07.12.2012 Views

th  - 1988 - 51st ENC Conference

th  - 1988 - 51st ENC Conference

th  - 1988 - 51st ENC Conference

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

29 <strong>th</strong> ���� - <strong>1988</strong> Rochester<br />

Chair: Stanley Opella<br />

Local Arrangements: Nick Zumbulyadis<br />

There was some concern about <strong>th</strong>e nor<strong>th</strong>ern location selected for<br />

<strong>th</strong>e 29<strong>th</strong> <strong>ENC</strong>. Fortunately, Rochester New York lived up to its<br />

reputation as <strong>th</strong>e Flower City by having unseasonably warm<br />

wea<strong>th</strong>er in April of <strong>1988</strong>. Notably, <strong>th</strong>is was <strong>th</strong>e first <strong>ENC</strong><br />

organized by Judi<strong>th</strong> Sjoberg and her Science Managers company,<br />

and <strong>th</strong>is relationship has had a profound effect on all subsequent<br />

<strong>ENC</strong>s by ensuring <strong>th</strong>at <strong>th</strong>e meeting arrangements are of <strong>th</strong>e same<br />

high quality as <strong>th</strong>e scientific presentations. Also, <strong>th</strong>is meeting led<br />

to <strong>th</strong>e <strong>ENC</strong> being included on <strong>th</strong>e New York Times list of key<br />

meetings on <strong>th</strong>e scientific speaker's circuit.<br />

Twenty years have passed since <strong>th</strong>e 29<strong>th</strong> <strong>ENC</strong>, and <strong>th</strong>is is <strong>th</strong>e first<br />

time <strong>th</strong>at I have looked at <strong>th</strong>e scientific program since <strong>th</strong>e meeting<br />

was held. I am struck by <strong>th</strong>e prescience of so many of <strong>th</strong>e presentations. There were entire sessions<br />

devoted to magic angle sample spinning, ordered biological systems, and dynamic nuclear<br />

polarization, in addition to <strong>th</strong>ose in <strong>th</strong>e more general areas of pulse sequence development,<br />

materials and biological imaging, and <strong>th</strong>ings <strong>th</strong>at now would be referred to as exotica.<br />

The magic angle sample spinning session introduced a number of advances <strong>th</strong>at have transformed<br />

<strong>th</strong>is field of research. It started wi<strong>th</strong> a talk on NMR strategies and high-speed MAS by Gary Maciel,<br />

which could be given today until you notice <strong>th</strong>at <strong>th</strong>e abstract mentions speeds “inching toward 30<br />

kHz.” The experimental NMR me<strong>th</strong>ods discussed in <strong>th</strong>e talks Measurements of two-dimensional<br />

NMR powder patterns in rotating solids (Takehiko Terao), 13 C- 15 N Rotational Echo Double<br />

Resonance (Jake Schaefer), and Rotational Resonance in solid state NMR (Bob Griffin) are still<br />

being refined and combined to provide <strong>th</strong>e pulse sequences applied in contemporary studies of<br />

polycrystalline proteins.<br />

In <strong>th</strong>e session on ordered biological systems, two of <strong>th</strong>e talks were particularly notable for where<br />

<strong>th</strong>ey have led. In <strong>th</strong>e talk Multinuclear experiments for <strong>th</strong>e determination of oligosaccharide<br />

structure in liquid crystal phases, Jim Prestegard described how orientational information could be<br />

obtained from weakly aligned biomolecules <strong>th</strong>rough measurements of what would become residual<br />

dipolar couplings, now an essential element of nearly all protein NMR studies in solution. And Tim<br />

Cross used his talk Dynamics of Gramicidin A transmembrane channel by solid state 15 N NMR to<br />

introduce <strong>th</strong>e interplay of structure and dynamics <strong>th</strong>at dominate current solid-state NMR studies of<br />

aligned membrane proteins.<br />

The Program for <strong>th</strong>e 29<strong>th</strong> <strong>ENC</strong> reflected <strong>th</strong>e input of <strong>th</strong>e NMR community and discussions and<br />

compromises among <strong>th</strong>e members of <strong>th</strong>e Executive Committee. At <strong>th</strong>e time of <strong>th</strong>e meeting, I<br />

<strong>th</strong>ought it went well, and <strong>th</strong>e participants I heard from were complimentary. I didn't reflect on <strong>th</strong>e<br />

quality of <strong>th</strong>e meeting during <strong>th</strong>e intervening twenty years. Now, my reaction is one of<br />

astonishment. The scientific presentations were so far ahead of <strong>th</strong>eir time, <strong>th</strong>at it took a while for<br />

<strong>th</strong>em to have <strong>th</strong>eir impact. The credit for <strong>th</strong>e success of <strong>th</strong>e 29<strong>th</strong> <strong>ENC</strong> belongs solely wi<strong>th</strong> <strong>th</strong>e<br />

practitioners of experimental NMR spectroscopy who showcased <strong>th</strong>eir ideas and results in<br />

Rochester.


. r<br />

<strong>ENC</strong>, I .<br />

29<strong>th</strong> Experimental Nuclear Magnetic Resonance Spectroscopy <strong>Conference</strong><br />

Rochester, New York, April 17-21, <strong>1988</strong><br />

<strong>Conference</strong> Office<br />

750 Audubon<br />

East Lansing, MI 48823<br />

(517) 332-3667<br />

Executive Committee<br />

Stanley J. Opella, Chair<br />

University of Pennsylvania<br />

Department of Chemistry<br />

Philadelphia, PA 19104<br />

(215) 898-6459<br />

A.N, Garroway, Chair-Elect<br />

Naval Research Laboratory<br />

Code 6120<br />

Washington, DC 30375<br />

(202) 757-2323<br />

N. Zumbulyadis, Local Arrangements<br />

Eastman Kodak Company<br />

Corporate Research Laboratories<br />

Rochester, NY 14650<br />

(716) 722-1409<br />

Edward O. Stejskal, Secretary<br />

Nor<strong>th</strong> Carolina State University<br />

Department of Chemistry<br />

Raleigh, NC 27695<br />

(919) 737-2998<br />

Mary W. Baum, Treasurer<br />

Princeton University<br />

Department of Chemistry<br />

Princeton, NJ 08544<br />

(609) 452-3892<br />

Lynne Batchelder<br />

Ad Bax<br />

Bernhard Bluemich<br />

Jo-Anne K. Bonesteel<br />

R. Andrew Byrd<br />

Paul W. Cope<br />

Colin Fyfe<br />

Myra Gordon<br />

Lynn Jelinski<br />

Gary E. Maciel<br />

Charles G. Wade<br />

Welcome to <strong>th</strong>e 29<strong>th</strong> <strong>ENC</strong>!<br />

It is a pleasure to welcome all participants to Rochester for <strong>th</strong>e 29<strong>th</strong><br />

<strong>ENC</strong>. Just as <strong>th</strong>e mon<strong>th</strong> of April invariably presages <strong>th</strong>e May bloom in<br />

Rochester, <strong>th</strong>e Flower City, <strong>th</strong>e fecund discussions at <strong>th</strong>e <strong>ENC</strong> always lead<br />

to new research in experimental NMR spectroscopy.<br />

The high quality and originality of <strong>th</strong>e abstracts for <strong>th</strong>e oral and poster<br />

presentations demonstrate <strong>th</strong>at <strong>th</strong>e <strong>ENC</strong> continues as <strong>th</strong>e premier forum for<br />

<strong>th</strong>e field of experimental NMR spectroscopy. These abstracts provide an<br />

instant snapshot of <strong>th</strong>is vigorous and dynamic field. The program is<br />

described in <strong>th</strong>is notebook wi<strong>th</strong> <strong>th</strong>e abstracts for <strong>th</strong>e oral presentations near<br />

<strong>th</strong>e schedule and <strong>th</strong>e poster abstracts in a separate section. All of <strong>th</strong>e talks will<br />

be given in <strong>th</strong>e Nor<strong>th</strong> Exhibition Hall. All posters should be set-up on<br />

Sunday in <strong>th</strong>e Lilac Ballroom of <strong>th</strong>e Convention Center and remain up<br />

<strong>th</strong>roughout <strong>th</strong>e meeting; <strong>th</strong>ey should be taken down after <strong>th</strong>e 5:30 pm closing<br />

of <strong>th</strong>e Wednesday afternoon poster session. The presenters of posters wi<strong>th</strong><br />

even numbered abstracts should be at <strong>th</strong>eir posters between 2:30 pm and<br />

5:30 pm on Monday and <strong>th</strong>e presenters wi<strong>th</strong> odd numbered abstracts between<br />

2:30 pm and 5:30 pm on Wednesday.<br />

The <strong>ENC</strong> also provides many opportunities to renew old friendships and<br />

to establish new ones. Please be sure to wear your registration badge during<br />

all scientific and social activities. There will be a Welcome Reception<br />

Sunday evening beginning at 7:00 pm in <strong>th</strong>e Convention Center Galleria.<br />

There are coffee breaks between morning sessions. Lunch will be served in<br />

<strong>th</strong>e Sou<strong>th</strong> Exhibition Hall. Consult <strong>th</strong>e enclosed restaurant guide for insight<br />

into <strong>th</strong>e local gourmet scene. All hospitality suites are located in <strong>th</strong>e<br />

Convention Center and Holiday Inn. They will close at 2:00 am in accord<br />

wi<strong>th</strong> local ordinances. The <strong>Conference</strong> Cocktail Party will be held between<br />

6:00 pm and 7:00 pm on Wednesday in <strong>th</strong>e Ballroom Foyer on <strong>th</strong>e second<br />

level of <strong>th</strong>e Rochester Plaza Hotel and is open to all participants.<br />

All comments and suggestions are welcome and will help A1 Garroway,<br />

Chair of <strong>th</strong>e 30<strong>th</strong> <strong>ENC</strong>, plan <strong>th</strong>e meeting for April 2-6, 1989 at <strong>th</strong>e Asilomar<br />

<strong>Conference</strong> Center in Pacific Grove, California.<br />

Please join me in participating in a successful 29<strong>th</strong> <strong>ENC</strong>,<br />

Chair, 29<strong>th</strong> <strong>ENC</strong>


PROGRAM: This conference program has divided<br />

lectures and posters into two sections. The abstracts<br />

of presentations appear in <strong>th</strong>e appropriate section. The<br />

au<strong>th</strong>or index is located in an additional section. The<br />

index references <strong>th</strong>e page number where <strong>th</strong>e abstract<br />

appears.<br />

Presentors of oral papers should arrive about 15<br />

minutes before <strong>th</strong>e session is scheduled to begin. If you<br />

are using slides, please give <strong>th</strong>em to <strong>th</strong>e projectionist<br />

before <strong>th</strong>e start of <strong>th</strong>e session.<br />

Posters have been numbered. If your poster is an even<br />

number, you must be present in <strong>th</strong>e poster session on<br />

Monday afternoon. If your poster is an odd number, you<br />

should be present at <strong>th</strong>e Wednesday session.<br />

Posters should be mounted on Sunday evening. All<br />

poster spaces have been numbered. Please be sure<br />

to mount your poster in <strong>th</strong>e space <strong>th</strong>at corresponds to<br />

your poster number in <strong>th</strong>e program.<br />

LOCATION OF SESSIONS: Oral sessions are in <strong>th</strong>e<br />

Nor<strong>th</strong> Exhibit Hall. Poster sessions are in <strong>th</strong>e Lilac<br />

Ballroom.<br />

EMPLOYMENT CENTER: The employment center will<br />

maintain a file of resumes. If you wish to register, please<br />

come to <strong>th</strong>e center on Monday morning. Notices of<br />

employment positions may be placed on <strong>th</strong>e bulletin<br />

board designated for <strong>th</strong>at purpose.<br />

REGULATIONS: The following regulations are in <strong>th</strong>e<br />

best interests of <strong>th</strong>e conference:<br />

. No smoking in any session, including <strong>th</strong>e poster<br />

sessions.<br />

. Registration badges must be worn to all con-<br />

ference activities, including hospitality suites, <strong>th</strong>e<br />

welcome reception, and <strong>th</strong>e Wednesday cocktail<br />

party.<br />

The 29<strong>th</strong> <strong>ENC</strong><br />

Rochester, New York<br />

April 17-21, <strong>1988</strong><br />

. Your cooperation is requested in closing hospitali-<br />

ty suites at 2:00 a.m. in compliance wi<strong>th</strong><br />

Rochester liquor laws.<br />

. The opening of hospitality suites should not<br />

conflict wi<strong>th</strong> conference sessions.<br />

HOSPITALITY SUITES: Hospitality suites are located<br />

in <strong>th</strong>e Holiday Inn, as well as <strong>th</strong>e Convention Center.<br />

The suites in <strong>th</strong>e Holiday Inn are on <strong>th</strong>e mezzanine level<br />

(same level as <strong>th</strong>e skywalk) and in parlors on <strong>th</strong>e upper<br />

floors.<br />

CONFER<strong>ENC</strong>E REFRESHMENTS: Coffee Breaks will<br />

be available on Monday, Tuesday, Wednesday and<br />

Thursday mornings in <strong>th</strong>e GaUeria of <strong>th</strong>e Convention<br />

Center at <strong>th</strong>e times indicated in <strong>th</strong>e program.<br />

There will also be refreshments served during <strong>th</strong>e poster<br />

sessions on Monday and Wednesday afternoons.<br />

LUNCH: A cafeteria-style lunch may be purchased in<br />

<strong>th</strong>e Sou<strong>th</strong> Exhibit Hall. Wi<strong>th</strong> <strong>th</strong>e number of people<br />

expected to use <strong>th</strong>is service, long lines at <strong>th</strong>e beginning<br />

are inevitable. However, <strong>th</strong>e crowd will be served as<br />

efficiently as possible. Please be patient.<br />

If you prefer to go out for lunch, a restaurant guide is<br />

located in <strong>th</strong>is program.<br />

NIAGARA FALLS EXCURSION: The Niagara Falls<br />

excursion buses will load at <strong>th</strong>e (~onvention center main<br />

entrance between 12:15 and 12:30 p.m. Lunch will be<br />

served on board <strong>th</strong>e buses. Non-U.S. citizens must bring<br />

a passport or appropriate papers for Canadian customs.<br />

The buses will return at approximately 6:30 p.m.<br />

COCKTAIL PARTY: The cocktail party hosted by<br />

Varian Associates will be in <strong>th</strong>e Rochester Plaza Hotel<br />

(across <strong>th</strong>e river). It will be in <strong>th</strong>e ballroom foyer, second<br />

level, between 6 and 7:00 p.m.<br />

2


The Executive Committee of <strong>th</strong>e 29<strong>th</strong> <strong>ENC</strong><br />

gratefully acknowledges <strong>th</strong>e financial support for<br />

<strong>th</strong>e conference from <strong>th</strong>e following organizations:<br />

Academic Press<br />

Aldrich Chemical<br />

Amplifier Research<br />

Bruker<br />

Cambridge Isotope Laboratories<br />

Chemagnetics<br />

Chemical Dynamics<br />

Creative Electronics<br />

Dory Scientific<br />

Drusch<br />

Eastern Analytical Symposium<br />

Electronic Navigation Industries<br />

GE NMR instruments<br />

IBM - Almaden Research Center<br />

ICN<br />

ICON Services<br />

Isotec<br />

JEOL<br />

Eastman Kodak<br />

Merck Sharp and Dohme Isotopes<br />

M-R Resources<br />

Nalorac Cryogenics<br />

New Era Enterprises<br />

New Me<strong>th</strong>ods Research<br />

Norell<br />

Oxford Instruments<br />

Pergamon Journals<br />

Phospho-Energetics<br />

Sciteq<br />

STN International<br />

Siemens Medical Systems<br />

Spectral Data Services<br />

Spectroscopy Imaging Systems<br />

Stevens Creek Software<br />

Tecmag<br />

Varlan Associates<br />

Wilmad Glass<br />

John Wiley & Sons<br />

Xerox


The Executive Committee of <strong>th</strong>e 29<strong>th</strong> <strong>ENC</strong><br />

gratefully acknowledges financial support for<br />

underwriting <strong>th</strong>e following:<br />

Isotec<br />

Program binders<br />

Programmed Test Sources<br />

Tote bags<br />

Amplifier Research and Programmed Test Sources<br />

Welcome reception<br />

Stanley J. Opella, Chair<br />

University of Pennsylvania<br />

Department of Chemistry<br />

Philadelphia, PA 19104<br />

(215) 898-6459<br />

A.N. Garroway, Chair-Elect<br />

Naval Research Laboratory<br />

Code 6120<br />

Washington, DC 20375<br />

(202) 747-2323<br />

N. Zumbulyadis, Local Arrangements<br />

Eastman Kodak Company<br />

Corporate Research Laboratories<br />

Rochester, NY 14650<br />

(716) 722-1409<br />

Edward O. Stejskal, Secretary<br />

Nor<strong>th</strong> Carolina State University<br />

Department of Chemistry<br />

Raleigh, NC 27695<br />

(919) 737-2998<br />

Bruker Instruments<br />

Coffee breaks<br />

GE NMR Instruments<br />

Monday Poster refreshments<br />

JEOL<br />

Wednesday Poster refreshments<br />

Varian Associates<br />

Wednesday cocktail party<br />

EXECUTIVE COMMITTEE<br />

4<br />

Mary Wo Baum, Treasurer<br />

Princeton University<br />

Department of Chemistry<br />

Princeton, NJ 08544<br />

(609) 452-3892<br />

Lynne Batchelder<br />

Ad Bax<br />

Bernhard Bluemich<br />

Jo-Anne K. Bonesteel<br />

R. Andrew Byrd<br />

Paul W. Cope<br />

Colin Fyfe<br />

Myra Gordon<br />

Lynn Jelinski<br />

Gary E. Maciel<br />

Charles G. Wade


101<br />

101<br />

101<br />

101<br />

101<br />

101<br />

101<br />

VENDOR SUITE LOCATIONS<br />

101 J<br />

101 K<br />

102 A<br />

102<br />

102<br />

102<br />

103<br />

103<br />

103<br />

103<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

C<br />

D<br />

E &F<br />

A<br />

B<br />

C<br />

D<br />

&H<br />

&B<br />

Exchange<br />

Fairfax<br />

Genessee<br />

Huron<br />

Tiffany<br />

1425<br />

1500<br />

1200<br />

925<br />

CONVENTION CENTER<br />

Spectroscopy Imaging Systems<br />

Chemagnetics<br />

GE NMR Instruments<br />

Doty Scientific<br />

Bruker Instruments<br />

Electronic Navigation Industries<br />

New Me<strong>th</strong>ods Research<br />

M-R Resources<br />

Varian Associates<br />

JEOL, USAJLtd<br />

Intermagnetics General<br />

Tecmag<br />

Bruker Instruments<br />

ICN Stable Isotopes<br />

Chemical Dynamics<br />

Sciteq<br />

Phospho-Energetics<br />

HOLIDAY INN MEZZANINE<br />

ICON Services<br />

Cambridge Isotope Laboratories<br />

Programmed Test Sources<br />

Amplifier Research<br />

Merck Sharp & Dohme<br />

Isotec<br />

HOLIDAY INN SUITES<br />

Nalorac<br />

Oxford Instruments<br />

Wilmad Glass<br />

STN International


A<br />

A<br />

0<br />

0<br />

,-..1<br />

I<br />

Z<br />

Z<br />

0<br />

"c<br />

N<br />

"1"<br />

i<br />

0<br />

,.I<br />

Q.<br />

Q.<br />

....... :" " " J U J '.a~<br />

Ji~ E!-~ .....<br />

~--J: - El-i .<br />

J ~ F1<br />

t<br />

. . . .<br />

....... .1~- ]:-' ~ °'<br />

,<br />

L~<br />

>-,<br />

rd~<br />

X<br />

I~o .,.-i<br />

c~ r.z.,<br />

u<br />

X<br />

LT4


i<br />

L<br />

3~,.ols I 0',<br />

I<br />

===~ ~ F',~ R ', : tl - I!<br />

U ' II<br />

I 4 U I<br />

n , H ~, ~/.., < ++ R+,<br />

",l u", n LlOS ~-olbm~ ~i~-niP',<br />

°~ L<br />

0<br />

0<br />

Z<br />

rr u<br />

c/]<br />

0<br />

0<br />

~9<br />

0<br />

E<br />

I- ,,,=I l.,,m- ,<br />

°mlll<br />

= Ii<br />

=0 0 0<br />

30vN3nOl~<br />

o o<br />

Z<br />

u~<br />

0,-~<br />

I---I<br />

~0<br />

0<br />

u<br />

0<br />

0<br />

0 0<br />

---r ~-+-T '+++ "<br />

£33~£$ tlv~<br />

Z<br />

]oo<br />

u-I<br />

0~0 u~<br />

u-I ~x4<br />

o i c'm.,~F<br />

w<br />

0<br />

r._)<br />

----I<br />

I


Restaurants in Rochester<br />

Restaurants close to <strong>th</strong>e Convention Center are located in some unlikely<br />

places. This selection is intended to help you find <strong>th</strong>em. No claims are made as<br />

to completeness, and you may very well find a restaurant you like <strong>th</strong>at is not on<br />

<strong>th</strong>e list. Wi<strong>th</strong>in about a mile of <strong>th</strong>e Convention Center <strong>th</strong>ere are many more<br />

eating places <strong>th</strong>an <strong>th</strong>ere are in <strong>th</strong>e immediate downtown area. Wi<strong>th</strong> a car or<br />

some extra time you may want to try some of <strong>th</strong>e outlying places mentioned at <strong>th</strong>e<br />

end of <strong>th</strong>e list.<br />

First for <strong>th</strong>e more exoensive olaces. In Rochester <strong>th</strong>is means about $25 for<br />

a full meal. exceot where noted.<br />

The first revolving restaurant in New York, The Changing Scene, is<br />

located on <strong>th</strong>e top floor of First Federal Plaza, <strong>th</strong>e tall building next to <strong>th</strong>e<br />

Rochester Plaza.<br />

Chapel's is located in <strong>th</strong>e former City Hall, a renovated historic setting.<br />

is very good, but in <strong>th</strong>e evening you will spend at least $40 per person, and <strong>th</strong>e<br />

meal usually spans several hours.<br />

Edwards at 13 S. Fitzhugh is just off Main street, several blocks west of<br />

<strong>th</strong>e river. It is one of <strong>th</strong>e well-established, quality restaurants in Rochester, but is<br />

also likely to be more expensive <strong>th</strong>an most.<br />

Joseph's is a good Italian restaurant located at 169 N. Chestnut, about a<br />

block from <strong>th</strong>e Eastman Theater. The prices are well wi<strong>th</strong>in reason.<br />

The Riverview Cafe in <strong>th</strong>e Rochester Plaza is also a good choice.<br />

Meals in <strong>th</strong>e moderate ranae should run about $15.<br />

An excellent oriental restaurant is <strong>th</strong>e Bangkok, 155 State Street, across<br />

from <strong>th</strong>e Rochester Plaza. It has bo<strong>th</strong> a Chinese and a Thai menu, and will give<br />

you a 5% discount on evening meals if you show your registration card. Lunch is<br />

at <strong>th</strong>e menu price.<br />

Beams Restaurant, 106 Andrews Street at <strong>th</strong>e corner of St. Paul one<br />

block nor<strong>th</strong> of <strong>th</strong>e Holiday Inn is pleasant. Some of <strong>th</strong>eir menu items have a<br />

"heal<strong>th</strong>-food" note.<br />

A new restaurant <strong>th</strong>at comes wi<strong>th</strong> good recommendations is The Filling<br />

Station. The building formerly was just what it says. It is located at 30 Mount<br />

Hope Ave., just across <strong>th</strong>e Inner Loop.<br />

Trebor's, on State Street across from <strong>th</strong>e Rochester Plaza, is popular<br />

among <strong>th</strong>e business crowd at lunch.<br />

It


Gellert's, next door to <strong>th</strong>e Eastman Theater on Gibb's Street has a<br />

simple, but pleasant atmosphere. It caters in large part to <strong>th</strong>e <strong>th</strong>eater crowd.<br />

Sibley's, one of <strong>th</strong>e downtown department stores, has a surprisingly<br />

good restaurant on its top floor, as well as snack bars and a pastry shop on <strong>th</strong>e<br />

ground floor. In McCurdy's are <strong>th</strong>e Garden Room and Oak Room.<br />

If you have a reallv tiaht budoet, <strong>th</strong>ere are also some choices.<br />

There are a couple of soup and sandwich places in Midtown Plaza,<br />

which used to be several downtown city blocks and now is a completely<br />

enclosed shopping mall located at Main and Clinton, two blocks east of <strong>th</strong>e<br />

Convention Center. Try <strong>th</strong>e Great Canadian Soup Company. There is also<br />

a Burger King in <strong>th</strong>is complex. The Top of <strong>th</strong>e Plaza (take <strong>th</strong>e elevator)<br />

does not fall in <strong>th</strong>e inexpensive class, but is reputed to have good hamburgers for<br />

lunch and would be good for a more expensive evening meal..<br />

There are McDonalds on Main Street, about one block east of <strong>th</strong>e<br />

Convention Center, and on State Street, across <strong>th</strong>e street from <strong>th</strong>e Rochester<br />

Plaza.<br />

Sweet Dawn's, at <strong>th</strong>e corner of Main Street and Stone, is good for soup<br />

and sandwiches.<br />

Across State Street from <strong>th</strong>e Kodak Office building is Rubino's, selling<br />

submarine sandwiches and <strong>th</strong>e associated items. Rubino's also runs <strong>th</strong>e<br />

Salumeria Care in Midtown Plaza.<br />

If you want to aet a little fur<strong>th</strong>er from <strong>th</strong>e Convention Center, look on<br />

Alexander Street, whi-ch crosses East Avenue on <strong>th</strong>e o<strong>th</strong>er Side of <strong>th</strong>e Inner Loop,<br />

on Park Avenue, which crosses Alexander about a block sou<strong>th</strong> of East Avenue,<br />

or on Monroe Avenue, which crosses Alexander still fur<strong>th</strong>er Sou<strong>th</strong>.. Some of <strong>th</strong>e<br />

restaurants on Alexander are ra<strong>th</strong>er expensive. The Park Avenue area is a bit<br />

"yuppie" and spills over onto Monroe. The best restaurant bargains are probably<br />

on Monroe. Several different e<strong>th</strong>nic groups are represented.<br />

If YOU have a car. <strong>th</strong>ere is a wide choice of restaurants. You might want to<br />

try <strong>th</strong>e Spring House, 3001 Monroe Avenue (take <strong>th</strong>e freeway), an inn <strong>th</strong>at<br />

originally was located next to <strong>th</strong>e Erie Canal. (The canal moved; <strong>th</strong>e restaurant is<br />

where it always was, but if you look closely off to <strong>th</strong>e side behind <strong>th</strong>e building you<br />

can see a trace of <strong>th</strong>e old ditch.) On <strong>th</strong>e present-day canal, but much fur<strong>th</strong>er out,<br />

is Richardson's Canal House, 1474 March Road, <strong>th</strong>e only restaurant in<br />

Rochester listed in <strong>th</strong>e Mobil guide.<br />

9


8:30 a.m.<br />

8:35- 10:05<br />

10:05 - 10:25<br />

10:25- 12:15<br />

12:15 p.m.<br />

2:30 - 5:30<br />

7:30 - 9:30<br />

8:30 - 10:20 a.m.<br />

10:20 - 10:40<br />

10:40- 12:10<br />

12:10 p.m.<br />

12:15- 12:30<br />

7:30 - 9:30<br />

MONDAY, APRIL 18, <strong>1988</strong><br />

PROGRAM<br />

Opening remarks, S. J. Opella, Chair.<br />

Low Temperatures end Fields.<br />

G. Maciel, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

Coffee Break.<br />

Convention Center Gaileria.<br />

Compliments of Bruker Instruments.<br />

Magic Angle Sample Spinning.<br />

E. Stejskal, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

Lunch. A cafeteria style lunch may be purchased in <strong>th</strong>e Sou<strong>th</strong> Exhibit Hall.<br />

