03.06.2013 Views

rd  - 1962 - ENC Conference

rd  - 1962 - ENC Conference

rd  - 1962 - ENC Conference

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3 <strong>rd</strong> - <strong>1962</strong> Pittsburgh<br />

Chair: David Grant<br />

Local Arrangements: Gus Friedel<br />

“Thi<strong>rd</strong> <strong>Conference</strong> on Experimental Aspects of NMR Spectroscopy”<br />

[T.C.O.E.A.O.N.M.R.S.]<br />

How Sweet It Was! My reflections on the early <strong>ENC</strong> <strong>Conference</strong>s (which were held for a decade<br />

in Pittsburgh) include three dominant memories:<br />

First, the format of the conference was more of a panel discussion than that of a formal<br />

lecture. The speaker’s comments and audience discussion and remarks were merged into<br />

short debates and idea sharing. These sessions, although heated at times, never seemed to<br />

interfere with an expanding camaraderie. The size of the group undoubtedly illuminated the<br />

need for formality.<br />

Second, the meetings solidified a rapidly growing community of NMR spectroscopists into a<br />

cohesive group of friends, unified by the taxing experimental challenges that all faced in<br />

these early days. When one discusses the problems of swinging metal restroom doors on the<br />

other side of the wall from the magnet lab, one knows the field is its initial stages. The<br />

group was small enough that discussion continued often late into night at Samreny’s, the<br />

Ranch, or some other restaurant in the vicinity of Mellon Institute.<br />

My thi<strong>rd</strong> recollection deals with the inclement weather in Pittsburgh during the last few days<br />

of February and first few days of March, typical times for the early meetings of the <strong>ENC</strong>.<br />

To fly out of Pittsburgh always seemed to pose a problem like sleeping on the airport floor<br />

for an early morning delayed flight, etc. Such was the case on Satu<strong>rd</strong>ay, March 2 nd 1961,<br />

the concluding day of the second<br />

conference chaired by George<br />

Slomp. All flights had been<br />

cancelled for the evening of that<br />

day, and I had to be in Columbus<br />

that night. I expressed my<br />

congratulations to George for an<br />

excellent program, and to be<br />

pleasant indicated that I would be<br />

happy to assist in any way<br />

possible to keep the tradition now<br />

started for future years. This<br />

forced a bus trip during the<br />

business session requiring that I<br />

leave around 3-4 PM and travel through West Virginia and into Ohio. There were numerous<br />

delays, but we finally arrived around 10 pm, long ove<strong>rd</strong>ue and fatigued by the o<strong>rd</strong>eal. Upon<br />

my return to Utah the next week I was chagrined to find out the haza<strong>rd</strong> of leaving the<br />

meeting early was to be elected to chair the meeting the following year. Apparently,<br />

everyone wanted the group to continue meeting, but only if someone else would do the<br />

work. Fortunately, Gus Friedel, at the US Bureau of Mines near Pittsburgh, and the<br />

resonators at Mellon Institute provided outstanding support as the arrangements committee,


and many stepped forwa<strong>rd</strong> to chair a variety of sessions and other duties. The vendors aided<br />

with expenses.<br />

For these early meetings, there were no formal abstracts, but many individuals brought printed<br />

hand-out material, often many pages with great detail. For the <strong>1962</strong> conference – with the lengthy<br />

name and abbreviation given above -- these notes, now available in the conference archives on the<br />

web site and the DVD, give a reasonably complete summary of the proceedings. The talks by<br />

James Shoolery on absorption mode 13 C spectroscopy and slave reco<strong>rd</strong>ers stand out to this writer as<br />

truly seminal work of great timeliness in the thi<strong>rd</strong> annual conference. Jim was truly the chemists’<br />

advocate for NMR methods in these early days and his data are typical of his unique signature on<br />

the field.<br />

Equally impressive presentations were also made by other contributors, but space limitations<br />

prevent a detailed review of the 40-50 talks. However, the titles of the eight sessions, each chaired<br />

by an authority in the field, give a good idea of the scope of the conference:<br />

Paul Bender: New Experimental Applications and Techniques<br />

Paul R. Shafer: New Instrumentation<br />

Stan L. Manatt: Spin-Spin Decoupling<br />

Tom Beukelman: Spectrometers of the A-60 Type (Field Frequency Lock)<br />

Wayne Lockhart: Instrument Trouble Shooting<br />

David W. McCall: Relaxation Phenomena and Measurements<br />

Charles W. Wilson, III: Wide Line N.M.R. Instrumentation & Operation<br />

George Slomp: Interpretation, Storing and Cataloguing of High Resolution N.M.R. Spectral Data


8:15 A.M.<br />

9:00 A.M.<br />

9:15 A.M.<br />

I0:30 A.M.<br />

I0:45 A.M.<br />

12: 00 Noon<br />

2:00 P.M.<br />

3:15 P.M.<br />

3:30 P.M.<br />

6:15 P.M.<br />

7:15 P.M.<br />

8:30 A.M.<br />

9:15 A.M.<br />

i0:30 A.M.<br />

i0:45 A.M.<br />

12:O0 Noon<br />

2:00 P.M.<br />

2:00 P.M.<br />

THIRD CONFER<strong>ENC</strong>E ON ~ ASPECTS OF N.M.R. SPEC~COH<br />

TO BE HELD AT THE MELLON INSTITUTE, PIttSBURGH, I~NSYLVANIA<br />

Registration<br />

WelcQme and Oreintation<br />

MARCH 2 and 3, <strong>1962</strong><br />

PROGRAM<br />

FRIDAY - MARCH 2, <strong>1962</strong><br />

ist Session: New Experimental Applications and Techniques<br />

Chairman: Paul Bender, Department of Chemistry, University of<br />

Wisconsin, Mad/son, Wisconsin.<br />

Coffee Break<br />

2rid Session: New Instr~entatlon (Probe Modification and Temperature<br />

Control, etc.)<br />

Chairman: P. R. Shafer, Department of Chemistry, Dartmouth College,<br />

Hanover, New Hampshire.<br />

Lunch<br />

3<strong>rd</strong> Session: Spin-Spin Decoupling<br />

Chairman: S. L. Manatt, Jet Propulsion Laboratory, California<br />

Institute of Technology, Pasadena, California<br />

Coffee Break<br />

4th Session: N.M.R. Spectrometers of the A-60 Type (Field Frequency<br />

Control - Quantitative Measurements, etc.)<br />

Chairman: T. Beukelman, Jackson Laboratories, E. I. du Pont de<br />

Nemours and Company, Inc., Penns Grove, New Jersey.<br />

Social Hour<br />

Dinner<br />

Business Meeting<br />

SATURDAY - MARCH 3, <strong>1962</strong><br />

5th Session: Instrument Trouble Shooting<br />

Chairman: Wayne Lockhart, Varian Associates, 611 Hansen Way,<br />

Palo Alto, California<br />

Coffee Break<br />

6th Session: Relaxation Phenomena and Measurements<br />

Lunch<br />

Chairman: David W. McCall, Bell Telephone Laboratory, Murray Hill,<br />

New Jersey.<br />

7th Session: New Wide Line N.M.R. Instrumentation and Operation<br />

Chairman: Charles W. Wilson, III, Union Carbide Technical<br />

Center, South Charleston, West Virginia<br />

8th Session: Interpretation, Storing and Cataloguing of High Resolution<br />

N.M.R. Spectral Data<br />

Chairman: George Slcmp, The UpJohn Company, 301 Henrietta Street,<br />

Kalamazoo, Michigan


B<br />

o<br />

C 13 NMR Studies Using<br />

the Absorption Mode<br />

J. N. Shoolery, Varian Associates, Palo Alto, California<br />

Due to the long thermal relaxation times associated with C 13 nuclei,<br />

it has been customary to study natural abundance samples with the adiabatic<br />

rapid passage method. This gives a signal proportional to Mo, the static<br />

moment/unit volume, while the absorption mode gives a signal proportional to<br />

~ 7~ for slow passage conditions. Rather considerable line broadening<br />

ccurs as a result of the high r.f. power required for adiabatic conditions<br />

and this not only obscures the smaller splittings due to spin-spin coupling<br />

but makes it difficult to interpret overlapping multiplets.<br />

The need for a large sample is a result of the 1.1% natural abundance<br />

of C 13. Until recently it has not been practical to spin a large sample under<br />

conditions of very high r.f. amplification because the rotation of the sample<br />

introduces a varying coupling between the transmitter and receiver of suffi-<br />

cient magnitude to overload the detector. A static sample results in T 2 be-<br />

ing about two o<strong>rd</strong>ers of magnitude shorter than T I. With modulation techniques<br />

which have been developed for stabilizing the baseline to permit integration<br />

of spectra, spinning a large sample is now practical, since the NMR signal<br />

is now observed as a modulation on the r.f. output of the receiver coil. Less<br />

r.f. gain is required because the signal can be amplified in a subsequent audio<br />

amplifier, and r.f. fluctuations at the spinning frequency can be distinguished<br />

from the modulation frequency through use of a phase sensitive detector.<br />

An instrument operating at 15.085 mc/sec in a magnetic field of 14,092<br />

oersteds was employed in this work. A special receiver coil was constructed<br />

by winding a coil on the inside of a cylindrical glass support with i.d. of<br />

14 mm. Thin-wailed cells were obtained from the Wilmad Glass Company, Buena,<br />

New Jersey, with i.d. of ii mm and o.d. of 12 mm. A plastic spinner obtained<br />

from the same source provided a satisfactory means of rotating the cells at<br />

about 30 r.p.s. A cylindrical teflon plug was made which could be fitted into<br />

the cell at the liquid interface to prevent formation of a vortex. With this<br />

arrangement it was possible, by careful adjustment of the Homogeneity Control<br />

Unit, to achieve an effective T 2 of 2-3 sec., observed by the exponential os-<br />

cillatory decay following the signal from a strong, single C 13 resonance line.<br />

The signal-to-noise situation is made still more tolerable by the fact<br />

that more than adequate resolution is achieved without the necessity of meeting<br />

the slow passage conditions. Under the non-adiabatic rapid passage conditions<br />

actually used, the role of T I in repopulating the lower energy levels is not<br />

as important; i.e., we can use more r.f. power and leave the nuclei in a par-<br />

tially saturated condition, at the expense of some line broadening but with a<br />

gain of signal strength. Sweep rates of about i cps were used for most of


C 13 NMR Studies Using<br />

the Absorption Mode<br />

_<br />

J. N. Shoolery<br />

this work which resulted in spending a small fraction of T 1 in observing<br />

each C 13 resonance line.<br />

A standa<strong>rd</strong> integrator accessory was used which employs 2000 cps field<br />

modulation. Instead of obser*ing the center-band signal as with protons,<br />

the side-band signals were reco<strong>rd</strong>ed. This made possible a much lower index<br />

of modulation. Center-band signals can be suppressed by adjustment of phase,<br />

while second side-band signals are lost in the noise, due to the low modula-<br />

tion index. Thus, no interference is caused by the modulation unless the<br />

interfering signals are 4000 cps (400 ppm) apart.<br />

With this apparatus, previously unresolved spin-spin splittings were<br />

readily observable. Fig. i shows the spectrum ofacetic acid. The C 13 in<br />

the carboxyl group is found to be a quartet with spacing corresponding to<br />

J = 7.5 ! 0.5 cps, due to the protons on the adjacent carbon atom. The di-<br />

rect JCH coupling is 132 cps.<br />

Fig. 2 shows the spectrum of ethanol. The methyl carbon is split into<br />

a quartet with a 125 cps coupling to the attached protons, and less than 2 cps<br />

coupling to the methylene protons. On the other hand, the methylene carbon<br />

shows a 140 cps coupling to its own protons (enhanced by the attachment to oxy-<br />

gen) and a 4.5 + 0.5 cps coupling to the methyl protons. The chemical shift<br />

between the two carbons is 38.5 ppm.<br />

An excellent example of the data obtainable in this way is found in pyri-<br />

dine. Fig. 3 shows the spectrum with the ~ carbons falling at the highest field<br />

value, the y carbon 11.8 ppm to lower field, and the ~ carbons 26.0 ppm to lower<br />

fields. The direct CI3-H couplings are 180, 157, and 160 cps for the 5, ~, and<br />

y carbons respectively. The ~ carbons are coupled to two other protons, prob-<br />

ably the ~ proton and either the ¥ or the other a proton, with coupling constants<br />

of ii.0 and 6.2 cps. The ~ carbon is coupled abort equally to the ~ and ¥ pro-<br />

tons with J = 8.0 cps. Finally, the ¥ carbon is coupled to the ~ protons with<br />

a 5.8 cps coupling constant, and is apparently not coupled to the a protons.<br />

Chemical shift measurements and initial location of the peaks would be<br />

improved by collapse of the spin-spin multiplets to a single line by double ir-<br />

radiation techniques. Since apparatus for this purpose was available, the exper-<br />

iment was tried with a 4 mm sample of methyl acetylene enriched to 50% C 13 in the<br />

methyl position. The spectrum with and without 60 mc irradiation is shown in<br />

Figure 4. In addition to the signal-to-ncise enhancement of 16/3 due to the col-<br />

lapse of the 8-1ine multiplet, there is an additional Overhauser amplitude enhance-<br />

ment of 1.5 due to relaxation of the C 13 nuclei through the proton magnetic mo-<br />

ments. The effect may be greater than 1.5 and could best be measured from the<br />

integral, since the collapse of the multiplet does not appear to be complete at<br />

the power level used.


