated v<strong>in</strong>asse <strong>in</strong> <strong>sugarcane</strong>: soil<br />

chemical attributes, ion lixiviation and<br />

agronomic efficiency<br />

16<br />

V<strong>in</strong>asse: 10 to 13 L/L ethanol<br />

Large amounts generated: high cost <strong>of</strong> application, risk <strong>of</strong> soil and ground water<br />

contam<strong>in</strong>ation with nutrients<br />

Concentrated v<strong>in</strong>asse: high cost (and energy) to remove water. Easier and cheaper<br />

field application<br />

Treatments: 0, 120, 140, 360 kg/ha K 2O (as KCl, normal or concentrated v<strong>in</strong>asse)<br />

Bioen Workshop 2012 (Cantarella)<br />

Rossetto et al, (2012)


17<br />

Monitor<strong>in</strong>g: <strong>of</strong> K, NO 3, Cl, etc...<br />

Soil – 0-25,25-50, 50-80cm depth<br />

Samples <strong>in</strong> each plot every 3 months<br />

Leach<strong>in</strong>g ions - soil solution extraction –<br />

0- 80cm depth<br />

•Diagnosis Solo –<br />

leave<br />

camadas<br />

– top<br />

0-10,10-20,<br />

visible dewlap<br />

até 1,20m<br />

Macronutrients analysis<br />

Plant – leaves, stalks (bagasse + juice), roots<br />

Straw<br />

Samples taken before harvest<br />

Bioen Workshop 2012 (Cantarella)


V<strong>in</strong>asse: ma<strong>in</strong> results<br />

18<br />

N m<strong>in</strong>eralization <strong>in</strong> concentrated v<strong>in</strong>asse is slower. Half life 6<br />

weeks (3 <strong>in</strong> conventional v<strong>in</strong>asse): longer N availability<br />

V<strong>in</strong>asse improved soil fertility (SOM, N, K, P, Ca). Higher rate <strong>of</strong><br />

CV <strong>in</strong>crease K saturation up to 2.2% <strong>of</strong> CEC <strong>in</strong> topsoil<br />

(legislation limit is 5%)<br />

Ca, K, N and P were concentrated <strong>in</strong> the soil surface layer. Mg<br />

was well distributed ; SO4 was more concentrated <strong>in</strong> deep<br />

layers.<br />

Sugarcane yield <strong>in</strong>creased with v<strong>in</strong>asse application (+12<br />

ton/ha). Enhanced nutrient extraction contributed to avoid<br />

accumulation <strong>of</strong> nutrients <strong>in</strong> soil.<br />

No negative effect <strong>of</strong> v<strong>in</strong>asse was observed, even at high K<br />

rates<br />

Bioen Workshop 2012 (Cantarella)


Tillage and harvest practices on soil CO 2<br />

emission <strong>in</strong> <strong>sugarcane</strong> production areas<br />

19<br />

Bioen Workshop 2012 (Cantarella)<br />

Burn<strong>in</strong>g <strong>sugarcane</strong> before<br />

harvest is be<strong>in</strong>g phased<br />

out.<br />

The effect <strong>of</strong> such change<br />

on soil properties &<br />

susta<strong>in</strong>ability must be<br />

exam<strong>in</strong>ed.<br />

LaScalla & collaborators are study<strong>in</strong>g<br />

the effect <strong>of</strong> green cane harvest<strong>in</strong>g on<br />

soil C, along with practices such as<br />

no-till and conventional till


20<br />

GHG balance <strong>of</strong> cane production:<br />

Green cane decreases CO 2 emission<br />

Source<br />

Synthetic Fertilizer<br />

V<strong>in</strong>asse<br />

Filter Cake<br />

Harvest Residues<br />

Residues Burn<strong>in</strong>g<br />

Lim<strong>in</strong>g<br />

Diesel<br />

Sub-Total:<br />

C sequestration<br />

Total:<br />

1,173<br />

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000<br />

Bioen Workshop 2012 (Cantarella)<br />

Burned harvest Green harvest<br />

CO 2 eq emission (kg ha -1 y -1 )<br />

1,620<br />

2,793<br />

3,104<br />

3,104<br />

Conversion to green cane<br />

could save the equivalent<br />

<strong>of</strong> 311 kg CO 2 ha -1 yr -1 ,<br />

or 1484 kg CO 2 ha -1 yr -1 if<br />

soil C sequestration is<br />

computed<br />

2011<br />

Figueiredo et al., 2011


21<br />

Effect <strong>of</strong> tillage on CO 2 emission<br />

under burned or green cane<br />

Total Emission (kg CO 2 -C hectare -1 )<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

0<br />

525.4<br />

808.8<br />

BH<br />

953.9<br />

1093.5<br />

NT Cn CnLi CnLiG NT Cn CnLi CnLiG NT Cn CnLi CnLiG<br />

Bioen Workshop 2012 (Cantarella)<br />

698.8<br />

GHnores<br />

284 kg C-CO 2 ha -1 247 kg C-CO 2 ha -1<br />

944.5<br />

1065.0<br />

1081.8<br />

Treatment<br />

= 1039 kg C-CO 2 ha -1 (3808 kg CO 2)<br />

Em 25 days after tillage<br />

446.4<br />

GHres<br />

1485.1<br />

1266.9<br />

1550.2<br />

Plow<strong>in</strong>g the soil<br />

promotes large<br />

CO 2 emissions,<br />

especially <strong>in</strong> areas<br />

with trash (plant<br />

residues) <strong>of</strong> GH<br />

BH: burned harved<br />

GH: green cane<br />

(with or without<br />

residues)<br />

NT: no till<br />

CN: conventional<br />

tillage Figueiredo et al., 2011


Conclud<strong>in</strong>g remarks<br />

22<br />

Inoculation <strong>of</strong> <strong>sugarcane</strong> with endophytic bacteria is<br />

not result<strong>in</strong>g <strong>in</strong> yield ga<strong>in</strong>s or apparent N<br />

substitution under field conditions<br />

Controlled conditions: promis<strong>in</strong>g results, variety-dependent.<br />

PGP properties. Practical benefits <strong>of</strong> endophytic and<br />

rhizobacterias are still a challenge.<br />

Sugarcane <strong>in</strong>dustry by-products can be susta<strong>in</strong>ably<br />

used <strong>in</strong> the field. Subject deserves more studies<br />

GHGs emission: large volume <strong>of</strong> good quality data is<br />

be<strong>in</strong>g generated.<br />

C balance: projects under way with good prospects.<br />

Enormous challenge.<br />

Bioen Workshop 2012 (Cantarella)


Thank you<br />

cantarella@iac.sp.gov.br<br />

Thai Delegation Meet<strong>in</strong>g 16-8-2012<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!