Poster Session.<br />

Lilac Ballroom.<br />

Au<strong>th</strong>ors of even numbered posters present.<br />

Refreshments compliments of GE NMR Instruments.<br />

Detection and Analysis.<br />

M. Baum, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

TUESDAY, APRIL 19, <strong>1988</strong><br />

PROGRAM<br />

Two-Dimensional Spectroscopy.<br />

C. Wade, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

Coffee Break.<br />

Convention Center Galleria.<br />

Selective Pulse Sequences.<br />

A. Bax, Session Chair.<br />

Lunch. A cafeteria-style lunch may be purchased in <strong>th</strong>e Sou<strong>th</strong> Exhibit Hall.<br />

Niagara Falls Excursion buses depart.<br />

Lunch will be served on <strong>th</strong>e buses.<br />

Afternoon free! Don't miss <strong>th</strong>e George Eastman House Containing <strong>th</strong>e International<br />

Museum of Photography, or walk along <strong>th</strong>e river to view <strong>th</strong>e Falls.<br />

High Tc Superconductors.<br />

L. Jelinski, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

11


8:30 - 10:10 a.m.<br />

10:10- 10:30<br />

10:30- 12:10<br />

12:10 p.m.<br />

2:30 - 5:30<br />

6:00 - 7:00<br />

7:00 p.m.<br />

8:30 - 10:05 a.m.<br />

10:05- 10:25<br />

10:25 o 12:05<br />

WEDNESDAY, APRIL 20, <strong>1988</strong><br />

PROGRAM<br />

Materials Imaging.<br />

A. Garroway, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

Coffee Break.<br />

Convention Center Galleria.<br />

Biological Imaging.<br />

R. A. Byrd, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

Lunch. A cafeteria-style lunch may be purchased in <strong>th</strong>e Sou<strong>th</strong> Exhibit Hall.<br />

Poster Session.<br />

Au<strong>th</strong>ors of odd numbered posters present.<br />

Refreshments compliments of JEOL.<br />

Cocktail party.<br />

Rochester Plaza Hotel, Ballroom Foyer.<br />

Compliments of Varian Associates.<br />

Open to all conference registrants.<br />

<strong>Conference</strong> Banquet.<br />

The Future of Conventional and Electronic Imaging;<br />

Robert Hunt, University of London.<br />

Rochester Plaza Ballroom.<br />

Tickets required.<br />

THURSDAY, APRIL 21, <strong>1988</strong><br />

PROGRAM<br />

Ordered Biological Systems.<br />

L. Batchelder, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

Coffee Break.<br />

Convention Center Galleria.<br />

Dynamic Nuclear Polarization.<br />

N. Zumbulyadis, Session Chair.<br />

Nor<strong>th</strong> Exhibit Hall.<br />

<strong>Conference</strong> Adjourned.<br />

See you next year at Asilomar, April 2-6, 1989.<br />

12


8:30 a.m.<br />

8:35 a.m.<br />

9:05 a.m.<br />

9:15 a.m.<br />

9:25 a.m.<br />

9:35 a.m.<br />

10:05 a.m.<br />

MONDAY MORNING<br />

LOW TEMPERATURES AND FIELDS<br />

G. Maciel, Session Chair<br />

Opening remarks, S. J. Opella, Chair.<br />

T 1 Mechanisms of Solids Immersed in 3He.<br />

O. Gonen, P. L. Kuhns, *J. S. Waugh.<br />

Untruncation of Dipole-Dipole Couplings in Solids,<br />

or Zero Field NMR Entirely in High Field.<br />

R. Tycko.<br />

Interpretation of <strong>th</strong>e NMR Nutation Spectra.<br />

*A. Samoson, E. Lippmaa.<br />

High Resolution Electrophoretic NMR (ENMR) of a Mixture.<br />

*T. R. Saarinen, C. S. Johnson.<br />

Collaborative Projects in NMR.<br />

A. Pines.<br />

Break.<br />

13


cON 8:35 ]<br />

It.<br />

T 1 MECHANISMS OF SOLIDS IMMERSED IN 3He<br />

O. Gonen, P.L. Kuhns, and J.S. Waugh*, MIT, Cambridge, MA. 02139<br />

Spins (I) at <strong>th</strong>e surface of a solid can be relaxed by neighboring 3He<br />

spins. Thereafter <strong>th</strong>e interior of <strong>th</strong>e solid is relaxed <strong>th</strong>rough spin diffusion.<br />

ForQ|gn (S) spins in <strong>th</strong>e surface layer inhibit <strong>th</strong>e escape of I-magnetization<br />

to <strong>th</strong>e interior, and S spins distributed <strong>th</strong>roughout <strong>th</strong>e bulk may inhibit spin<br />

diffusion altoge<strong>th</strong>er. A variety of 1H, 2H, and 29Si measurements in Si02<br />

i11ustrate and quantify <strong>th</strong>ese effects. Examples will be presented of selective<br />

spectroscopy of adsorbed species in sub-monolayer coverage.<br />

14


f~<br />

I UNTRUNCATIO~I OF DIPOLE-DIPOLE COUPLINGS IN SOLIDS, OR ZERO FIELD<br />

MON 9:0S I NMR ENTIRELY IN HIGH FIELD. Robert Tycko, AT&T Bell Laboratories,<br />

Murray Hill, Nj, 07974.<br />

N::R spectra of powdered or noncrystalline solids in high field commonly exhibit broad<br />

lines <strong>th</strong>at arise from <strong>th</strong>e dependence of <strong>th</strong>e nuclear magnetic dipole-dipole couplings<br />

on molecular orientation. New experiments will be described in which <strong>th</strong>at orientation<br />

dependence is removed by <strong>th</strong>e combination of rapid sample rotation wi<strong>th</strong> a synchronized<br />

rf pulse sequence.• The sample rotation and pulse sequence have <strong>th</strong>e effect of con-<br />

verting <strong>th</strong>e usual truncated dipole-dipole couplings into an untruncated form. The<br />

result is N,~IR spectra wi<strong>th</strong> sharp lines and splittings <strong>th</strong>at depend only on inter-<br />

nuclear distances, i.e. spectra wi<strong>th</strong> a "zero field" appearance <strong>th</strong>at are obtained<br />

entirely in high field. Such spectra provide a means of studying molecular conforma-<br />

tions in solids, wi<strong>th</strong>out requiring single crystals. The <strong>th</strong>eory behind untruncation<br />

experiments will be presented along wi<strong>th</strong> experimental spectra of simple organic<br />

solids.<br />

15


[--~N 9:15<br />

INTERPRETATION OF THE NMR NUTATION SPECTRA. A. Samoson * and E.<br />

I Lippmaa, Institute of Chemical Physics and Biophysics, Estonian<br />

Academy of Sciences, 200001Tallinn, USSR.<br />

The quadrupole interaction parameters of half integer spin nuclei are<br />

accessible from <strong>th</strong>e dependence of NMR central transition signal on <strong>th</strong>e rf excitation<br />

pulse leng<strong>th</strong>. The Fourier analysis yields (nutatlon) spectra, consisting at most<br />

of 21 major lines. The lines can be associated wi<strong>th</strong> single quantum coherences in a<br />

rotating magnetic field created by <strong>th</strong>e rf pulse. The magnetization vectors<br />

describing spin evolution in <strong>th</strong>e rotating magnetic field nutate in different senses,<br />

depending on <strong>th</strong>e quantum numbers of respective energy levels. This provides for<br />

fur<strong>th</strong>er unravelling of 2D spectra via hypercomplex Fourier transform. The ratio of<br />

a first moment to integral intensity of <strong>th</strong>e nutation spectra gives a good estimate<br />

for <strong>th</strong>e quadrupole interaction constant. The nutation spectroscopy applied to <strong>th</strong>e<br />

study of zeolites, glasses and organic conductors provided for identification of<br />

various nuclear sites and interpretation of complicated ID spectra.<br />

Current address: Department of Chemistry, University of California, Berkeley,<br />

CA 94720.<br />

16


MON 9:25<br />

HIGH RESOLUTION ELECTROPHORETIC ~ (ENMR) OF A MIXTURE:<br />

Timo<strong>th</strong>y R. Saarlnen' and~les S. Johnson, Jr., University of Nor<strong>th</strong><br />

Carolina, Dept. of Chem., Chapel Hill, NC 27599-3290<br />

Electrophoretic mobilities have been measured in situ using<br />

pulsed field gradient NMR (PFGNMR). Several components in a mixture<br />

can be studied simultaneously by Fourier transformation of <strong>th</strong>e second<br />

half of <strong>th</strong>e spin echo. For a U-tube configuration application of an<br />

electric field across <strong>th</strong>e sample resu/ts ~n a cosinusoidal modulation<br />

of spectral peak amplitudes, cos(Kv= t) where K equals <strong>th</strong>e area of <strong>th</strong>e<br />

gradient pulse times <strong>th</strong>e gyrcmagnetic ratio, v: is <strong>th</strong>e drift velocity<br />

of <strong>th</strong>e i'<strong>th</strong> species, and t is <strong>th</strong>e duration of <strong>th</strong>e electric field<br />

pttlse. By working at low ionic streng<strong>th</strong>s electric fields of up to 50<br />

V/cm could be applied for i sec before convection ~as detected by a<br />

change in <strong>th</strong>e amplitude of <strong>th</strong>e HOD peak. The cationic mobilities in<br />

a mixture of tetra-me<strong>th</strong>yl and tetra-e<strong>th</strong>yl anmonJum chloride in D20<br />

were determined. Application of <strong>th</strong>e technique for studying emulsions<br />

looks prc~lising.<br />

17


IION 9 : 35 [<br />

COLLABORATIVE PROJECTS IN NMR: A. Pines, University of Califomia,<br />

Berkeley, CA 94720<br />

Topics for discussion will be selected from among <strong>th</strong>e following:<br />

1. Quantum phase of <strong>th</strong>e photon and its relevance to magnetic resonance.<br />

2. Multiple-pulse NMR in zero field.<br />

3. Zero field NMR studies of small local asymmetries.<br />

4. 2-Dimensional studies of molecular conformations in liquid crystals.<br />

5. Clustering of molecules in zeolites studied by Xenon and multiple-quantum NMR.<br />

6. Detection of quadrupole resonance by a SQUID detector at low temperature.<br />

7. Iterative spin decoupling schemes for solids.<br />

8. High-temperature NMR of silicate glasses and liquids.<br />

Some of <strong>th</strong>ese projects are carried out in collaboration wi<strong>th</strong> M.V. Berry<br />

(Physics, Bristol); J. Clarke (Physics, Berkeley); J. Fraissard (Chemistry, Paris); J.<br />

Guckenheimer (Ma<strong>th</strong>ematics, Cornell); C.J. Radke (Chemical Engineering, Berkeley)<br />

and J. Stebbins (Geology, Stanford).<br />

18


• . r,<br />

10:25 a.m.<br />

10:55 a.m.<br />

11:05 a.m.<br />

11:35 a.m.<br />

11:45 a.m.<br />

12:15 p.m.<br />

MONDAY MORNING<br />

MAGIC ANGLE SAMPLE SPINNING<br />

E. Stejskal, Session Chair<br />

NMR Strategies and High-Speed MAS.<br />

*G. E. Maciel, C. E. Bronnimann,<br />

S. F. Dec, B. L. Hawkins, R. A. Wind.<br />

Measurements of Two-Dimensional NMR Powder Patterns in<br />

Rotating Solids.<br />

T. Nakai, J. Ashida, *T. Terao.<br />

13C-lSN Rotational Echo Double Resonance.<br />

T. Gullion, *J. Schaefer.<br />

2D Chemical Shift Anisotropy Correlation Spectroscopy.<br />

A new Sample Positioning Mechanism Which Simplifies<br />

Measurement of Chemical Shift Anisotropies in Complex<br />

Single Crystals.<br />

M. H. Sherwood, *D. W. Alderman,<br />

D. M. Grant.<br />

Rotational Resonance in Solid State NMR.<br />

D. P. Raleigh, M. H. Levitt,<br />

F. Creuzet, *R. G. Griffin.<br />

Lunch.<br />

19


MON i0:25<br />

NMR STRATEGI'ES AND HIGH-SPEED MAS, G.E. Maciel * C.E. Bronnimann<br />

, 9<br />

S.F.Dec, B.L. Hawkins and R.A. Wind, Department of Chemistry,<br />

Colorado State Univesity, Ft. Collins, CO 80523<br />

Wi<strong>th</strong> MAS speeds inching toward 30 KHz, a variety of important possibilities<br />

and issues arise in solid-state NMR. One of <strong>th</strong>e most direct benefits of high-speed<br />

MAS is <strong>th</strong>e ability to reduce spinning sidebands and r~e~move <strong>th</strong>em from spectral<br />

regions of interest. This is especially beneficial in ~'Al NMR, allowing <strong>th</strong>e use<br />

of high fields wi<strong>th</strong> <strong>th</strong>e corresponding reduction in <strong>th</strong>e second-order quadrupole<br />

effect. Examples will be shown.<br />

The temptation to employ high-speed MAS as a high-resolution ~oli~-state IH<br />

NMR technique must be considered in relation to <strong>th</strong>e nature of <strong>th</strong>e~H-~H dipolar<br />

interactions in each sla~_P1~e ~ Direct comparisons of CRAMPS and MAS only r,~ults<br />

show <strong>th</strong>at when strong ipolar interactions are present, as expected, <strong>th</strong>e<br />

CRAMPS approach provides far superior results.<br />

The anticipated interference of high-speed MAS wi<strong>th</strong> CP efficiency i ~H r ~ dily<br />

demonstrated, even in systems wi<strong>th</strong> strong dipolar interactions. In - C CP<br />

experiments carried out as a function of MAS speed, <strong>th</strong>e Hartmann-Hahn match curves<br />

differ dramatically for carbons wi<strong>th</strong> directly attached hydrogens relative to carbons<br />

wi<strong>th</strong>out. Hence, <strong>th</strong>e use of high-speed MAS to overcome spinning sideband<br />

problems in high-field CP-MAS experiments seems problematical. One potential<br />

approach to <strong>th</strong>is kind Of problem may be stop-and-go (STAG) spinning, in which CP<br />

occurs during a static-sample period in <strong>th</strong>e STAG-sequence. Some STAG results will<br />

be shown.<br />

20


~'-O-i 0 N i0:55<br />

MEASUREMENTS OF TWO-DIMENSIONAL NMR POWDER PATTERNS IN ROTATING<br />

ISOLIDS.T. Nakal, J. Ashida and T. Terao , Department of Chemistry,<br />

Faculty of Science, Kyoto University, Kyoto 606, Japan.<br />

Switching-angle sample-splnnlng techniques for measuring <strong>th</strong>e heteronuclear<br />

dipolar/chemlcal shift 2D powder patterns are reported. The techniques have <strong>th</strong>e<br />

advantages of <strong>th</strong>e high slgnal-to-nolse ratio and <strong>th</strong>e low distortion of <strong>th</strong>e spectrum<br />

compared wi<strong>th</strong> <strong>th</strong>ose in stationary powder samples. Fur<strong>th</strong>ermore, for compounds wi<strong>th</strong><br />

more <strong>th</strong>an one chemically distinct nucleus, <strong>th</strong>e individual 2D powder patterns can be<br />

separately obtained by 3D NMR. Practical applications of <strong>th</strong>ese techniques are<br />

demonstrated wi<strong>th</strong> <strong>th</strong>e 13C 2D powder patterns of calcium formate, polye<strong>th</strong>ylene, and<br />

polyacetylene. The chemical shift tensors and proton positions in calcium formate<br />

were obtained for <strong>th</strong>e two crystallographlcally inequivalent formate ions, which<br />

agree wi<strong>th</strong> <strong>th</strong>e results already reported by single crystal studles of 13C NMR and<br />

neutron diffraction. The chemical shift principal axes in polye<strong>th</strong>ylene were found<br />

to be only approximately along <strong>th</strong>e symmetry directions of <strong>th</strong>e CH 2 group, indicating<br />

a strong perturbation of <strong>th</strong>e electric environment by <strong>th</strong>e crystal field.<br />

Current address: Department of Chemistry, University of California, Berkeley,<br />

"CA 94720.<br />

21


I 13C-15N ROTATIONAL ECHO DOUBLE RESONANCE<br />

~0N 11:05 i<br />

Terry Gullion and Jacob Schaefer*<br />

Dept. of Chemistry, Washington Univ., St. Louis, MO 63130<br />

Dephasing of 13C rotational echos in solids containing pairs of<br />

dipolar coupled 13C and 15N spins occurs when <strong>th</strong>e sign of <strong>th</strong>e C-N<br />

interaction is reversed by some trains of 15N ~ pulses wi<strong>th</strong><br />

periods less <strong>th</strong>an <strong>th</strong>at of <strong>th</strong>e rotor. Fourier transforms of <strong>th</strong>e<br />

echos wi<strong>th</strong> and wi<strong>th</strong>out <strong>th</strong>e ~ pulses lead to a 13C NMR difference<br />

spectrum which arises only from <strong>th</strong>ose 13C's wi<strong>th</strong> 15N neighbors.<br />

This rotational-echo double-resonance (REDOR) experiment combines<br />

elements of <strong>th</strong>e spin-echo double-resonance (SEDOR) technique used<br />

by Slichter to observe 13C-170 couplings in static solids, wi<strong>th</strong><br />

<strong>th</strong>e dephasing properties of ~ pulse trains used by Lippmaa and by<br />

Waugh to characterize 13C chemical<br />

shift tensors in rotating solids.<br />

REDOR is easier to perform<br />

<strong>th</strong>an 13C-15N double-cross<br />

REDOR<br />

polarization because <strong>th</strong>e<br />

technically difficult<br />

H H CP<br />

DECOUPLE<br />

Hartmann-Hahn match between weakly ~<br />

coupled carbons and nitrogens is c J ~ i<br />

avoided. In addition, REDOR<br />

differences can be as much as an N --~ll<br />

order of magnitude greater <strong>th</strong>an <strong>th</strong>e<br />

corresponding double-cross rotor i i<br />

differences for <strong>th</strong>e same<br />

13C-15N containing sample.<br />

22<br />

II II<br />

N<br />

W<br />

I I I<br />

! ACOUmE<br />

i<br />

|


MON 11:3S 12D CHEMICAL SHIFT ANISOTROPY CORRELATION SPECTROSCOPY. A NEW<br />

SAMPLE POSITIORING MECHANISM WHICH SIMPLIFIES MEASUREMENT OF CHEMICAL SHIFT<br />

ANISOTROPIES IN COMPLEX SINGLE CRYSTALS. Mark H. Sherwood , D.W. Alderman~ &<br />

D.M. Grant, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112<br />

2D chemical shift anisotropy (CSA) correlation spectroscopy permits <strong>th</strong>e<br />

measurement of CSA tensors in complex single crystals wi<strong>th</strong> far more peaks <strong>th</strong>an<br />

have been tractable wi<strong>th</strong> 1D techniques (1). Such measurements open <strong>th</strong>e<br />

possibility of using CSA tensors as structural and conformational probes in<br />

large molecules. The basis of <strong>th</strong>e technique is to obtain 2D spectra in which<br />

<strong>th</strong>e peaks are located by <strong>th</strong>e chemical shift at two different single crystal<br />

orientations. The spectra are obtained by moving <strong>th</strong>e crystal between <strong>th</strong>e two<br />

orientations during <strong>th</strong>e mixing time of a chemical exchange 2D pulse sequence.<br />

It will be shown how <strong>th</strong>e complete CSA tensors for all <strong>th</strong>e nuclei in a<br />

complex single crystal can be determined by measuring peak frequencies at only<br />

six well chosen orientations of <strong>th</strong>e crystal and correlating <strong>th</strong>ese measurements<br />

wi<strong>th</strong> <strong>th</strong>e 2D technique. The special geometry of a mechanism to accomplish <strong>th</strong>e<br />

necessary orientation and reorientation will be explained and <strong>th</strong>e device itself<br />

installed in a 200 MHz probe exhibited. In order to measure all <strong>th</strong>e tensors in<br />

a single crystal <strong>th</strong>e sample need be mounted only once in <strong>th</strong>e mechanism and six<br />

2D spectra obtained.<br />

Six 2D spectra which determine <strong>th</strong>e carbon-13 CSA tensors in a single<br />

crystal of sucrose will be shown. Sucrose has 12 carbons per molecule and two<br />

molecules per unit cell so <strong>th</strong>at 24 peaks are observed.<br />

The possibilities of <strong>th</strong>e technique for measurement of tensors in<br />

much more complicated molecules will be discussed.<br />

(1) C.M. Carter, D.W. Alderman, and D.M. Grant, J. Magn. Reson.<br />

65, 183 (1985) and 73, 114 (1987).<br />

23


HON ii :45<br />

02139 U.S.A.<br />

ROTATIONAL RESONANCE IN SOLID STATE NMR<br />

D.P. Raleigh , M.H. Levitt, F. Creuzet and R.G. Griffin<br />

I Massachusetts Institute of Technology, Cambridge, MA<br />

In magic angle spinning experiments on samples containing dilute<br />

homonuclear dipolar coupled spin pairs, rotational resonance (R 2)<br />

occurs when <strong>th</strong>e spinning speed is adjusted so <strong>th</strong>at <strong>th</strong>e condition<br />

~iso- = n~ is satisfied. Here ~iso is <strong>th</strong>e difference in isotropic<br />

r<br />

chemical shifts, ~ is <strong>th</strong>e spinning speed, and n is an integer. Under<br />

<strong>th</strong>ese conditions t~e fllp-flop term of <strong>th</strong>e dipolar coupling is<br />

reintroduced into <strong>th</strong>e effective Hamiltonian, and <strong>th</strong>e normally sharp<br />

resonance lines broaden and split. In addition, a rapid oscillatory<br />

exchange of Zeeman-order between <strong>th</strong>e dipolar coupled spins is observed.<br />

The time dependence of <strong>th</strong>e exchange and <strong>th</strong>e spectral lineshapes agree<br />

wi<strong>th</strong> numerical simulations which include <strong>th</strong>e dipolar coupling and <strong>th</strong>e<br />

relative orientation of shielding tensors. The me<strong>th</strong>od is potentially<br />

useful for estimating <strong>th</strong>rough-space dipolar couplings, and <strong>th</strong>erefore<br />

internuclear distances in polycrystalline solids.<br />

24


7:30 p.m.<br />

8:00 p.m.<br />

8:10 p.m.<br />

8:40 p.m.<br />

8:50 p.m.<br />

MONDAY EVENING<br />

DETECTION AND ANALYSIS<br />

M. Baum, Session Chair<br />

Pressure -- An Essential Experimental Variable in NMR<br />

Studies of <strong>th</strong>e Dynamic Behavior of Chemical Systems.<br />

J. Jonas.<br />

The 13C Relaxation Behavior of E<strong>th</strong>ane Through Its Critical<br />

Point.<br />

R. F. Evilia, S. L. Whittenburg,<br />

*J. M. Robert.<br />

Flow NMR and DNP Studies of Dense Fluids.<br />

*H. C. Dorn, T. E. Glass, L. Allen,<br />

R. Gitti, C. Tsaio, C. Wild,<br />

C. S. Yannoni.<br />

The World and Wonders of 3H NMR Spectroscopy.<br />

P. G. Williams.<br />

NMR Approaches to Understanding Natural and Syn<strong>th</strong>etic<br />

Enzymes.<br />

J. K. M. Sanders.<br />

25


MON Eve 7:301 PRESSURE - AN ESSENTIAL EXPERIMENT~ VARIABLE IN NMR STUDIES OF<br />

THE DYNAMIC BEHAVIOR OF CHEMICAL SYSTEMS: Jiri Jonas , University of Illinois,<br />

Department of Chemistry, Urbana, Illinois. 61801.<br />

An overview of several high pressure NMR studies performed in our laboratory<br />

illustrates <strong>th</strong>e essential role of pressure (density) in <strong>th</strong>e investigation of <strong>th</strong>e<br />

dynamic behavior of chemical systems. After a brief introduction devoted to <strong>th</strong>e<br />

novel experimental high pressure NMR techniques, two projects are discussed.<br />

The two examples deal wi<strong>th</strong> <strong>th</strong>e application of multinuclear high resolution N-MR<br />

spectroscopy at high pressure. First, <strong>th</strong>e results of <strong>th</strong>e study (C.-L. Xie, D.<br />

Campbell, J. Jonas, J. Chem. Phys., in press, <strong>1988</strong>) of <strong>th</strong>e dynamical solvent effects<br />

on <strong>th</strong>e rotation of coordinated e<strong>th</strong>ylene in ~-CsHsRh(CpHA) p demonstrate <strong>th</strong>e unique<br />

information about <strong>th</strong>e reaction rates in soluti6n-obtaln~d-from <strong>th</strong>e high pressure NMR<br />

experiments. Second, <strong>th</strong>e pressure effects on <strong>th</strong>e main phase transition, ln L-a-<br />

dipalmitoyl phosphatidyl vesicles are investigated by proton decoupled lJc natural<br />

abundance NMR spectroscopy (C.-L. Xie, P. J. Grandinetti, D. Driscoll, A. Jonas,<br />

J. Jonas, PNAS, in press).<br />

The concluding remarks emphasize <strong>th</strong>e wide range of problems <strong>th</strong>at can be studied<br />

by <strong>th</strong>e high pressure NMR techniques.<br />

26


HON Eve 8:00<br />

The 13C Relaxation Behavior of E<strong>th</strong>ane Through Its Critical Point<br />

Ronald F. Evilia and Scott L. Whittenburg:" Dept. of Chemistry,<br />

Univ. of New Orleans, New Orleans, La. 70148<br />

, Jan M. Robert: Dept. of Chemistry, S.G. Mudd Bldg. #6, Lehigh<br />

Univ., Be<strong>th</strong>lehem, Pa. 18015<br />

The longitudinal relaxation time of 13C in <strong>th</strong>e e<strong>th</strong>ane molecule has been<br />

measured over a temperature range of -i01 to +50°C, for a sample at <strong>th</strong>e<br />

critical density. T l appears to vary wi<strong>th</strong> temperature, as anticipated;<br />

however, a discontinuity in <strong>th</strong>e relaxation behavior Is apparent at <strong>th</strong>e<br />

critical point. From <strong>th</strong>e experimental data, <strong>th</strong>e critical constant may<br />

be obtained.<br />

27


[---~N Eve 8:10]<br />

FLOW NMR AND DNP STUDIES OF DENSE FLUIDSz H. C. Dorn , T. E.<br />

Glass, L° Allen, R° Gittl, C° Tsaio, C° Wild, Department of Chemistry,<br />

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061<br />

and C. S. Yannoni, IBM Almaden Research Center, 650 Harry Road, San Jose, CA<br />

95120.<br />

Recent experiments in our laboratory have demonstrated <strong>th</strong>at a flowing liquid<br />

bolus provides a convenient way to independently optimize <strong>th</strong>e "EPR" and "NMR"<br />

portions of <strong>th</strong>e dynamic nuclear polarization DNP experiment. Specifically,<br />

flow -H DNP experiments at I0 GHz were found to require only 0.5-4 watts of<br />

microwave power in order to achieve saturation (s:l) of a given electron spin<br />

transition for a number of stable spin labels [e.g., tri-t-butylphenoxides,<br />

nitroxides, etc.). Flow H DNP results and applications will be presented for<br />

various flowing fluids (e.g., supercritlcal fluids and liquids). In addition,<br />

a new technique potentially appl~cable for monitoring surfaces, "s011d-liquld<br />