FIG. 3<br />

FIG. 4<br />

180<br />

i<br />

Jc-oH =11.0 cps<br />

JC.;.C.H= 6.2 cps<br />

I<br />

-26.0 ppm<br />

C ~3 NMR SPECTRUM OF METHYL<br />

ACETYLENE (C~3H3-IC12---C ~2H ) AT<br />

15.085 mc/sec WITH PROTONS<br />

IRRADIATED AT 60 mc/sec.<br />

o<strong>rd</strong>n ry<br />

~--~ ..... :pectrum\<br />

C :~ NMR SPECTRUM OF PYRIDINE<br />

(Natural abundance)<br />

(15.085 mc/sec.)<br />

I<br />

Jc-c-H=SJBcps I =B.Ocps<br />

II<br />

Y ~<br />

I I -H--<br />

-11.8 ppm 0.0<br />

...with irradiation<br />

Jc-~ (cp5)


DARTMOUTH COLLEGE<br />

~EPART.~IEXT OF OHE~ISTR~"<br />

HANOVER • NEW HAMPSHIRE<br />

Insert Construction for Nl~ Probe<br />

io Place the coax fitting and the insert tube (note i) in the jig.<br />

2. Wind uninsulated, oxygen free~ high conductivity copper wire<br />

(OFHC, 30 gauge) around the tube° Space the turns with fine<br />

thread and secure the ends under tension from rubber bands. (note 2)<br />

3. Warm the tube to about 60 ° and apply a very thin layer of epoxy<br />

resin (note 5) so that it flows evenly around wires and thread.<br />

~. Heat briefly (about 2 minutes) at IOO ° until the resin is tacky,<br />

remove the thread and apply a second coat of resin~ using the<br />

minimum amount to get a uniform coating. Bake at iOO ° for<br />

thirty minutes°<br />

~o Bend the free ends of the wire~ slightly separated, down to the<br />

coax fitting9 secure with Scotch Tape~ coat with resin and bake.<br />

6. Trim one lead to just reach the "dimple" depression and solder<br />

with a minimum amount of solder and heat.<br />

7. Remove from the jig, bend the second lead smoothly under the<br />

bottom of the insert to the center, and then do~mo Trim short so<br />

that when the tip of wire is inserted into the pin jack and the<br />

parts are assembled, there is no excess wire and it lies smoothly<br />

in the groove without touching the metal case of the coax plug.<br />

Solder the lead to the pin jack and assemble°<br />

8° Coat the bottom of the insert tube with epoxy resin (note %),<br />

press the tube into the coax plug and place the assembly in the<br />

jig. Remove excess resin to give a smooth joint and bake until<br />

the resin has set°<br />

Note s o<br />

i. Clean the insert tube with trisodium phosphate solution, water,<br />

aqua regis, water and then ammonia, in turn, and bake to dry.<br />

2o For proper balancing, the coil should be tipped very slighly<br />

rather than being exactly perpendicular to the axis of the tube.<br />

The wire can be obtained from various sources, one of which is<br />

Sigmund Cohn~ 12~ S. Columbus~ Mt. Vernon, N.Y.<br />

3. Ciba Araldite Resin 6010 cured with ha<strong>rd</strong>ener Araldite HN-9~I,<br />

available from Do Ho Litter Co.~ Inc., PO Box 247, 30 Lowell<br />

Junction Road, Balla<strong>rd</strong>vale~ Mass.<br />

4. Any commercial resin with a non-metallic loading, such as Hysol<br />

or One-Ton etc. The Ciba resin might work but it is claimed that<br />

the addition of an inert filler improves dimensional stability<br />

over a wide range of temperature change.<br />

8-1-61 Paul R. Shafer


Insert Tube for Variable Temperature N~/:R Probe<br />

!<br />

~cte I ~ . . . .<br />

¢ t<br />

'---> @ %<br />

_ 0<br />

-II Cry.--<br />

I<br />

~J<br />

I<br />

_0/<br />

note 3<br />

io Flat, closed end. Maintain OD to fit into lip of coax fitting.<br />

2. Space three holes at about 120 ° around the tube, each about 2 mm OD.<br />

Maintain tube !D to give clearance for the nylon bearing.<br />

3o Fire polish very lightly.<br />

%. Material: 8 mm OD pyrex tube, standa<strong>rd</strong> wall. Select ID to give<br />

slip fit with the nylon bearing.<br />

Coax Fitting for NNIA Insert. (Not to scale)<br />

[__<br />

I<br />

, / d , ' s<br />

---~ ~qot~ I.<br />

-262/c<br />

n o~e q.<br />

rD o{ r;.:.~, ~v.v~ 6+)<br />

~o~.e 2..<br />

i. Cut off, then face down to length of coax plug on a standa<strong>rd</strong><br />

insert tube less 1 mm. for depth of rim.<br />

2. Cut out faced off end to depth of about 1 mm. Make the ID of the<br />

rim to slip over the end of the insert tube.<br />

3. Shorten the pin jack until it is just flush with the surface when<br />

it is pushed into place.<br />

%o Cut a groove for 30 gauge wire (flush) from the pin jack hole to the<br />

rim, notch the rim, and continue the groove down to one of the<br />

"dimple" depressions on the side of the plug. Cut this portion<br />

of the groove to the depth of the dimple.<br />

8-1-61 Paul R. Shafer


,f,<br />

F.<br />

Construction details for N.,',,:R insert coil winding jig.<br />

£ I~'1' t<br />

i D ,. ?_.i£-<br />

E<br />

£<br />

t<br />

H<br />

L'-i~crf /7, /<br />

"lop Jtc~<br />

~.op Ut~.v~<br />

i. Mount end support A rigidly to bottom plate D.<br />

2. Mount end support B on slide F which moves between guides G-G'.<br />

3. Drill holes C-C' co-linear to fit insert tube (ca 8mm OD). Enlarge<br />

hole C to fit coax plug. Fit each hole with an end plate.<br />

~. Side posts E-E', mounted rigidly to D opposite the coil, serve as<br />

(a) tie points for the coil and (b) terminus points for the<br />

tension springs H-H' which hold the insert assembly in place.<br />

~. Space posts E-E' far enough apart so that a length of wire a' = a<br />

can be secured to each side . Then when the rubber bands are cut<br />

loose the leads will be free of kinks.<br />

6. The scale is about one-half~ the overall length is about i~ cm. and<br />

the dimmensions are not critical. The materigl is wood.<br />

8-1-60 Paul Ro Sharer


O<br />

04<br />

+<br />

gl<br />

Y<br />

O<br />

n<br />

|<br />

I<br />

o4 O<br />

04 -- C) O<br />

O<br />

LO<br />

0 I.u,<br />

_8 w<br />

, , ' - - t H I , ' . _<br />

Y<br />

0<br />

%,.<br />

2<br />

O<br />

co v ~<br />

O<br />

O<br />

0<br />

04 --<br />

i<br />

in<br />

O<br />

0 O~ O4.c<br />

o 1_o<br />

o


t<br />

SLAVE RECORDER FOR AN ~4R SPECTP.OIdETER<br />

James N. Shoolery, Varian Associates, Palo Alto, California, and<br />

Richa<strong>rd</strong> W. Mattoon, Abbott Laboratories= North Chicago, Illinois<br />

Presented at the Thi<strong>rd</strong> <strong>Conference</strong> on Experimental Aspects of NMR Spectro-<br />

scopy, Mellon Institute, Pittsburgh, Pennsyivanias March 2 and 3, <strong>1962</strong><br />

~t is often very useful to have a slave reco<strong>rd</strong>ing reduced in size from<br />

the master NMR spectrum and available simultaneously with it. This<br />

eliminates the delay in cb=aining a reproduction of the master spectrum.<br />

Also, a good slave reco<strong>rd</strong>ing on standa<strong>rd</strong> 8 I/2" x II 'I paper is conveni-<br />

ent as a secondary reco<strong>rd</strong> for reports and for an auxiliary research<br />

file. The master spectrum for the Model A-60 ~[R spectrometer measures<br />

ll" x 26" overall with the graduated chart space 25 cm. Y-axls, 50 + 2 cm.<br />

X-axis (9.8" x 20.~').<br />

METHOD I,L SLAVE X-AX~S TIME SWEEP<br />

In ldethod I. a Moseley X-Y reco<strong>rd</strong>er, Model 3S, using 8 II~' x II" graph<br />

paper (graduated in inches in Figure I only by chance) was covmected<br />

to the A-60. The two AHP/INT OUTPUT terminals on the rear of the A-60<br />

console were connected to the two Y-axls input terminals of the slave<br />

reco<strong>rd</strong>er. The Y-axis gains were set to give appropriate amplitudes.<br />

Each reco<strong>rd</strong>er was cet for its own internal 500-second full X-axis<br />

sweep. The A-60 was adjusted to put the SiMs 4 line on the right-hand<br />

0 of its X-axis (chemical shift). Since this slave reco<strong>rd</strong>er time-<br />

sweeps only to the right, both reco<strong>rd</strong>ers were set on the extreme left<br />

and started simultaneously.<br />

Figure i shows that the slave reco<strong>rd</strong>ing is a practically perfect repro-<br />

ductlon of the masker reco<strong>rd</strong>ing even for the small background ripples.<br />

The strong peak at 60 CPS (I,0 PPI0 is a doublet at highest resolution<br />

(evident here as a slight shoulder) and this is reproduced in the<br />

slave reco<strong>rd</strong>ing. The slave reco<strong>rd</strong>er reached its right-hand limit a<br />

little before the A-60 and so on the slave reco<strong>rd</strong>ing the SIMs 4 line is<br />

to the right of the edge of the graduated portion of the paper. X-dls-<br />

placements in Figure I between corresponding peaks on the master to<br />

those on the slave give a ratio varying between 1.89 and 1.93, averaging<br />

1.91. The disadvantages of Method I. are the inability (I) to sweep<br />

to the leftp (2) to independently set the SIMel. line exactly on the 0<br />

of the slave and keep the two reco<strong>rd</strong>ers so-syn~hronlzed,o,- and (3) to<br />

have the ratio of the two X-axes 2,00 exactly.


-2-<br />

METHOD II. SLAVE X-aXIS SYh~HRONIZED WITH 14ASTER<br />

In Method II. a Moseley X-Y reco<strong>rd</strong>er, Model 2 (II" x 17", larger than<br />

required here), was connected to the A-60 with the Y-axis connection<br />

as above; the X-axls was connected to the center arm of the 1.15 ohm<br />

sweep potentlomzter located underneath the A-60 reco<strong>rd</strong>er, The slave<br />

reco<strong>rd</strong>ing was made on 8 I/T' x ii" paper graduated in millimeters<br />

(18 cm. Y-axls, 25 cm. X-axls). Since the X-Input inpedance of the<br />

slave reco<strong>rd</strong>er is many thousand ohms on the I volt range, no effect is<br />

observed in connecting it to the 1.15 ohm sweep potentiometer. The<br />

X-axis positioning control and the X-axis gain control of the slave<br />

reco<strong>rd</strong>er appear to interact. To put the SIHe 4 llne on the 0 of both<br />

reco<strong>rd</strong>ings and also have the master X-displacements exactly 2.00 times<br />

those on the slave required an Iteratlve procedure of adjusting one<br />

control and then the other. Three adjustments of each control, re-<br />

quiring about one minute, were sufficient to do this. The two recor-<br />

ders then remained perfectly synchronized.<br />

Figure 2 shows again that the slave reco<strong>rd</strong>ing is an excellent duplica-<br />

tion of the master reco<strong>rd</strong>ing, but this time the two SiMe 4 lines are on<br />

the 0 of the X-axes. The master-to-slave X-displacement ratio it Fig-<br />

ure 2 now ranges between 2.00 and 2.04, averaging 2.02, and this aver-<br />

age ratio can be adjusted even closer to 2.00. On the X-scale of the<br />

master 1 mm. is I cycle per second and on the slave it is 2 cycles per<br />

second within II error. Thereby, chemical shifts in cycles per second<br />

may be read directly also on the slave reco<strong>rd</strong>ing from the mm. gradua-<br />

tions. Method II°avoids all three disadvanteges of Method I. listed<br />

above.<br />

For the Method Z. tests acknowledgment is made for the kind coopera-<br />

tion of Dr. R. T. Dillon of G. D. Searle & Co. and the F. L. Moseley<br />

Co., represented by Crossley Associates.


io<br />

"h,<br />

_1_<br />

T<br />

m<br />

]<br />

i<br />

~ =<br />

o<br />

, ~: i I~ :ii : ,: . . . . . . . f~<br />

,:,1!,i : ~ I ~ ,~il ~ ,1:~,; !~<br />

iiiiill ii;iii~ii i ~ ~ ~-'<br />

~'i~I if l - , - ~ i ¸<br />

' I ~ !!i !i~ !I i t ¸i ¸¸'1! ! ~', t i~<br />

i ;i1:!::11:::1~: I:ll :~, ~::: i,: ~ ~, ~ ~<br />

~;:l~!;!;l~:,~I~:~il~ ]i, [ ~ '1'~';-~<br />

,~;~I~:': iiii ~i: :ii~f ii ~i; i!i ~ - ~<br />

.~,":i!!i]~;i"!;;iii~ ..... !!"!!ii!! ;~ E![ii!i"ii!!iiii'i<br />

~o<br />

- -2


--2<br />

u<br />

~L<br />

-f-<br />

,(<br />

• _= o<br />

k<br />

o _o<br />

o _"<br />

±<br />

T<br />

~W!~ ~ - o


@<br />

I<br />

! i<br />

!<br />

i ,-


J<br />

,/<br />

On the Use of Amplitude Modulation in Measuring Large Chemical<br />

Shifts and in Producing Sidebands for Spin Decoupling Experiments.<br />

L. G. Alexakos and C. D. Cornwell<br />

Department of Chemistry, Univsersity Of Wisconsin<br />

Madison, Wisconsin<br />

Two common methods for generation of sidebands used in measurement<br />

of frequency separations in NMR spectra are a) modulation of the field<br />

by injection of an audio voltage in the sweep coils and b) frequency<br />

modulation of the RF generator. The first of these is generally<br />

satisfactory at low audio frequencles~ but fails above about I000 c/s~<br />

probably because of attenu~tlon of the modulating field by eddy currents<br />

in the probe. A further inconvenience associated with this method is the<br />

need for using widely different modulating voltages at different modulation<br />

frequencies on account of the inductive reactance of the modulation coils.<br />

Method (b)~ frequency modulation of the RF generator, may be used at<br />

higher audio frequencies. With this method~ however# an error can arise<br />

if the carrier frequency is shifted by the modulation. If the measurement<br />

is made by placing sidebands on either side of the line 3 this error can<br />

become very serious at higher modulation frequencies 3 since relatively<br />

large frequency deviations are required for the generation of sldebands<br />

of adequate amplitude when the modulation frequency is high. Thus with<br />

the frequency modulation system of the varian ~310C Spectrometer# we have<br />

observed a substantial shift in the position of a fluorine resonance line<br />

as the amplitude of the modulation voltage is changed. The change in<br />

average frequency of the RF generator as measured with a frequency counter<br />

was found to be well over I00 c/s. A similar observation was made with<br />

the ~II spectrometer.<br />

We have employed pure amplitude modulation of the RF generator for<br />

the measurement of splittings over a very wide range of modulation<br />

frequencies~ with excellent results. The circuit arrangements used in<br />

the V4310C and V~311 are shown in Fig. I (a) and (b) respectively. The<br />

modulating voltage is introduced at the grid of a multiplier stage, at<br />

a point well isolated from the ascillator itself.<br />

Sidebands~ generated in this manner show little change in amplitude<br />

as the modulation frequency is changed from 20 c/s to 60 kc/sec at a<br />

constant modulation voltage. (The lower frequency limit could presumably<br />

be reduced by increasing the sizes of the coupling capacitors.) As would<br />

be expected for pure amplitude modulation I no effect is detectable in the<br />

frequency as measured by a counter except for the expected decrease in<br />

apparent frequency observed when the percentage modulation approaches<br />

I00~ at which point some of the cycles are "missed" by the counter.<br />

Frequency spllttings from several hundred cycles to over 40 kc/sec have<br />

been measured with this method with excellent reproducibility. Consistent


-2-<br />

results are obtained even with a large percentage modulation and a very<br />

distorted modulation envelope, since the carrier frequency remains strictly<br />

constant even though the apparent average measured by a counter decreases.