Intermolecular transfer [SLIT), H DNP" will also he discussed.<br />

28


THE WORLD AND WONDERS OF 3H NMR SPECTROSCOPY: Philip G.<br />

MON illiam ," National Tritium Labeling Facility, Lawrence Berkeley Laboratory 75-123,<br />

Eve 8 4 0<br />

Omverslty of California, Berkeley, California 94720.<br />

The NTLF is a national User Facility, funded by <strong>th</strong>e National Institutes of Heal<strong>th</strong>. The Facility combines<br />

he availability of high levels of carrier free tritium gas, extensive radiochemical purification resources, and an<br />

n-house NMR instrument dedicated to tritium NMR spectroscopy. The NTLF combines its User service<br />

"unction wi<strong>th</strong> core and collaborative research based on <strong>th</strong>e use of hydrogen isotopes.<br />

Tritium is an excellent nucleus for NMR observation, but NMR applications in <strong>th</strong>e chemical and biological<br />

;ciences have been very limited in number. "Onepulse" tritium measurements can quickly and cleanly give <strong>th</strong>e<br />

:hemical shift and relative abundance of tritons in a sample, and in combination wi<strong>th</strong> o<strong>th</strong>er physical me<strong>th</strong>ods<br />

:an rapidly assure quality control in labelling experiments. In catalysis hydrogen isotope exchange is readily<br />

nonitored, wi<strong>th</strong> <strong>th</strong>e relative incorporation at each position of a substrate yielding specificity rules for <strong>th</strong>e<br />

:atalyst as well as mechanistic detail.<br />

Hydrogenation and halogen replacement reactions are <strong>th</strong>e cornerstone of high level tritium labelling<br />

~rocedures. Little is known about concomitant side-reactions, but <strong>th</strong>ese are extremely important when specific<br />

abelling is required. Observation of tritium NMR peaks from supposedly "unlabelled" positions obviates<br />

hese extra mechanisms, and allows <strong>th</strong>e choice of appropriate precursors and reaction conditions for <strong>th</strong>e<br />

iesirccl tritiation. ' ~<br />

As one example, allylic me<strong>th</strong>yl exchange in <strong>th</strong>e hydrogenation of [3-me<strong>th</strong>yl styrene to yield n-<br />

~ropylbenzene is readily detected, and <strong>th</strong>e full range of isotopomers can be distinguished by J-resolved<br />

;pectroscopy. Secondly, tritio-dehalogenation of 2-chloro-2'-d.eoxyadenosine wi<strong>th</strong> pure "1"2 does not give<br />

~roduct wi<strong>th</strong> <strong>th</strong>e <strong>th</strong>eoretical specific activity, and factors influencing <strong>th</strong>is "dilution" may be followed.<br />

Important and developing uses of tritium NMR spectroscopy include monitoring of <strong>th</strong>e conversion of<br />

ntermediates in biological systems, studies of substrate binding, and as an aid in spectral elucidation of proton<br />

qMR spectra. The use of modern multipulse techniques in concert wi<strong>th</strong> simple and elegant older sequences<br />

ms <strong>th</strong>e potential for giving a great deal of conformational and coupling information, <strong>th</strong>rough <strong>th</strong>e interaction of<br />

~-H and 1-H atoms. NMR work at <strong>th</strong>e Tritium Facility is intent on establishing <strong>th</strong>e benefits and problems<br />

~ssociated wi<strong>th</strong> tritium NMR spectroscopy of many diverse substrates - from simple organics to solids and<br />

nacromolecules.<br />

29


Eve 8"50] NMR APPROACHES TO UNDERSTANDING<br />

NATURAL AND SYNTHETIC ENZYMES<br />

Jeremy K. M. Sanders*<br />

Department of Chemistry<br />

University Chemical Laboratory<br />

Lensfield Road<br />

Cambridge CB2 1EW<br />

Recent advances in NMR spectroscopy have given us powerful new tools for<br />

observing and understanding <strong>th</strong>e details of chemical and biochemical transformations. The<br />

problem faced by <strong>th</strong>e chemist or biochemist is how to choose <strong>th</strong>e best spectroscopic<br />

s~ategy for solving a particular problem. We must look at each step in <strong>th</strong>e reaction or<br />

metabolic process from <strong>th</strong>e point of view of individual nuclei: <strong>th</strong>ese are our potential<br />

reporters. Once we know how <strong>th</strong>e shift or coupling environment for each potential reporter<br />

is likely to change, we can design NMR experiments <strong>th</strong>at select only <strong>th</strong>e spins of interest,<br />

even ff <strong>th</strong>e sample is a living organism. These ideas will be illustrated by a wide range of<br />

examples including <strong>th</strong>e following:<br />

1. An in vivo deuterium NMR study of formaldehyde dismutases in bacterial<br />

cultures.<br />

2. Selective 1H and 13C N]V[R measurements of gluta<strong>th</strong>ione biochemistry in<br />

bacterial and mammalian cells.<br />

3. One- and two-dimensional IH and 13C studies of iigand binding to 'syn<strong>th</strong>etic<br />

enzymes' based on porphyrins.<br />

30


8:30 a.m.<br />

9:00 a.m.<br />

9:10 a.m.<br />

9:20 a.m.<br />

9:50 a.m.<br />

10:20 a.m.<br />

TUESDAY MORNING<br />

TWO-DIMENSIONAL SPECTROSCOPY<br />

C. Wade, Session Chair<br />

Patterns and Relaxations.<br />

P. Pfandler, U. Eggenberger, D. Limat,<br />

S. Wimperis, J. -M. Bohlen,<br />

*G. Bodenhausen.<br />

Two Dimensional Linear Prediction NMR Spectroscopy.<br />

*H. Gesmar, J. J. Led.<br />

Multivariate Techniques for Enhancement of Two<br />

Dimensional NMR Spectra.<br />

H. Grahn, *F. Delaglio,<br />

M. W. Roggenbuck, G. C. Levy.<br />

2D Rot=ing Frame Spectroscopy: New Approaches and<br />

Prospects.<br />

*C. Griesinge~ C. Schonenberge~<br />

R. R. Ernst, R. Bruschweile~<br />

New Twists to Some Old Experiments.<br />

*A. Bax, D. Marion, L. Lerner,<br />

R. Tschudin.<br />

Break.<br />

31


.TUE 8"30<br />

J PATTERNS AND RELAXATION: P. pfvandler, U. Eggenberger, D. Limat, S.<br />

Wimperis, J.-M. BOhlen and G. Bodenhausen, Institut de Chimie Organique, Universit6<br />

de Lausanne, Switzerland<br />

Pattern recognition in 2D NMR spectroscopy is rapidly coming of age, to <strong>th</strong>e<br />

point where <strong>th</strong>e automated analysis of spectra of weakly coupled spin systems wi<strong>th</strong><br />

well-resolved multiplets no longer presents a genuine challenge. We are now<br />

turning our attention to strongly coupled spectra, such as arise from dipolar-coupled<br />

spin systems in liquid crystalline solutions, to double-quantum spectra which suffer<br />

from inhomogeneous excitation because of unpredictable coupling streng<strong>th</strong>s, and to<br />

spectra which suffer from extensive overlap due to aliasing as a result of deliberate<br />

undersampling.<br />

Dipole-dipole relaxation not only gives rise to <strong>th</strong>e familiar Overhauser effect<br />

(migration of Zeeman order ), but, in <strong>th</strong>e presence of cross-correlation of pairs<br />

of dipolar interactions, may give rise to longitudinal <strong>th</strong>ree-spin order .<br />

Such terms, which may reveal information about angles subtended by internuclear<br />

vectors, can be observed selectively by means of triple-quantum filtration<br />

techniques. Cross-correlation can also lead to unexpected coherence transfer<br />

pa<strong>th</strong>ways, particularly when bo<strong>th</strong> chemical shift anisotropy and dipolar interactions<br />

are involved.<br />

32


TWO DIMENSIONAL LINEAR PREDICTION NMR SPECTROSCOPY<br />

TUE 9:00 [ ,<br />

Henrik Gesmar and Jens J. Led<br />

University of Copenhagen, Dept. of Chemical Physics<br />

The H.C. Orsted Institute, 5, Universitetsparken<br />

DK-2100 Copenhagen, Denmark.<br />

Linear prediction has been introduced into <strong>th</strong>e field of NMR spectroscopy as a valu-<br />

able me<strong>th</strong>od of quantitative spectral estimation (1,2). Its applicability has been de-<br />

monstrated even in case of broad band spectra wi<strong>th</strong> many narrowly spaced resonances (3<br />

l_'.e, cases where LSQ curve fitting procedures (4) would seem to be unfeasible.<br />

In <strong>th</strong>e present study it is demonstrated <strong>th</strong>at <strong>th</strong>e application of <strong>th</strong>e linear predic-<br />

tion principle can be extended to include two dimensional NIIR spectroscopy, wi<strong>th</strong>out<br />

increasing <strong>th</strong>e computation time drastically.<br />

Examples are presented and <strong>th</strong>e advantages as well as <strong>th</strong>e pitfalls of <strong>th</strong>e procedure<br />

are discussed.<br />

(I) H. Barkhuijsen, R. de Beer, W.M.M.j. Bov6e, and D. van Ormondt,<br />

J. Magn. R eson. 6_~I, 465 (1985).<br />

(2) J. Tang, C.P. Lin, I.I.K. Bov~nan, and J.R. Norris, J. Hagn. Reson. 6_22, 167 (1985).<br />

(3) H. Gesmar and J.J. Led, J. Magn. Reson. (<strong>1988</strong>). In press.<br />

(4) F. Abildgaard, H. Gesmar, and J.J. Led, J. Magn. Reson. (<strong>1988</strong>). In press.


TUE 9:10<br />

MULTIVARIATE TECHNIQUES FOR ENHANCElVlENT<br />

OF TWO DIMENSIONAL NMR SPECTRA<br />

Hans Grahn, Frank Delaglio °, Mark W. Roggenbuck and George C. Levy<br />

NMR and Data Processing Laboratory, NIH Resource and CASE Center,<br />

Syracuse University, Syracuse 13244-1200.<br />

By using multivariate representations of 2D NMR spectra, we show <strong>th</strong>at systematic noise<br />

such as tl and t2 ridges can be modeled by a Principal Component Analysis (PCA) me<strong>th</strong>od.<br />

Later <strong>th</strong>ese noise models can be subtracted from <strong>th</strong>e original data wi<strong>th</strong>out distorting <strong>th</strong>e<br />

spectral features.<br />

In addition, PCA can generate reconstructions of 2D spectra, which are solely based on <strong>th</strong>e<br />

systematic information from <strong>th</strong>e data, and <strong>th</strong>us exclude random noise. Special data<br />

transformations can be applied in conjunction wi<strong>th</strong> PCA in order to emphasize or reduce<br />

specific features; <strong>th</strong>is approach is employed in a diagonal suppression scheme for 2D NOE<br />

spectra. All of <strong>th</strong>ese me<strong>th</strong>ods can be combined to optimize data in preparation for<br />

automated, multivariate-based spectral analysis procedures, which benefit greatly from such<br />

improvements.<br />

34


TUE 9"20 ]<br />

2D ROTATING FRAME SPECTROSCOPY NEW APPROACHES AND PROSPECTS: C.<br />

Griesinger, C. SchOnenberger, R. Briischweiler, W.O. Scrensen, and R.R. Ernst,<br />

Laboratorium fiir Physikalische Chemie, EidgenOssische Technische Hochschule,<br />

8092 Ziidch, Switzerland<br />

The general potential of rotating frame spectroscopy is explored in view of <strong>th</strong>e<br />

elucidation of structure and <strong>th</strong>e study of molecular dynamics. Cross relaxation,<br />

coherence transfer, as well as spectral features in <strong>th</strong>e rotating frame show<br />

properties distinct from <strong>th</strong>ose in <strong>th</strong>e laboratory frame <strong>th</strong>at can be exploited for<br />

molecular studies. Several techniques have been described so far <strong>th</strong>at involve<br />

rotting frame concepts. In <strong>th</strong>is lecture, a unified treatment of rotating frame<br />

experiments is applied and new sequences wi<strong>th</strong> improved performance are<br />

presented.<br />

It is known <strong>th</strong>at <strong>th</strong>e standard techniques of rotating frame spectroscopy suffer<br />

from interference of coherent and incoherent transfer processes. New types of<br />

mixing sequences allow <strong>th</strong>e exclusive selection of a single mechanism. This can lead<br />

to a more accurate quantification of transfer rates. The new approaches are<br />

illustrated by application to biomolecules.<br />

The potential of more exotic rotating frame techniques is discussed.<br />

Experiments involving transfer of higher spin order in <strong>th</strong>e rotating frame or<br />

frequency-selective spin locking are conceivable. The incorporation of rotating<br />

frame and laboratory frame sequences into 3D expcriments will be illustrated by<br />

protein spectra.<br />

35


I TUE 9:50 I NEW TWISTS TO SOME OLD EXPERIMENTS<br />

Ad u=u~, . . uumln~H~e . . . . Marlon, Laura lamer and Rolf Tschudin<br />

Laboratory of Chemical Physics, NIDDK, National Institutes of Heal<strong>th</strong>,<br />

Be<strong>th</strong>esda, M_D 20892.<br />

A number of modifications to existing 2D experiments are pr?po~d.<br />

Improvements in sensitivity and resolution of <strong>th</strong>e ~H-detected ~H-~JC<br />

long range correlation (HMBC) experiment can be obtained by recording <strong>th</strong>e<br />

spectrum in <strong>th</strong>e absorption mode in <strong>th</strong>e F, dimension and absolute value<br />

mode in F2. A recipe for non-interactive phasing of <strong>th</strong>is and all o<strong>th</strong>er<br />

types of 2D spectra will be presented.<br />

A slightly different approach for suppressing zero quantum artefacts<br />

from NOESY spectra will be described and several mixing schemes for <strong>th</strong>e<br />

HOHAHA/TOCSY experiment will be discussed and compared <strong>th</strong>eoretically and<br />

experimentally. It is found <strong>th</strong>at <strong>th</strong>e optimal scheme depends on <strong>th</strong>e<br />

electronics used for phase shifting, i.e., on <strong>th</strong>e type of spectrometer<br />

used.<br />

36


10:40 a.m.<br />

11:00 a.m.<br />

11:20 a.m.<br />

11:30 a.m.<br />

11:40 a.m.<br />

12:10 p.m.<br />

TUESDAY MORNING<br />

SELECTIVE PULSE SEQU<strong>ENC</strong>ES<br />

A. Bax, Session Chair<br />

Composite Pulses: New Applications and Me<strong>th</strong>ods.<br />

T. Bielecki, *M. H. Levitt,<br />

J. L. Sudmeier, W. H. Bachovchin.<br />

Water Suppression Techniques for <strong>th</strong>e Generation of Pure<br />

Phase NMR Spectra.<br />

V. Sklenar.<br />

Elimination of Phase Roll, Solvent Suppression, and Uniform<br />

Spin-1 Excitation wi<strong>th</strong> Shaped Pulses.<br />

W. S. Warren, M. McCoy, *A. Hasenfeld.<br />

Frequency Switched Inversion Pulses and Their Application<br />

to Broadband Decoupling.<br />

T. Fujiwara, *K. Nagayama.<br />

Fun wi<strong>th</strong> Genes.<br />

R. Freeman.<br />

Lunch.<br />

37


TUE 10"40 I<br />

COMPOSITE PULSES: NEW APPLICATIONS AND METHODS<br />

Tony Bielecki and Malcolm H. Levitt ,<br />

Massachusetts Institute of Technology, Cambridge, MA 02139;<br />

James L. Sudmeier and William H. Bachovchin,<br />

Tufts University School of Medicine, Boston, MA 02111<br />

The application of composite pulses as solvent peak suppression<br />

sequences will be discussed. A combination of coherent averaging<br />

<strong>th</strong>eory wi<strong>th</strong> numerical optimization allows one to find simple<br />

six-pulse sequences which hold <strong>th</strong>e phase of excited signals almost<br />

constant, while cutting out a narrow, flat notch at <strong>th</strong>e solvent<br />

resonance. This helps greatly to reduce distortions of <strong>th</strong>e baseline<br />

and of broad or overlapping signals. Suppression ratios are not<br />

dramatic, but seem to be sufficient, especially in conjunction wi<strong>th</strong><br />

an improved receiver design.<br />

It is also hoped to show results for composite pulses where <strong>th</strong>e<br />

component pulses have different frequencies. New advances in direct<br />

digital frequency syn<strong>th</strong>esis have made it feasible to achieve very<br />

fast jumps in carrier frequency, while maintaining phase coherence.<br />

This is expected to allow short but very broadband composite pulses,<br />

which will have implications in low-power population inversion and<br />

decouplinq experiment~.<br />

38


TUE ii'00 J<br />

WATER SUPPRESSION TECHNIQUES FOR THE GENERATION<br />

OF PURE PHASE NMR SPECTRA<br />

Vladimir Sklen~<br />

Institute of Scientific Instruments, Czechoslovak<br />

Academy of Sciences, CS-612 64 BRNO, Czechoslovakia<br />

A large variety of selective excitation techniques are available<br />

for suppression of <strong>th</strong>e intense H20 resonance in <strong>th</strong>e NMR spectra<br />

of water soluble compounds. However, only a few me<strong>th</strong>ods yield spec-<br />

tra <strong>th</strong>at are free of phase (and cosequently baseline) distorsions<br />

and can be applied in <strong>th</strong>e pure absorption 2D NMR experiments. New<br />

class of two stage selective excitation techniques <strong>th</strong>at offer very<br />

good water suppression, ideal phase profile and different amplitude<br />

profiles will be discussed. These me<strong>th</strong>ods use time shared hard pulse<br />

sequences or combinations of soft and hard pulses and take advan-<br />

tage of <strong>th</strong>e phase cycling to achieve desired properties. Application<br />

to <strong>th</strong>e measurement of pure phase 2D NMR spectra of small proteins<br />

and DNA fragments will be presented.<br />

39


TUE 11:20<br />

ELIMINATION OF PHASE ROLL, SOLVENT SUPPRESSION, AND UNIFORM SPIN-I<br />

EXCITATION WITH SHAPED PULSES: Warren S. Warren, Mark McCoy and<br />

Andy Hasenfeld*, Department of Chemistry, Princeton University,<br />

Princeton, NJ 08544<br />

We have recently shown <strong>th</strong>at purely amplitude modulated or phase/amplitude modu-<br />

lated pulses can eliminate phase roll while exciting regions as narrow as 15 Hz; can<br />

produce undistorted two-dimensional spectra off resonance while completely eliminating<br />

<strong>th</strong>e solvent peak; and can excite a broader quadrupolar powder pattern for <strong>th</strong>e same<br />

amplifier peak power. All of <strong>th</strong>ese experiments were done wi<strong>th</strong> a slightly modified<br />

commercial spectrometer. Theoeretical work has uncovered a new infinite family of<br />

pulses wi<strong>th</strong> a rectangular excitation profile and complete insensitivity to r.f. field<br />

streng<strong>th</strong> (similar to <strong>th</strong>e (sech(aT)) l+Di pulses demonstrated by Silver), but <strong>th</strong>e<br />

additional degrees of freedom permit improved phase characteristics and give new<br />

insight into <strong>th</strong>e effects of pulse shaping.<br />

References:<br />

M. McCoy and W.S. Warren, Chem. Phys. Lett. 133, 165 (1987).<br />

F. Loaiza, M. McCoy, S. Hammes and W.S. Warren, J. Mag. Res. (in press).<br />

A. Hasenfeld, Phys. Rev. Left. (submitted).<br />

40


TUE 11:30 J<br />

FREQU<strong>ENC</strong>Y SWITCHED INVERSION PULSES AND THEIR APPLICATION TO<br />

BROADBAND DECOUPLING; Toshimichi Fujiwara and Kuniaki Nagayama<br />

Biometrology Lab, JEOL Ltd. Nakagami, Akishima, Tokyo 196, Japan<br />

First, <strong>th</strong>e broadband inversion pulses wi<strong>th</strong> coherent<br />

frequency switching were designed. They are made of a few<br />

180°-like pulses which are different in frequency of about<br />

1.5 x B , where B indicates streng<strong>th</strong> of r.f. field. The<br />

refined frequency differences and pulse wid<strong>th</strong>s were numerically<br />

searched under <strong>th</strong>e constraint of symmetry about offset frequency.<br />

The operative frequency range of <strong>th</strong>ese pulses is about<br />

1.2 x B x n, where n is <strong>th</strong>e number of frequencies used, or <strong>th</strong>e<br />

number of 180 ° pulses in <strong>th</strong>e sequence. Second, its performance<br />

and <strong>th</strong>e tolerance to inhomogeneity of B field were improved by<br />

<strong>th</strong>e phase cycling of 0 ° , 150 ° , 60 ° , 150 ° , 0°. * Finally,<br />

decoupling pulse sequences were constructed from <strong>th</strong>ese improved<br />

inversion pulses using <strong>th</strong>e phase cycle employed in MLEV-4. The<br />

performance of <strong>th</strong>ese pulse sequences was experimentally tested,<br />

and <strong>th</strong>eoretically evaluated wi<strong>th</strong> two scaling factors; J-scaling<br />

factor which characterizes <strong>th</strong>e decoupling on a long time scale<br />

(long period scaling) and a scaling factor which characterizes<br />

<strong>th</strong>e decoupling on a short time (short period scaling).<br />

*R.Tycko, A. Pines, Chem. Phys. Letters iii, 462 (1984).<br />

41


TUE 11:40<br />

FUN WITH GENES: Ray Freeman, Cambridge University,<br />

] Cambridge CB2 IEP, England.<br />

If you are bored by endlessly searching For minlma in multidimensional<br />

hyperspace, why not try a new approach to <strong>th</strong>e design of NMR pulse sequences?<br />

Now it is <strong>th</strong>e scientist who makes all <strong>th</strong>e important decisions while <strong>th</strong>e<br />

computer merely calculates some figure of merit - for example a frequency-domain<br />

response function. The idea is not to optimlse an experiment but to discover<br />

new ones. Suppose we are interested in shaped selective radiofrequency pulses~<br />

we might multiply a Gaussian by a sinc function or a polynomial and truncate<br />

<strong>th</strong>e tails. Each contribution to <strong>th</strong>e overall shape is assigned a "gene", a<br />

numerical value which can be incremented or decremented to represent a<br />

"mutation". fhe computer evaluates <strong>th</strong>e frequency-domain excitation spectrum<br />

and displays it on an oscilloscope screen, toge<strong>th</strong>er wi<strong>th</strong> its eight "offspring"<br />

obtained by changing one or two genes. If some "desirable" trend can be<br />

recognized, <strong>th</strong>e operator selects <strong>th</strong>at pattern as <strong>th</strong>e parent for <strong>th</strong>e next<br />

generation; if not he chooses arbitrarily or even recklessly, it doesn't<br />

matter. Eventually after several generations some<strong>th</strong>ing new emerges. After<br />

all, <strong>th</strong>at is how we all originated, <strong>th</strong>rough Darwinian natural selection.<br />

Ihis "genetic evolution" technique (I-3) is very general; it has been used in<br />

aeronautical engineering and in <strong>th</strong>e automotive industry. It might just put <strong>th</strong>e<br />

fun back into our own specialized 11ttle NMR games.<br />

(I) R. Dawkins, "The Blind Watchmaker", Longman 1986.<br />

(2) I. Rechenberg, "Evolutionsstra(e~ie'~ Frommann-Holtzboog, 1973<br />

(3) R. Freeman and X.L. Wu, J. Magn. Reson., 75, 18a (1987).<br />

42


7:30 p.m.<br />

8:00 p.m.<br />

8:30 p.m.<br />

8:50 p.m.<br />

TUESDAY EVENING<br />

HIGH Tc SUPERCONDUCTORS<br />

L. Jelinski, Session Chair<br />

Magnetic Resonance Studies of High Temperature<br />

Superconductors.<br />

C. P. Slichter.<br />

s3,6sCu NQR Studies of High Tc Oxide Superconductors.<br />

*W. W. Warren, R. E. Walstedt,<br />

G. F. Brennert, R. F. Bell, R. J. Cava,<br />

G. P. Espinosa, J. P. Remeika.<br />

Influence of High Temperature Superconductors on <strong>th</strong>e<br />

Design of NMR Spectrometers.<br />

*H. Hill, G. Kneip.<br />

Cu NQR YBa2CuzOx wi<strong>th</strong> Varying Oxygen Content.<br />

*A. J. Vega, W. E. Farne<strong>th</strong>,<br />

R. K. Bordia, E. M. McCarron.<br />

43


I TUE Eve 7"301MAGNETIC RESONANCE STUDIES OF HIGH TEMPERATURE SUPERCONDUCTORS:<br />

Charles P. Slichter, University of Illinois at Champaign-Urbana, Urbana, IL 61801<br />

Nuclear spin-lattice relaxation times give important information about<br />

superconductors. The talk will briefly review <strong>th</strong>e reasons. Then, it will turn to<br />

Cu NMR and NQR studies of powders of <strong>th</strong>e 40 K superconductor Lal.85Ba.15CuO 4 and NMR<br />

studies of single crystals of <strong>th</strong>e 90 K superconductor YBa2Cu307_ 6.<br />

Supported <strong>th</strong>rough <strong>th</strong>e University of Illinois Materials Research Laboratory by <strong>th</strong>e<br />

Department of Energy Division of Materials Research under Contract DE-AC01-<br />

76ERO1198.<br />

44


• . r<br />

T[-~-UE ~ t~ve 8:00! 63,65Cu NQR STUDIES OF HIGH T OXIDE SUPERCONDUCTORS:<br />

W. W. Warren, Jr.*, R. E. Walstedt, G. F. Brennert, R. F c. Bell, R. J. Cava, G. P. Espinosa,<br />

and J. P. Remeika, AT&T Bell Laboratories, Murray Hill, NJ 07974<br />

Nuclear quadrupole resonance provides a local, site selective probe which has proven highly<br />

informative for studies of oxide superconductors. In <strong>th</strong>is talk I will review our investigations<br />

using <strong>th</strong>e 6~,6SCu resonances in <strong>th</strong>e 90 K superconductor YBa2Cu3OT_8" The crystal structure<br />

of YBa2Cu307 contains two inequivalent Cu sites (Cu-O ".chains" and "planes") whose NQR<br />

lines fall at roughly 22 MI-Iz and 31.5 MHz. Al<strong>th</strong>ough electron band <strong>th</strong>eory calculations imply<br />

similar electronic structure at <strong>th</strong>e two sites, spin-lattice relaxation time measurements reveal<br />

strikingly different behavior in bo<strong>th</strong> <strong>th</strong>e normal and superconducting states. In <strong>th</strong>e normal<br />

states, <strong>th</strong>e 22 MHz sites relax by an enhanced Korringa process <strong>th</strong>at exhibits <strong>th</strong>e usual roughly<br />

linear temperature dependence for <strong>th</strong>e relaxation rate. At 31 MHz, in contrast, <strong>th</strong>e rate<br />

increases only slightly wi<strong>th</strong> increasing temperature. Below To, spin-lattice relaxation reflects<br />

<strong>th</strong>e excitation spectrum of unpaired electrons ("quasiparticles"). Again, <strong>th</strong>e relaxation<br />

behavior is dramatically different for <strong>th</strong>e two sites. An exponential representation of <strong>th</strong>e<br />

relaxation rate yields a value 2A / kT c -- 2.4 for <strong>th</strong>e 22 MI-Iz sites (A is <strong>th</strong>e superconducting<br />

energy gap) while for 31.5 MHz, <strong>th</strong>e corresponding value is 2A / kT c -- 8.3. Reduced oxygen<br />

content (8 = 0.3) leads to relaxation at <strong>th</strong>e 31.5 MHz sites reduced by a factor - 1/1500 but<br />

only a modest 30 ~o effect at 22 MHz. This indicates <strong>th</strong>at <strong>th</strong>e former sites carry almost no<br />

conduction electron density and, by implication, do not participate in <strong>th</strong>e 60 K<br />

superconductivity observed in <strong>th</strong>is phase. The effects of extrinsic paramagnetic moments, <strong>th</strong>e<br />

assignment of <strong>th</strong>e NQR lines to <strong>th</strong>e respective Cu sites, and <strong>th</strong>e implications of <strong>th</strong>ese results of<br />

models of superconductivity will be discussed.<br />

45


TUE Eve 8" 30 I<br />

INFLU<strong>ENC</strong>E OF HIGH TEMPERATURE SUPERCONDUCTORS ON THE DESIGN OF NMR<br />

SPECTROMETERS: Howard Hill* and George Kneip, Varian Associates, Palo<br />

Alto, CA 94303<br />

Recent discoveries of materials which are superconducting at liquid<br />

nitrogen temperatures raise <strong>th</strong>e possibility of significant changes in <strong>th</strong>e<br />

design and operation of NMR spectrometers. While <strong>th</strong>e most obvious impact<br />

may be on <strong>th</strong>e superconducting magnet itself and <strong>th</strong>e associated cryogenics,<br />

<strong>th</strong>ere could also be major changes in <strong>th</strong>e way in which <strong>th</strong>e magnet and<br />

spectrometer are operated. In addition, <strong>th</strong>e probe and rf electronics may<br />

also be enhanced by <strong>th</strong>e use of superconducting components.<br />

A number of aspects of NMR spectrometer design will be discussed to<br />

indicate how performance and operation may be affected by fur<strong>th</strong>er<br />

advances in superconducting technology.<br />

46


TUE Eve 8-50 } Cu NQR OF YBa2Cu30 x WITH VARYING OXYGEN CONTENT:<br />

A. J. Vega*, W. E. Farne<strong>th</strong>, R. K. Bordia, and E. M. McCarron, Central<br />

Research and Development Department, E. I. du Pont de Nemours and<br />

Company, Experimental Station, Wilmington, Delaware 19898~<br />

The 63Cu and 65Cu NQR spectra of YBa2Cu30 x show a strong dependence<br />

on <strong>th</strong>e oxygen content when x is varied from 6 to 7. For x=7 two<br />

signals are observed at room temperature. The room-temperature<br />

signals generally consist of a short-T 1 (< 1 ms) and a long-T 1<br />

component (~ 100 ms). The relative intensity of <strong>th</strong>e short-T 1<br />

component gradually decreases from 100% to 0% when x is decreased<br />

from 7.0 to 6.0. In addition, <strong>th</strong>e line shapes of <strong>th</strong>e two T 1<br />

components are strongly dependent on <strong>th</strong>e oxygen content. While <strong>th</strong>e<br />

short Tl's are attributed to a Korringa-type relaxation mechanism<br />

involving <strong>th</strong>e conduction electrons, it may be assumed <strong>th</strong>at <strong>th</strong>e Cu<br />

sites wi<strong>th</strong> <strong>th</strong>e longer T 1 values are not directly associated wi<strong>th</strong> <strong>th</strong>e<br />

conduction process. The NQR data can <strong>th</strong>us be used to help interpret<br />

<strong>th</strong>e strong dependence of T c on <strong>th</strong>e oxygen content of <strong>th</strong>ese<br />

superconducting materials.<br />

47


8:30 a.m.<br />

9:00 a.m.<br />

9:25 a.m.<br />

9:35 a.m.<br />

9:45 a.m.<br />

10:10 a.m.<br />

WEDNESDAY MORNING<br />

MATERIALS IMAGING<br />

A. Garroway, Session Chair<br />

Removal of Extraneous Line Broadening for Solid State<br />

Imaging: How Much Is Enough?<br />

J. B. Miller, *A. N. Garroway.<br />

New Imaging of Rigid Solids.<br />

D. G. Cory, A. Reichwein, J. Van Os,<br />

*W. So Veeman.<br />

A Static NMR Image of a Rotating Object.<br />

*S. Matsui, K. Sekihara, H. Shiono,<br />

H. Kohno.<br />

Solid State Back Projection Imaging.<br />

J. Listerud, *G. Drobny.<br />

Fluid and Solid State NMR Imaging Techniques for Studying<br />

<strong>th</strong>e Processing of Advanced Ceramic Components.<br />

*J. L. Ackerman, L. Garrido,<br />

W. A. Ellingson, J. D. Weyand.<br />

Break.<br />

48


~X<br />

[I'IED 8:30 I<br />

REMOVAL OF EXTRANEOUS LINE BROADENING FOR SOLID STATE<br />

IMAGING: HOW MUCH IS ENOUGH, J. B. Miller and A. N. Garroway*,<br />

Naval Research Laboratory, Code 6122, Washington D. C. 20375-5000<br />

There are questions in materials science which can be<br />

addressed by NMR imaging. Under some circumstances, <strong>th</strong>ere is<br />

sufficient molecular motion wi<strong>th</strong>in <strong>th</strong>e specimen so <strong>th</strong>at <strong>th</strong>e now<br />

familiar techniques of medical NMR imaging (MRI) can be applied<br />

almost directly. However, <strong>th</strong>e more general case requires me<strong>th</strong>ods<br />

specifically for imaging rigid solids.<br />

In <strong>th</strong>is talk we present a number of solid state imaging<br />

approaches. Homonuclear line narrowing sequences are appended to<br />

<strong>th</strong>e usual Fourier transform imaging procedure to produce two-<br />

dimensional images of solids. Even rare sDin imaging is tenable,<br />

as o<strong>th</strong>er workers have shown. Though <strong>th</strong>e 13C signal is weaker<br />

<strong>th</strong>an <strong>th</strong>at of IH, heteronuclear decoupling is generally more<br />

efficient <strong>th</strong>an homonuclear decoupling in organic polymers. But<br />

reducing only <strong>th</strong>e dipolar contribution to <strong>th</strong>e linewid<strong>th</strong> may not<br />

be sufficient for best spatial resolution. We demonstrate <strong>th</strong>e<br />

removal of chemical shift-like broadening (isotropic and<br />

anisotropic chemical shifts, susceptibility, static field<br />

inhomogeneity) for bo<strong>th</strong> abundant (~H) and rare spin (13C) solid<br />

state imaging. We also present line narrowing me<strong>th</strong>ods and <strong>th</strong>e<br />

first results for solid state imaging wi<strong>th</strong> a surface coil.<br />

49


h<br />

[WED 9-00 I<br />

NMR IMAGING OF RIGID SOLIDS<br />

l<br />

D.G. CORY, A. REICHWEIN, J.W.M. VAN OS, W.S. VEEMAN<br />

LABORATORY OF PHYSICAL CHEMISTRY<br />

UNIVERSITY OF NIJMEGEN<br />

6525 ED NIJMEGEN, NETHERLANDS<br />

IH NMR images of solids have been obtained by performing proton line narrowing<br />

(MREV-8 and ~S) concurrently wi<strong>th</strong> imaging. This combination of techniques allows<br />

a wide variety of imaging experiments. We employ a rotating magnetic field gradient<br />

synchronized to <strong>th</strong>e spinning of <strong>th</strong>e sample (1). Image reconstruction techniques are<br />

used by varying <strong>th</strong>e phase difference between <strong>th</strong>e gradient and <strong>th</strong>e spinner.<br />

Distortion of images due to <strong>th</strong>e distribution of isotropic chemical shift are<br />

eliminated by a numerical procedure in <strong>th</strong>e time domain (2). The present resolution<br />

is ~ 30 ~lm.<br />

(I) D.G. Cory, J.W.M. van Os, W.S. Veeman; J.M.R. in press.<br />

D.G. Cory, A.M. Reichwein, J.W.M. van Os, W.S. Veeman; Chem. Phys Letters,<br />

in press.<br />

(2) D.G. Cory, A. Reichwein, W.S. Veeman; J.M.R., submitted.<br />

50<br />

(~)


. r<br />

WED 9:25 ]<br />

A STATIC NMR IMAGE OF A ROTATING OBJECT<br />

S. Matsui,* K. Sekihara, H. Shiono, and H. Kohno<br />

Central Research Laboratory, Hitachi, Ltd.<br />

P.O. Box 2, Kokubunji, Tokyo 185, Japan.<br />

An approach to imaging of a rotating object is described and demonstrated experimentally.<br />

The principle is to apply field gradients such <strong>th</strong>at <strong>th</strong>e N~ signal from <strong>th</strong>e<br />

rotating object observed under <strong>th</strong>e applied gradients results in appropriate scanning<br />

in <strong>th</strong>e spatial frequency domain, or <strong>th</strong>e k space. The scanning pattern must cover <strong>th</strong>e<br />

k space as uniformly as possible. A static image of <strong>th</strong>e rotating object can be obtained<br />

from such a scanning pattern by suitable data processing.<br />

When <strong>th</strong>e whole object is moving, one must consider <strong>th</strong>e field gradients in <strong>th</strong>e<br />

moving object frame, G (t), (not in <strong>th</strong>e laboratory frame, ~R(t)). Then, <strong>th</strong>e signal<br />

scanning pattern in <strong>th</strong>e object-frame k<br />

r<br />

space is<br />

(t) = W gr (t')dt' = Y 0<br />

r<br />

I<br />

Here, D_ is a transformation depending on <strong>th</strong>e object motion. In <strong>th</strong>e case of rotation<br />

about t~e Y axis at an angular frequency~o s, D G is given by<br />

(o t 0<br />

DG= 0 s 1 0 s<br />

t 0 cos ~ t .<br />

-sin ~s s<br />

In our preliminary two-dimensional (x,z) experiment, a gradient sequence in <strong>th</strong>e<br />

laboratory frame, B~(t) = (Go~O t, 0, Go), was applied to obtain a spiral scanning<br />

K<br />

pattern in <strong>th</strong>e object frame, k ~t) = (~G~tsin~ t, 0, Y G^tcos~ t). A phantom,<br />

r u V S<br />

consisting of two water-filled capillaries (~l.5Sand 2 nnn 1.d.), was rotated at 180<br />

Hz. The obtained proton image was consistent wi<strong>th</strong> <strong>th</strong>e dimensions of <strong>th</strong>e phantom.<br />

51


IWED 9:35 J<br />

SOLID STATE BACK PROJECTION IMAGING<br />

JOHN LISTERUD AND GARY DROBNY<br />

DEPARTMENTS OF ELECTRICAL ENGINEERING AND CHEMISTRY<br />

UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195<br />

Abstract<br />

The requirements of an NMR imaging system dedicated to materials science will be<br />

quite distinct from <strong>th</strong>ose of medical imaging. Not <strong>th</strong>e least of <strong>th</strong>ese differences will be <strong>th</strong>e<br />

degree of flexibility demanded of a research laboratory system as compared to <strong>th</strong>e turn-<br />

key philosophy of <strong>th</strong>e clinical imager. In particular, <strong>th</strong>e materials sciences challenge <strong>th</strong>e<br />

spectroscopist to combine <strong>th</strong>e classic NMR spectroscopies wi<strong>th</strong> <strong>th</strong>e imaging experiment.<br />

To <strong>th</strong>ese ends we describe <strong>th</strong>e construction of a multi-purpose microscopic NMR imaging<br />

probe for use on a standard spectrometer, and <strong>th</strong>e efficient adaptation of standard two<br />

dimensional NMR data processing utility to image processing. The probe is capable of<br />

a variety of experiments, including <strong>th</strong>e Kumar-Welti- Ernst experiment, backprojection<br />

by mechanical rotation of <strong>th</strong>e sample, and backprojection by electronic rotation of gradi-<br />

ents. Because of its simplicity, backprojection promises to be especially straightforward<br />

to combine wi<strong>th</strong> spectroscopic techniques such as chemical shift and multiple quantum<br />

spectroscopy. Fur<strong>th</strong>ermore, "macro" feature of <strong>th</strong>e standard two dimensional NMR data<br />

processing utility has a natural extension to tailored image processing, as demonstrated<br />

here by Tl and diffusion weighting of image grey scales.<br />

52


WED 9" 45 IFLUID AND SOLID STATE NMR IMAGING TECHNIQUES FOR STUDY-<br />

ING THE PROCESSING OF ADVANCED CERAMIC COMPONENTS: Jerome L. Ackerman, *~<br />

Leoncio Garrido, ~ William A. Ellingson, b and John D. Weyand; ~ ~Department of Radiology, NMR<br />

Facility, Massachusetts General Hospital, Boston, MA 02114; bMaterials and Components Technol-<br />

ogy Division, Argonne National Laboratory, Argonne, IL 60439; CResearch Laboratory, ALCOA<br />

Technical Center, Alcoa Center, PA 15069<br />

Nuclear magnetic resonance imaging has had major impact on medical diagnosis, but has only<br />

recently been investigated for its potential as an analytical tool in <strong>th</strong>e study of nonbiological ma-<br />

terials. Applying imaging techniques to, for example, a polymeric material offers <strong>th</strong>e possibility of<br />

studying many of <strong>th</strong>e physical and chemical properties normally analyzed wi<strong>th</strong> NMR, but now also<br />

in a manner which allows <strong>th</strong>e determination of how <strong>th</strong>ese properties vary wi<strong>th</strong> position wi<strong>th</strong>in <strong>th</strong>e<br />

specimen.<br />

We have used bo<strong>th</strong> fluid-state and solid-state NMR imaging to study <strong>th</strong>e processing of advanced<br />

ceramic materials. Elevated porosity or nonuniform binder distribution in green-state (unfired)<br />

specimens can lead to flaws in <strong>th</strong>e final densified part, and subsequent failure in service. To image<br />

<strong>th</strong>e porosity of a part, we introduce a carefully chosen tracer fluid into <strong>th</strong>e specimen by vacuum<br />

impregnation. We define <strong>th</strong>e NMR-derived porosity in a region as <strong>th</strong>e fraction of maximum signal<br />

intensity normalized to <strong>th</strong>at of pure tracer fluid. We image <strong>th</strong>e polymeric binders (burned out during<br />

final sintering) of green-state specimens wi<strong>th</strong> adaptations of standard 2DFT spin-echo techniques,<br />

wi<strong>th</strong> <strong>th</strong>e echo times TE reduced from <strong>th</strong>e typical clinical range of 15 to 100 msec to <strong>th</strong>e range of<br />

600 itsec to 4 msec, in correspondence to <strong>th</strong>e T2's of <strong>th</strong>ese materials. We employ image processing<br />

'and display techniques to enhance <strong>th</strong>e understandability of <strong>th</strong>e image data, and to derive measures<br />

of t, niformity such as porosity distribution functions.<br />

53


10:30 a.m.<br />

11:00 a.m.<br />

11:10 a.m.<br />

11:35 a.m.<br />

11:45 a.m.<br />

12:10 p.m.<br />

WEDNESDAY MORNING<br />

BIOLOGICAL IMAGING<br />

R. A. Byrd, Session Chair<br />

Multivolume Selective Spectroscopy, Deuterium Imaging and<br />

lzC-NMR as Tools for <strong>th</strong>e Study of<br />

in vivo Metabolism.<br />

*J. Seelig, S. Muller, J. Link,<br />

S. Cerdan.<br />

Human in vivo Spectroscopy at 4.0T.<br />

D. Hentschel, J. Vetter, R. Ladebeck,<br />

*M. J. Albright.<br />

Self Shielded Gradient Coils and Their Applications to<br />

Imaging.<br />

*P. B. Roemer, W. A. Edelstein,<br />

G. H. Glover.<br />

Quantification of Blood Flow and Tissue Perfusion via<br />

Deuterium NMR -- The Novel Use of D20 as a Freely<br />

Diffusible Tracer.<br />

*J. J. H. Ackerman, S. G. Kim, C. S. Ewy,<br />

N. N. Becker, Y. C. Hwang, R. A. Shalwitz.<br />

Angiography Using Magnetic Resonance.<br />

*A. Macovski, D. G. Nishimura.<br />

Lunch.<br />

54


i<br />

MULTIVOLUME SELECTIVE SPECTROSCOPY, DEUTERIUM IMAGING AND. 13C-NMR<br />

~ED 10:30 I AS TOOLS FOR THE STUDY OF IN VIVO METABOLISM<br />

Joachim Seelig , S. MUller, J. Link, and S. Cerdan, Biocenter, University of Basel,<br />

Basel, Switzerland<br />

The main problem of in vivo spectroscopy is <strong>th</strong>e precise selection of <strong>th</strong>e region of<br />

interest wi<strong>th</strong> sufficient sensitivity. Image-guided, simultaneous sgectroscopy of<br />

multiple volumes is possible via <strong>th</strong>e application of frequency selective pulses<br />

31<br />

composed of several excitation frequencies. The feasibility of multivolume P-NMR<br />

spectroscopy will be demonstrated for phantoms and for human heart. The availability<br />

of a rampable magnet allows routine MR-Imaging at 1.5 T and MR-Spectroscopy at 2 T<br />

wi<strong>th</strong> only 20 min intervals. Deuterium MR-Imaging will be introduced as a new me<strong>th</strong>od<br />

for contrast enhancement and flow. The application of 13C-NMR to <strong>th</strong>e in vivo study<br />

of liver metabolism of rat will be discussed.<br />

55


WED ii:00 J<br />

HUMAN IN VIVO SPECTROSCOPY AT 4.0T<br />

Dietmar Hentschel, Jurgen Vetter, Ralf Ladebeck, and Michael J. Albright*<br />

Siemens AG, D-8520 Erlangen, FDG<br />

A 4 T six-coil SCM wi<strong>th</strong> a warm bore of 1.25 m diameter was designed<br />

wi<strong>th</strong> high homogeneity for use wi<strong>th</strong> in vivo spectroscopy. Computer optimized<br />

design was used to correct terms up to 10<strong>th</strong> order. The magnet can be ramped<br />

to 4 T in 1 hour. The rated current is 376 A, and <strong>th</strong>e stored field energy is 39<br />

MJ. The field drift is less <strong>th</strong>an 3.6 x 10-e/h, and bare homogeneity of 100 ppm<br />

can be corrected to less <strong>th</strong>an +2.5 ppm for a 50 cm dsv. The total magnet<br />

weight is 10.6 tons.<br />

Increased spectral dispersion will be shown by comparison wi<strong>th</strong> 2 T<br />

spectra. Human in vivo 31p spectra at 4 T show resolution of <strong>th</strong>e different<br />

PDE resonances, and, on some spectra, separation of <strong>th</strong>e dinucleotides and<br />

nucleoside diphosphosugars upfield of <strong>th</strong>e (z-ATP peak.<br />

High field RF penetration will be demonstrated wi<strong>th</strong> a 1H image at 4 T.<br />

56


[WED 11-10 I SELF SHIELDED GRADIENT COILS AND THEIR APPLICATIONS<br />

TO IMAGING: P. B. Roemer *1, W. A. Edelstein 1, G. H. Glover 2. (1) GE Corporate Research and<br />

Development Center, Schenectady, NY 12345. (2) GE Medical Systems, Milwaukee, WI 53188.<br />

Gradient induced eddy currents adversely affect many imaging and volume spectroscopy techniques. In <strong>th</strong>is<br />

talk we cover <strong>th</strong>ree aspects of gradient coil design and <strong>th</strong>eir applications: i) <strong>th</strong>e nature of gradient induced<br />

eddy currents and <strong>th</strong>eir correctable and uncorretable components; ii) <strong>th</strong>e design of self-shielded gradient coils<br />

and limits to which <strong>th</strong>ey can reduce eddy currents; iii) <strong>th</strong>e impact of eddy currents on imaging and selective<br />

volume spectroscopy experiments.<br />

We show <strong>th</strong>at unshielded gradient coils of conventional design produce eddy currents on <strong>th</strong>e order of 20%<br />

of <strong>th</strong>e gradient field. Shaping of <strong>th</strong>e gradient waveform is typically used to compensate for eddy currents and<br />

<strong>th</strong>is technique in general can only be used to correct a single point in space. O<strong>th</strong>er points in <strong>th</strong>e imaging<br />

volume will have time dependent field errors on <strong>th</strong>e order of a few ten<strong>th</strong>s of a percent. We show <strong>th</strong>at <strong>th</strong>is<br />

level of eddy currents can adversely affect many imaging experiments such as multi-echo multi-slice, cardiac<br />

cine, phase contrast angiogrophy and volume selective spectroscopy. By using self-shielded gradient coils it<br />

is readily possible to reduce eddy currents by at least ano<strong>th</strong>er factor of 30, making <strong>th</strong>em almost undetectable.<br />

Results are presented for coils we have designed and operated <strong>th</strong>at range from small fast gradients (20 G/cm<br />

100 usec risetime, 15 cm bore) operated in small bore imaging systems to whole body imaging gradients<br />

(1G/cm, 500 usec, 66 cm bore).<br />

57


Wed 11:55<br />

QUANTIFICATION OF BLOOD FLOW AND TISSUE PERFUSION VIA DEUTERIUM<br />

I NMR-THE NOVEL USE OF D=O AS A FREELY DIFFUSIBLE TRACER:<br />

Joseph J.H. Ackerman i W , Seong-Ci Kim*, Coleen S. Ewy*, Nancy N.<br />

56cker*, Yuying C. Hwang*, and Robert A. Shalwitz2; Departments of Chemistry* and<br />

Pediatrics 2, Washington University, St. Louis, MO 631301 and 631102 .<br />

NMR has proven to be a valuable technique wi<strong>th</strong> which to monitor metabolic events<br />

nondestructively in intact biological systems. The past decade has witnessed dramatic<br />

advances in <strong>th</strong>e development of such spectroscopic analyses employing alp, 13C, and *H<br />

nuclides. Our laboratory has recently introduced a new approach, employing deuterium<br />

NMR in concert wi<strong>th</strong> D20 as a freely diffusible aqueous tracer, for <strong>th</strong>e measurement of<br />

blood flow and tissue perfusion I'2 This me<strong>th</strong>od borrows heavily from multicompart-<br />

ment kinetic modeling used wi<strong>th</strong> diffusible radiotracers such as H2*SO and 133Xe but,of<br />

course, does not require <strong>th</strong>e special handling procedures associated wi<strong>th</strong> radioactive<br />

labels. In addition, <strong>th</strong>e deuterium NMR blood flow determination can be carried out<br />

concomitant wi<strong>th</strong> NMR metabolic analysis, <strong>th</strong>us, correlating in one measurement impaired<br />

substrate delivery and its physiologic consequences. In brief, <strong>th</strong>e tissue or organ in<br />

which blood flow is to be determined is labeled wi<strong>th</strong> D20 via ei<strong>th</strong>er intravenous, intra<br />

arterial or intratissue bolus injection. Ongoing capillary blood flow, diffusion and<br />

proton-deuteron exchange serve to distribute HOD <strong>th</strong>roughout <strong>th</strong>e tissue's aqueous space<br />

Fur<strong>th</strong>er blood flow (unlabeled) <strong>th</strong>en washes out <strong>th</strong>e deuterium residue. The residue<br />

decay (washout) curve is accurately defined via external monitoring, i.e., 2H NMR.<br />

Single*, ~ and multicompartment modeling 3'4 and knowledge of <strong>th</strong>e blood:tissue<br />

partition coefficient (readily determined independently of <strong>th</strong>e NMR residue decay curve<br />

allows derivation of blood flow and perfusion in units of ml-blood/(lO0 g-tissue,min).<br />

The extension of <strong>th</strong>is me<strong>th</strong>od to NMR flow-imaging appears feasible s . [References: (i)<br />

J.J.H. Ackerman et al., Proc. Natl. Acad. Sci. USA, 84, 4099 (1987); (2) J.J.H.<br />

Ackerman et al., N.Y. Acad. Sci., 508, 89 (1987); (3) S.-G. Kim et al., Cancer<br />

Research, accepted (1987); (4) S.-G. Kim, et al., Magn. Reson..Med., submitted<br />

(1987); (5) C.S. Ewy eC al., Magn. Reson. Med., submitted (1987).]<br />

58


[WED 11:45 ] ANGIOGRAPHY USING MAGNETIC RESONANCE, Albert<br />

Nishimura, Dept. of EE, Stanford University, Stanford CA 94305<br />

Macovski~ and Dwight G<br />

Vessel disease is <strong>th</strong>e number one killer of western man, wi<strong>th</strong> coronary artery lesions<br />

<strong>th</strong>e principal source of heart disease, and carotid artery lesions <strong>th</strong>e principal source<br />

of strokes. We will present an array of techniques for studying <strong>th</strong>ese vessels wi<strong>th</strong><br />

magnetic resonance imaging, a completely non-invasive procedure. Each of <strong>th</strong>e approaches<br />

involves one or more combinations of <strong>th</strong>ree basic techniques: Phase shift in <strong>th</strong>e pres-<br />

ence of a gradient, wash-in wash-out effects, or cancellation excitation. The first is<br />

a classical phenomenon whereby moving material acquires a phase shift proportional to<br />

<strong>th</strong>e velocity component in <strong>th</strong>e gradient direction. Systems have been developed which<br />

subtract <strong>th</strong>e signals from two sequences having differing first gradient moments, <strong>th</strong>us<br />

displaying solely <strong>th</strong>e moving material. The second approach involves an upstream excita-<br />

tion followed by a downstream readout, or a variety of similar approaches. We have been<br />

~articularly successful wi<strong>th</strong> an approach where <strong>th</strong>e source of blood is subjected to an<br />

Lnversion excitation on one sequence and left unexcited on <strong>th</strong>e next. When <strong>th</strong>ese are<br />

subtracted, using identical readout sequences, all static tissue cancels while <strong>th</strong>e<br />

vessels are clearly visualized due to <strong>th</strong>e large difference between <strong>th</strong>e inverted and<br />

fresh spins. The <strong>th</strong>ird approach involves excitations which provide a net excitation for<br />

moving material only, while statlc material is left unexcited using a form of driven<br />

equilibrium. These vessel images are structured as projections <strong>th</strong>rough <strong>th</strong>e volume of<br />

interest so <strong>th</strong>at <strong>th</strong>e entire vessel is visualized despite its tortuous pa<strong>th</strong>. One of<br />

<strong>th</strong>e major problems is <strong>th</strong>e phase shift produced by higher order moments, such as accel-<br />

eration due to turbulence. This can cause loss of signal in regions of narrowing, often<br />

I crucial portion of <strong>th</strong>e image. Imaging sequences can be designed to make <strong>th</strong>e readout<br />

ery close to <strong>th</strong>e excitation, minimizing <strong>th</strong>is problem.<br />

I<br />

59


8:30 a.m.<br />

8:55 a.m.<br />

9:20 a.m.<br />

9:30 a.m.<br />

9:40 a.m.<br />

10:05 a.m.<br />

THURSDAY MORNING<br />

ORDERED BIOLOGICAL SYSTEMS<br />

L. Batchelder, Session Chair<br />

"Te<strong>th</strong>ered" Biological Systems: Results from NMR<br />

Spectroscopy.<br />

*L. Jelinski, R. W. Behling, D. Live,<br />

T. Yamane.<br />

Multinuclear Experiments for <strong>th</strong>e Determination of Oligo-<br />

saccharide Structure in Liquid Crystal Phases.<br />

*J. H. Prestegard, P. Ram,<br />

L. T. Mazzola.<br />

Dynamics of <strong>th</strong>e Gramicidin A Transmembrane Channel by<br />

Solid State lSN NMR.<br />

L. K. Nicholson, M. T. Brenneman,<br />

P. V. Lograsso, *T. A. Cross.<br />

Natural Abundance 13C and 14N NMR of Bacterial Osmolytes<br />

in vivo.<br />

*B. A. Lewis, S. C. Cayley,<br />

S. Padmanabhan, M. T. Record.<br />

NMR Studies of Anti-Spin Label Monoclonal Antibodies.<br />

*G. S. Rule, H. M. McConnell.<br />

Break.<br />

60


THU 8:30 "TETHERED" BIOLOGICAL SYSTEMS: RESULTS FROM NMR SPECTROSCOPY<br />

Lynn W. Jelinski," Ronald W. Behling, David Live, + and Tetsuo Yamane, AT&T Bell Laboratories, Murray Hill, NJ 07974.<br />