I<br />

v 3o/<br />

L<br />

MoJ. o.o 3p~- _Z_ 0.2 ,~.~i~<br />

VIOl<br />

5 t:~e<br />

L [0~<br />

o os/.~ o.I<br />

~k<br />

,,-,b<br />

ct.,oke<br />

t:<br />

j,,,I ,.-,J. ~FT Rill<br />

FT - F--e ~.~/ "t.l,~o,--,.~L,<br />

.<br />

171,~<br />

~C3o& i~ V3°2<br />

__Z_<br />

c_~, p


SPIN DECOUPLER<br />

by<br />

Daniel D. Elleman and Stanley L. Manatt<br />

Physical Sciences Division<br />

Jet Propulsion Laboratory<br />

California Institute of Technology<br />

Pasadena, California<br />

The spin decoupler which is shown in the figure employs a<br />

phase detector quite similar to that used in the Varian integrator 1.<br />

(i) LeRoy F. Johnson, "Operation of an NMR Integrator System," is<br />

"NMR and EPR Spectroscopy," by Varian Staff and Consultants,<br />

Pergamon Press, 185 (1960).<br />

The IN216 diodes used in the phase detector are a matched<br />

pair and are imbedded in a copper block to maintain them at a constant<br />

temperature. Ten turn pots have also been used in the phase shifter<br />

and audio amplitude section so as to give a little better control in<br />

these settings. Also, 0.022 ~f capacitors have been placed at the<br />

output to the sweep coils to attenuate the modulation. A switch, not<br />

shown in the diagram, has been added so that these capacitors can be<br />

shorted so the full output of the audio amplifier can be placed on the<br />

sweep coils.


A pre-amp has also been added to give some additional gain<br />

at the phase detector. A General Radio Sound Analyzer, Model 1554A,<br />

is placed in front of the pre-amp. The Sound Analyzer acts as a narrow<br />

band filter that can be tuned to pass only the decoupling frequency.<br />

The analyzer has a band pass of approximately 3%.<br />

A set of capacitors has been added across the output reco<strong>rd</strong>er<br />

gain pot. These capacitors act as a filter and can be set to give any<br />

desired time constant so as to reduce high frequency noise at the output.<br />

One must remember to by-pass the RC filter network on the V4311 spectro-<br />

meter@ If this is not done, the audio signal to the phase detector is<br />

attenuated. The most convenient method of by-passing the filter network<br />

is to set the spectrometer on WL ~ mode of operation.<br />

With this decoupler we have been able to decouple spin systems<br />

that have coupling constants greater than 50 cps and chemical shifts over<br />

9000 cps. The smallest frequency that we have set the decoupler is 40 cps.<br />

At frequencies smaller than 40 cps, the signal to noise becomes very bad.<br />

Additional details of the operation of the spin decoupler are given in<br />

a paper which will appear about April 15 2.<br />

(2) D. D. Elleman and S. L. Manatt, J. Chem. Phys. (in press).


• 3<br />

Samples of proton 3'4 and fluorine 5 of spectra obtained with<br />

(3) S. L. Manatt and D. D. Elleman, J. Am, Chem. Soc.,8_~., 4095 (1961).<br />

(4) S. L. )kmatt and D. D. Elleman, J. Am. Chem. Soc., (in press).<br />

(5) D. D. Elleman and S. L. Manatt, J. Chem. Phys., (in press).<br />

this spectrometer can be found in other publications 6.<br />

(6) All recent Jet Propulsion Laborator~ Research Summaries.


-- rl t~<br />

-J > u~ w<br />

O O LL<br />

o ~ o _~ ~, ~, o<br />

o w '~" ~ o o ¢~<br />

'O. ~ ~ (nm to<br />

T L[L[<br />

;~ / °- ! o~a tao _z<br />

ioT -o<br />

n'c~ . . , Q-<br />

~o o , o~ ~o<br />

~;I ~ i -~18<br />

- _1 "i I, o<br />

0 ~<br />

• - "-'" • 111. ; O O. ~'<br />

o T--~'-"-"~ o ~<br />

~- ,,, I o o ,~ o ~I -<br />

fir" •<br />

zi:<br />

t~<br />

~o<br />

I-<br />

od<br />

El(/)<br />

~0<br />

,<br />

rl-


~<br />

T<br />

rt~<br />

m<br />

Cu~<br />

~4<br />

A<br />

m<br />

1 m<br />

V<br />

m<br />

c~<br />

rt~<br />

I<br />

C~


W<br />

Z<br />

X<br />

W<br />

I<br />

q<br />

W<br />

Z<br />

W<br />

N<br />

Z<br />

W<br />

I<br />

I


A<br />

Q~<br />

Z o<br />

X<br />

I<br />

0<br />

o<br />

wQ<br />

f<br />

m<br />

A<br />

T<br />

V<br />

rr~<br />

!<br />

r~<br />

c~<br />

I<br />

V<br />

r~<br />

m<br />

c~<br />

r~<br />

m<br />

~J


Me-C<br />

Me-C--~-<br />

I<br />

CH<br />

-*--- CH<br />

I<br />

z,' 2 = 35.809880 Mc/s<br />

Not Decoupled<br />

8.502508 Mc/s Cl3(H a) SPECTRA OF<br />

H3C CH 3<br />

CH 3<br />

CH 3<br />

MESITYLENE


CH-2,6<br />

tJ<br />

1<br />

8.502508 Mc/s CI3(H I) SPECTRA<br />

OF N,N-DIMETHYL-p-TOLUID|NE<br />

?"2 = 33.812600 Mc/s<br />

92 :33.813300 Mc/s<br />

H3C\ /CH 3<br />

N<br />

CH 3<br />

~'2:33.810280 Mc/s<br />

N-CH 3<br />

-,-- CH 3


J<br />

CH-3,5--~<br />

C-I<br />

V<br />

J<br />

8.502508 Mc/s CaS(H I) SPECTRA<br />

OF N,N-DIM ETHYL-p-TOLUIDI NE<br />

HsC\NzCH 3<br />

6 2<br />

5 3<br />

CH 3<br />

~z = 33.809785 Mc/s<br />

z/2 = 33.809080 Mc/s<br />

CH-3,5 A Not Decoupled<br />

C-I ,/'1 CH-2,6<br />

' m /"/ ' ' N-CH3


2 . . . . . . .<br />

--CH<br />

Not Decoupled<br />

I<br />

~CH<br />

I<br />

.......... _C = - COH<br />

8.502508 Mc/,~ CI3(H I) SPECTRA<br />

OF 3-METHYL-I- PE NTYN- 3-OL<br />

-----C-OH<br />

CH 3<br />

!<br />

CH3-. CH2-C, -C = CH<br />

OH<br />

I I<br />

I<br />

~2:33.811538 Mc/s<br />

~, : :33.811016 Mc/s<br />

C'H3CO<br />

I<br />

l I<br />

CH2 _.<br />

J I_ _


8.502508 Mc/s CI3(H I)<br />

SPECTRA OF<br />

5 -METHYL-I- PENTYN- 3-OL<br />

CH 3<br />

CHECH2-C-C= CH<br />

I<br />

OH<br />

; CH 2<br />

z/2= 33.812700 Mc/s<br />

z/2= 35.812950 Mc/s C*H~ C-O<br />

z/2:33.813620 Mc/s<br />

.4-- C~H3-CH2


o b c<br />

CI3(H I) SPECTRA OF n- HEXANE<br />

CH3CHzCi-<br />

c b a<br />

~_ C 2 CH2 C H 3<br />

a b c<br />

AT 8.502508 Mc/s<br />

a) 33.812880 Mc/s<br />

b) 33.813220 Mc/s<br />

c) 33.813500 Mc/s<br />

33.813200 Mc/s


Sn(CH3) 4<br />

J<br />

f<br />

Sn 119 Snil9(H I)


~<br />

pm----'m I<br />

0<br />

A<br />

rt~<br />

I<br />

V<br />

C~J<br />

I C~<br />

C~J<br />

7-<br />

C<br />

J<br />

4)<br />

A<br />

C~<br />

m<br />

U_<br />

V<br />

m<br />

T<br />

m<br />

I


(lh<br />

I<br />

I.L<br />

I<br />

-r<br />

CO<br />

r,-.<br />

z<br />

0<br />

I<br />

I--<br />

f~<br />

m<br />

I<br />

_I<br />

0<br />

N<br />

-1-<br />

"1"<br />

I N<br />

-r"<br />

L)<br />

I<br />

0 I<br />

"1-<br />

U<br />

II<br />

U_<br />

U<br />

I<br />

m<br />

0<br />

-r<br />

0<br />

I<br />

"l-<br />

u<br />

I<br />

L)<br />

0<br />

I<br />

I I I I I I<br />

I I I I I I I<br />

O O 0 0 0 O 0<br />

O 0 O 0 0 0 0<br />

O 0 O O 0 0 0<br />

0:<br />

E<br />

0<br />

0 0<br />

0<br />

0<br />

0<br />

:0<br />

_o o<br />

o_<br />

0<br />

-0<br />

¢-'1<br />

-°o


q<br />

f<br />

i/,,t<br />

!<br />

!<br />

I I I I !<br />

-'-::=,.._<br />

I I I I I<br />

co ~. ~ eu 0<br />

c~ o d d<br />

u Z<br />

'~" 0<br />

o I--<br />

a "a<br />

.C}<br />

- ~ -~<br />

(.f)<br />

>-<br />

rn .c_<br />

o<br />

-- 0 Vl ,,<br />

-.lb. I ~ N<br />

~ I I<br />

-ru_<br />

m<br />

l<br />

1<br />

u<br />

1<br />

l<br />

l<br />

N<br />

b.l<br />

0 CO<br />

-- I~<br />

,,~<br />

O~ ...I<br />

0 ...I<br />

co 0<br />

W W ~<br />

~ 0 u<br />

Z 0<br />

Z ~ ~<br />

g'rS;<br />

I--<br />

I- l<br />

I<br />

u_<br />

0


D<br />

I I I ! I I I I<br />

O<br />

-- ~) O o..I<br />

_ m I~ o -<br />

a<br />

n.,l~<br />

n'- rm<br />

LI.I<br />

n,'i--<br />

O~<br />

U._ _.1<br />

Z O<br />

o O<br />

~>-<br />

rr-<br />

_1 W<br />

oO<br />

W<br />

Nn-"<br />

"!- Ii<br />

_ ~9 r..D --<br />

E E<br />

-- O<br />

O<br />

I I I I I I I I<br />

O O O O O O O O<br />

O O O O O O O O<br />

O O O O O O O O<br />

~D ~1" 0J O GO ~ ~1" oJ<br />

~9<br />

o<br />

O<br />

U<br />

O<br />

QD<br />

O<br />

O<br />

lad<br />

O~


U.<br />

0 •<br />

C<br />

0<br />

0<br />

J J J<br />

0<br />

J<br />

//<br />

%%<br />

/o<br />

/<br />

W<br />

Z<br />

W bJ<br />

I N<br />

Z<br />

W<br />

0<br />

Z<br />

Z<br />

~u Z<br />

wO<br />

Z<br />

W<br />

O~ ~<br />

n-<br />

• U8<br />

~. l ~.<br />

~ ~.~<br />

~ g<br />

j J I<br />

0<br />

--0<br />

I',-<br />

0<br />

--0<br />

_8<br />

t~<br />

-0<br />

0<br />

--0 ro<br />

0<br />

ro<br />

V')


,:z:<br />

O<br />

I--I<br />

I<br />

• L.<br />

l<br />

I<br />

0<br />

.<br />

il<br />

! J ! !<br />

0 0 0 0<br />

(~=) ~0z~ ~v~a<br />

0<br />

I<br />

0<br />

I<br />

...Q<br />

0<br />

0)<br />

,rl<br />

IE


.°<br />

I<br />

u<br />

O'/<br />

!<br />

H<br />

O<br />

I.-4<br />

0 0<br />

III<br />

0<br />

0<br />

r.t<br />

II<br />

, !<br />

0<br />

b--<br />

0 0<br />

r-I<br />

0<br />

0<br />

0<br />

0<br />

0<br />

r-i<br />

E


I00<br />

50<br />

0<br />

CORRECTED INTEGRAL AMPLITUDE (LOW SATURATION)<br />

r = I0 @/s 2<br />

(H20, TIT2~, 25 see.2)<br />

1oo ~/2<br />

i I J , I J<br />

0.5<br />

H I (mllllgauss)


E<br />

r 2r .<br />

Johnson, 4th Annual Varlan NMR Workshop (1960)


• T~-"<br />

• * ' * i T " •<br />

t<br />

i i<br />

T<br />

I<br />

,'~t i~'<br />

, i<br />

. . . . . I<br />

.-2-..~. i . . ~ ..... "<br />

AL: A~C~,~,¢Y: : : i i : :<br />

• • * ~ . .<br />

• * t<br />

.... r ~<br />

; . . . . i<br />

• . • [ • !<br />

. . . i<br />

• • • • I & l * •<br />

.... i:"::' i ' "<br />

' . . 1 . . .<br />

' " " T<br />

' ' ~ ' i " . . " . . . .<br />

~_<br />

- t ......... ... ,.m ....<br />

• 0;0~ . . . . . . . "~ ~"<br />

.... i... '-[::-<br />

Io~ .it+ .i<br />

..l~:, ~ ,~.<br />

. . . . l . . . .<br />

. . . . . . . .<br />

4


0<br />

2<br />

4<br />

8<br />

10<br />

ERROR IN rNTEGI~L RATIO (H20 SAMPLES)<br />

(TIT2)~/(TIT2)b ~Io4<br />

i • i • I * • ~ i I i i • . I i * • * |<br />

0.5 1.0 1.5 2.0<br />

H I (milligauss)


~<br />

0<br />

E~<br />

~D<br />

Z<br />

0<br />

0<br />

r~<br />

r 4 .<br />

1<br />

i<br />

t<br />

• °<br />

• ° . ,<br />

°<br />

. . . . . . . o . . . . . . . .<br />

, I<br />

i<br />

T


©<br />

+<br />

I<br />

!<br />

J<br />

J<br />

l<br />

H<br />

~.......-.......-~<br />

T<br />

.<br />

bD o<br />

bD<br />

J<br />

o<br />

!<br />

o<br />

0<br />

r-~ -P<br />

O ,'d ,.C<br />

~ ~c~ ~<br />

0<br />

~+~ ~<br />

o ~<br />

m ~<br />

ID o fl)<br />

N~<br />

o<br />

i1) .~<br />

.cl,O<br />

4.~ ~<br />

.r-t<br />

o m<br />

%<br />

i11 i1)<br />

E-~<br />

d<br />

hO<br />

°r-.I<br />

-0<br />

-0<br />

i1)<br />

~!i-~.


©<br />

l<br />

L<br />

o<br />

_!<br />

-Z<br />

i<br />

l<br />

oJ<br />

gl<br />

.r-t<br />

r-i<br />

o<br />

0~<br />

,¢1<br />

ID<br />

CH<br />

.~<br />

,-el<br />

0<br />

0<br />

4-~<br />

m<br />

0<br />

ko<br />

I<br />

,--t<br />

4.~<br />

a3


NMR PULSE SYSTEM<br />

by<br />

S. Meiboom<br />

Bell Telephone Laboratories, Incorporated<br />

Murray Hill, New Jersey<br />

The pulse system consists of one Tektronix type<br />

162 waveform generator and three type 161 pulse generators,<br />

interconnected as shown in Fig. i. A type 160 A power<br />

supply and a type 360 indicator, used for checking pulse<br />

shapes, complete the system. The pulses A, B and C are<br />

fed into a Varian V 4311RF-unit, modified as indicated in<br />

• . "B" the trans-<br />

Figs 2 and 3 "A" is the receiver gate,<br />

mitter gate and "C" the 90 ° RF phase shift gate (So Meiboom<br />

and D. Gill, Rev. Sc. Instr. 29, 688 (1958)).<br />

operation:<br />

The pulse system has three different modes of<br />

i) "Time division" high resolution. The 162<br />

runs "recurrent" at about i000 cps. It triggers the 161<br />

B unit, which delivers pulses of about 20 ~sec length to<br />

the transmitter gate. The rising edge of these pulses<br />

triggers the 161A unit, which delivers negative pulses<br />

of about 30 ~sec to the receiver gate. In this mode unit<br />

161C is inoperative.<br />

2) T 2 measuremdnts. In this mode unit 162 is on<br />

"gated" and operates only when the normally closed switch S<br />

is pressed. Pressing S delivers a voltage step to 16i C<br />

and triggers a single 90 ° pulse. Unit 161B is triggered


- 2 -<br />

at the center of the 162 sawtooth and delivers 180 ° pulses<br />

at the 162 repetition rate as long as S remains open. Unit<br />

161A is triggered by the rising edge of the B output and<br />

gates the receiver.<br />

3) T I measurements. Unit 162 runs in "recurrent"<br />

mode at a low rate (period more than four times T 1 to be<br />

measured). Unit 161B is triggered by return of sawtooth,<br />

unit 161C by sawtooth after about 1/5 of period. Unit<br />

161A is again unchanged. Repetition rate is adjusted for<br />

zero signal on 90 ° pulse.<br />

pulse generators.<br />

The following modifications have been made in the<br />

a) In unit 161B the leads to the grids of V 5<br />

have been interchanged. The unit now delivers a negative<br />

gate rather than a negative pulse (i.e. the output is<br />

normally negative and goes to zero during the pulse).<br />

Also, the 90 ° pulse delivered by 161C is mixed with the<br />

180 ° pulse of 161B by connecting the cathode of V 4 B in<br />

the C-unit to the cathode of V 5 in the B-unit (R 33 of<br />

the C-unit is disconnected).<br />

b) In o<strong>rd</strong>er to make for easy switching between<br />

different operating modes, the trigger circuits of the<br />

pulse units have been modified as indicated in Fig. 4.<br />

The two trigger modes ("negative sawtooth" and "positive<br />

pulse") have been provided with individual input connectors<br />

and individual bias potentiometers.


-3-<br />

c) The range of all units has been increased by<br />

a factor of lO, to provide for very long relaxation times.<br />

In unit 162 an additional position with a I0 ~F capacitor<br />

has been provided on SW 3. Similarly 1 ~F capacitors have<br />

been added to SW 2 of the 161 units.


~w<br />

0<br />

o~<br />

W<br />

&.<br />

I,-<br />

oP:,-~<br />

z~<br />

ILl<br />

03~<br />

00..~<br />

n::3 Q_<br />

+<br />

41<br />

0<br />

e'l<br />

m<br />

k.9<br />

W<br />

"J~O<br />

Ik<br />

I,.IJ t.._<br />

I-- -,~<br />

~oO<br />

~°<br />

LO W<br />

I.~ I,-<br />

_J', 0<br />

n<br />

IJ'<br />

0<br />

o<br />

~U<br />

vm<br />

L,j<br />

Z<br />

W<br />

r~<br />

ILl<br />

U3<br />

._...1<br />

13_.<br />

Lt_<br />

0<br />

Z<br />

0<br />

I--<br />

U<br />

LL~<br />

Z<br />

0<br />

n,,'<br />

F.--<br />

Z<br />

I I<br />

b_


0 0<br />

~(---t,, I >-~<br />

il<br />

I I<br />

~-~0<br />

I ,(<br />

~LJ n,,<br />

v<br />

~°<br />

~<br />

d<br />

L<br />

k<br />

'NAA,<br />

mO<br />

'VNA,--<br />

--M Ul--<br />

- 11,<br />

AAA<br />

o,~ <<br />

~0 W<br />

><br />

0<br />

or)<br />

O<br />

m<br />

m<br />

LU<br />

Od<br />

oct)<br />

w<br />

0-- 0 ¢~ ~U')<br />

VV~ u.. ~ I1.,.<br />

- OE)<br />

II,<br />

d<br />

.a_


.~ c:>-~l, I( :<br />

: ~,..L,, ~<br />

U~II - - ,<br />

• ~ 1 -<br />

-o u"'-~. _<br />

~ ~oo<br />

I~. Ill --0"11<br />

I1~-- I<br />

-- ' - I( i<br />

O0 o,~<br />

t~. ~ 0<br />

o~. e,- o .~<br />

J<br />

@"1<br />

_-0_.1 ~ ~-[. gJ- oOJ- @°<br />

hk<br />

"<br />

oo ~g<br />

W<br />

eo<br />

ZCl<br />


_0<br />

I<br />

~o_<br />

Q<br />

0<br />

m<br />

~° i °~<br />

j<br />

0<br />

I - ,(<br />

U~<br />

I I<br />

I<br />

-z Qo<br />

~__o<br />

w<br />

Z<br />

I<br />

0<br />

I,<br />

I,I<br />

m<br />

a<br />

W<br />

m<br />

I,<br />

I<br />

0<br />

~f<br />

i<br />

I,


°t o .9o<br />

•<br />

TM r<br />

0 i.i.l"<br />

Ul<br />

rn<br />

0<br />

v ~ LL


SPIN-ECHO MEASUREMENT OF NMR RELAXATION TIMES<br />

by<br />

R. S. Codrington<br />

Ridgefield Instrument Group<br />

Ridgefield, Connecticut<br />

In steady-state NMR studies the parameters of primary importance,<br />

apart from the signal amplitude, are the linewidth of the resonance<br />

and the frequency at which the resonance occurs in a given magnetic<br />

field. It is wel~known, however, that in o<strong>rd</strong>er to obtain meaning-<br />

ful steady-state NMR spectra, the modulation frequency and sweep rate<br />

must meet certain conditions determined by the relaxation times T 1<br />

and T 2. These relaxation times, respectively called the spin-lattice<br />

and spin-spin times are defined by the Bloch equations. 1 In Fig. i,<br />

possible methods of measuring these times with steady-state equip-<br />

ment are shown. For both measurements, it is assumed that the steady-<br />

state apparatus has been set to observe the peak of the absorption<br />

curve. Inherent in the Bloch formulation is the assumption that when<br />

a sample is placed in a steady-state apparatus, the signal will in-<br />

crease exponentially with a characteristic time T I. The assumption<br />

is also made that if the r.f. driving voltage is suddenly shut off<br />

while a signal is being observed, the signal will decay exponentially<br />

with a characteristic time T2. The simple assumptions of Bloch are<br />

valid for NMR spectra of most liquids but they do not always apply to<br />

the NMR spectra of complex liquids, semi-solids and solids in which<br />

T2 decays with nonexponential character may be observed. The tech-<br />

niques of measuring T1 and T 2 described in Fig. 1 would only be use-<br />

ful for a restricted range of relaxation times. A direct measure-<br />

ment of T 1 and T 2 over a much wider range can be achieved with spin-<br />

echo techniques which are based on the same principles as the tech-<br />

niques of Fig. 1 but which utilize pulsed rather than steady-state<br />

apparatus.<br />

A great deal of information about the internal structure of materials<br />

can be obtained from a detailed analysis of NMR spectra. Such<br />

analysis usually includes studies of the linewidth or second moment<br />

versus temperature and the behavior of T1 versus temperature. Al-<br />

though in principle the steady-state apparatus can provide all the<br />

information required for a complete NMR analysis, it is often found<br />

to be easier and quicker to complement the information provided by<br />

the steady-state apparatus with spin-echo data. An example of the<br />

use of spin-echo in aiding the interpretation of steady-state NMR<br />

signals is given in Fig. 2. In this figure the derivative absorp-<br />

tion curves from two polyurethane samples are compared with the T 2<br />

decay curves. In the steady-state presentation, the signal from


polyurethane A is obviously narrower than the signal obtained from<br />

polyurethane B. However, it is noted that the signal in the wings of<br />

resonance A is greater than the signal in the wings of B. When the<br />

T 2 decays of the signals are examined, the situation becomes a little<br />

clearer. The straight line decay curve for polymer B indicates that<br />

the line shape of the steady-state signal should be pure Lorentzian.<br />

The faster decay of the signal from polymer A indicates that most of<br />

the protons in the sample are in a broad line phase. The narrow line<br />

observed for polymer A in the derivative steady-state presentation is<br />

actually only derived from about 20~ of the protons in the polymer.<br />

In this paper, a pulse programmer is described which is useful in<br />

carrying out a variety of spin-echo measurements. The unit may be<br />

used with r.f. pulse apparatus discussed in papers by Schwartz ~,<br />

Buchta et al 3, Meiboom and Gill 4, and Blume 5, and has particular<br />

value when used with the integrating circuits described by Holcomb<br />

and Norberg 6, and Blume7 Before discussing the programmer, some of<br />

the terms used in the spin-echo technique will be introduced briefly.<br />

In Fig. 3, a 90 ° pulse is defined. The term 90 ° arises from the fact<br />

that after the moment M 0 has been established in the d.c. magnetic<br />

field direction, an H 1 field is applied for a time just long enough<br />

to rotate the moment through 90 ° , i.e., to a position along the Y<br />

axis. If the HI field is intense enough, the moment will reach the Y<br />

axis unattenuated and in this position will induce a signal in a pick-<br />

up coil which will decay at an exponential rate characterized by T 2.<br />

If T2 is large, however, i.e., if the natural width of the resonance<br />

is less than the homogeneity of the magnet over the sample, the decay<br />

of the signal following a 90 ° pulse is determined by the magnet in-<br />

homogeneity.<br />

In Fig. 4, the echo technique, originally developed by Hahn 8, is des-<br />

cribed which allows the full free precession decay to be monitored in<br />

the presence of an inhomogeneous field. The sequence described by<br />

the four illustrations is as follows: a 90 ° pulse rocks the three<br />

magnetic moments into the direction of the Y axis. After awhile the<br />

moments get out of phase due to the inhomogeneity of the magnetic<br />

field. A 180 ° pulse, twice the length of a 90 ° pulse, is then<br />

applied to the system which swings the dephased moments from the<br />

positive Y to the negative Y direction. Moments which were lagging<br />

in phase are now leading in phase and vice versa. In a time equal to<br />

the time between the 90 ° and 180 ° pulses, the moments will come back<br />

into phase and form an echo signal.<br />

In Fig. 5a, the complete sequence is shown with the peak amplitude<br />

of the echo signal for all positions of the 180 ° pulse indicated by<br />

the dotted line. In liquids, where the diffusion constant is quite<br />

-2-


large, the echo signal amplitude falls off much more rapidly than<br />

would be the case if the decay was purely determined by T 2. The<br />

equation derived by Carr and Purcell for the echo signal decay is<br />

given in the figure. Carr and Purcell 9 were able to show that by<br />

applying a large number of 180 ° pulses following the 90 ° pulse, the<br />

echo signal amplitude could be made to follow the real T 2 decay curve.<br />

A Carr-Purcell sequence is given in Fig. 5b.<br />

Spin-echo apparatus is particularly useful in providing an easy and<br />

quick method of determining T I. For the T 1 measurement, a 180 ° pulse<br />

is first applied which rotates the moment into the negative Z direc-<br />

tion as shown in Fig. 6. If the apparatus is correctly tuned, no free<br />

precession signal should be observed following this 180 ° pulse. After<br />

a time Z~., a 90 ° pulse is applied and a free precession signal is<br />

observed which in the figure we assume to be detected with a phase-<br />

sensitive detector. As the time ~between the 180 ° and 90 ° pulses is<br />

increased, the amplitude of the free precession signal is observed to<br />

go to zero and then increase in the positive direction. The time qT 0<br />

for which the free precession signal is zero is related to T 1 by the<br />

expression T 1 = i~44 ~0-<br />

In Fig. 7, an apparatus which might be used in the observation of<br />

spin-echo signals is described in block form. The apparatus consists<br />

of a pulse programmer which provides pulses for the 90 ° and 180 ° gates<br />

at the times desired. The 90 ° and 180 ° gates are univibrators or one-<br />

shots which can be varied to produce the correct 90 ° and 180 ° gate<br />

widths. The two gates from the univibrators are combined in an ampli-<br />

fier and are used to control an r.f. gate connecting the r.f. oscil-<br />

lator with the sample coil assembly. The signals following the r.f.<br />

pulses are amplified and observed with a wide-band oscilloscope which<br />

can be triggered at the desired times with pulses from the programmer.<br />

In Fig. 8, a detailed block diagram of a spin-echo pulse programmer<br />

is given which can be assembled from transistorized computer logic.<br />

The timing of all pulses in the unit is controlled by a i00 Kc.<br />

crystal oscillator which drives a 6-place counter. Any time interval<br />

from i0 ~seconds to i0 seconds in units of i0 pseconds may be selected<br />

with a 6-place preset giving rise to signal G" The selected time T<br />

is the basic timing unit of the pulse programmer. Another 6-place<br />

preset (i) is used to select a time interval less than T which deter-<br />

mines the position of the oscilloscope trigger. Signal~drives a<br />

flip-flop, output Qof which is used to drive a latching pulse cir-<br />

cuit which produces the 90 ° pulse. The latching circuit has a<br />

characteristic that it lets the first pulse of Qthrough but will<br />

not let any subsequent pulses through until it is reset with reset<br />

voltage B. Signal Qon the other side of the flip-flop is used to<br />

(* T. J. Calvert and R. S. Codrington: To be published)<br />

--3--


drive both a 4-place counter and a circuit producing the 180 ° pulses.<br />

The number of 180 ° pulses desired can be selected with the 4-place<br />

preset (3). This preset drives a flip-flop which shuts off the 180 °<br />

pulses until it is reset by reset B. The 4-place preset (2) is used<br />

to select the number of periods T after which the whole program<br />

sequence will repeat itself. A manual button and selector switch are<br />

provided so that the sequence will only repeat when the manual button<br />

is pushed. The 4-place preset (i) is used to select the number of<br />

the 90 ° or 180 ° pulse position with reference to which the scope<br />

trigger will be positioned. The switch showing 90 ° and 180 ° positions<br />

is used to select this pulse reference. A reversing switch is also<br />

provided so that the 90 ° and 180 ° gates may be interchanged. The gate<br />

widths are derived from univibrators which have both a coarse and fine<br />

control.<br />

In Fig. 9, the pulse and gate sequences at the various positions in<br />

the logic circuit are shown. For this particular sequence, the pro-<br />

grammer has been set to reset on every ten basic timing units T. A<br />

normal Carr-Purcell sequence has been selected with one 90 ° gate<br />

followed by three 180 ° gates° The scope trigger has been selected to<br />

be in advance of the thi<strong>rd</strong> 90 ° pulse which actually does not occur but<br />