By "te<strong>th</strong>ered" biological systems, we mean assemblies in which two or more molecules arc ei<strong>th</strong>er covalently or transiently<br />

joined toge<strong>th</strong>er for <strong>th</strong>e purpose of biological action. Te<strong>th</strong>ered systems are a recurring <strong>th</strong>eme in biophysics; examples include<br />

enzyme - subswate complexes, DNA - protein interactions, receptor - ligand binding, and antigen - antibody recognition.<br />

NMR spectroscopy is exceptionally well-suited to address key questions regarding bo<strong>th</strong> site - site recognition and chain<br />

folding in te<strong>th</strong>ere.d biological assemblies.<br />

We will briefly describe <strong>th</strong>ree examples of te<strong>th</strong>ered assemblies. In <strong>th</strong>e first, polymer - peptide hybrids were constructed of<br />

polystyrene onto which was grown oligoglycines wi<strong>th</strong> varying but monodisperse chain leng<strong>th</strong>s. Using solid state deuterium<br />

NMR spectroscopy, we showed <strong>th</strong>at peptidc - peptide association occurred when <strong>th</strong>e chain leng<strong>th</strong>s were sufficient to form one<br />

overlap of <strong>th</strong>e polyglycine II triple helical repeat.<br />

In ano<strong>th</strong>er example, high resolution proton NMR was used to study <strong>th</strong>e binding of small ligands to <strong>th</strong>e acetylcholine receptor.<br />

Once <strong>th</strong>e strategy was in place for observation of binding by NMR, 2D-NOE experiments were performed to determine <strong>th</strong>e<br />

conformation of acetylcholine in its receptor-bound state. The results show <strong>th</strong>at <strong>th</strong>e conformation of <strong>th</strong>e receptor in <strong>th</strong>e<br />

bound state is significantly different from <strong>th</strong>at when free in solution, suggesting <strong>th</strong>at structure-activity relationships based<br />

solely on X-ray or solution conformations must be approached wi<strong>th</strong> caution.<br />

We are presently attempting to answer <strong>th</strong>e question of whe<strong>th</strong>er nucleation sites for protein folding are formed during protein<br />

syn<strong>th</strong>esis. To answer <strong>th</strong>is question, we are preparing "fake" ribosomes (polyacrylamide) onto which <strong>th</strong>e initial peptide<br />

segments of <strong>th</strong>e S-peptide of ribonuclease are attached. These "fake" ribosomes are designed to mimic <strong>th</strong>e way in which a<br />

protein would be syn<strong>th</strong>esized in <strong>th</strong>e cell. These te<strong>th</strong>ered structures will be compared to <strong>th</strong>e NMR spectra of <strong>th</strong>e S-peptide,<br />

whose solution state conformation is being determined.<br />

Taken toge<strong>th</strong>er, our results suggest <strong>th</strong>at a combination of modem NMR techniques and cleverly chosen systems will have a<br />

substantial impact on our understanding of <strong>th</strong>e structure and function of complex hybrid biological systems.<br />

+ Department of Chemistry, Emery University, Atlanta, GA 30322<br />

61


THU 8:55 ]<br />

MULTINUCLEAR EXPERIMENTS FOR THE DETERMINATION OF<br />

OLIGOSACCHARIDE STRUCTURE IN LIQUID CRYSTAL PHASES: J. H. Prestegard~,<br />

Pree<strong>th</strong>a Ram, and L. T. Mazzola, Department of Chemistry, Yale University,<br />

New Haven, CT 06511.<br />

The dependence of quadrupole and magnetic dipole splittings on orientation<br />

of internuclear vectors relative to applied magnetic fields can, in<br />

principle, provide a great deal of information on <strong>th</strong>e conformation and<br />

orientation of molecules in llquld crystal phases. In practice, however,<br />

it is difficult to obtain a sufficient number of independent spllttlngs to<br />

reduce <strong>th</strong>e ambiguity inherent in <strong>th</strong>e multlvalued solutions for spllttlngs<br />

in terms of angles, and to eliminate order parameters which scale<br />

spllttlngs in <strong>th</strong>ese environments.<br />

We will show <strong>th</strong>at in some cases, it is possible to obtain sufficient<br />

information by combining data from 2H quadrupole spllttlngs, 13C-IH dipolar<br />

spllttlngs, and IH-IH dipolar spllttlngs. Observation of <strong>th</strong>ese spllttlngs<br />

is facilitated by use of liquid crystal phases which are relatively free of<br />

background signals, and use of experiments which exploit unique<br />

spectroscopic properties of quadrupole and dipole couplings. In o<strong>th</strong>er<br />

cases, spectroscopic information can be supplemented wi<strong>th</strong> energetic<br />

descriptions of molecular conformations contained in molecular mechanics<br />

and molecular dynamics programs. Examples of structure determination on<br />

surface associated dlsaccharides and membrane anchored glycoltpids will be<br />

given.<br />

82


• / I<br />

DYNAMICS OF THE GRAMICIDIN A TRANSMEMBRANE CHANNEL BY<br />

THU 9:20 I SOLID STATE 15N NMR: L.I~ Nicholson, M. T. Brenneman, P.V. LoGrasso and<br />

T.A. Cross, Florida State University, Institute of Molecular Biophysics and<br />

Department of Chemistry, Tallahassee, Florida 32306.<br />

The dynamics of specific sites in <strong>th</strong>e peptide backbone of <strong>th</strong>e gramicidin A cation selective<br />

transmembrane channel have been studied using solid state 15 N NMR. Gramicidin A is a polypeptide<br />

consisting of fifteen amio acids which dimerizes to form a single stranded helical pore in a lipid bilayer.<br />

Its generally accepted structure is <strong>th</strong>e ~6.3 helix which, due to <strong>th</strong>e uniquely alternating L/D amino acid<br />

sequence places <strong>th</strong>e bydrophobic side chains on <strong>th</strong>e outside of <strong>th</strong>e channel where <strong>th</strong>ey interact wi<strong>th</strong> <strong>th</strong>e<br />

hydrocarbon core of <strong>th</strong>e bilayer, and <strong>th</strong>e polar peptide linkages along <strong>th</strong>e interior of <strong>th</strong>e channel which<br />

enhances solvation of <strong>th</strong>e channel ion. Al<strong>th</strong>ough gramicidin is <strong>th</strong>e most extensively studied channel, an<br />

atomic resolution mechanism Of ion transport is not known. Characterization of motions of various groups<br />

wi<strong>th</strong>in <strong>th</strong>e channel backbone will help to elucidate <strong>th</strong>e specific interactions <strong>th</strong>at result in transport of <strong>th</strong>e ion<br />

across <strong>th</strong>e membrane. Motions of specific sites along <strong>th</strong>e channel backbone have been detected by observing<br />

<strong>th</strong>e averaging of <strong>th</strong>e 15N chemical shift anisotropy (CSA) tensor as a function of temperature in bo<strong>th</strong> oriented<br />

and unoriented samples. It has previously been shown <strong>th</strong>at fast overall channel rotation occurs in and<br />

above <strong>th</strong>e lipid phase transition region, and <strong>th</strong>at <strong>th</strong>e axis of rotation coincides wi<strong>th</strong> <strong>th</strong>e channel axis which is<br />

parallel to <strong>th</strong>e bilayer normal. This global rotation becomes slow on <strong>th</strong>e 3kHz timeframe of <strong>th</strong>e NMR<br />

experiment when <strong>th</strong>e temperature is below <strong>th</strong>e onset of <strong>th</strong>e phase transition. Recent studies of <strong>th</strong>e temperature<br />

dependence of <strong>th</strong>e 15N spectra of bo<strong>th</strong> oriented and unoriented samples show evidence for local motions of <strong>th</strong>e<br />

peptide linkages existing above <strong>th</strong>e onset of <strong>th</strong>e gel to liquid crystalline phase transition, and <strong>th</strong>at <strong>th</strong>e<br />

amplitude of <strong>th</strong>ese motions varies along <strong>th</strong>e channel backbone. These local motions have a large amplitude<br />

at <strong>th</strong>e monomoer - monomer juction where <strong>th</strong>e peptide linkage planes contribute a proton to <strong>th</strong>e hydrogen<br />

bonds linking <strong>th</strong>e two monomers. The temperature dependence of oriented samples where yield a very<br />

sharp resonance above <strong>th</strong>e phase transition region has proved to be a very sensitive indicator of dynamics<br />

when <strong>th</strong>e temperature is lowered. The resonance linewid<strong>th</strong> below <strong>th</strong>e phase transition reflects directly on <strong>th</strong>e<br />

range of orientations swept out by <strong>th</strong>e dynamic process at higher temperatures. This new tool for assessing<br />

dynamics should have broad application in systems <strong>th</strong>at can be oriented.<br />

63


I NATURAL ABUNDANCE 13 C and 14 N NMR (IF BACTERIAL OSIIOLYIES IN VlYO. B.A.<br />

THU 9 • 3 0 .I Lewis,eS.C.Cayley, S. Padmanabhan, and II.T. Record, dr. Dept. of Chemistry,<br />

University of Wisconsin, Madison Wl 53706.<br />

Bacteria such as E. Coil and_5, lyphimurium are capable ol growir 0 under conditions of moderately<br />

high osmotic stress, up to about 0.7 molar salt. To adapt to such hi~h-osmolarity enviror~ments, <strong>th</strong>e b~~l.erial<br />

cell accumulates potassium ions and also syn<strong>th</strong>esizes or accurnulal.es one or more small orgonic molecules.<br />

These include <strong>th</strong>e anion glutamate and <strong>th</strong>e neutral or zwitterionic molec..ules prol ine, glycine betaine (I,I,I,I,H-<br />

trime<strong>th</strong>yl glycine) and/or trehalase, a glucose dimer. Because <strong>th</strong>ese small molecules are accumulated to<br />

intracellular concentrations on <strong>th</strong>e order of 0.5 molal, <strong>th</strong>ey are re~Jily observed in dense cell slurries by<br />

natural abundance 13 C NMR on our Bruker AM360 wi<strong>th</strong> a I 0 turn br-c,~lband probe. I '-1N NI'IR is al~ u.~ful to<br />

observe glycine betaine, which h~ a relatively narrow 14 N spectrum due to <strong>th</strong>e symmetric environment of<br />

<strong>th</strong>e nitrogen and its lack of exchangeable protons.<br />

We are able to measure <strong>th</strong>e relative and absolute amounts of <strong>th</strong>e various or~nic osmolytes ~..~:umulaled<br />

by <strong>th</strong>e bacteria in vivo under a variety of environmental conditions. In minimal medium wi<strong>th</strong> 0.5 M l'laCI,<br />

trehalose and glutamate are <strong>th</strong>e on!y small organic molecules pre~nt in high amounts. If I mM proline is added<br />

to <strong>th</strong>e medium, it is accumulated to nearly 0.4 M intracellular ly, wi<strong>th</strong> some diminution of <strong>th</strong>e trehsl~-e., and<br />

glutamate levels. Glycine betaine, however, also supplied at I raM, is accumulated to about 0.5 M, and<br />

trehalose is completely eliminated.<br />

Under <strong>th</strong>ese, high salt conditions, significant amounts of rf power are absorbed by <strong>th</strong>e sample,<br />

particularly at <strong>th</strong>e high frequencies of 90 IiHz for 13 C and 360 for i H. Thus for- <strong>th</strong>e 13 C e×periments we<br />

employ gated proton decoupling to minimize sample heating. In ~.klition, <strong>th</strong>e pulse leng<strong>th</strong>s must be calibrated<br />

for each sample, and internal standards must be used for quantitative measurement.<br />

64


I THU 9:40 I<br />

NMR STUDIES OF ANTI-SPIN LABEL MONOCLONAL ANTIBODIES: D. J. Leahy, G. S. Rule',<br />

and H. M. McConnell, Dept. of Chemistry, Stanford University, Stanford, CA, 94305.<br />

Current progress towards <strong>th</strong>e application of NMR to <strong>th</strong>e study of proteins has been largely<br />

restricted to protein molecules of low (10-15 KDa) molecular weight. We are currently utilizing<br />

a number of approaches to obtain interpretable proton NMR spectra from a large protein, <strong>th</strong>e Fab<br />

fragment of an immunoglobulin.<br />

The NMR spectra are simplified by me<strong>th</strong>ods of deuteration. We deuterate <strong>th</strong>e Fab fragment<br />

Wi<strong>th</strong> bo<strong>th</strong> perdeuterated and partially deuterated amino acids. The partial deuteration results in <strong>th</strong>e<br />

removal of J coupling between protons. Thus we can observe and study individual resonance lines<br />

from aromatic protons of Tyr and Trp residues, and <strong>th</strong>e me<strong>th</strong>yl groups of Val, Leu, lie, Thr, or Ala<br />

residues.<br />

The proton NMR spectra are fur<strong>th</strong>er simplified by utilizing a spin-labelled hapten to<br />

selectively broaden NMR signals from protons near <strong>th</strong>e combining site. Chemical exchange of <strong>th</strong>e<br />

hapten modulates <strong>th</strong>is broadening effect and spectra obtained at different occupancy levels can yield<br />

measurements of <strong>th</strong>e distance between <strong>th</strong>e hapten and <strong>th</strong>e amino acid residues in <strong>th</strong>e range of 8-17<br />

A.<br />

By combining distance measurements, resonance assignments, and molecular modelling we<br />

intend to develop a working model of <strong>th</strong>e antibody combining site.<br />

65


10:25 a.m.<br />

10:55 a.m.<br />

11:05 a.m.<br />

11:35 a.m.<br />

THURSDAY MORNING<br />

DYNAMIC NUCLEAR POLARIZATION<br />

N. Zumbulyadis, Session Chair<br />

New Techniques for Dynamic Nuclear Polarization.<br />

W. Th. Wenckebach.<br />

Time Domain ENDOR Studies of Disordered Solids.<br />

P. J. Tindall, M. Bernardo,<br />

*H. Thomann.<br />

Dynamic Nuclear Polarization: A Me<strong>th</strong>od for Surface-<br />

Selective NMR.<br />

*G. G. Maresch, R. D. Kendrick,<br />

C. S. Yannoni, M. E. Galvin.<br />

Dynamic Nuclear Polarization in <strong>th</strong>e Nuclear Rotating Frame.<br />

*R. A. Wind, H. Lock, L. Li,<br />

G. E. Maciel.<br />

66


THU 10"2S I<br />

NEW TECHNIQUES POR<br />

DYNAMIC NUCLEAR POLARIZATION<br />

W.Th. W<strong>ENC</strong>KEBACH<br />

KAMERLINGH ONNES LABORATORY, P.O.BOX 9506,<br />

2300 RA LEIDEN, THE NETHERLANDS<br />

Two new techniques for dynamic nuclear polarization have recently been<br />

developed: Microwave induced optical nuclear polarization (MIONP) and<br />

nuclear orientation via electron spin lock (NOVEL). In <strong>th</strong>e first technique<br />

photoexcited states wi<strong>th</strong> an electron spin are used to polarize nuclear spins.<br />

As in classical dynamic nuclear polarization <strong>th</strong>e electron spin polarization<br />

k transferred to <strong>th</strong>e nuclear spins using cw microwave irradiation. In <strong>th</strong>e<br />

second technique <strong>th</strong>e electron spin polarization is transferred by means of<br />

pulsed microwave techniquea First <strong>th</strong>e electron spin is locked by a ~-pulse<br />

followed by a ~--phase shift. Then <strong>th</strong>e nuclear spins and <strong>th</strong>e electron spins<br />

are brought to mutual resonance by choosing <strong>th</strong>e Rabi frequency of <strong>th</strong>e<br />

latter equal to Larmor frequency of <strong>th</strong>e former. As a result polarization<br />

tr-~uffer ~ obee~ed.<br />

67


ITHU 10"55 I TIME DOMAIN ENDOR STUDIES OF DISORDERED SOLIDS: P. J. Tindall, M.<br />

Bernardo, and H. Thomann, EXXON Corporate Research Laboratory, Route 22 East,<br />

Annandale, N. J. 08801<br />

Spectral simplification, resolution enhancement, and sensitivity enhancement are well<br />

known advantages of multiple frequency techniques used in NMR. The ability to<br />

coherently excite and coherently transfer longitudinal or transverse magnetization<br />

among sub-levels of <strong>th</strong>e spin system elgenstates is fundamental for <strong>th</strong>e success of<br />

most of <strong>th</strong>ese experiments and is only possible wi<strong>th</strong> time domain pulsed excitation. Ir<br />

contrast to NMR, <strong>th</strong>e most widely applied multiple resonance technique in ESR, <strong>th</strong>e<br />

ENDOR experiment, has traditionally been performed in <strong>th</strong>e frequency domain. However,<br />

recent advances in instrumentation have now made time domain ENDOR more feasible.<br />

The time domain analog of <strong>th</strong>e CW-ENDOR exper-lment is magnetization transfer (MT)<br />

ENDOR using <strong>th</strong>e Davies pulse sequence. MT-ENDOR has <strong>th</strong>e advantage <strong>th</strong>at <strong>th</strong>e ENDOR<br />

enhancement does not depend on <strong>th</strong>e ratio of <strong>th</strong>e electron and nuclear T 1 rates as it<br />

does in CW-ENDOR. Fur<strong>th</strong>ermore, time domain excitation also makes possible more<br />

complex double resonance experiments which depend on coherence transfer, such as<br />

CT-ENDOR and splnor ENDOR recently demonstrated by Mehring et al. The general<br />

applicability of <strong>th</strong>ese techniques to disordered solids will be governed by electron<br />

T I and T m (phase memory) times which are typically shortened by disorder effects.<br />

Fortunately, in many cases of interest, relaxation times for hydrocarbon radicals in<br />

condensed hydrocarbons are sufficiently long for successful magnetization and<br />

coherence transfer experiments even at room temperature. Experiments on transition<br />

metal ion complexes and metal clusters are possible at liquid He temperatures. Some<br />

recent time domain ENDOR results on isolated coal macerals, polyacetylene, and frozer<br />

solutions of transition metal ion complexes will be presented.<br />

68


I THU 11 : 05 I<br />

DYNAMIC NUCLEAR POLARIZATION: A METHOD FOR SURFACE-SELECTIVE NMR<br />

G. G. Maresch, R. D. Kendrick, and C. S. Yannoni*<br />

IBM Research Division, Almaden Research Center, San Jose, California<br />

and<br />

M. E. Galvin<br />

AT&T Bell Laboratories, Murray Hill, New Jersey<br />

Dynamic Nuclear Polarization (DNP) holds promise as a me<strong>th</strong>od for <strong>th</strong>e study of molecules<br />

at <strong>th</strong>e surface of materials which contain unpaired electrons. The idea in <strong>th</strong>e kind of<br />

experiments <strong>th</strong>at will be described here is to use bulk samples, but to selectively polarize<br />

nuclei in molecules <strong>th</strong>at sit on <strong>th</strong>e Internal surfaces of "islands" of electron-rich material<br />

<strong>th</strong>at has been dispersed in <strong>th</strong>e bulk. Selectivity is achieved via <strong>th</strong>e short range of <strong>th</strong>e<br />

electron-nuclear coupling. The bulk material may be an organic or inorganic solid or<br />

polymer (e.g. polye<strong>th</strong>ylene), while <strong>th</strong>e electrons may be localized in metal clusters or<br />

small islands of a semiconductor like polyacetylene. The requirement of confining <strong>th</strong>e<br />

dynamic polarization of even rare nuclei like 13C to <strong>th</strong>e surface of <strong>th</strong>e electron-rich islands<br />

poses a challenge and our efforts to do <strong>th</strong>is have resulted in <strong>th</strong>e confirmation of a<br />

"<strong>th</strong>ree-spin" effect. Al<strong>th</strong>ough related observations have been made in DNP studies of<br />

dilute solutions of free radicals 1, <strong>th</strong>e <strong>th</strong>ree-spin effect discussed here arises from a<br />

number of dynamical processes peculiar to <strong>th</strong>e static configuration of <strong>th</strong>e <strong>th</strong>ree spins<br />

(electron, proton and carbon in <strong>th</strong>is case) in solids.<br />

. R. E. Richards and J. W. White, Disc. Faraday Soc. 3._44, 96 (1962);<br />

K. H. Hausser and F. Reinbold, Phys. Lett. 2 , 53 (1962).<br />

69


THU 11:35 I<br />

DYNAMIC NUCLEAR POLARIZATION IN THE NUCLEAR ROTATING FRAME, R~A.<br />

Wind, H. Lock, L. Li and G.E. Maciel, Department of Chemistry,<br />

Colorado State University, Ft. Collins, CO 80523.<br />

Traditionally Dynamic Nuclear Polarization (DNP) has been used to enhance <strong>th</strong>e<br />

nuclear polarization directed along <strong>th</strong>e external magnetic field. Several DNP mecha-<br />

nisms can be responsible for <strong>th</strong>is polarization enhancement, depending on <strong>th</strong>e time-<br />

dependence and character of <strong>th</strong>e electron-nuclear interactions: <strong>th</strong>e Overhauser<br />

effect, <strong>th</strong>e Solid-state effect and <strong>th</strong>e direct and indirect <strong>th</strong>ermal mixing effects.<br />

In solids containing organic radicals all mechanisms often determine <strong>th</strong>e observed<br />

enhancement. It will be shown <strong>th</strong>at it is also possible to enhance <strong>th</strong>e nuclear<br />

polarization in its rotating frame. This is obtained by irradiating wi<strong>th</strong> a strong<br />

r.f. field at <strong>th</strong>e nuclear Larmor frequency during <strong>th</strong>e microwave irradiation. Com-<br />

pared wi<strong>th</strong> <strong>th</strong>e conventional me<strong>th</strong>od of DNP <strong>th</strong>is technique has several advantages:<br />

(i) <strong>th</strong>e build-up time of <strong>th</strong>e nuclear polarization is determined by <strong>th</strong>e rotating-<br />

frame relaxation time, which is often much shorter <strong>th</strong>an <strong>th</strong>e Zeeman relaxation time;<br />

(ii) The 'forbidden' transition rate, which determines <strong>th</strong>e enhancement due to <strong>th</strong>e<br />

indirect <strong>th</strong>ermal mixing effect, is several orders ofmagnitude larger in <strong>th</strong>e rotating<br />

frame <strong>th</strong>an in <strong>th</strong>e laboratory frame. As a result <strong>th</strong>e enhancement due to <strong>th</strong>is effect<br />

is one to two orders of magnitude larger in <strong>th</strong>e rotating frame <strong>th</strong>an in <strong>th</strong>e labora-<br />

tory frame; (iii) If <strong>th</strong>e Zeeman relaxation time is short, <strong>th</strong>e DNP enhancement in <strong>th</strong>e<br />

laboratory frame can be reduced, whereas <strong>th</strong>e rotating-frame enhancement remains<br />

large; (iv) rotating-frame DNP of abundant spins opens <strong>th</strong>e possibility for multiple-<br />

contact cross-polarization (CP) experiments and for CP experiments wi<strong>th</strong> long contact<br />

times, independent of <strong>th</strong>e value of <strong>th</strong>e rotating-frame relaxation time.<br />

Applications will be shown of rotating-frame 1H DNP and 13C-1H CP experiments<br />

in doped styrene and coal.<br />

70


THIS SECTION CONTAINS A LISTING OF POSTERS<br />

FOLLOWED BY THE ABSTRACTS IN THE SAME SEQU<strong>ENC</strong>E<br />

AS THE LISTING.<br />

PLEASE NOTE THE NUMBER PRECEDING EACH TITLE<br />

IN THE LISTING. EACH POSTER SHOULD BE MOUNTED<br />

ON THE BOARD WITH THE CORRESPONDING NUMBER.<br />

AUTHORS OF POSTERS WITH EVEN NUMBERS SHOULD BE<br />

PRESENT DURING THE POSTER SESSION ON MONDAY AFTERNOON.<br />

AUTHORS OF POSTERS WITH ODD NUMBERS SHOULD BE<br />

PRESENT DURING THE WEDNESDAY AFTERNOON SESSION.<br />

71


1 SOLID PHASE CARBON-13 NMR STUDIES OF CROWN ETHERS AND THEIR<br />

COMPLEXES; *BUCHANAN, G W, MORAT, C, KIRBY, R A, RATCLIFFE, C I<br />

AND RIPMEESTER, J A; CARLETON UNIV, OTTAWA, CANADA.<br />

2 A NEW APPROACH FOR QUANTITATIVE 13C-NMR SPECTROSCOPY OF COAL;<br />

*BOTTO, R E, MUNTEAN, J V AND STOCK, L M; ARGONNE NAT'L<br />

LABORATORY, ARGONNE, IL.<br />

3 31P SOLID STATE NMR STUDIES OF ZrP, Mg3P2, MgP4, AND CdPS3;<br />

*NIISAN, R A AND VANDERAH, T A; NAVAL WEAPONS CTR, CHINA LAKE,<br />

CA.<br />

4 HIGH RESOLUTION SPECTRA OF LIQUIDS IN INHOMOGENEOUS<br />

ENVIRONMENTS AS ONTAINED BY MASS; *RUTAR, V; IOWA STATE UNIV,<br />

AMES, IA.<br />

5 CONSTRAINED DECONVOLUTION OF 2D NMR SPECTRA AND IMAGES;<br />

*SOLE, P, DELAGLIO, F AND LEVY, G C; NEW METHODS RESEARCH,<br />

SYRACUSE, NY.<br />

6 AUTOMATED HI SPECTRA MADE ON AN XL-300;<br />

UPjOHN CO, KALAMAZOO, MI.<br />

*SLOMP, G; THE<br />

7 CALCULATION OF 29SI MAS NMR CHEMICAL SHIFT FROM SILICATE<br />

MINERAL STRUCTURE; *SHERRIFF, B L AND GRUNDY, H D; MCMASTER<br />

UNIV, HAMILTON, CANADA.<br />

8 NONLINEAR INCOHERENT SPECTROSCOPY; PAFF, J AND *BLUMICH, B;<br />

MAX-PLANCK-INST F POLYMERFORSCHUNG, MAINZ, FRG.<br />

72


9 ELIMINATION OF PHASE ROLL, SOLVENT SUPPRESSION, AND<br />

UNIFORM SPIN-1 EXCITATION WITH SHAPED PULSES; WARREN, W S,<br />

MCCOY, M AND *HASENFELD, A; PRINCETON UNIV, PRINCETON, NJ.<br />

10 127I NMR STUDY OF QUADRUPOLAR ECHOES IN KI;<br />

C; MCGILL UNIV, MONTREAL, CANADA.<br />

*SANCTUARY, B<br />

11 AN NMR STUDY OF MISCIBLE BLENDS IN CONCENTRATED SOLUTION;<br />

*CROWTHER, M W, CABASSO, I AND LEVY, G C; NEW METHODS RESEARCH,<br />

SYRACUSE, NY.<br />

12 POT<strong>ENC</strong>Y OF FLUORINATED ETHER ANESTHETICS CORRELATES WITH<br />

SPIN-SPIN RELAXATION TIME IN BRAIN; *D'AVIGNON, D A, HAYCOCK, J<br />

C AND EVERS, A S; WASHINGTON, UNIV, ST LOUIS, MO.<br />

13 QUANTIFICATION OF BLOOD FLOW AND TISSUE PERFUSION VIA<br />

DEUTERIUM NMR - THE NOVEL USE OF D20 AS A FREELY DIFFUSIBLE<br />

TRACER; *ACKERMAN, J J H, KIM, S-G, EWY, C S, BECKER, N N,<br />

HWANG, Y C AND SHALWITZ, R A; WASHINGTON UNIV, ST LOUIS, MO.<br />

14 SILICON-29 MASNMR ANALYSIS OF SINTERED Si3N4 CERAMICS;<br />

*CARDUNER, K R; FORD MOTOR CO, DEARBORN, MI.<br />

15 19F CRAMPS OF INORGANIC FLUORIDE COMPOUNDS; *SMITH, K A<br />

AND BURUM, D P; COLGATE-PALMOLIVE, PISCATAWAY, NJ.<br />

16 13C NMR RELAXATION STUDIES OF GLUCONATE AND MANCANESE-<br />

GLUCONATE INTERACTIONS~ *CARPER, W R AND COFFIN, D B; WICHITA<br />

STATE UNIV, WICHITA, KS.<br />

73


17 QUANTITATIVE 2D NMR STUDIES OF PROTON EXCHANGE IN AMMONIUM<br />

ION; *PERRIN, C L AND DWYER, T J; UNIV OF CALIFORNIA, SAN<br />

DIEGO, CA.<br />

18 TWO-DIMENSIONAL NMR STUDIES OF THE CONFORMATIONS OF<br />

BRADYKININ IN AQUEOUS SOLUTION AND IN THE PRES<strong>ENC</strong>E OF MICELLES;<br />