is indicated by the dotted line. The letters preceding each sequence<br />

refer to the positions in the block diagram of Fig. 8 at which the<br />

respective voltages may be observed.<br />

In Fig. 10, an actual oscilloscope display of a Carr-Purcell sequence<br />

is shown. In Fig. ii, the same sequence is presented except that the<br />

scope sweep amplitude has been set to display a single echo width.<br />

The scope trigger advance was referenced to the 90 ° pulse position<br />

and a value selected in terms of the clock period which would allow<br />

the complete echo to be displayed. Succeeding echoes in the Carr-<br />

Purcell sequence were then selected with the 4-place preset (i) up<br />

to a maximum of the number selected on 4-place preset (3) in the<br />

block diagram of Fig. 8.<br />

In addition to its use in displaying details of the echo signals,<br />

the flexibility of a programmer in providing a pulse at any position<br />

in the spin-echo sequence makes it very useful when used in conjunc-<br />

tion with integrating circuits for the observation of weak signals.<br />

-4-


References<br />

I. F. Bloch, Phys. Rev. 7_~0, 460 (1946).<br />

2. J. Schwartz, R.S.I. 2__88, 780 (Oct. 1957).<br />

3. J. C. Buchta, H. S. Gutowsky and D. E. Woessner, R.S.I. 2_99, 55,<br />

(Jan. 1958).<br />

4. S. Meiboom and D. Gill, R.S.I. 2_99, 688 (Aug. 1958).<br />

5. R. J. Blume, R.S.I. 3_22, 554 (May, 1961).<br />

6. D. F. Holcomb and R. E. Norberg, Phys. Rev. 9_~8, 1074 (1955).<br />

7. R. J. Blume, R.S.I. 3_~2, 1016 (Sept. 1961).<br />

8. E. L. Hahn, Phys. Rev. 8_~0, 580 (1950).<br />

9. H. Y. Carr and E. M. Purcell, Phys. Rev. 9_~4, 630 (1954).<br />

-5-


MAGNETIC RESONANCE TIMES<br />

OF RELAXATION EFFECTS.<br />

Spin- Letiice Time T~<br />

Signal<br />

O T o T Ime<br />

Sample Is placed In the Ha field<br />

at time t • O<br />

Spin- Spin Time T2<br />

Signal ~ ,<br />

O T 2 Time ---.-<br />

The R.F. field Is turned off<br />

time t • O<br />

Fiqure 1 - Steady-State Observations of T 1 and T 2<br />

Effects<br />

"S<br />

,'//<br />

J I I I<br />

.ioe<br />

I<br />

at<br />

M I Q m ~ •<br />

\//<br />

.7-"<br />

I I ! I<br />

THE 90 ° PULSE<br />

FigurQ 2 - Comparison of the Steady-SLate and Free Prec~aaion Signals<br />

Fro~ Two Polyurethanes<br />

i<br />

|<br />

[]<br />

w<br />

90 ° PuIN<br />

Fiqure 3 - The Free Precession Signal FolloWing a 90 ° Pulse<br />

IN ~LLlUCOMOS<br />

Tlml


THE SPIN-ECHO SEQU<strong>ENC</strong>F<br />

3.<br />

M~<br />

il<br />

Y<br />

/ \\<br />

0 1 2<br />

90 ° Pulse<br />

180 =' Pulse Echo<br />

Figure 4 - Simplified Illustration of the Echo Sequence<br />

MEASUREMENT<br />

SINGLE<br />

~0 °<br />

i'---to<br />

ECHO SEQU<strong>ENC</strong>E<br />

(2) CARR- PURCELL SEQU<strong>ENC</strong>E<br />

180a 2 ~._ 5~<br />

• --t ¢: S e.x -f t T "tH U.& /<br />

2<br />

4.<br />

~-'=: ~ "- o Pl-%- I"-T'fnT " f<br />

1- t s Time<br />

Echo<br />

90 ° 180 ° 180 ° 180 °<br />

_ I_ 2"E-I-~ Time<br />

Figure 5 - Single and Multiple Echo Sequences Used in the<br />

Measurement of T 2<br />

Y<br />

0<br />

X


180 ° oJO°<br />

Po .s'~.--<br />

Ne9.~ /<br />

~ '~o<br />

MEASUREMENT<br />

-------M<br />

T,<br />

.I<br />

Null<br />

I'l<br />

It<br />

I t<br />

! !<br />

11<br />

| I ~<br />

i<br />

I , i<br />

!<br />

, Time.<br />

I<br />

I<br />

I<br />

I !<br />

I<br />

!<br />

I<br />

I .<br />

Figure 6 - The. Spin-Echo Method of Measuring T I<br />

SPIN-ECHO APPARATUS<br />

I RK OSCILLATOR<br />

4<br />

AMPLIFIER<br />

90" GATE<br />

180" GATE<br />

PULSE<br />

GENERATOR<br />

Figure 7 - A Block Diagram of a Spin-Echo Apparatus<br />

AMPLIFIER<br />

~OSCILLOSCOPE l


,~P//,/ EcHo Lo61c<br />

ioo Kcl<br />

'Osc. I<br />

t<br />

i l ~ .R[IiCT A<br />

~ J liSZT B ~ o<br />

@<br />

®<br />

©<br />

®<br />

9O'<br />

I<br />

,J<br />

m<br />

~--- i l~ ~,-,~>. o-~+.~<br />

= ~,___Js/<br />

' i<br />

T B<br />

o<br />

J I<br />

--'- ~1 ~"-DC~ ~''~"<br />

Figure 8 - A Pulse and Gate Generator Useful for Spin-Echo Measurements<br />

0 I 7.<br />

J<br />

® I<br />

® I<br />

® ®111 FI<br />

T.'.,c (Y*,~ 7"<br />

3 • S 6 7 8 9<br />

I I 1 1 1 1 1 1 1<br />

I I<br />

H H<br />

I<br />

I<br />

L_f<br />

Rose4 8<br />

i<br />

I<br />

0 1 Z 3<br />

I I I !<br />

Figure 9 - voltage Pulses and Gates Observed at the Indicated<br />

Points in Figure 8<br />

i<br />

I L<br />

I<br />

I<br />

n H


Figure i0 - An oscilloscope Presentation of the Carr-Purcell Sequence<br />

Figure ii - A Multiple E:[posure of the Sequence in Figure ~O with<br />

Only the Echo Signals Displayed


Thi<strong>rd</strong> <strong>Conference</strong> on Experimental Aspects of NMR Spectroscopy<br />

Mellon Institute, Pittsburgh, Pa.<br />

Program of 7th Session: Broadline N-M-R Instrumentation & Operation<br />

Satu<strong>rd</strong>ay, March 3, <strong>1962</strong>,-~90-P.M.<br />

i¢!<br />

(i) "Introductory Remarks" (5 Minutes)<br />

Chas. W. Wilson, III<br />

Union Carbide Technical Center, So. Charleston, W. Va.<br />

(2) "Knight Shifts Observed at Low Temperatures in Crystalline Organic<br />

Free Radicals" (i0 Minutes)<br />

M. E.Anderson<br />

Physics Dept., North Texas State Univ., Denton, Texas<br />

(3) "Amplitude Calibration and Sample Preparation Work on Metals"<br />

(i0 Minutes)<br />

T. J. Rowland<br />

Dept. of Metallurgy, Univ. of Illinois, Urbana, Ill.<br />

(4) "Use of Varian V-3521 Integrator Unit with Broadline NMR" (i0 Minutes)<br />

Harmon Brown<br />

Varian Associates, Palo Alto, Calif.<br />

(5) "A Simple R-F Phase Detector for NMR Spectrometers" (15 Minutes)<br />

T. J. Flautt<br />

Proctor & Gamble, Miami Valley Labs, Cincinnati, Ohio<br />

(6) "Spectrometer Calibration, Sample Preparation, Operational Techniques,<br />

and New Parameters Describing Mobility in Broadline Polymer NMR<br />

Spectroscopy" (30 Minutes)<br />

W. O. Statton<br />

Carothers Research Lab, DuPont Experimental Station,<br />

Wilmington, Delaware<br />

(7) "TWL Probe Insert Assembly Modifications for Varian V-4340 Variable<br />

Temperature Accessory" (i0 Minutes)<br />

R. H. Elsken<br />

Western Utilization Research & Development Division,<br />

Albany, California<br />

(8) "A Versatile Cryostat for Magnetic Susceptibility, Anisotropy, and<br />

Broadline NMR" (25 Minutes)<br />

L. N. Mulay<br />

Chemistry Dept.,Univ. of Cincinnati, Ohio<br />

(9) Discussion of all papers.


A SIMPLE RF PHASE DETECTOR FOR NMR SPECTROMETERS<br />

Abstract<br />

A phase detector system which can be easily adapted to bridge or<br />

crossed coil NMR spectrometers is described. Modifications to the NMR<br />

spectrometer include addition of a constant impedance attenuator for<br />

control ~ the probe excitation voltage, a leakage control system<br />

independent of probe balance, and a differential dc amplifier to cancel<br />

changes in the leakage from spurious modulation of the transmitter<br />

power.<br />

Copies of the circuits directly applicable for a V4310 transmitter/<br />

receiver unit are available at the address below.<br />

T. J. Flautt<br />

The Procter & Gamble Company<br />

Miami Valley Laboratories<br />

P. O. Box 39175<br />

Cincinnati 39, Ohio


o<br />

a<br />

~J<br />

~ L<br />

-- O<br />

IW a<br />

C~J<br />

a~<br />

N<br />

N<br />

0<br />

T ° •<br />

H<br />

N<br />

U<br />

t~<br />

.7<br />

Ld<br />

['q<br />

c~J<br />

a.<br />

0 c<br />

t~ qCt.<br />

._1<br />

o<br />

m<br />

,1-1<br />

.r4<br />

.I-4<br />

0<br />

~J


om<br />

e~<br />

E<br />

3<br />

O<br />

o~<br />

°~<br />

Q.<br />

E<br />

U-<br />

4- [<br />

~<br />

m<br />

m I I<br />

m<br />

II o<br />

Z - -<br />

uj t ~<br />

._<br />

t<br />

t<br />

~- i[_<br />

° -t: I<br />

9<br />

o<br />

9<br />

r 1<br />

t jl I<br />

I<br />

t_._ ~ ~ J<br />

"-G)<br />

E~<br />

.J<br />

_J<br />

~ m<br />

E~<br />

o _J<br />

g<br />

v~ g.<br />

g(<br />

m<br />

g<br />

> a:<br />

4~ H<br />

(.I<br />

,r4<br />

U<br />

0<br />

0J<br />

Ill


~<br />

iiilliillillil lit: i I I I I ; i illll II II1~ i J<br />

O~<br />

r~<br />

(..)7<br />

IXl U-I<br />

n," I--"<br />

n~<br />

W<br />

6-<br />

Or)<br />

I---<br />

~J~ilill II Iill i I I i i i it I1 I II i I II I<br />

nr<br />

2<br />

.<br />

n,-<br />

w<br />

ix_<br />

w<br />

b<br />

w<br />

m<br />

0<br />

, iJ|jii Jl b i JXbllbli~|l~ IJJJ jJ IJiiiiiJ ~ ~<br />

ii i inil,]l J I1111 I~*lkll '*HlJllJ~,<br />

J<br />

~w<br />

n~_l<br />

woL<br />

Li,J<br />

D<br />

Ci::<br />

0<br />

(,.)<br />

I.I.J<br />

n-<br />

W<br />

w<br />

w<br />

n~<br />

N<br />

,'-I<br />

llO<br />

4,1<br />

C)<br />

4,)<br />

.r-I<br />

II<br />

ill


L' ;~:', "~,',"-'~-, b~P~bV£.~e ~, .


i¢o )?t


"T~L PROBE INSERT ASSEMBLY MODIFICATIONS FOR VARIAN V-4340 VARIABLE<br />

TEMPERATURE ACCESSORY"<br />

R. H. Elsken<br />

Western Regional Research Laboratory, l_/ Albany, California<br />

ABSTRACT<br />

In our wide-line NMRwork, we need to obtain spectra of solids prepared<br />

in sealed containers. For convenience of handling, these sealed con-<br />

tainers should also be the NMR sample tubes.<br />

We have modified extensively the ~.KLprobe insert for the VarianModel<br />

V-4340 Variable Temperature NMR Probe Accessory to accept sealed samples<br />

and, in t~e process, have also increased the filling factor by approxi-<br />

mately h.<br />

In brief, the supplied combination dewar probe insert and sample holders<br />

were disca<strong>rd</strong>ed, and techniques suggested by S. Brownstein (Can. J. Chem.,<br />

B7, 1119, 1939) and Paul Shafer (Mellon NMR Letters, #30, April 1961)<br />

w--~re followed to obtain a compatible system. As shown in the attached<br />

illustration, a two-component dewar and coil insert replaces the Varian<br />

dewar probe insert, and a 9 x 30 mm shell vial replaces the Varian sam-<br />

ple holder. The sample tube assembly is designed to minimize vibration<br />

with high gas flow rates.<br />

In operation, tank nitrogen flows down between the walls of the coil<br />

insert and dewar insert, through holes in the lower section of the coil<br />

insert, up past the sample tube, and out the upper end of the coil insert<br />

tubing. We have used this system primarily for low temperature work.<br />

Average stability is + 0.5 ° C when tank nitrogen flows through a con-<br />

stant flow regulator and copper coil -- liquid nitrogen type heat ex-<br />

changer. Maximum flow rate is approximately 16 liters per minute for<br />

-195 ° C sample temperature.<br />

~/A laboratory of the Western Utilization Research and Development<br />

Division, Agric itural Research Service, U. S. Department of Agriculture.<br />

Reference to a company or product by name does not imply approval or recam-<br />

mendation of the product by the Department of Agriculture to the exclusion<br />

of others which may also be suitable.


F<br />

Z- 3 MM TUBE<br />

,.,, PROJECTS THRU<br />

,: ~!<br />

HOUSING<br />

' '~;":~~HOLD DOW-'~-~-N<br />

JMODIFIEO<br />

TWL VARIABLE TEMPERATURE<br />

" : 2 ~ ' f f<br />

, :,~.~ ~,RIAN_/<br />

;..~,~:~.. DEWAR INSERT<br />

,:~,:~,,;:,'~ :" ~MATCHING CAP<br />

_J ASSEMBLY~<br />

TC LEADS<br />

ADAPTER RING<br />

.3 MM O.[).~<br />

GLASS TUBING INSERT HOLDER<br />

(TEFLON)"<br />

~[ CORK SEAI ~<br />

Ox30 MM<br />

SHELL VIAL<br />

q<br />

GLASS ROD<br />

ION SHELL VIAL<br />

:OIL INSERT<br />

TC LEADS<br />

SNUG FIT ON<br />

3 MM TUBING|<br />

PROBE ADAPTER<br />

HOUSING<br />

NITROGEN<br />

m m~m 90<br />

)EWAR INSERT<br />

A<br />

EXIT NITROGEN<br />

i COIL INSERT 121) mm<br />

DETAILS<br />

I '<br />

TEFLON BNC<br />

SPACER CONNECTOR<br />

t<br />

II mm<br />

Iq mm<br />

BOTTOM<br />

INSERT SEAL<br />

(TEFLON) "'"~ ~:~t-~ mm<br />

~ UG FIT ON 'LL___:J--v-<br />

C01L INSERT


Thi<strong>rd</strong> Annual <strong>Conference</strong> on the Experimental Aspects of N-~-R<br />

Spectroscopy Session on Broadline N-M-R Operation and<br />

Instrum6n ration<br />

L. N. Mulay<br />

Magnetochemistry Laboratory, Department of Chemistry<br />

University of Cincinnati, Cincinnati 21, Ohio<br />

Abstract of Paper<br />

A Versatile Cryostat for Magnetic Susceptibility, Anisotr~py<br />

Broad Line N.M.R.<br />

A versatile cryostat for magnetic susceptibility, anistropy<br />

and Broad-line N.M.R. work has been constructed. It utilises<br />

the Dewar vessels with ground-joints at the lower stem as described<br />

previously by the author (Rev.Sci. Instrum. 28, 279,1957). The<br />

principle used for maintaining a given temperature is different<br />

from that described in this paper. The volume enclosing the<br />

sample is heated electrically with a non-inductive coil. This<br />

is surrounded by liquid nitrogen through appropriate glass-<br />

wool insulation. The particular design permits uniform tempera-<br />

tures over as large a distance as 15 cm. which is particularly<br />

useful for the Gouy technique, which uses long sample tubes. It<br />

may be noted that the older technique of simultaneous heating<br />

and cooling of a metal block, surrounding thc sample produces<br />

appreciable heat gradient over such a long distance.<br />

Using liquid nitrogen, temperatures between -196 ° to 25°0<br />

(Room Temperature) are easily obtained, with a minimum loss at<br />

the high temperatures. However, for economy in the use of liquid<br />

nitrogen above -80°0 one may use dry-ice acetone. (This interferes<br />

with proton magnetic resonance studies. Hence, in this case one<br />

may use carbon-tetrachloride and dry-ice mixture for obtaining<br />

temperatures well below room temperature.) With no coolant,<br />

temperatures as high as 250°C may be obtained easily. In this<br />

range no heat is allowed to leak to the pole faces of the magnet,<br />

which remain protected at+all times. It has been possible to maintain<br />

temperatures within-I °c without any special regulating<br />

devices However, by u<br />

sing ele<br />

-~<br />

ironic<br />

.<br />

circuts,<br />

A<br />

it<br />

of<br />

is<br />

advantaged<br />

possible<br />

of<br />

to maintain temperatures within O.I°C number<br />

this cryostat will be discussed. The information is scheduled to<br />

appear shortly in the literature.


A.<br />

B.<br />

GS : jmw<br />

2127162<br />

T.C.O.E.A. 0. N.M.R.S.<br />

8th Session: March 3, <strong>1962</strong>, 2:00 P.M.<br />

Catalog of NMR Spectral Data<br />

1. G. Slomp: IBM Coding of Shift Data (5 min. ).<br />

2. LeRoy Johnson: The Varian Shift Catalog (20 min. ).<br />

3. Ernst Lustig: Proposal for an Indexed Timely NMR Bibliography<br />

(5 min. ). Discussion of Proposal (10 min. ).<br />

Spectral Analysis<br />

1. Aksel Bothner-By: Introduction and Discussion of Various<br />

Computer Techniques (35 min. ).<br />

2. Ernst Lustig: Comments on Swalens 8-Spin Program for IBM-7090<br />

(5 min. ).<br />

3. Dan Elleman: Comments on Their Results and on the Use of Spin<br />

Decoupler to Determine Signs of Coupling Constants (15 min. ).<br />

4. J. Baldeschwieler: Comments on Their Program, Analysis of Double-<br />

Resonance Spectra~ Higher Spins and Larger Shifts (15 min. ).<br />

5. Other Comments and Discussion (i0 rain. ).


_ _ . y~...-.'.:<br />

NUMBER I NUMBER<br />

ioo o0,D',o~oo o oooooo oooooo oo~ O000OO00000000<br />

!11111111111 II0"11011~11 I1<br />

! 2222J222~ 2222~". 22D': 22222222<br />

13333133333333333333333333<br />

l 4~' 441444444444444(]'.4444444<br />

~5s55ts555550,5~s0 55550"5555<br />

;0".666166666666 G 6666(]' 666666<br />

'777717777777[]' 777~" 77777777<br />

~ 88[[ 818888888888~" 888D" 88680'<br />

J 999919[]' 99~' 990" 9999999[]" 9990"<br />

2 3 4 516 7 O 3 tO tl [21314151611 1019 2~ 2122 23 24 25<br />

IOM 027626<br />

,01701~ 4!<br />

NMR<br />

MU~BER N~<br />

~oorio<br />

123456<br />

I~IIII<br />

2222112<br />

333333<br />

444444<br />

55555<br />

6[;6666<br />

77J777<br />

8888110<br />

9999~9<br />

1 ~ ~ 4 ~ ¢<br />

W~ ~CIUE~"~CY" DATA<br />

uv,os ;B~ .,.Is<br />

1111111111111<br />

!2222222222222<br />

33333333333333<br />

14444444444444<br />

55555555555555<br />

$6666666666666<br />

77777777"777777<br />

98888888888888<br />

~9999999999999<br />

r~2~ 3t ~34~3637~40<br />

oooonoo oooooooooooooooo<br />

15 t6 II 19 20 21 22 73 24 ~ ~ ~r'/ ~ 79 30 3~ ~L1 34 ~L5 "t~ ]7 'uz<br />

II1~1 Illl lJ]!11111111111 i<br />

2222['l~2222]]J] 22222222222212<br />

333333~3333333333333333313<br />

4444444.q44444444~444444414<br />

5555~]f25555~5555555555555~5<br />

so~<br />

o<br />

~n<br />

m ~1~1<br />

011 O--'L~o00000000<br />

ii<br />

111111111111<br />

22 ]21222222222<br />

33 331333333333<br />

44 441444444444<br />

55 551555555555<br />

66 661666666666<br />

77 771777777777<br />

88 001888888888<br />

99 99]999999999<br />

42 4: M 45]46 47 48 43 ~ ~1 ~ ~<br />

666666666661"16666[1666666616 66666666666666666666666666666666666666666<br />

777771177770'777777777777717<br />

80 e 61]n 80 8[I 0116 8 8 8 8 6 6 8 8 6 s 816 88888886888888888888888888888888888888888<br />

99999999991] 999999999999919<br />

I.<br />

~ I ~: 13 IJ 19 ~ 21 ~ ;~ 2Z 25 25 .~12~ 2.3 7~ 31 .~2 ~ ~ ~ "zS ~7 2Zl23 4,.1 41<br />

,:H~,<br />

I<br />

000000000000000000000000000000000000000000<br />

~ 404l 42 43 ~ 4~ 4fi 41 48 49 ~ 5| ~ ~ ~ ~ ~ 57 ~ ~ ~§1 ~ Q ~ ~ ~ 61 ~ U ~ 11 ~ 1J 14 75 ~ 77 18 ~ ~<br />

111111111111111111111111111111111111111111<br />

22222222222222222222222222222222222222222<br />

33333333333333333333333333333333333333333<br />

44444444444444444444444444444444444444444<br />

55555555555555555555555555555555555555555<br />

777777777.77777777777777777777777777777777<br />

9999999999999999999999~999999999999999999


MAIN GROUPS<br />

FUNCTIONAL GROUPS<br />

1. R---CH 3 a. "--CH 3<br />

2. R--CH2--R' b. ---CH2--<br />

I<br />

3. R--CH--R" c. ---CH--<br />

I I<br />

R' d. --C--<br />

4. R--CH=N--R' I<br />

5. R---CH=CHz<br />

6. H~C__C~ R'<br />

R I ~H<br />

e. --CI<br />

f, --F<br />

cJ. --Br<br />

h. --H<br />

H~ c C ~H<br />

7. = i. --I<br />

R ~ ~R'<br />

i- --c<br />

R~ ~H<br />

8. R~C'--C~H k. --C ~O<br />

9. R'~'C=cIR" I. --C=<br />

R I ~H I<br />

10. R--C~CH m. --N--<br />

11.<br />

110<br />

R---C~H<br />

n. --N~<br />

o. --O--or--> 0<br />

1 2. R~//O p. --OH<br />

~OH<br />

q. --O---C~ °<br />

13. R--OH<br />

14. Phenyl<br />

15. Pyridyl<br />

16. Furanyl<br />

r. --NOz<br />

S. --S~<br />

t. --C=C--<br />

17. Pyrryl u. ~ N<br />

18. Thiophenyl v. Phenyl<br />

19. Misc. aromatic w. Aromatic ring junction<br />

20. R'~NH<br />

x. Misc. aromatic<br />

R ~ y. Thiophenyl<br />

21. H on other atoms z. Misc. atom


I<br />

2<br />

301,302 !<br />

. . . . . . ;. ~. . . . . . . . . ; . + , , . . . . - t + + - * * ~ ÷-J *++~ . . . . . . *-+++ - "-;-$*' ' , . . . . . 1 1 + . + . , . F . . . . . . + - f - , - * . . . . . . t ....<br />

. . . . . . . . . . . . . . TT:i:-~T, "Ti .-~nTII~-~-TT. --7 T~ :. .... ~ i, IL +T-T:I -T-<br />

..... = = ...... = ...... =<br />

. . . . . . . . . . + . . . . . . . . . +. + + . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ ...... I1" "-+f ........ T-,Ji" " : I-L'.LLL~+E.]L_~_]_::-L _--.<br />

-~ .... 1 .................. +-tT+ITT 7''T+tTi t-+TTT ilL]_ - - _T. ;]:,. -L$- -r. :.$~t____iL:--.. -- --.<br />

:----L--Z--~--.~.+--$.LL --" .'LL.;L::+;;.++ ;-i;.--ii.'.+ ;U .... ' . . . . . . +.l-+.- ...................<br />

, , I , , , , i , , , , I . . . . , . . . . I . . . . i . . . . I , , , , J , , , L I L L * i . . . . I . . . . i , , , , I . . . . i . . . . I . . . . I . . . . i , , ,<br />

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 PPM<br />

301<br />

I - met hyl -4- (2-pyridyl) piperidine -<br />

CF~I-~eN20 ~ 4-corboxylic ocid methyl ester<br />

II (b)<br />

(f) [/.~C -- 0 M e<br />

~N"<br />

I<br />

(a) Me ~ss,~.~..,,s<br />

Sweep offset: ~,D_ ppm a ~ e J~6-4~_<br />

Freq. response: __Leps b__3..~_9 f J,5_4<br />

Sweep time: __5.0_0_ sec c ~.J_4__ g __.'7~..O]g~.<br />

Spec. amp: __1.2,5__ d 7.34 h<br />

i<br />

302<br />

• ,,,,===, Procoine<br />

C,~HmN202<br />

(f) (g)<br />

(b) (o)<br />

H/~.~H i01 (e) (c) / Hz--CH~,<br />

(d) HzN'-- ~ ~-- C-- O-- C H2--CH~-N \<br />

H~-~-~H CH2"-CH 3<br />

(f) (g) (b) (o)<br />

3 ~ ~11; N :,~ F ;11 &<br />

Sweep offset:~-- ppm a ~ e ~ 3 _ L<br />

Freq. response: _1__ cps b 2.G 2 f ~6..6_5__<br />

Sweep time: 2 5 0 _ sec c ?..8.2___ cj 7. 8 3<br />

Spec. amp: _ _ 1 6 _ _ d 4.13 h _ _<br />

I ' ~ I T ? I I T I f I I I I I ' ' ' ' ' ' ' ' ' I<br />

• ,6o; "-TT ".:, : ~'-4&o - ~ 3oo . . . . . . . zoo . . . . . . oo . . . . . 9cPs I<br />