*LEE, S C AND RUSSELL, A F; PROCTER & GAMBLE, CINCINNATI, OH.<br />

19 DIPOLAR AND SPIN-ROTATION POLARIZATION OF METHYL GROUP<br />

SPINS; *MURPHY, M AND WHITE, D; UNIV OF PENNSYLVANIA,<br />

PHILADELPHIA, PA.<br />

20 NMR SIGNAL PROCESSING USING PADE APPROXIMANT AND LINEAR<br />

PREDICTION Z-TRANSFORM METHOD; *TANG, J, ZENG, Y AND NORRIS, J<br />

R; ARGONNE NAT'L LABORATORY, ARGONNE, IL.<br />

21 24 DETECTION OF LONG-RANGE 1H-19F COUPLINGS USING A<br />

HETERONUCLEAR EQUIVALENT OF THE COSY PULSE SEQU<strong>ENC</strong>E; *HUGHES D<br />

W AND BAIN, A D; MCMASTER UNIV, HAMILTON, CANADA.<br />

22 STUDIES OF PHOSPHORYLATED SITES IN PROTEINS USING 1H-31p 2-<br />

DIMENSIONAL NMR; *LIVE, D H AND EDMONDSON, D E; EMORY UNIV,<br />

ATLANTA, GA.<br />

23 A SOLID-STATE 2H AND 13C NMR STUDY OF THE STRUCTURE OF<br />

POLYANILINES; *KAPLAN, S, CONWELL, E M, RICHTER, A F AND<br />

MACDIARMID, A G; UNIV OF PENNSYLVANIA, PHILADELPHIA, PA.<br />

24 TWO-DIMENSIONAL FLUORINE NMR;<br />

UNIV OF FLORIDA, GAINESVILLE, FL.<br />

74<br />

*PLANT, H D AND BREY, W S;


25 NUCLEAR MAGNETIC RESONANCE STUDIES OF GROUP VI METAL<br />

CARBONYLS ON OXIDE SUPPORTS; *SHIRLEY, W M; WICHITA STATE UNIV,<br />

WICHITA, KS.<br />

26 A NOVEL METHOD FOR DETERMINING ACTIVATION ENERGIES AND<br />

CORRELATION TIMES FROM NMR SPIN-LATTICE RELAXATION DATA;<br />

*FINEMAN, M A; SAN DIEGO STATE UNIV, SAN DIEGO, CA.<br />

27 COLLECTION OF PHOSPHORUS-31NMR SPECTRA FROM RAT PUPS WITH<br />

INDUCED HYPERTHERMIA; *FORD, J J, TABER, K H AND BRYAN, R N;<br />

BAYLOR MAGNETIC RESONANCE CTR, HOUSTON, TX.<br />

28 HIGH PRESSURE DEUTERIUM SOLID STATE NMR OF POLYCRYSTALLINE<br />

CdPS3 INTERCALATED WITH PYRIDINE; *MCDANIEL, P L, LIU, G AND<br />

JONAS, J; UNIV OF ILLINOIS, URBANA, IL.<br />

29 SOLID-STATE NMR STUDY OF THE STRUCTURE AND DYNAMICS OF<br />

PLANT POLYESTERS AND INTACT PLANT CUTICLE; *GARBOW, J R<br />

ZLOTNIK-MAZORI, T, FERRANTELLO, L M AND STARK, R E; MONSANTO CO,<br />

ST LOUIS, MO.<br />

30 A STATIC NMR IMAGE OF A ROTATING OBJECT; *MATSUI, S,<br />

SEKIHARA, K, SHIONO, H AND KOHNO, H; HITACHI LTD, TOKYO, JAPAN.<br />

31 DELAYED REFOCUSSING TWO-DIMENSIONAL NMR IN ROTATING SOLIDS;<br />

*KOLBERT, A C, RALEIGH, D P, LEVITT, M H AND GRIFFIN, R G; MIT,<br />

CAMBRIDGE, MA.<br />

32 MEASUREMENTS OF TWO-DIMENSIONAL NMR POWDER PATTERNS IN<br />

ROTATING SOLIDS; NAKAI, T, ASHIDA, J AND *TERAO, T; KYOTO UNIV,<br />

KYOTO, JAPAN.<br />

75


33 INTERPRETATION OF THE NMR NUTATION SPECTRA; *SAMOSON,<br />

A AND LIPPMAA, E; ESTONIAN ACADEMY OF SCI<strong>ENC</strong>ES, TALLINN, USSR.<br />

34 RF PUMPING EFFECTS IN HEXAMETHYLENETETRAMINE; *SANDERS, J<br />

P, FINEMAN, M A AND BURNETT, L J; SAN DIEGO STATE UNIV, SAN<br />

DIEGO, CA.<br />

35 DYNAMIC NUCLEAR POLARIZATION STUDIES OF A MOLECULARLY DOPED<br />

POLYMER; WIND, R A, LI, L, MACIEL, G E, *ZUMBULYADIS, N AND<br />

YOUNG, R H; EASTMAN KODAK CO, ROCHESTER, NY.<br />

36 FREQU<strong>ENC</strong>Y SWITCHED INVERSION PULSES AND THEIR<br />

APPLICATION TO BROADBAND DECOUPLING; FUJIWARA, T AND *NAGAYAMA,<br />

K; JEOL LTD, TOKYO, JAPAN.<br />

37 MOLECULAR MOTIONS IN SOLIDS MEASURED FROM 13C LINEWIDTHS;<br />

NICELY, V A AND *HENRICHS, P M; EASTMAN KODAK CO, ROCHESTER, NY.<br />

38 HIGH RESOLUTION ELECTROPHORETIC NMR (ENMR) OF A MIXTURE;<br />

*SAARINEN, T R AND JOHNSON, C S; UNIV OF NORTH CAROLINA, CHAPEL<br />

HILL, NC.<br />

39 2D NMR STUDIES AT 600 MHZ OF A PROTEIN-DNA COMPLEX USING<br />

IMPROVED TECHNIQUES FOR WATER SUPPRESSION AND HETERONUCLEAR<br />

CORRELATION SPECTROSCOPY; *OTTING, G, LEUPIN, W, EUGSTER, A AND<br />

WUTHRICH, K; INST F MOLEKULARBIOLOGIE UND BIOPHYSIK, ZURICH,<br />

SWITZERLAND.<br />

40 ALTERNATE METHODS FOR COLLECTION OF 2D-NMR SPECTRA;<br />

*RINALDI, P AND IVERSON, D; UNIVERSITY OF AKRON, AKRON, OH.<br />

76


~k 41 A HYPO-RELAXATION AGENT; SIMULTANEOUS USE WITH HYPER-<br />

RELAXATION AGENTS TO IMPROVE LOCALIZED CONTRAST IN NMR IMAGING;<br />

*LEE, J P; NEW ENGLAND DEACONESS HOSP, BOSTON, MA.<br />

42 SEQU<strong>ENC</strong>E-SPECIFIC 1H NMR ASSIGNMENTS FOR COBROTOXIN;<br />

C AND WANG, C; NATIONAL TSING HUA UNIV, HSINCHU, TAIWAN. *YU,<br />

43 COHERENT AVERAGING THEORY UNDER THE CONDITION OF STRONG<br />

PULSES OF FINITE WIDTH AND ITS APPLICATION; *XIAOLING, W,<br />

SHANMIN, Z AND XUEWEN, W; EAST CHINA NORMAL UNIVERSITY,<br />

SHANGHAI, P R CHINA.<br />

44 TWO DIMENSIONAL LINEAR PREDICTION NMR SPECTROSCOPY;<br />

*GESMAR, H AND LED, J J; UNIVERSITY OF COPENHAGEN, COPENHAGEN,<br />

DENMARK.<br />

45 INTERGLYCOSIDIC 13C-1H COUPLING CONSTANTS AN APPROACH TO<br />

DISACCHARIDE AND POLYSACCHARIDE CONFORMATIONS; *MORAT, C AND<br />

TARAVEL, R F; CARLETON UNIVERSITY, OTTAWA, CANADA.<br />

46 CARBON-13 SPECTRAL ASSIGNMENTS OF DNA OLIGOMERS APPLICATION<br />

OF PROTON-DETECTED HETERONUCLEAR 2D-NMR; *ASHCROFT, J AND<br />

COWBURN, D; THE ROCKEFELLER UNIVERSITY, NEW YORK, NY.<br />

47 A NEW MODEL FOR HARTMANN-HAHN CROSS RELAXATION IN NMR; *WU,<br />

X L, *ZHANG, S M AND *WU, X W; EAST CHINA NORMAL UNIV, SHANGHAI,<br />

P R CHINA.<br />

48 SEMUT SPECTRAL EDITING, CALIBRATION OF RF FIELD STRENGTHS,<br />

AND TOSS AT HIGH SPINNING SPEEDS IN 13 C CP/MAS NMR OF SOLIDS;<br />

*NIELSEN, N C , BILDSOE, H, JAKOBSEN, H J AND SORENSEN, 0 W;<br />

UNIVERSITY OF AARHUS, ARHUS C, DENMARK.<br />

7"7


49 CHEMICAL SHIFT IMAGING OF HUMAN INTERNAL ORGANS AT 1.5T;<br />

*THOMA, W J, TAYLOR, J S, NELSON, S J AND BROWN, T R; FOX CHASE<br />

CANCER CENTER, PHILADELPHIA, PA.<br />

50 PIQABLE AUTOMATIC AND RELIABLE QUANTIFICATION OF LOW<br />

SIGNAL TO NOISE SPECTRA; *NELSON, S J AND *BROWN, T R; FOX<br />

CHASE CANCER CENTER, PHILADELPHIA, PA.<br />

51 SOLID STATE NMR INVESTIGATIONS OF CERAMICS AND GLASSES WITH<br />

EXTREMELY LONG SPIN-LATTICE RELAXATION TIMES; *HAMMOND, T E ,<br />

BOYER, R D AND MOONEY, J R; BP AMERICA RESEARCH & DEVELOPMENT,<br />

CLEVELAND, OH.<br />

52 INTERCONVERSION OF VAL<strong>ENC</strong>E TAUTOMERS IN CYCLOBUTADIENE-<br />

13C2 IN AN ARGON MATRIX; *ORENDT, A M, *ARNOLD, B R,<br />

*RADZISZEWSKI, J G, *FACELLI, J C, *MALSCH, K D, *STRUB, H,<br />

*GRANT, D M AND *MICHL, J; UNIVERSITY OF UTAH, SALT LAKE CITY,<br />

UT.<br />

53 NMR CHEMICAL SHIFT ASSIGNMENTS BY ISOLATION OF MOLECULAR<br />

CONFORMATIONS IN SOLUTION AT LOW TEMPERATURES PLATINUM-<br />

PHOSPHINE COMPLEXES; *LUCK, L A, BUSHWELLER, C H AND RHEINGOLD,<br />

A L; UNIVERSITY OF VERMONT, BURLINGTON, VT.<br />

54 A 13C CP/MAS AND 2H WIDELINE VARIABLE TEMPERATURE STUDY OF<br />

BECLOMETHASONE DIPROPIONATE--HEXANE INCLUSION COMPLEX; *EARLY,<br />

T A AND PUAR, M S; GE NMR INSTRUMENTS, FREMONT, CA.<br />

55 HUMAN IN VIVO SPECTROSCOPY AT 4.0T; HENTSCHEL, D,<br />

VETTER, J, LADEBECK, R AND *ALBRIGHT, M J; SIEMENS MEDICAL<br />

SYSTEMS INC, ISELIN, NJ.<br />

56 THE SOURCE OF AN ARTIFACT IN THE 1H - 1H DECOUPLED<br />

HETERONUCLEAR CHEMICAL SHIFT CORRELATION EXPERIMENT; *BAIN, A D,<br />

HUGHES, D W AND HUNTER, H N; MCMASTER UNIVERSITY, HAMILTON,<br />

ONTARIO, CANADA.<br />

78


57 STRUCTURAL STUDIES OF LIPIDS IN FIELD ORDERED MODEL<br />

MEMBRANES; *RAM, P, *O'BRIEN, P AND PRESTEGARD, J H; YALE<br />

UNIVERSITY, NEW HAVEN, CT.<br />

58 MEASUREMENT OF T1 RELAXATION RATES OF COUPLED SPINS VIA 2D<br />

ACCORDION SPECTROSCOPY WITH APPLICATION TO ACYL CARRIER PROTEIN;<br />

*KAY, L E, *FREDERICK, A F AND PRESTEGARD, J Hi YALE UNIVERSITY,<br />

NEW HAVEN, CT.<br />

59 UNTRUNCATION OF DIPOLE-DIPOLE COUPLINGS IN SOLIDS, OR<br />

ZERO FIELD NMR ENTIRELY IN HIGH FIELD; *TYCKO, R~ AT&T BELL<br />

LABORATORIES, MURRAY HILL, NJ.<br />

60 GLUCOSE METABOLISM IN PERFUSED HEARTS MONITORED BY 13C NMR<br />

SPECTROSCOPY A MORE SENSITIVE INDICATOR OF ALTERED FLOW THAN<br />

HIGH ENERGY PHOSPHATE LEVELS~ *CHACKO, V P, WEISS, R G,<br />

GLICKSON, J D AND GERSTENBLITH, G; JOHN HOPKINS MEDICAL<br />

INSTITUTIONS, BALTIMORE, MD.<br />

61 CU NQR OF YBA2CU30X WITH VARYING OXYGEN CONTENT; *VEGA,<br />

A J, FARNETH, W E, BORDIA, R K AND McCARRON, E M; E I DU PONT<br />

DE NEMOURS AND COMPANY, WILMINGTON, DE.<br />

62 MEASUREMENT OF 13C-15N DIPOLAR COUPLINGS IN SOLIDS; *BORK,<br />

V, GULLION, T, HING, A AND SCHAEFER, J; WASHINGTON UNIVERSITY,<br />

ST LOUIS, MO.<br />

63 EFFECT OF 15N PULSE SPACINGS ON 13C-15N REDOR; *GULLION, T<br />

AND SCHAEFER, J; WASHINGTON UNIVERSITY, ST LOUIS, MO.<br />

64 MICROSCOPIC IMAGING OF LIVE MOUSE AT 400 MHZ; *SARKAR, S K,<br />

GREIG, R AND MATTINGLY, M; SMITH KLINE & FR<strong>ENC</strong>H LABORATORIES<br />

KING OF PRUSSIA, PA.<br />

79


65 APPLICATION OF A ONE DIMENSIONAL IMAGING EXPERIMENT;<br />

*BORAH, B AND *SZEVERENYI, N M; NORWICH EATON PHARMACEUTICALS<br />

INC, NORWICH, NY.<br />

66 NMR IMAGING TECHNIQUES IN MATERIALS SCI<strong>ENC</strong>E; *CHU, S AND<br />

FOXALL, D; SPECTROSCOPY IMAGING SYSTEMS, FREMONT, CA.<br />

67 DEVELOPMENTS IN NITROGEN-14 NMR SPECTROSCOPY; *MCNAMARA, R,<br />

*RAMANATHAN, K V AND *OPELLA, S J; UNIVERSITY OF PENNSYLVANIA,<br />

PHILADELPHIA, PA.<br />

68 CONFORMATIONAL ANALYSIS VIA VICINAL CARBON-HYDROGEN<br />

COUPLING~ *WATERHOUSE, A; TULANE UNIVERSITY, NEW ORLEANS, LA.<br />

69 VECTOR GRAPHICS TO DEPICT MULTIPULSE NMR; *WATERHOUSE, A L<br />

AND *GARBETT, S P; TULANE UNIVERSITY, NEW ORLEANS, LA.<br />

70 2H NMR STUDIES OF MOTIONS IN SOLIDS D2S AND D2SE; COLLINS,<br />

M J, *RATCLIFFE, C I AND RIPMEESTER, J A; NATIONAL RESEARCH<br />

COUNCIL OF CANADA, OTTAWA, ONTARIO, CANADA.<br />

71 STUDIES OF FLAVODOXIN BY HOMONUCLEAR AND HETERONUCLEAR<br />

NMR TECHNIQUES; *THANABAL, V AND WAGNER, G; UNIVERSITY OF<br />

MICHIGAN, ANN ARBOR, MI.<br />

72 SCUBA, A WAY TOWARDS COMPLETE 1H SPECTRA IN PROTEINS, AND<br />

EFFICIENT USE OF 15N LABELS IN PROTEINS; *MUELLER, L, WEBER, P<br />

L AND BROWN, S C; SMITH KLINE & FR<strong>ENC</strong>H LABORATORIES, KING OF<br />

PRUSSIA, PA.<br />

80<br />

2D


73 THE AUTOMATED NMR LABORATORY; SPANTON, S G, FRUEHAN, P AND<br />

*STEPHENS, R L; ABBOTT LABORATORIES, NORTH CHICAGO, IL.<br />

74 PH EFFECTS ON THE SOLUTION CONFORMATION OF SHIKIMATE-3-<br />

PHOSPHATE DETERMINATION BY NMR AND DISTANCE GEOMETRY<br />

CALCULATIONS; *CASTELLINO, S, LEO, G C AND SAMMONS, R D;<br />

MONSANTO AGRICULTURAL COMPANY, ST LOUIS, MO.<br />

75 ASSIGNMENTS OF 31P AND 1H RESONANCES IN OLIGONUCLEOTIDES BY<br />

TWO DIMENSIONAL HETERONUCLEAR HARTMANN-HAHN SPECTROSCOPY;<br />

*ZAGORSKI, M G, KALNIK, M W, GAO, X, NORMAN, D AND KOUCHAKDJIAN,<br />

M; COLUMBIA UNIVERSITY, NEW YORK, NY.<br />

76 NMR CHARACTERIZATION OF THE GLYPHOSATE-SHIKIMATE-3-<br />

PHOSPHATE ENZYME DEAD-END COMPLEX; CASTELLINO, S, *LEO, G C,<br />

SAMMONS, R D AND SIKORSKI, J A; MONSANTO AGRICULTURE COMPANY,<br />

ST LOUIS, MO.<br />

77 PULSE SHAPING AND SELECTIVE EXCITATION THE EFFECT OF<br />

SCALAR COUPLING; *BAZZO, R, BOYD, J AND SOFFE, N; UNIVERSITY<br />

OF OXFORD, OXFORD, UK.<br />

78 PHOSPHATE PLASTICIZER DYNAMICS IN GLASSY POLYMER BLENDS BY<br />

31P CSA LINESHAPES; *INGLEFIELD, P T, JONES, A A, ROY, A K,<br />

CAULEY, B J AND KAMBOUR, R P; CLARK UNIVERSITY, WORCESTER, MA.<br />

79 NON UNIFORM SAMPLING IN NMR EXPERIMENTS; MANASSEN, Y AND<br />

*NAVON, G; TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL.<br />

80 HIGH RESOLUTION MR IMAGING AT 4.7T OF THE CENTRAL NERVOUS<br />

SYSTEM IN RATS; *WANG, P C, *MURAKI, A, ARAJAN, S, *WAMBABE, C,<br />

*GUIDOTTI, A AND *CARVLIN, M~ GEORGETOWN UNIVERSITY, WASHINGTON,<br />

DC.<br />

81


81 SODIUM IMAGING OF OCULAR TUMORS; *KOHLER, S J, KOLODNY, N<br />

H AND BALASUBRAMANIAM, S; HARVARD MEDICAL SCHOOL, BOSTON, MA.<br />

82 BROADBAND PULSES FOR EXCITATION AND INVERSION IN I=1<br />

SYSTEMS; *RALEIGH, D P, OLEJNICZAK, E T AND GRIFFIN, R G;<br />

CAMBRIDGE, MA.<br />

MIT,<br />

83 DEUTERIUM NATURAL ABUNDANCE NMR SPECTROSCOPY MONOTERPENE<br />

BIOSYNTHESIS, THE LINALOOL-LIMONENE CONNECTION; *LEOPOLD, M F,<br />

EPSTEIN, W W AND GRANT, D M; UNIVERSITY OF UTAH, SALT LAKE CITY,<br />

UT.<br />

84 A PROBE WITH HIGHER DECOUPLING EFFICI<strong>ENC</strong>Y AND SENSITIVITY<br />

FOR SOLID STATE NMR EXPERIMENTS; *JIANG, Y J, WOOLFENDEN, W R,<br />

SHERWOOD, M H, ALDERMAN, D W, PUGMIRE, R J AND GRANT, D M;<br />

UNIVERSITY OF UTAH, SALT LAKE CITY, UT.<br />

85 COMPUTER PATTERN MATCHING IN 2D INADEQUATE SPECTRA;<br />

*CURTIS, J , MAYNE, C L, ALDERMAN, D W, PUGMIRE, R J AND GRANT,<br />

D M; UNIVERSITY OF UTAH, SALT LAKE CITY, UT.<br />

86 THE USE OF J-SPECTRUM TYPE PULSE SEQU<strong>ENC</strong>ES IN COUPLED<br />

RELAXATION STUDIES; *FANG, L, MAYNE, C L AND GRANT, D M;<br />

UNIVERSITY OF UTAH, SALT LAKE CITY, UT.<br />

87 2D CHEMICAL SHIFT ANISOTROPY CORRELATION SPECTROSCOPY A<br />

NEW SAMPLE POSITIONING MECHANISM WHICH SIMPLIFIES MEASUREMENT OF<br />

CHEMICAL SHIFT ANISOTROPIES IN COMPLEX SINGLE CRYSTALS;<br />

*SHERWOOD, M H, ALDERMAN, D W AND GRANT, D M; UNIVERSITY OF<br />

UTAH, SALT LAKE CITY, UT.<br />

88 SOLID STATE 113CD NUCLEAR MAGNETIC RESONANCE STUDY OF<br />

EXCHANGED MONTMORILLONITES; *BANK, S, BANK, J F AND ELLIS, P D;<br />

SUNY AT ALBANY, ALBANY, NY.<br />

82


89 13C NMR ASSIGNMENTS OF DNA OLIGONUCLEOTIDES AND THE DRUG<br />

NETROPSIN; *BOUDREAU, E, *HYMAN, T, *LAPLANTE, S *MARTIN, G,<br />

*JACKSON, G AND *BORER, P; SYRACUSE UNIVERSITY, SYRACUSE, NY.<br />

90 THREE-DIMENSIONAL STRUCTURE DETERMINATION OF DNA<br />

~D(TAGCGCTA)]2; *WANG, S, DELSUC, M, LEVY, G, BORER, P AND<br />

LAPLANTE, S; SYRACUSE UNIVERSITY, SYRACUSE, NY.<br />

91 OPTIMIZATION OF NMR DATAPROCESSING WITH PARALLEL COMPUTERS;<br />

*HOFFMAN, R E AND LEVY, G C; SYRACUSE UNIVERSITY, SYRACUSE, NY.<br />

92 CHARACTERIZATION OF NORMAL BRAIN TISSUE USING MRI<br />

PARAMETERS AND A STATISTICAL ANALYSIS SYSTEM; *HYMAN, T J,<br />

LEVY, G C, KURLAND, R J AND SHOOP, J D; SYRACUSE UNIVERSITY<br />

SYRACUSE, NY.<br />

93 TOWARD A COMPUTER ASSISTED ANALYSIS OF NOESY SPECTRA A<br />

MULTIVARIATE PATTERN RECOGNITION ANALYSIS OF DNA AND RNA NOESY<br />

SPECTRA; GRAHN, H, DELAGLIO, F, EDLUND, U, ROGGENBUCK, M W AND<br />

*BORER, P; SYRACUSE UNIVERSITY, SYRACUSE, NY.<br />

94 MULTIVARIATE TECHNIQUES FOR ENHANCEMENT OF TWO<br />

DIMENSIONAL NMR SPECTRA; GRAHN, H, *DELAGLIO, F, ROGGENBUCK, M<br />

W AND LEVY, G C; SYRACUSE UNIVERSITY, SYRACUSE, NY.<br />

95 NIH RESOURCE FOR MULTI-NUCLEI NMR AND DATA PROCESSING AT<br />

SYRACUSE UNIVERSITY; *HEFFRON, G J, LIPTON, A S, BISHOP, K D,<br />

LAPLANTE, S R, BORER, P N AND LEVY, G C; SYRACUSE UNIVERSITY,<br />

SYRACUSE, NY.<br />

96 AN EVALUATION OF NEW PROCESSING PROTOCOLS FOR IN VIVO NMR;<br />

*MAZZEO, A R AND LEVY, G C; SYRACUSE UNIVERSITY, SYRACUSE, NY.<br />

83


97 2DNMR DETERMINATION OF 13C SPIN-LATTICE RELAXATION TIMES IN<br />

BPTI BY INDIRECT DETECTION; *NIRMALA, N R AND WAGNER, G;<br />

UNIVERSITY OF MICHIGAN, ANN ARBOR, MI.<br />

98 CHEMICAL EXCHANGE OF HETERONUCLEAR LONGITUDINAL TWO-SPIN<br />

ORDER (IZSZ) A DYNAMIC PROBE OF CONFORMATIONAL ISOMERIZATION IN<br />

PROTEINS; *MONTELIONE, G T AND WAGNER, G~ UNIVERSITY OF<br />

MICHIGAN, ANN ARBOR, MI.<br />

99 TEACHING MRI USING COMPUTER ANIMATION; *HORNAK, J P;<br />

ROCHESTER INSTITUTE OF TECHNOLOGY, ROCHESTER, NY.<br />

100 NOVEL RESONATOR DESIGNS;<br />

*BRYANT, R G AND *HORNAK, J P;<br />

TECHNOLOGY, ROCHESTER, NY.<br />

*MARSHALL, E, *LISTINSKY, J J,<br />

ROCHESTER INSTITUTE OF<br />

101 THE USE OF VARIABLE ANGLE SAMPLE SPINNING TO ASSESS<br />

AROMATIC CLUSTER SIZE IN COALS, COAL CHARS AND CARBONACEOUS<br />

MATERIALS; *SOLUM, M S, SETHI, N K, FACELLI, J C, WOOLFENDEN, W<br />

R, PUGMIRE, R J AND GRANT, D M; UNIVERSITY OF UTAH, SALT LAKE<br />

CITY, UT.<br />

102 STRONG 181TA QUADRUPOLE INTERACTIONS DETECTED VIA CROSS-<br />

RELAXATION TO HYDROGEN BY PROTON SPIN-LATTICE RELAXATION RATE<br />

STUDY IN TAH.322; *TORGESON, D R, HAN, J-W AND BARNES, R G;<br />

IOWA STATE UNIVERSITY, AMES, IA.<br />

103 PRE-PULSE SEQU<strong>ENC</strong>E - AN INVERSION PULSE T (Y) AND A DELAY<br />

TIME ( T3); *LIN, F T AND LIN, F M; UNIVERSI OF PITTSBURGH,<br />

PITTSBURGH, PA.<br />

104 TAYLOR TRANSFORMATION OF 2D NMR M SERIES FROM TIME<br />

DIMENSION TO POLYNOMIAL DIMENSION FOR CONVENIENT DETERMINATION<br />

OF CROSS RELAXATION RATES IN NOESY SPECTRA; *HYBERTS, S G AND<br />

WAGNER, G; UNIVERSITY OF MICHIGAN, ANN ARBOR, MI.<br />

84


105 EVALUATION OF DOUBLE TUNED CIRCUITS USED IN NMR;<br />

VARIAN ASSOCIATES, PALO ALTO, CA.<br />

*ZENS, T;<br />

106 ARTIFACTS IN ECHO-PLANAR IMAGING; *AVRAM, H E, CROOKS, L<br />

E AND KRAMER, D M; DIASONICS MRI, SOUTH SAN FRANCISCO, CA.<br />

107 TWO DIMENSIONAL NMR SOFTWARE IN THE WORKSTATION<br />

ENVIRONMENT; *DELAGLIO, F, SOLE, P, GRAHN, H, MACUR, A,<br />

BEGEMANN, J, CROWTHER, M, HOFFMAN, R AND LEVY, G C; NEW METHODS<br />

RESEARCH INC, SYRACUSE, NY.<br />

108 PERFORMANCE COMPARISON OF DOUBLE-TUNED SURFACE COILS;<br />

*FITZSIMMONS, J R, BROOKER, H R, KUAN, W AND BECK, B; UNIV OF<br />

FLORIDA, GAINESVILLE, FL.<br />

109 NMR STUDY OF ALKALINE HYDROLYSIS OF POLY-(ACRYLONITRILE)<br />

*LOVY, J AND STOY, V; KINGSTON TECHNOLOGIES INC, DAYTON,<br />

110 DISCRETE ANALYSIS OF STOCHASTIC NMR USING WIENER SERIES;<br />

*WONG, S T S, NEWMARK, R D AND ROOS, M S; UNIV OF CALIFORNIA,<br />

BERKELEY, CA.<br />

111 STOCHASTIC NMR IMAGING WITH OSCILLATING GRADIENTS;<br />

S T S, *ROOS, M S AND NEWMARK, R D; UNIV OF CALIFORNIA,<br />

BERKELEY, CA.<br />

WONG,<br />

112 RECENT EXTENSIONS OF NOESYSIM, A PROGRAM FOR RAPID<br />

COMPUTATION OF NOESY INTENSITY MATRICES FROM ATOMIC COORDINATES<br />

AND EXPERIMENTAL CONDITIONS; *EATON, H L, ANDERSEN, N H AND LAI,<br />

X; UNIV OF WASHINGTON, SEATTLE, WA.<br />

B5


113 31P MAGENTIC RESONANCE IMAGING OF SOLID CALCIUM PHOSPHATES:<br />

POTENTIAL FOR CHEMICAL IMAGING OF BONE; ACKERMAN, J L, *RALEIGH,<br />

D P AND GLIMCHER, M J; MIT, CAMBRIDGE, MA.<br />

114 VOLUME LOCALIZED SPECTRAL EDITING USING ZERO QUANTUM<br />

COHER<strong>ENC</strong>E CREATED IN A STIMULATED ECHO PULSE SEQU<strong>ENC</strong>E; *SOTAK,<br />