2~) '* . . . . + . . . . . . . . . * . . . . . . . - *'~- . . . . . . . . . . . . # I<br />

leo + • . . . . • + . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

..... E-', _ - ..... T ........................................................... ['T]<br />

................... .'---~ : _--7. T -T-T-T- -.~. .... : - -7- T -777_-7 ..... T --T-- T ]- . .....<br />

5 7L]2i!+[:i{ +21]] : ! :[ 2[ ]2:i:2ii712[i i 2211 iT2 i:? 2172[ i ..........<br />

. . . . . __ . . . . . .;L . ..... ":-i:;.:i -~ +-2-:2.2.T .... T " : TTI- " 2T-.?-<br />

8,0 7.0 6.0 S.0 4~ 3.0 2.0 hO 0 PPM<br />

I


IOOO<br />

5OO<br />

ZSO<br />

303, 304<br />

zOO<br />

50<br />

400<br />

, , I , , , , I , , , , t . , , ,, , ~ , ~, , , I<br />

8.0 7.0 6.0 5.0<br />

303<br />

Ci4H,BrO<br />

p-phenyl phenocetyl bromide<br />

(b) (c)<br />

H H<br />

H H<br />

(c) (c)<br />

C. (el<br />

\CH 2-<br />

S',veep offset:~ppm a~.4_5__ e _ _ __<br />

Freq. response:_2__cps b__7_._7__0__ I _ _ _<br />

Sweep time: __250_ sec c_8.0_7 _ _ g _ _ _<br />

Spec. amp: __ 16 _ d _ _ h_ _<br />

I000<br />

, . . i . . . . i , . . r I . . . . i , . t . . . . f . . . . 1 •<br />

Br<br />

300 200 I0O o cPS<br />

4.0 3,0 2.0 1.0 0 PPM<br />

304<br />

Ci4HliNO 5<br />

Flindersomine<br />

(e) (o)<br />

{b) H OMe (d)<br />

o" "y "N" "o" "H<br />

(c) HzC -- 0 (f)<br />

S. c_., .~'-_-~t __ --_ _ ~ ~.28Dr_4.~0 . 7.2 8__<br />

F, ] ~ !~tnse:_2_ r,:~ ~.28~L4._4.0 _7.62<br />

S. ':ep t,me: __ 250_ ~,,,: - _6.08 _<br />

Sp~c ~ m p : 32 .J~,_Q_5~ , l<br />

500 400 300 200 I O0 0 CPS<br />

25O<br />

I00<br />

50<br />

8.0 7.0 6.0 5.0 4.0 30 Z,O 1.0 !<br />

PPM


0<br />

=,<br />

o<br />

0<br />

v<br />

C-<br />

-;.~<br />

= " .5 ~ • ~.o<br />

-r3 ~J ~J<br />

-~' - ~ " ~o<br />

• °.1~ o<br />

.~ .~ .~ '~,<br />

Jg~<br />

- _ 9 ~<br />

,- # _ ~ ~<br />

- .:~.~<br />

: "~ ~ . ~<br />

N e =<br />

_- ~ - ~.g<br />

=~ -: "_'Z 3 3<br />

.<br />

0 ~ ~<br />

o<br />

G"-~<br />

CM<br />

o .~ o ~<br />

. . . .<br />

= "~ :" .'3 -o"<br />

~:3-~ ~.<br />

=°?~:~<br />

~,<br />

:~25<br />

=<br />

• o<br />

3<br />

=: = 5<br />

0 =<br />

• ,..,<br />

L,<br />

o<br />

.-2,<br />

o<br />

~.~<br />

-=<br />

d ~<br />

= ~ ~ ~ .~-~_~ o~= ~_-=--<br />

- ~ . . ~ . . ~o ~ _~<br />

-~ ~ ~--~o= ~ = ~<br />

~-: - ~ o=: : --~ o - "<br />

_=<br />

- :, ~J ,--I =<br />

o


_<br />

o<br />

.,--:.<br />

,o<br />

..3<br />

- o<br />

,,3 ,~ --.j<br />

.~ ~ o~ ~ o ?~ ~_- ~ ~ -<br />

--~. c-~ ~ . :~ ~ ~ o o o-~ ~'-°~.~-~-,o ~ -~=<br />

.~.~ ~ - ~ ~ o L- -~ o o ~'~ ~ ~'~'-'~ ~ ' ~ ~ ~'~ I ~ ~<br />

.~ _ ~.. ~ :.> ~ ~ ..j "° ~ 0 ~'c-~-~ ~ :~-'- >' ~'~ ~ I ~ ..~<br />

g<br />

~ -~ ~ - °°<br />

o- -~- -~ ~.7.. "~'~'~: uL'~'-'=~ ~<br />

-... ~.~.~:" ,~=:~, , ~ __~.~~'C~':. = ,~ , ~, ,<br />

3


0<br />

14<br />

e',<br />

v<br />

L<br />

0<br />

~=,<br />

('V e'~ U..<br />

,~" ~=~ 0 ~<br />

-~ ~ ~. ~ o ~<br />

o<br />

i-I ~.T 0 ~0 c'~<br />

c'~l .,,0 ~ cO -,4" oo E-.<br />

~',,,oo', ~ * ~ o~ o ~ ~o • a- o ,,--~<br />

,-~ o 0 0 r: c= ~,-,-.~<br />

.,,=i : 0 ==<br />

xO ,_~<br />

"= .~'= d-~ - • • -N,.T<br />

< < .:: .= .:: < ~ = ~ = = = = : =~=o<br />

0<br />

-a =<br />

0 0 r--t ~<br />

r..<br />

..H<br />

=., :j<br />

o~ .~<br />

• ,~ 0 t.<br />

o o -~<br />

C<br />

e..' :J 0<br />

r-.4 ~ ~ ~ o .~ .<br />

,--i ~,.~ o 0<br />

A<br />

0<br />

P.<br />

0<br />

o<br />

cJ<br />

0 ~.<br />

c~O ",4" :==~0 OOc~ r..:. O0<br />

• -- - - ¢,3~ "<br />

o _- - m


ANALYSIS OF HIGH-.RESOLUTION<br />

NMR SPECTRA BY THE ITERATIVE METHODS<br />

by<br />

S. L. Manatt and D. D. Elleman<br />

Physical Sciences Division<br />

Jet Propulsion Laboratory<br />

California Institute of Technology<br />

Pasadena, California<br />

In this handout explicit expressions are given for the pertur-<br />

bation of the energies levels of the ABC and A2B 2 NMR systems as derived<br />

from the perturbation treatment of Hoffman 1~2 for the analysis of high-<br />

i. R. A. Hoffman and S. Gronowitz, Arkiv Kemi l_~, 45 (1999).<br />

2. R. A. Hoffman, J. Chem. Phys. 32, 1296 (1960).<br />

resolution spectra. From the energy levels it is possible to obtain the<br />

perturbation expressions for all the transitions.<br />

tonian into<br />

This perturbation method starts by decomposing the NMR-Hsmil-<br />

°<br />

H = H(°)+H (I)<br />

where = H ( tA)~ ~ 9 • • ? ~ ~) • • °• ) is the approximate<br />

Hamiltonian derived from a first guess of the NMR parameters. Ways of<br />

obtaining this first guess are well known. If the ~2~ and ~j of<br />

the guess are good approxlmations to the quantities ~£ and ~[~ then<br />

H (°) nearly equals H, and H (I) may be treated as a perturbation. By<br />

transposing H (O) we get:<br />

H - H (1).


First-o<strong>rd</strong>er perturbation theory gives for the energy level number ~ !,<br />

L ~ . Thus the first-o<strong>rd</strong>er corrections<br />

to the transitions energies are given by the differences of the form<br />

•<br />

Below the results for the ABC system~it is hoped~are given in<br />

sufficient detail to be understandable. The results for the ABC and<br />

A2B 2 systems were derived by us sometime ago, but they have not been<br />

exhaustively checked for algebraic errors. We present them here for what<br />

they are worth to the practicing NMR spectroscopist. We have also<br />

obtained the perturbation expressions for the transitions of the ABC and<br />

A2~ systems which are easily derivable from the energy level perturbations<br />

given here. We have similar results for the ABX, A2X2J ABC B and ABX 3<br />

systems. We hope to make this work generally available soon either as a<br />

JPL report or external publication.<br />

2


T~ A 5 C S yst:'~<br />

)<br />

State ~.~a q, s P1atr~ Eie~e~%<br />

A~c<br />

I0,.= oI, ~(~<br />

Z<br />

Z<br />

30,, _± +i _<br />

H**- ~.(-%+%+~,~) ~.(Y^~-T~O&,.)<br />

"Z ~<br />

2 o,,_ I~,(;<br />

Z<br />

"3&i<br />

-- (~~<br />

~. ..<br />

H7.4 = -~T~ -'Tac<br />

,~.- -~ ~-~ H~.~ = -k &~<br />

: |


]'h ~s iTh~s<br />

II<br />

is &cc~f,t~sh~_J. by ±~e ¢i~enwct~-<br />

Cii<br />

¢"¢z Co~, C~<br />

l..J<br />

C-~5 C~,o~, C.,,,_ 7


•<br />

a.


~! 0 V,,' W e._. ~ "&.Ve..<br />

H m _ H -H °<br />

e, am pl e camSiaee<br />

= c;~ (.~ I,-~°1~)~ - C43<br />

"~ o._ u o t o "<br />

X<br />

%*%-~- ~(%-r, io)-'- '~ ~°


C o l i e c~t , n ~ ' -t_ e ~- ,',-,'-, o ~ ~ In ~x ~, .,<br />

H Ol - ~ r-. z . z z<br />

-c.~]L%-<br />

~E- , z<br />

~F.C2 C z _7.<br />

(..<br />

{.,.<br />

E! "<br />

-tl~c<br />

~ --~ c~ ~ %., ~e + ..~c~ a %~ ~, ( ~qc,,).<br />

~"t, ~ •<br />

w~e)-c 4C _ ~ . .-z -z<br />

e_~; ~)re 5S i eva<br />

I<br />

Z<br />

• --- j5


C-" -"~ ~ ~ ." - ~e ~-~ -'~ ~3 "-~ ~ ~- •<br />

~ ~, .~-4- .,. '~ ÷ .~, I ~ % .% +<br />

'~ 4- --t- .j .._, ~ ~ ~,,t: .~ ~'~ R ,4:. :~ 9<br />

..~ ~ I.~ < .~ .~ ~ ,< ---, r-:. :~ < ~" ~ "-:', ,~<br />

.2 -4- "=. ."' ,,3 "J- • ~ •, ~ ~"" .~ ~-<br />

~' ,.0 '~ t~


S z<br />

IS I<br />

'ZS~<br />

ISo<br />

"35o<br />

clS~<br />

IS<br />

-'I<br />

2~_i<br />

It~ I<br />

I~. o<br />

I& -I<br />

?--o,, -I<br />

N :<br />

T^~+~-^~<br />

AA~<br />

o~A o(o{<br />

~ ~-~ ¢~-~,~I<br />

/"h~<br />

, . ~(~,~)<br />

I<br />

AT. Bz<br />

_ l H,,- -~I~<br />

14 .z~ = - £i ~<br />

H ---cu-<br />

N~- -~<br />

14-I~ = 0<br />

H -- i<br />

qc I -- --~t~<br />

,. --iN<br />

Ii--<br />

H~= i~,-~ ~,~M<br />

bl ~,E = 0<br />

I<br />

~N<br />

M-:r,A-~ ~A_~o =<br />

_i<br />

H¢-I=--Iw


t4,t<br />

l'i' Z. z . I"lg,.-j<br />

I'1~,. t kt~,s-H,s.. ~. i4~<br />

1~7'fl- H"7~ H-,-.//= H-77 H<br />

II Hi~.<br />

all2. I ~1"~.2 ./.<br />

GT~ C,-/~. 7L, C.7 7<br />

mhe~e ~e $~e<br />

"He¢~j4~<br />

cq~ C~q<br />

,(-:-; y ~;~ e m ~ e_t-. :<br />

I-lot< ~<br />

~1 i('l~i, z<br />

~...Z i('i~ 2.. 2<br />

~f_ %,


I !<br />

(t ~ He°If = .-~<br />

~ The A z~3 z S'×st.e.~<br />

i " "7- "7. •<br />

I~% i,~'l ~%) --_-~:,4Cc,~.~)~ ~ + c,.,c....c._c _, ~<br />

• C%,t<br />

C~i ~) I'~%') = - ( clcc~ ) au, +[cu% + c:.~q. ~-k(c~.+c~_)]a~, +<br />

[C~4.c~. ~ i- %.~Cc. C c~c~...~ ) a~ - c~. 7- a<br />

(,~;i .~'I,~) = -(~ _c?,a~ ~ ~[c~c.~q~q


THIRD CO~."FER<strong>ENC</strong>E ON EXPERIMENTAL ASPECTS OF N.M.R. SPECTROSCOPY<br />

Harry Agahigian<br />

Olin Mathieson<br />

275 Winchester Ave.<br />

New Haven, Conn.<br />

A. Louis Allred<br />

Northwestern University<br />

Evanston, Ill.<br />

Ernest W. Anderson<br />

Bell Telephone Labs.<br />

Murray Hill, N. J.<br />

Mary M. Anderson<br />

Hercules Powder Co.<br />

Research Center<br />

Wilmington, Del.<br />

WestonAnderson<br />

Varian Associates<br />

611 Hansen Way<br />

Palo Alto, Calif.<br />

F.A.L. Anet<br />

Dept. of Chemistry<br />

University of Ottawa<br />

Ottawa, Ontario<br />

Canada<br />

N. C. Am6elotti<br />

Dow Coming Corp.<br />

Midland, Michigan<br />

MELLON INSTITUTE, PITTSBURGH, Pennsylvania<br />

MARCH 2 and 3,<br />

ATTENDEES<br />

James Bacon<br />

McMaster University<br />

Hamilton, Ontario<br />

Canada<br />

A. W. Baker<br />

The Dow Chemical Co.<br />

Western Division<br />

Pittsburg, Calif.<br />

John D. Baldeschwieler<br />

Chemistry Dept.<br />

Harva<strong>rd</strong> University<br />

Cambridge , Mass.<br />

~upert D. Barefoot<br />

Naval Propellant Plant<br />

Indian Head, Md.<br />

Richa<strong>rd</strong> C. Barras<br />

Atlantic Refining Co.<br />

Philadelphia, Pa.<br />

William F. Beach<br />

Union Carbide Plastics Co.<br />

Bound Brook, N. J.<br />

Edwin D. Becker<br />

National Institute of Health<br />

Bethesda, Md.<br />

Paul Bender<br />

Univers~of Wisconsin<br />

Madison, Wisc.


Thomas E. Beukelman<br />

E. I. duPont De Nemours<br />

Wilmington, Del.<br />

T. Birchall<br />

McMaster University<br />

Hamilton, Ontario<br />

Canada<br />

Robert B. Bradley<br />

National Institute of Health<br />

Bethesda, Md.<br />

Edwa<strong>rd</strong> G. Bram____~e, Jr.<br />

Polychemical Dept.<br />

E. I. duPont de Nemours<br />

Wilmington, Del.<br />

z. Z. Bray<br />

Socony Mobil OilCo.<br />

Dallas, Texas<br />

Wallace S. Brey, Jr.<br />

University of Florida<br />

Galnesville, Fla.<br />

Harmon Brown_<br />

Varian Associates<br />

611 Hensen Way<br />

Palo Alto, Calif.<br />

G. L. Buc<br />

Fisher Scientific Co.<br />

711 Forbes Avenue<br />

Pittsburgh, Pa.<br />

Kenneth Bucher<br />

~ Wm. Ritchey<br />

Standa<strong>rd</strong> Oil Co. of Ohio<br />

Cleveland, Ohio<br />

John J. Burke<br />

Mellon Institute<br />

Pittsburgh, Pa.<br />

John W. Caftan, Jr.<br />

Pennsylvania State University<br />

~niversity Park, Pa.<br />

Donald G. Davis<br />

Carnegie !ns.Tech.<br />

Pittsburgh 13,Pa.<br />

Hung Yu Chen<br />

U. S. i. Chemicals<br />

Cincinnati 37, Ohio<br />

L. D. Colebrook<br />

Department of Chemistry<br />

University of Rochester<br />

Rochester, N ° Y.<br />

Charles M. Combs<br />

Eastman Kodak Co.<br />

847 Jaclyn Lane<br />

Webster, N. Y.<br />

Charles Constantin<br />

Texaco, Inc.<br />

P. O. Box 509<br />

Beacon, N. Y.<br />

James L. Dennis<br />

Marbon Chemic~ Div.<br />

Borg-Warner Corp..<br />

Washington, W. Va.<br />

F. E. Dickson<br />

Mellon Institute<br />

Pittsburgh, Pa.<br />

Dean C. Douglass<br />

Bell Telephone Labs.<br />

Murray Bill, NI J.<br />

Gerald Dudek<br />

Dept. of Chemistry<br />

Harva<strong>rd</strong> University<br />

Cambridge, Mass.<br />

Ralph R. Eckstein<br />

Monsanto Research Corp.<br />

Mound Laboratory<br />

Miamisburg, Ohio<br />

Daniel D. Elleman<br />

Jet Propulsion Lab.<br />

Calif. Institute of Tech.<br />

Pasadena, Calif.


R. H. Elsken<br />

U.S. Dept. of Agriculture<br />

Albany, Calif.<br />

Raymond Ettinger<br />

Rohm & Haas Co.<br />

Huntsville, Ala.<br />

Burton P. Fabricand<br />

Columbia University<br />

Hudson Labs.<br />

Dobbs Ferry, New York<br />

Harry D. Fair, Jr.<br />

Picatinny Arsenal<br />

Dover, N. J.<br />

Raymond C. Ferguson<br />

E. I. duPont Exper. Station<br />

Wilmington, Del.<br />

George Filipovich<br />

Minnesota Mining & Mfg. Co.<br />

St. Paul, Minn.<br />

Harold Finegold<br />

Nat'l Bureau of Standa<strong>rd</strong>s<br />

Washington 25, D. C.<br />

Pat. W. Flanagan<br />

Continental Oil Co.<br />

Ponca City, Oklahoma<br />

T. J. Flautt<br />

Procter & Gamble<br />

Miami Valley Labs.<br />

Cincinnati 39, Ohio<br />

G. Fraenkel<br />

Ohio State University<br />

88 W. 18th St.<br />

Columbus, Ohio<br />

Anthony Fratiello<br />

Bell Telephone Labs.<br />

Murray Hill, N. J.<br />

R. A. Friedel<br />

U. S. Bureau of Mines<br />

Pittsburgh 13, Pa.<br />

John Gergel~<br />

Retina Foundation<br />

Mass. General Hospital<br />

Boston, Mass.<br />

David M. Grant<br />

University of Utah<br />

Salt Lake City, Utah<br />

Robert L. Griffith<br />

Eastman Kodak Co.<br />

Rochester, N. Y.<br />

Herbert Grossman<br />

Sohio Research<br />

4440 Warrensville Cntr. Rd.<br />

Warrensville Heights, Ohio<br />

Henry Gruen<br />

U.S. Bureau of Mines<br />

~800 Forbes Avenue<br />

Pittsburgh 13, Pa.<br />

Mack C. Harvey<br />

E1 Paso Natural Gas Prod. Co.<br />

E1 Paso, Texas<br />

W. J. Hawley<br />

University of Pennsylvania<br />

Philadelphia, Pa.<br />

Jerry Heeschen<br />

The Dow Chemical Co.<br />

Midland, Michigan_<br />

Maurice A. Henry<br />

Pennsylvania State University<br />

Whitmore Lab.<br />

University Park, Pa.<br />

Leslie A. Heredy<br />

Carnegie Institute of Tech.<br />

Pittsburgh 13, Pa.<br />

John J. Hill<br />

Department of Physics<br />

St. Louis University<br />

St. Louis, Mo.


James C. Hindman<br />

Argonne National Lab.<br />

Argonne, illinois<br />

Robert Hirst<br />

University of Utah<br />

Salt Lake City 12, Utah<br />

Donald P..Hollis<br />

VarianAssociates<br />

611 Hansen Way<br />

Palo Alto, Calif.<br />

Daniel H~ndman<br />

American Viscose Corp.<br />

Marcus Hook, Pa.<br />

Francis L. Jackson<br />

Rohm & Haas Co.<br />

Philadelphia, Pa.<br />

Morton H. Jacobs<br />

Int'l Flavors & Fragrances<br />

Rose Lane<br />

Union Beach, N, J.<br />

L. F. Johnson<br />

Varian Associates<br />

611 Hansen Way<br />

Palo Alto, Calif.<br />

Robert C. Jones<br />

VarianAssociates<br />

611 Hansen Way<br />

Palo Alto, Calif.<br />

J. A. E. Kail<br />

Osmond Lab.<br />

Pennsylvania State Univ.<br />

University Park, Penna.<br />

R. W. King<br />

Iowa State University<br />

Ames, Iowa<br />

Harold Klapper<br />

Chemical Warfare Labs.<br />

Army Chemical Center, Md.<br />

Lawrency J. Kuhns<br />

Callery Chemical Co.<br />

Callery, Pa.<br />

R. U. Kurland<br />

Carnegie Institute of Tech.<br />

Pittsburgh 13, Pa.<br />

Paul W. Landis<br />

Eli Lilly & Co.<br />

Indianapolis 6, Indiana<br />

Paul C. Lauterbur<br />

Mellon institute<br />

Pittsburgh 13, Pa.<br />

Wallace C. Lawrence<br />

Chemstrand Research Center<br />

Durham, N. C.<br />

Nerms~ Li<br />

Duquesne University<br />

Pittsburgh 19, Penna.<br />

Wayne Lockhart<br />

VarianAssociates<br />

611 Hansen Way<br />

Palo Alto, Calif.<br />

Ernest Lustig<br />

Nat'l Bureau of Standa<strong>rd</strong>s<br />

Washihgton 25, D. C.<br />

J. ~.= LuValle<br />

Fairchild Camera & inst. Corp.<br />

500 Robbins Lane<br />

Syosset, N ~. Y.<br />

David W. McCall<br />

Bell Telephone Labs<br />

Murray Hill, N~ J.<br />

Neal L. McNiven<br />

Worcester Foundation<br />

Shrewsbury, Mass.<br />

Edmund R. Malinowski<br />

Stevens Institute of Tech.<br />

Dept. of Chemistry<br />

Hoboken, N~ J.


Dale ~.<br />

.all e~.~ _y Chemical Co<br />

Callery, Pa.<br />

Stanley L. Manatt<br />

Jet Propulsion L~o.<br />

Calif. institute of Tech.<br />

Pasadena, Calif.<br />

Nicha<strong>rd</strong> W. Mattoon<br />

Abbott Laboratories<br />

Physical Chemistry Dept.<br />

North Chicago, Ill.<br />

David G. Mehrtens<br />

E. i. duPont de Nemours & Co.<br />

Benger Lab.<br />

Waynesboro, Va.<br />

S. Meiboom<br />

Bell Telephone Labs.<br />

Murr_ay Hill, N? J.<br />

M. T. Melchior<br />

Esso Research & Devel.<br />

Linden, N. J.<br />

Pr~_uk W. Me!po!der<br />

Atlantic Refining Co.<br />

Philadelphia, Pa.<br />

james F. Miller<br />

Continental Can Co.<br />

7622 S. Racine Ave.<br />

Chicago 20, ill.<br />

George F. Mi!liman<br />

Carnegie institute of Tech.<br />

Pittsburgh i3, Pa.<br />

Daniel A. Montalvo<br />

Southwest Research Institute<br />

San Antonio 6, Texas<br />

john ~. Moran<br />

I___an Associates<br />

6]_1 H~nsen Way<br />

Palo A±~o, ''~ Calif.<br />

L. N. Mulay<br />

Univ. of Cincinnati<br />

Cincinnati 21, Ohio<br />

Cecile Naar-Colin<br />

Olin Mathieson<br />

New Haven 4, Conn.<br />

Maria Teresa Neglia<br />

American Cyanamid Co.<br />

Stamfo<strong>rd</strong>, Conn.<br />

Forrest Nelson<br />

VarianAssociates<br />

611 Hansen Way<br />

PaloAlto, Calif.<br />

Peter H. i'liklaus<br />

S~,~OZ, S,~it zerland<br />

Thomas F. Pag___~e, Jr.<br />

Battelle Memorial Institute<br />

505 King Ave.<br />

Columbus, Ohio<br />

H. W. Patton<br />

Tennessee Eastman Co.<br />

Kingsport, Te~m.<br />

Edwa<strong>rd</strong> O. Paul<br />

University ofb'tah<br />

Salt Lake ~t" ~. y 2, Utah<br />

Alexander Penchuk<br />

Hs-~va<strong>rd</strong> Medical School<br />

Dept. of Pharmacolo~<br />

Boston, Mass.<br />

J. A. Pople<br />

Carnegie institute of Tech.<br />

Pittsburgh 13, Pa.<br />

Elton Price<br />

%~itemore Laboratory<br />

Pennsylvania State University<br />

University o~ .... , Penna.<br />

Herbert L. Retcofsky<br />

U. S. Bureau of Mines<br />

hSOO Forbes Avenue<br />

Pittsburgh l~, Pa.


John G. Rickert<br />

Mellon institute<br />

Pittsburgh 15, Pa.<br />

Ti!im~nn A. Richter<br />

Picatinny Arsenal<br />

~c, ver, :~. --o j.<br />

Wi!!iam:M. Ritchey<br />

Standa<strong>rd</strong> Oil Co. of Ohio<br />

C!evei~nd ~o, -~ Ohio<br />

Mark Rycheck<br />

Mellon Institute<br />

Pittsburgh 13, Pa.<br />

David i. Schuster<br />

New iork UniversSty<br />

~ew ~ork , N. Y.<br />

Miles Schwartz<br />

Vari~n Associates<br />

611 H~nsen ~.iay<br />

Palo Alto, Calif.<br />

Paul R. Sharer<br />

Dartmouth College<br />

H~noverj !~. n.<br />

5. C. Shapiro<br />

5[elion institute<br />

Pittsburgh i5, Pa.<br />

A. G. Sharkey~ jr.<br />

U. S. ~ureau of Mines<br />

Pittsburzh 13, Pa.<br />

J? i,[. Shoo!ery<br />

Vari~_nAssociates<br />

611 H~nsen Way<br />

Pa!o Alto, Calif.<br />

Wilbur Simon<br />

Universal Oil Products Co.<br />

Des P!aines, iii.<br />

Hertha Skaia<br />

UniversaiD-fT Products Co.<br />

Des Plaines, Ill.<br />

George Slom_____2__D<br />

The Upjohn Co.<br />

Kalamazoo, Mich.<br />

W. O. Statton<br />

E. i. duPont de Nemours Co.<br />

Experimental Station<br />

Wilmington, De!.<br />

Burch B. Stewart<br />

Allied Chemical Corp.<br />

Morristc~m, N. J.<br />

J. B. Stothers<br />

Dept. of Chemistry<br />

University of Weste.~n Ontario<br />

London, Cntario<br />

Canada<br />

A! Svi_-mickas<br />

Argot_he Nat'i Lab.<br />

Argonne, !!i.<br />

A. Taurins<br />

McGili University<br />

Montreal, Canada<br />

G. Tiers<br />

Minnesota Mining & Kfg. Co.<br />

St. Paul 19, Mi~m..<br />

David M. Vea<br />

Varian Associates<br />

Springfield, N. J.<br />

G. D. Vickers<br />

Olin Mathieson<br />

New Haven, Conn.<br />

Martin~<br />

Rutgers University<br />

New Brunswick, N? J.<br />

J. C. Westfahi<br />

B. ?. Goodrich Research Center<br />

Brecksviiie, Ohio


Kermit W~etsel<br />

Tennessee Eastman Co.<br />

Kingsport, Tenn.<br />

Horace F. ~ite<br />

Research Dept.<br />

Union Carbide Chem. Co.<br />

So. Charleston, W. Va.<br />

T. K. Wiewiorowski<br />

Freeport Sulphur Co.<br />

Po~ Nickel, La.<br />

R. E. Wiifong<br />

E. i. d~ont de Nemours & Co.<br />

Wilmington, De!.<br />

Charles W. Wilson i!I<br />

Research & Development Dept.<br />

Union Carbide Chemical_Is Co.<br />

So. Charleston 3, W. Va.<br />

Nancy Wilson<br />

Carnegie institute of Tech.<br />

Pittsburgh !5, Pa.<br />

William B. Wise<br />

Carnegie institute of Tech.<br />

Department of Chemistry<br />

james C. Woodbrey<br />

Mons~nzo Chemical Co.<br />

Plastics Div.<br />

Springfield 2, Mass.<br />

Paul j. Yajko<br />

f'.M.R. Specialties<br />

505 ~!ngston Dr.<br />

Pittsburgh 55, Pa.<br />

JohnT. Yoder<br />

Monssmto Chemical Co.<br />

inorganic Research<br />

St. Louis 66, Mo.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!