C H AND FREEMAN, D M; GE NMR INSTRUMENTS, FREMONT, CA.<br />

115 USE OF PURE ABSORPTION PHASE 31P/1H 2D COLOC NMR SPECTRA<br />

FOR ASSIGNMENT OF 31P SIGNALS OF OLIGONUCLEOTIDES; FU, J M,<br />

SCHROEDER, S A, JONES, C R, SANTINI, R AND *GORENSTEIN, D G;<br />

PURDUE UNIV, W LAFAYETTE, IN.<br />

116 MODIFICATION TO A JEOL GX270 WIDEBORE SPECTROMETER FOR<br />

MAGNETIC RESONANCE IMAGING: PETROGRAPHIC APPLICATIONS; *DOUGHTY,<br />

D A AND MAEREFAT, N L; NIPER, BARTLESVILLE, OK.<br />

117 RESONANT EFFECTS IN CP-MAS SPECTRA OF HOMONUCLEAR DIPOLAR-<br />

COUPLED SPIN SYSTEMS; *BARBARA, T M AND HARBISON, G S; SUNY,<br />

STONY BROOK, NY.<br />

118 APPLICATION OF N-H HETERONUCLEAR CORRELATION SPECTROSCOPY<br />

TO SEVERAL 15N ENRICHED PROTEINS; *MOOBERRY, E S, STOCKMAN, B J,<br />

YUAN, B, OH, B H AND MARKLEY, J L; UNIV OF WISCONSIN, MADISON,<br />

WI.<br />

119 13C LABELING AND HIGH RESOLUTION 1H 2-D NMR: MAKING<br />

UNNATURAL ESTERS STAND UP AND BE COUNTED; *HELMS, G L,<br />

NIEMCZURA, W P AND MOORE, R E; UNIV OF HAWAII, HONOLULU, HI.<br />

120 SPECIATION OF WATER IN GLASSES BY HIGH-SPEED 1H MAS-NMR;<br />

*ECKERT, H, YESINOWSKI, J P, SILVER, L A AND STOLPER, E M; UNIV<br />

OF CALIFORNIA, SANTA BARBARA, CA.<br />

8B


121 BROADBAND SPIN DECOUPLING IN THE PRES<strong>ENC</strong>E OF SCALAR<br />

INTERACTIONS; *SHAKA, A J, LEE, C J AND PINES, A; UNIV OF<br />

CALIFORNIA, BERKELEY, CA.<br />

122 MULTINUCLEAR TWO-DIMENSIONAL APPROACHES TO SEQU<strong>ENC</strong>E-<br />

SPECIFIC RESONANCE ASSIGNMENTS IN A PROTEIN" 13C-13C, 13C-15N,<br />

1H-13C, 1H-15N, AND 1H-1H CORRELATIONS IN ANABAENA 7120<br />

FLAVODOXIN; *STOCKMAN, B J, WESTLER, W M, MOOBERRY, E S AND<br />

MARKLEY, J L; UNIV OF WISCONSIN, MADISON, WI.<br />

123 SOLID STATE NUCLEAR MAGNETIC RESONANCE INVESTIGATIONS OF<br />

ORGANOPHOSPHONIC ACID ADSORPTION ON ALUMINA; *DANDO, N R,<br />

WEISERMAN, L F AND MARTIN, E S; ALCOA TECH CENTER, ALCOA CENTER,<br />

PA.<br />

124 A COMPLETELY INTEGRATED NETWORK OF HOME-BUILT AND<br />

COMMERCIAL NMR SPECTROMETERS~ *BOUCHARD, D A AND OPELLA, S J;<br />

UNIV OF PENNSYLVANIA, PHILADELPHIA, PA.<br />

125 NMR VS CIRCULAR DICHROISM: WHAT CAN WE SAY ABOUT HELICITY?;<br />

*BEHLING, R W, MIRAU, P A AND JELINSKI, L W; AT&T BELL LABS,<br />

MURRAY HILL, NJ.<br />

126 EXPERIMENTAL EVALUATION OF NMR IMAGING PROBES; *TALAGALA,<br />

S L AND HALL, L D; UNIV OF BRITISH COLUMBIA, VANCOUVER, CANADA.<br />

127 HETERONUCLEAR TWO-DIMENSIONAL NMR METHODS FOR THE<br />

DETERMINATION OF THE PRIMARY STRUCTURE OF PEPTIDES; BORNEMANN,<br />

V, CHESNICK, A S, HELMS, G, MOORE, R E AND *NIEMCZURA, W P;<br />

UNIV OF HAWAII, HONOLULU, HI.<br />

128 VOLUME-SELECTIVE SIGNAL SUPRESSION IN SURFACE-COIL NMR<br />

SPECTROSCOPY" COMPARISON OF THREE MEHTODS; SMITH, C D, THOMAS,<br />

G S AND *SMITH, S L; UNIV OF KENTUCKY, LEXINGTON, KY.<br />

87


129 IN VIVO VOLUME LOCALIZED SURFACE COIL SPECTROSCOPY WITH<br />

ISIS AND DRESS: THE CHEMICAL SHIFT DISPLACEMENT; SMITH, C D,<br />

THOMAS, G S AND *SMITH, S L; UNIV OF KENTUCKY, LEXINGTON, KY.<br />

130 SEQUENTIAL ASSIGNMENT OF AMIDE PROTONS IN -HELICES IN<br />

LARGE PROTEINS; *SPARKS, S W, BAX, A AND TORCHIA, D A~ NIH,<br />

BETHESDA, MD.<br />

131 MASS TRANSFER PROCESSES STUDIED BY NMR IMAGING; HALL, L D<br />

AND *WEBB, A G; ADDENBROOKES HOSP, CAMBRIDGE, ENGLAND.<br />

132 NATURAL ABUNDANCE 13C AND 14N NMR OF BACTERIAL<br />

OSMOLYTES IN VIVO; *LEWIS, B A, CAYLEY, S C, PADMANABHAN, S AND<br />

RECORD, M T; UNIV OF WISCONSIN, MADISON, WI.<br />

133 CHARACTERIZATION OF HUMAN BLOOD PLASMA USING VERY HIGH<br />

FIELD RESOLUTION ENHANCED PRM DIFFER<strong>ENC</strong>E SPECTROSCOPY; *DADOK,<br />

~ BOTHNER-BY, A A, MISHRA, P, WILKINSON, D A, GILES, R H,<br />

EVEDO, H F, SHRIVASTAVA, P N AND JARAMILLO, B; CARNEGIE<br />

MELLON UNIV, PITTSBURGH, PA.<br />

134 PERFUSION PROBE FOR A BRUKER AM-400 WIDE-BORE SPECTROMETER;<br />

*ANDERSON, M E, CHOBANIAN, M, MOOBERRY, E S, MARKLEY, J L AND<br />

ARUS, C; UNIV OF WISCONSIN, MADISON, WI.<br />

135 HOMONUCLEAR TWO DIMENSIOANL 13C DOUBLE QUANTUM CORRELATION<br />

SPECTROSCOPY (2D 13C{13C}DQC AND IH-{13C}HETCOR AS PRIMARY TOOLS<br />

FOR SPIN SYSTEM AND HEME ASSIGNMENTS IN CYTOCHROME C553; *REILY,<br />

M D, ULRICH, E L, WESTLER, W M AND MARKLEY, J L" UNIV OF<br />

WISCONSIN, MADISON, WI.<br />

136 THREE-DIMENSIONAL STRUCTURE OF TURKEY OVOMUCOID THIRD<br />

DOMAIN BY 2D-NMR SPECTROSCOPY AND DISTANCE GEOMETRY CALCULATIONS;<br />

*DARBA, P, KREZEL, A FEJZO J, MACURA S, ROBERTSON, A D AND<br />

MARKLEY, J L; UNIV 6F WISC6NSIN, MADISON, WI.<br />

88


137 TWO-DIMENSIONAL 13C{15N}, 13C{13C} AND 1H{13C} CHEMICAL<br />

SHIFT CORRELATION IN PROTEINS: SEQU<strong>ENC</strong>E-SPECIFIC ASSIGNMENT OF<br />

RESONANCES IN 13C AND 15N-LABELED STREPTOMYCES SUBTILISIN<br />

INHIBITOR; *WESTLER, W M, KAINOSHO, M, NAGAO, H, TOMONAGA, N<br />

AND MARKLEY, J L; UNIV OF WISCONSIN, MADISON, WI.<br />

138 FERREDOXIN FROM ANABAENA 7120" UNIFORM CARBON-13 AND/OR<br />

NITROGEN-15 ENRICHMENT AND NUCLEAR MAGNETIC RESONANCE<br />

INVESTIGATIONS; *OH, B H, WESTLER, W M, DARBA, P AND MARKLEY, J<br />

L; UNIV OF WISCONSIN, MADISON, WI.<br />

139 TWO-DIMENSIONAL HYDROGEN-I NUCLEAR MAGNETIC RESONANCE<br />

STUDIES OF STAPHYLOCOCCAL NUCLEASE- SPIN SYSTEM ASSIGNMENTS IN<br />

THE (NUCLEASE H124L).DEOXYTHYMIDINE-3',5'-BISPHOSPHATE CA2+<br />

TERNARY COMPLEX; *WANG, J AND MARKLEY, J L; UNIV OF WISCONSIN,<br />

MADISON, WI.<br />

140 DIRECT OBSERVATION OF LONG RANGE HETERONUCLEAR SPLITTINGS<br />

IN PROTON 2DJ SPECTRA; PRATUM, T K, *HAMMEN, P K AND ANDERSEN,<br />

N H; UNIV OF WASHINGTON, SEATTLE, WA.<br />

141 BRANCH LOCATION STUDIED BY SOLVENT SWELLING AND SOLID<br />

STATE NMR IN ISOTOPICALLY ENRICHED ETHYLENE-I-BUTENE COPOLYMERS;<br />

*MCFADDIN, D; QUEEN'S UNIV, ONTARIO, CANADA.<br />

142 INDIRECT DETECTION OF 14N<br />

*GARROWAY, A N AND MILLER, J B;<br />

DC.<br />

M=2 (OVERTONE) NMR TRANSITIONS;<br />

NAVAL RESEARCH LAB, WASHINGTON,<br />

143 DIFFERENTIAL DEVELOPMENT OF MULTIPLE-QUANTUM COHER<strong>ENC</strong>E IN<br />

A L!QUID CRYSTAL; *GERASIMOWICZ, W V, GARROWAY, A N AND MILLER<br />

J B, NAVAL RESEARCH LAB, WASHINGTON, DC.<br />

144 1H AND 13C REFOCUSED GRADIENT IMAGING OF SOLIDS; *MILLER,<br />

J B AND GARROWAY, A N; NAVAL RESEARCH LAB, WASHINGTON, DC.<br />

89


145 DERIVATION OF POLYMER RHEOLOGICAL CONSTANTS FROM THE<br />

VISCOSITY AND TEMPERATURE DEPEND<strong>ENC</strong>E OF 13C NMR RELAXATION<br />

PARAMETERS; *BRANDOLINI, A J; MOBIL CHEMICAL CO, EDISON, NJ.<br />

146 SOME APPLICATIONS OF THE WATR EXPERIMENT; *RABENSTEIN, D<br />

L, GUO, W AND SMITH, E; UNIV OF CALIFORNIA, RIVERSIDE, CA.<br />

147 THERMALLY INDUCED VOLUME CHANGES IN A BLOCK COPOLYMER;<br />

*CAU, F AND LACELLE, S; UNIV DE SHERBROOKE, QUEBEC, CANADA.<br />

148 CHALLENGES TO THE CLASSICAL MODELS OF REACTIVITY;<br />

B; CORNELL UNIV, ITHACA, NY.<br />

149 19F NMR STUDIES OF FLUORINE SUBSTITUTED Ba2YCu307-x;<br />

C E, WHITE, D, DAVIES, P K AND STUART, J A; UNIV OF<br />

PENNSYLVANIA, PHILADELPHIA, PA.<br />

*LYONS,<br />

150 ISOTOPE DETECTED NOE EXPERIMENTS ON 13C LABELED tRNA Phe;<br />

*GMEINER, W H AND POULTER, C D; UNIV OF UTAH, SALT LAKE CITY,<br />

UT.<br />

151 INVERSION RECOVERY CROSS POLARIZATION NMR STUDY OF<br />

MORPHOLOGY IN POLYETHYLENES; *YANG, T S AND RITCHEY, W M;<br />

WESTERN RESERVE UNIV, CLEVELAND, OH.<br />

*LEE,<br />

CASE<br />

152 NMR STUDY OF NAPHTHALENE TRANSPORT AND RELAXATION IN THE<br />

NAPHTHALENE-SUPERCRITICAL ETHYLENE SYSTEM~ *WOO, K W, ADAMY, S<br />

AND JONAS, J; UNIV OF ILLINOIS, URBANA, IL.<br />

90


153 NMR CHARACTERIZATION OF THE SOLUTION, GEL AND SOLID<br />

STRUCTURES OF [(1-3)-B-D-GLUCAN (CURDLAN)]; BOLTON, P H,<br />

*GIAMMATTEO, P J AND STIPANOVIC, A J; TEXACO INC, BEACON, NY.<br />

154 DISCRIMINATION BETWEEN SYMMETRIC AND ASYMMETRIC HYDROGEN<br />

BONDS BY ISOTOPIC PERTURBATION OF EQUILIBRIUM; PERRIN, C L AND<br />

*THOBURN, J D; UCSD, LA JOLLA, CA.<br />

155 NMR STUDIES OF PHOSPHATIDYLCHOLINES AND<br />

THIOPHOSPHATIDYLCHOLINES; *BASTI, M M AND LAPLANCHE, L A;<br />

NORTHERN ILLINOIS UNIV, DEKALB, IL.<br />

156 ROTATING FRAME COHER<strong>ENC</strong>E TRANSFER DUE TO TUNNELLING;<br />

*JOHNSTON, E R; HAVERFORD COLLEGE, HAVERFORD, PA.<br />

157 INTACT STRUCTURE OF ACLACINOMYCIN-A;<br />

AND CHARI, M; RICE UNIV, HOUSTON, TX.<br />

*KOOK, A M, ARORA, S<br />

158 SOME TRICKS OF THE TRADE FOR BETTER 2D NMR SPECTRA (OU<br />

COMMENT MONTER UNE MAYONNAISE A LA MAIN..); *MARION, D AND BAX,<br />

A; NIH, BETHESDA, MD.<br />

159 DEVELOPMENT OF FLUORINATED, NMR ACTIVE SPIN TRAPS FOR<br />

STUDIES OF FREE RADICAL CHEMISTRY; *SELINSKY, B S, LEVY, L A,<br />

MOTTEN, A G AND LONDON, R E; NIEHS, RESEARCH TRIANGLE PARK, NC.<br />

160 A 27AL MAS STUDY OF AMORPHOUS ANODIC ALUMINA: STRUCTURAL<br />

INFORMATION COMBINED WITH QUANTITATIVE UNCERTAINTY; *FARNAN, I,<br />

DUPREE~ R, SMITH, M E, JEONG, Y S AND THOMPSON, G; STANFORD<br />

UNIV, STANFORD, CA.<br />

91


161 LOCALIZED PROTON SPECTROSCOPY AND SPECTROSCOPIC IMAGING OF<br />

THE HUMAN BRAIN; *LUYTEN, P AND HOLLANDER, J D; PHILIPS<br />

MEDICAL SYSTEMS, BEST, THE NETHERLANDS.<br />

162 HIGH RESOLUTION 13C-1H SHIFT CORRELATION WITH FULL 1H-1H<br />

DECOUPLING; *PERPICK-DUMONT, M, REYNOLDS, W F AND ENRIQUEZ, R G;<br />

UNIV OF TORONTO, TORONTO, CANADA.<br />

163 13C AND 15N MASS SPECTRA OF LABELED STAPHYLOCCOCAL<br />

NUCLEASE CRYSTALS; *COLE, H B R AND TORCHIA, D A; NIH,<br />

BETHESDA, MD.<br />

164 MODIFICATION OF A BRUKER WH-300 SPECTROMETER FOR BROADBAND/<br />

HIGH POWER SOLID STATE NMR EXPERIMENTS; *SIMPLACEANU, V AND HO,<br />

C; CARNEIGE MELLON UNIV, PITTSBURGH, PA.<br />

165 IN VIVO PHOSPHOROUS-31NMR STUDIES OF HUMAN BRAIN AT 1.5T;<br />

*KAPLAN, D, PANCHALINGAM, K, MCEVOY, J, SPIKER, D, KESHAVAN, M S,<br />

WOLF, G E AND PETTEGREW, J; PITTSBURGH NMR INST, PITTSBURGH, PA.<br />

166 SOLID STATE NMR STUDY ON THE STRUCTURE OF GRAMICIDIN A;<br />

*TENG Q NORTH, C L, BRENNEMAN, M T, LOGRASSO, P V AND CROSS, T<br />

A; FLORIDA STATE UNIV, TALLAHASSEE, FL.<br />

167 DYNAMICS OF THE GRAMICIDIN A TRANSMEMBRANE CHANNEL BY<br />

SOLID STATE 15N NMR; NICHOLSON, L K, BRENNEMAN, M T, LOGRASSO,<br />

P V AND *CROSS, T A; FLORIDA STATE UNIV, TALLAHASSEE, FL.<br />

168 IN VIVO 31P AND 1H NMR SPECTROSOCPY AND IMAGING OF RAT<br />

LIVER EXPOSED TO HALOCARBONS; TOWNER, R A, *BRAUER, M, FOXALL,<br />

D AND JANZEN, E G; UNIV OF GUELPH, GUELPH, CANADA.<br />

92


169 SPECTROSCOPY WITH EXACT APODIZATION TRANSFORMATION (SWEAT);<br />

*LISICKI, M, BOTHNER-BY, A A, SHUKLA, R, DADOK, J AND VAN ZIJL,<br />

P C M; CARNEIGE MELLON INST, PITTSBURGH, PA.<br />

170 FLOW-COMPENSATED NMR IMAGING TECHNIQUES FOR RHEOLOGY OF<br />

SUSPENSIONS; *MAJORS, P D, ALTOBELLI, S A, FUKUSHIMA, E AND<br />

GIVLER, R C; LOVELACE MEDICAL FOUNDATION, ALBUQUERQUE, NM.<br />

171 RAPID ROTATING FRAME IMAGING WITH RETENTION OF CHEMICAL<br />

SHIFT INFORMATION; MACDONALD, P M, *METZ, K R AND BOEHMER, J P;<br />

HARVARD MEDICAL SCHOOL, BOSTON, MA.<br />

172 MAGIC ANGLE SPINNING SEPARATED LOCAL FIELD SPECTROSCOPY:<br />

SOME EXPERIMENTAL OBSERVATIONS RELEVANT TO THE DETERMINATION OF<br />

C-H DISTANCES BY NMR; *WEBB, G G AND ZILM, K W; YALE UNIV, HEW<br />

HAVEN, CT.<br />

173 DETERMINATION OF H-H BOND DISTANCES IN TRANSITION METAL<br />

DIHYDROGEN COMPLEXES BY SOLID STATE NMR; CHINN, M, COZINE, M,<br />

HEINEKEY, M, KUBAS, G, *MILLAR, J AND ZILM, K; YALE UNIV, NEW<br />

HAVEN, CT.<br />

174 DESIGN OF A HIGH RESOLUTION HIGH PRESSURE DOUBLE RESONANCE<br />

NMR PROBE; *GRANDINETTI, P J, VANDERVELDE, D, XIE, C-L, WALKER,<br />

N A AND JONAS, J; UNIV OF ILLINOIS, URBANA, IL.<br />

175 CARBON-13 CP/MAS NMR STUDY OF THE NYLON-6 POLYMOPHS AND<br />

DYNAMICS; *WANG, D, HU, J, YAN, X, WANG, G AND QIAN, B; WUHAN<br />

INST OF PHYSICS, HUBEI, PR CHINA.<br />

176 SINGLE CRYSTAL NMR STUDIES OF 113CD COMPLEXES AND 113CD<br />

NMR OF CADMIUM PROTOPORPHYRIN IX AND CADMIUM MYOGLOBIN;<br />

*KENNEDY, M A AND ELLIS, P D; UNIV OF SOUTH CAROLINA, COLUMBIA,<br />

SC.<br />

93


177 THE ADSORPTION OF Rb+ AND Cs+ TO TRANSITION ALUMINAS BY<br />

87Rb AND 113Cs SOLID STATE NMR SPECTROSCOPY; *CROCKETT, B AND<br />

ELLIS, P D; UNIV OF SOUTH CAROLINA, COLUMBIA, SC.<br />

178 CROSS-POLARIZATION MAS NMR OF 27AI IN - AND -ALUMINA;<br />

*MORRIS, H D AND ELLIS, P D; UNIV OF SOUTH CAROLINA, COLUMBIA,<br />

SC.<br />

179 DYNAMICS OF CHAIN SEGMENTS IN THERMOSET RESINS; *FRY, C G<br />

AND LIND, A C; MCDONNELL DOUGLAS RES LABS, ST LOUIS, MO.<br />

180 170/1H NMR MICROSCOPY AT CWRU; *MATEESCU, G, YVARS, G,<br />

PAZARA, D AND ALLDRIDGE, N A; CASE WESTERN RESERVE, CLEVELAND,<br />

OH.<br />

181 APPLICATION OF I-D AND 2-D SODIUM-23 MAGNETIZATION<br />

TRANSFER NMR TO STUDY TRANSMEMBRANE CATION EXCHANGE; *SHUNGU, D<br />

C AND BRIGGS, R W; UNIV OF FLORIDA, GAINESVILLE, FL.<br />

182 SUPPRESSION OF ARTIFACTS IN MULTIPLE ECHO NUCLEAR MAGNETIC<br />

RESONANCE; *BARKER, G J AND MARECI, T H; UNIV OF FLORIDA,<br />

GAINESVILLE, FL.<br />

183 QUANTITATION OF EXCHANGE RATES USING THE RED NOESY<br />

SEQU<strong>ENC</strong>E; *COCKMAN, M D AND MARECI, T H; UNIV OF FLORIDA,<br />

GAINESVILLE, FL.<br />

184 MULTINUCLEAR NMR METHODOLOGY FOR DECONVOLUTING NATURAL<br />

MIXTURES AND CATALYTICALLY ACTIVE LAYER SILICATES; *THOMPSON, A<br />

R, CARRADO, K A AND BOTTO, R E; ARGONNE NATL LAB, ARGONNE, IL.<br />

94


185 PARSING THE EDITED 1H NMR SIGNALS INTO 12C-IH AND 13C-IH<br />

SUBSPECTRA" A STRATEGY TO STUDY SPECIFIC ACTIVITY IN VIVO;<br />

*JUE, T; YALE UNIV, NEW HAVEN, CT.<br />

186 THE 13C RELAXATION BEHAVIOR OF ETHANE THROUGH ITS<br />

CRITICAL POINT; EVILIA, R F, WHITTENBURG, S L AND *ROBERT, J M;<br />

LEHIGH UNIV, BETHLEHEM, PA.<br />

187 NMR INVESTIGATION OF THE CYCLOPHILIN-CYCLOSPORIN COMPLEX~<br />

*HEALD, S L, GOOLEY, P R, ARMITAGE, I M, JOHNSON, W C, HARDING,<br />

M W AND HANDSCHMACHER, R E; YALE UNIV, HEW HAVEN, CT.<br />

188 INHIBITION OF ALANINE RACEMASE BY THE PHOSPHATE ANALOG OF<br />

ALANINE, 1-(AMINOETHYL)PHOSPHATE (ALA-P): IDENTIFICATION OF A<br />

SCHIFF BASE LINKAGE IN THE ENZYME-INHIBITOR COMPLEX BY SOLID<br />

STATE 15N-NMR; *COPIE, V, FARACI, W S, WALSH, C T AND GRIFFIN,<br />

R G; MIT, CAMBRIDGE, MA.<br />

189 DYNAMIC AND CONFROMATIONAL STRUCTURE OF CORD FACTOR<br />

GLYCOLIPIDS IN MODEL MEMBRANES AS DETERMINED BY SOLID-STATE 2H<br />

NMR; *BYRD, R A AND LIM, T K; US FDA, BETHESDA, MD.<br />

190 THE VISUALIZATION OF PROBE ELECTRIC FIELDS;<br />

AND CHEN, C-N; NIH, BETHESDA, MD.<br />

*HOULT, D I<br />

191 NMR ANALYSIS AND IMAGING OF OIL CORES; *EDELSTEIN, W A,<br />

VINEGAR, H J, ROEMER, P B, TUTUNJIAN, P N AND MUELLER, 0 M; GE<br />

CORPORATE RES & DEV CENTER, SCHENECTADY, NY.<br />

192 RESOLUTION ENHANCEMENT OF PHOSPHORUS-31 SPECTRA: THE USE<br />

OF CDTA IN PERCHLORIC ACID EXTRACTS OF DICTYOSTELIUM DISCOIDEUM;<br />

*WILLIAMSON, K L AND FROMM, E F; MOUNT HOLYOKE COLLEGE, SOUTH<br />

HADLEY, MA.<br />

95


193 ADDITIVITY OF CARBON-13 SPIN-LATTICE RELAXATION TIMES IN<br />

OCTENES; *WILLIAMSON, K L, SIMONDS, M A AND STENGLE, T R;<br />

MOUNT HOLYOKE COLLEGE, SOUTH HADLEY, MA.<br />

194 CPMAS ANALYSIS OF A POLYIMIDE/GLASS CIRCUIT BOARD; *MYERS-<br />

ACOSTA, B L AND SELOVER, S J; LOCKHEED SPACE CO, SUNNYVALE, CA.<br />

195 A STUDY ON 3',5'-AMP BY TWO-DIMENSIONAL DOUBLE QUANTUM<br />

SPECTROSCOPY IN 'H NMR; *WU, G, GUO, W, HUANG, Y, JIANG, S AND<br />

LIAN, S; YORK UNIV, NORTH YORK, CANADA.<br />

196 TRIFLUOROETHOXY DERIVATIVES: SELECTIVE DEACTIVATION OF<br />

OXYGEN CONTAINING FUNCTIONAL GROUPS IN LANTHANIDE INDUCED SHIFTS<br />

AND/OR RELAXATION NMR STUDIES; *WILD, C, TSIAO, C, GLASS, T E,<br />

ROY, J AND DORN, H C; VPI&SU, BLACKSBURG, VA.<br />

197 TIME DOMAIN ENDOR STUDIES OF DISORDERED SOLIDS;<br />

TINDALL, P J, BERNARDO, M AND *THOMANN, H; EXXON CORP RES LAB,<br />

ANNANDALE, NJ.<br />

198 NUMERICAL STUDIES OF STIMULATED ESEEM WAVEFORMS;<br />

AND *THOMANN, H; EXXON CORP RES LAB, ANNANDALE, NJ.<br />

JIN, H<br />

199 HIGH PRESSURE 13C CROSS-POLARIZATION AND SPIN RELAXATION<br />

STUDY OF ADAMANTANE; *PRINS, K 0 AND VAN DER PUTTEN, D; UNIV<br />

OF AMSTERDAM, AMSTERDAM, THE NETHERLANDS.<br />

200 INTERPRETATION OF 13C NMR MIXTURE SPECTRA BY MULTIVARIATE<br />

ANALYSIS; *BREKKE, T, KVALHEIM, 0 M AND SLETTEN, E; UNIV OF<br />

BERGEN, BERGEN, NORWAY.<br />

9B


. z<br />

201 THE CORRELATION OF 1H-19F COUPLINGS BY HETERONUCLEAR MODE<br />

PULSED DECOUPLING (HUMPD); *GRODE, S H AND GILLIS, R W; THE<br />

UPJOHN CO, KALAMAZOO, MI.<br />

202 SOLID STATE BACK PROJECTION IMAGING; LISTERUD, J AND<br />

*DROBNY, G; UNIV OF WASHINGTON, SEATTLE, WA.<br />

203 LONG-RANGE SHIELDING AND CHEMICAL SHIFT IN SILICON CARBIDE<br />

POLYTYPES; RICHARDSON, M F, *HARTMAN, J S AND GUO, D; BROCK<br />

UNIV, ONTARIO, CANADA.<br />

204 RECENT PROGRESS IN HIGH RESOLUTION NMR OF SOLIDS;<br />

*BRONNIMANN, C E, DEC, S L, FRYE, J S, HAWKINS, B L AND MACIEL,<br />

G E; COLORADO STATE UNIV, FT. COLLINS, CO.<br />

205 HIGH-FIELD PULSED GRADIENT DIFFUSION MEASUREMENTS;<br />

R L AND SCHLEICH, T; UNIV OF CALIFORNIA, SANTA CRUZ, CA. *HANER,<br />

206 THE WORLD AND WONDERS OF 3H NMR SPECTROSCOPY;<br />

*WILLIAMS, P G; UNIV OF CALIFORNIA, BERKELEY, CA.<br />

97


1 I~ I SOLID PHASE CARBON-13 NMR STUDIES OF CROWN ETHERS AND THEIR<br />

COMPLEXES. G.W. Buchanan*, C. Morat and R.A. Kirby, Ottawa-Carleton Chemistry<br />

Institute, Dept. of Chemistry, Carleton University, Ottawa Canada KIS 586.<br />

C.I. Ratcliffe and J.A. Ripmeester, Chemistry Division, N.R.C. Ottawa Canada KIA ORg.<br />

For a series of 12-crown-4, 14-crown-4 and 18-crown-6 e<strong>th</strong>ers, i~C CPMAS spectra<br />

have been used to determine <strong>th</strong>e asymmetric units present in <strong>th</strong>e crystals. Results<br />

are compared wf<strong>th</strong> <strong>th</strong>ose available from x-ray crystallographic data. In several<br />

18-crown-6 complexes, low temoerature spectra have been recorded which reflect<br />

retardation, on <strong>th</strong>e NMR timescale, of rotational motion oresent in <strong>th</strong>e solids at<br />

298K. Torsional angle contributions to <strong>th</strong>e observed 13C chemical shifts at low<br />

temperature will be delineated.<br />

I<br />

-- 2 I A NEW APPROACH FOR QUANTITATIVE 13C-NMR SPECTROSCOPY OF COALt:<br />

Robert E. Botto*, John V. Muntean and Leon M. Stock, Chemistry Division, Argonne<br />

National Laboratory, 9700 Sou<strong>th</strong> Cass Avenue, Argonne, Illinois 60439.<br />

Several researchers recently have discussed <strong>th</strong>e scope and limitations of solid<br />

13C-NMR spectroscopy for <strong>th</strong>e analysis of fossil fuels. Several, including our-<br />

selves, have established <strong>th</strong>at only 50-70% of <strong>th</strong>e 13C nuclei in coals are observed<br />

in Bloch-decay or CP/MAS solid NMR experiments. This poster concerns recent work<br />

from our laboratories directed toward <strong>th</strong>e achievement of more quantitative<br />

spectroscopic results. One phase of our work centers on <strong>th</strong>e use of tetrakis(tri-<br />

me<strong>th</strong>ylsilyl)silane as a qualitative chemical shift standard and as a quantitative<br />

internal standard for <strong>th</strong>e measurement of <strong>th</strong>e observable quantity of 13C nuclei.<br />

The o<strong>th</strong>er phase of <strong>th</strong>is study focuses on <strong>th</strong>e application of samarium(ll) iodide<br />

for <strong>th</strong>e selective removal of organic free radicals from coal. Reduction of <strong>th</strong>e<br />

radical content is essential for <strong>th</strong>e realization of quantitative spectroscopic<br />

results.<br />

tWork performed under <strong>th</strong>e auspices of <strong>th</strong>e Office<br />

Sciences, Division of Chemical Sciences, U.S. Department<br />

contract number W-31-I09- ENG-38.<br />

98<br />

of Basic Energy<br />

of Energy, under


i m 3 I<br />

31p SOLID STATE NMR STUDIES OF ZrP, Mg3P2, MgP4, AND CdPS3,<br />

R. A. Nissan* and'T. A. Vanderah, Chemistry Division, Research Department,<br />

Naval Weapons Center, China Lake, CA 93555.<br />

The 31p solid state NMR spectra of ZrP, Mg3P2, MgP4, and CdPS3 are reported. Static and marc<br />

angle spinning (MAS) spectra were obtained for each compound. In all cases, chemical shift anisotropy and<br />

<strong>th</strong>e effects of dipolar broadening were sufficiently reduced by <strong>th</strong>e MAS me<strong>th</strong>od to reveal <strong>th</strong>e isotropic<br />

hemical shifts for each crystallographically distinct phosphorus. The observed resonances were assigned to<br />

he different types of phosphorus by considering <strong>th</strong>e structural details of each compound. In ZrP <strong>th</strong>e two<br />

.'hemical shifts of +128.4 and +187.5 ppm (relative to 85% H3PO4) were assigned to P occupying <strong>th</strong>e<br />

¢¢yckoff 2d and 2a sites, respectively. Assignments were confirmed by quenching of ZrP0.92 <strong>th</strong>us<br />

mriching <strong>th</strong>e 2a site. In Mg3P2, two resonances from <strong>th</strong>e 24d and 8a site P atoms were observed at -262.3<br />

md -239.6 ppm, respectively. In MgP4 two types of phosphorus, one type coordinated to two Mg and two<br />

P and <strong>th</strong>e o<strong>th</strong>er to <strong>th</strong>ree P and one Mg, gave chemical shifts of-109.2 and -6.1 ppm, respectively. From<br />

,?.dPS3 only one resonance at +104.9 ppm is observed as all P atoms are crystallographically:equivalent.<br />

I HIGH RESOLUTION SPECTRA OF LIQUIDS IN INHOMOGENEOUS ENVIRONMENTS<br />

AS OBTAINED BY MASS<br />

V. Rutar, Department of Chemistry, Iowa State University, Ames, Iowa 50011<br />

Magic angle sample spinning successfully reduces line broadening arising from<br />

differences in magnetic susceptibility. Al<strong>th</strong>ough <strong>th</strong>is advantage seems<br />

superficial in NMR spectroscopy of solids, it offers interesting new<br />

possibilities in studies of some "liquid-like" samples. Many biological systems<br />

represnet significant examples where MASS improves resolution and sensitivity.<br />

IH and 13C spectra of plant seeds facilitate nondestructive determination of oil<br />

composition <strong>th</strong>us allowing rapid development of better varieties. Detection of<br />

dissolved sugars monitors germination processes wi<strong>th</strong>out destroying <strong>th</strong>e sample.<br />

MASS of liquids can be applied also to o<strong>th</strong>er objects which are small enough to<br />

fit into <strong>th</strong>e spinner cavity (typical volume is about 1 cm~), because spinning<br />

frequencies are moderate (100-500 Hz). Precise balancing of rotors is not<br />

essential and mechanical stress does not appear dangerous.<br />

99


S<br />

Pascale Sole*, a b<br />

Frank Delaglio, a'<br />

George C. Levy, b<br />

I<br />

CONSTRAINED DECONVOLUTION OF 2D NMR SPECTRA AND IMAGES<br />

a<br />

b New Me<strong>th</strong>ods Research, Inc., 719 E. Genesee Street, Syracuse, NY 13210<br />

Syracuse University, Department of Chemistry, Syracuse, NY 13210<br />

We have been examining a fast constrained deconvolution me<strong>th</strong>od used to<br />

achieve better resolution in 2D spectra and images. The me<strong>th</strong>od uses<br />

estimates of <strong>th</strong>e noise mean and variance in conjunction wi<strong>th</strong> a<br />

criterion of spectral quality to reconstruct <strong>th</strong>e 'best' result. The<br />

quality criterion is a smoo<strong>th</strong>ness constraint, such as <strong>th</strong>e minimization<br />

of <strong>th</strong>e second derivative amplitude or a maximization of <strong>th</strong>e entropy of<br />

<strong>th</strong>e spectrum. Bo<strong>th</strong> approaches are illustrated and compared.<br />

We show <strong>th</strong>at <strong>th</strong>e use of a Taylor approximation in <strong>th</strong>e derivation of<br />

<strong>th</strong>e maximum entropy deconvolution filter allows an implementation much<br />

faster <strong>th</strong>an conventional iterative techniques. The measured spectrum<br />

is modeled as <strong>th</strong>e sum of a 2D random noise process and an ideal<br />

spectrum convolved wi<strong>th</strong> a generalized point spread function. Spectral<br />

lineshape parameters can be used to choose an appropriate point spread<br />

function. Once <strong>th</strong>is convolution function is chosen, <strong>th</strong>e<br />

resolutlon-enhanced spectrum can be rapidly reconstructed using <strong>th</strong>e<br />

approximate form of <strong>th</strong>e entropy in an iterative Newton-Raphson scheme.--<br />

..<br />

6<br />

AUTOMATED HI ~E~I'kA MADE ON AN XL-300: George S!omp. The Upjohn<br />

. . .<br />

Company, Kalamazoo, MI 49001<br />

An automated program for preparing routine IH spectra is described. The progra~<br />

can run unattended saving much operator time, makes uniform spectra, and ~jnimizes<br />

human error. The program employs <strong>th</strong>ree levels of easily-modified MAGICAL "m macros and<br />

features"<br />

I. A wide variety of solvents are known and <strong>th</strong>e program corrects for <strong>th</strong>e<br />

ambiguous d7-DMF lock.<br />

2. Prompts ask for a title and o<strong>th</strong>er identification if desired.<br />

3. Escape is offered at potential trouble spots and resume is provided if manual<br />

interaction was taken.<br />

4. Current activity is always displayed.<br />

5. Output is identified wi<strong>th</strong> title, date, event time, me<strong>th</strong>od of referencing,<br />

ignored intense peaks and broad downfield lines.<br />

6. The f.i.d, is saved on a floppy.<br />

Spectra are referenced to ~.IS, solvent, or by default and <strong>th</strong>en <strong>th</strong>ey are scaled<br />

vertically ignoring solvent, TMS, and unimportant intense lines. Threshold for <strong>th</strong>e<br />

line list is offered at 3X noise level or if ignored it will iterate to a maximum of<br />

88 lines, or less for small molecules. The spectrum, integral, parameters, title, and<br />

o<strong>th</strong>er information are plotted on II x 17 blank paper using an HP7550 at a standard<br />

wid<strong>th</strong> of IOPPM. Broad downfield peaks are inset at left of plot.<br />

Potential troubles and <strong>th</strong>eir remedy will be illustrated.<br />

100


CALCULATION OF 2951MAS NMR CHEMICAL SHIFT FROM SILICATE<br />

MINERAL STRUCTURE: Sherriff, Barbara L. " and G:rundy H Douglas<br />

Department of Geology, McMasterUniversity, Hamilton, Ontario, L8S4MI...<br />

There have been many attempts to correlate 295i MAS nmr chemical shift<br />

wi<strong>th</strong> various parameters of silicate mineral structure. In our studies<br />

of mineral systems such as scapolites and Feldspars we Found <strong>th</strong>ese<br />

correlations to be inadequate For <strong>th</strong>e interpretation of <strong>th</strong>e complex nmr<br />

spectra.<br />

Silicate crystal structures were retrieved from a database and<br />

manipulated wi<strong>th</strong> a computer graphics modelling program• Fur<strong>th</strong>er<br />

calculations revealed a simple correlation between 29Si MAS nmr<br />

chemical shift and molecular geometry <strong>th</strong>at Is applicable to all<br />

silicate minerals. It is based on <strong>th</strong>e magnetic anisotropy and valence<br />

of <strong>th</strong>e bond between <strong>th</strong>e terminal oxygen atoms of <strong>th</strong>e silicate<br />

tetrahedron and <strong>th</strong>e second nearest neighbour cation to <strong>th</strong>e silicon.<br />

The correlation, which is based on 76 data points and has a<br />

correlationn coefficient of 0.911 wi<strong>th</strong> a standard deviation of 0.7ppm,<br />

can be used to calculate <strong>th</strong>e chemical shift and hence to assess <strong>th</strong>e<br />

validity of different structural models.<br />

X-ray diffraction me<strong>th</strong>ods can only determine <strong>th</strong>e average of <strong>th</strong>e<br />

AI-O and Si-O leng<strong>th</strong>s for each tetrahedral (T) site in <strong>th</strong>e case of<br />

minerals wi<strong>th</strong> AI-Si disorder. Comparison of measured chemical shifts<br />

wi<strong>th</strong> <strong>th</strong>ose calculated For structures wi<strong>th</strong> different T-O distances can<br />

give an estimate of AI content.<br />

8 NONLINEAR INCOHERENT SPECTROSCOPY<br />

J. Paff and B. BiOmich*<br />

Max-Planck-Institut fur Polymerforschung, 6500 Mainz, F.R. Germany<br />

In incoherent spectroscopy <strong>th</strong>e Fourier transforms of <strong>th</strong>e nonlinear<br />

cross-correlation functions of excitation and response are multidimen-<br />

sional spectra which correspond to <strong>th</strong>e nonlinear susceptibilities. In<br />

stochastic NMR spectroscopy <strong>th</strong>e Fourier transform of <strong>th</strong>e cross-correla-<br />

tion algori<strong>th</strong>m has been applied in <strong>th</strong>e past for <strong>th</strong>e computation of 2D<br />

spectra in terms of 2D cross-sections <strong>th</strong>rough <strong>th</strong>e 3D spectra of <strong>th</strong>e<br />

<strong>th</strong>ird order nuclear magnetic susceptibility. 1<br />

We have tested <strong>th</strong>e explicit time domain <strong>th</strong>ird order cross-correla-<br />

tion for <strong>th</strong>e derivation of 2D cross-sections <strong>th</strong>rough <strong>th</strong>e 3D time corre-<br />

lation function. After 2D FT one obtains z-COSY or exchange and MQ type<br />

2D spectra. This approach is of interest, since <strong>th</strong>e evaluation can be<br />

executed in an analog fashion in parallel for each data point of <strong>th</strong>e 2D<br />

time domain matrix. In <strong>th</strong>is way <strong>th</strong>e multiplex advantage may be introdu-<br />

ced to <strong>th</strong>e additional dimension in 2D spectroscopy wi<strong>th</strong> <strong>th</strong>e ultimate<br />

goal to measure a complete 2D spectrum wi<strong>th</strong>in a few TI. The procedure is<br />

presently being implemented to obtain dead time free 2D ESR spectra,<br />

taking advantage of <strong>th</strong>e low power of continuous stochastic excitation.<br />

The state of <strong>th</strong>e art is described, and examples from NMR spectroscopy<br />

are given.<br />

i) B. BiOmich. Progr. NMR Spectrosc. 19, 331 (1987).<br />

101


ELIMINATION OF PHASE ROLL, SOLVENT SUPPRESSION, AND UNIFORM SPIN-1<br />

EXCITATION WITH SHAPED PULSES: Warren S. Warren, Mark McCoy and<br />

Andy Hasenfeld*, Department of Chemistry, Princeton University,<br />

Princeton, NJ 08544<br />

We have recently shown <strong>th</strong>at purely amplitude modulated or phase/amplitude modu-<br />

lated pulses can eliminate phase roll while exciting regions as narrow as 15 Hz; can<br />

produce undistorted two-dimensional spectra off resonance while completely eliminating<br />

<strong>th</strong>e solvent peak; and can excite a broader quadrupolar powder pattern for <strong>th</strong>e same<br />

amplifier peak power. All of <strong>th</strong>ese experiments were done wi<strong>th</strong> a slightly modified<br />

commercial spectrometer. Theoeretical work has uncovered a new infinite family of<br />

pulses wi<strong>th</strong> a rectangular excitation profile and complete insensitivity to r.f. field<br />

streng<strong>th</strong> (similar to <strong>th</strong>e (sech(~T)) I+5i pulses demonstrated by Silver), but <strong>th</strong>e<br />

additional degrees of freedom permit improved phase characteristics and give new<br />

insight into <strong>th</strong>e effects of pulse shaping.<br />

References:<br />

M. McCoy and W.S. Warren, Chem. Phys. Left. 133, 165 (1987).<br />

F. Loaiza, M. McCoy, S. Hammes and W.S. Warren, J. Mag. Res. (in press).<br />

A. Hasenfeld, Phys. Rev. Lett. (submitted).<br />

--<br />

i0<br />

I 127I NMR STUDY OF QUADRUPOLAR ECHOES IN KI: B. C. Sanctuary,<br />

McGill University, Montreal, Quebec H3A 2K6.<br />

5<br />

The NMR observables of a system of single spin ~ nuclei can be described in terms<br />

k<br />

of <strong>th</strong>e 2k-pole alignments population ~0 (i ~ k ¢ 5) and <strong>th</strong>e q-<strong>th</strong> quantum coher-<br />

k k<br />

ences ~±q (k ~ q ~ 5, q ~ O), where <strong>th</strong>e polarizations, ~q, are <strong>th</strong>e expectation<br />

values of a set of k-<strong>th</strong> rank spherical tensor operators, or multlpoles. Theor-<br />

etical calculations are first given on <strong>th</strong>e NMR spln-echo responses of <strong>th</strong>is system,<br />

perturbed by a distribution of static electric quadrupole interactions, to various<br />

sequences of up to <strong>th</strong>ree intense r.f. pulse. Following <strong>th</strong>is, we describe <strong>th</strong>e<br />

results of some experiments on 127I in KI aimed at verifying <strong>th</strong>ese calculations<br />

and determining <strong>th</strong>e relaxation behavior of <strong>th</strong>e polarizations.<br />

102


AN NMR STUDY OF MISCIBLE BLENDS<br />

IN CONCENTRATED SOLUTION<br />

ii I *a b<br />

olly W. Crow<strong>th</strong>er ,Israel Cabasso ,and George C. Levy Department<br />

of Chemistry, Syracuse University, Syracuse, New York, 13210<br />

acurrent Address- New Me<strong>th</strong>ods Research, Inc., 719 E. Genesee Street<br />

b Syracuse, New York, 13210<br />

Department of Chemistry, State University of New York-ESF<br />

Syracuse, New York, 13210<br />

High-resolution proton spectra of <strong>th</strong>e miscible polymer blend<br />

polystyrene/poly(vinyl me<strong>th</strong>yl e<strong>th</strong>er) (PS/PVME) in concentrated<br />

solution have been used to examine intermolecular interactions. The<br />

spectral resolution achieved in solution allows <strong>th</strong>e polymer components<br />

and <strong>th</strong>e chemically different types of protons wi<strong>th</strong>in each component to<br />

be well resolved. A one-dimensional cross-relaxation experiment shows<br />

<strong>th</strong>at <strong>th</strong>e polymers are intimately mixed in toluene solution but not in<br />

chloroform. The concentration <strong>th</strong>reshold for observable magnetization<br />

exchange between <strong>th</strong>e polymer pair (in toluene) lies between 30 and 40<br />

wt% total polymer, of which 50 wt% is polystyrene. The chemical shift<br />

difference between <strong>th</strong>e me<strong>th</strong>ine and me<strong>th</strong>oxy resonances of PVME is found<br />

to vary wi<strong>th</strong> <strong>th</strong>e mole ratio of PVME to <strong>th</strong>e total aromatic<br />

functionality, from ei<strong>th</strong>er PS or toluene. Linewid<strong>th</strong> vs. temperature<br />

measurements seem to indicate hindrance of motion for <strong>th</strong>e blend in<br />

toluene at elevated temperatures, as <strong>th</strong>e gross phase separation is<br />

approached, <strong>th</strong>at is not observed for <strong>th</strong>e pure homopolymer. A<br />

two-dimensional exchange experiment was performed at a series of<br />

mixing times to measure <strong>th</strong>e intra- and intermolecular spin-diffusion<br />

rates. Specific intermolecular rates could not be differentiated in<br />

<strong>th</strong>e presence of <strong>th</strong>e very fast intramolecular distribution of <strong>th</strong>e<br />

_magnetization via_spin diffusion.<br />

[<br />

~<br />

POT<strong>ENC</strong>Y OF FLUORINATED ETHER ANESTHETICS CORRELATES WITH SPIN-SPIN<br />

RELAXATION TIME IN BRAIN:<br />

12 J D. Andre' d'Avfgnon 1. Joanna C. Haycock 2 and Alex S. Evers 2"<br />

Departments of Chemistry I and Anes<strong>th</strong>esiology 2, Washington University, St. Louis, MO<br />

631301 and 631102 .<br />

19F NMR signals arising from fluorinated anes<strong>th</strong>etics can readily be observed in<br />

brain tissue excised from anes<strong>th</strong>etized rats. When brain is suspended in D20-saline<br />

two anes<strong>th</strong>etic environments as characterized by different spin-spin (Tp) relaxation<br />

times can be observed I. The major anes<strong>th</strong>etic compartment (bound anes<strong>th</strong>etic) is highly<br />

immobilized (T 2 < 5 msec) while <strong>th</strong>e minor component is believed in exchange wi<strong>th</strong> <strong>th</strong>e<br />

aqueous phase (T 2 > 9 msec). The following observations are made:<br />

* T 2 times of <strong>th</strong>e bound component for a variety of anes<strong>th</strong>etic e<strong>th</strong>ers in brain correlate<br />

well wi<strong>th</strong> anes<strong>th</strong>etic potency as measured by ED50. Respective T2/EDso values<br />

are: Me<strong>th</strong>oxyflurane, T 2 = 0.62 msec, ED50 = 0.0046 arm; isoflurane, T2-& 2.39,<br />

ED.^ = 0 016 arm; Enflurane, To = 2.90msec, ED.^ = 0.022 arm; fluroxene, T 2 = 4.30<br />

~U " ~ ~U<br />

ED50 = 0.035 arm.<br />

* Hexafluore<strong>th</strong>ane, a non-anes<strong>th</strong>etic, shows a far greater T 2 time (18 msec) in brain<br />

<strong>th</strong>an <strong>th</strong>e anes<strong>th</strong>etics studied. Hexafluore<strong>th</strong>ane partitions well into perinephric<br />

*<br />

adipose tissue and poorly into brain, suggesting low affinity for a binding site<br />

in brain.<br />

Anes<strong>th</strong>etics incorporated in adipose tissue show much longer T2's <strong>th</strong>an in brain<br />

(200 - 400 msec) while hexafluore<strong>th</strong>ane is 230 msec.<br />

Our conclusions from <strong>th</strong>is work are:<br />

* The correlation of anes<strong>th</strong>etic potency wi<strong>th</strong> spin-spin relaxation time suggests<br />

anes<strong>th</strong>etics wi<strong>th</strong> highest binding affinity (greatest immobilization) are <strong>th</strong>e most<br />

potent anes<strong>th</strong>etics.<br />

* Brain tissue contains b~nding sites for anes<strong>th</strong>etics which provide a markedly dif-<br />

ferent motional environment <strong>th</strong>an sites found in adipose tissue.<br />

References: 1A~S. Evers et al. Nature 328, 157 (1987).<br />

103


- - QUANTIFICATION OF BLOOD FLoW AND TISSUE PERFUSION VIA DEUTERIUM<br />

13 I NMR-THE NOVEL USE OF D20 AS A FREELY DIFFUSIBLE TRACER:<br />

Joseph J.H. Ackerman 1" , Seong-Gi Kim I , Coleen S. Ewy I , Nancy N.<br />

5ecker I , Yuying C. Hwang I , and Robert A. Shalwitz2; Departments of Chemistry I and<br />

Pediatrics 2, Washington University, St. Louis, MO 631301 and 631102 .<br />

NMR has proven to be a valuable technique wi<strong>th</strong> which to monitor metabolic events<br />

nondestructively in intact biological systems. The past decade has witnessed dramatic<br />

advances in <strong>th</strong>e development of such spectroscopic analyses employing 31p, 13C, and *H<br />

nuclides. Our laboratory has recently introduced a new approach, employing deuterium<br />

NMR in concert wi<strong>th</strong> D20 as a freely diffusible aqueous tracer, for <strong>th</strong>e measurement of<br />

blood flow and tissue perfusion 1'2 This me<strong>th</strong>od borrows heavily from multicompart-<br />

ment kinetic modeling used wi<strong>th</strong> diffusible radiotracers such as H2150 and 133Xe but,of<br />

course, does not require <strong>th</strong>e special handling procedures associated wi<strong>th</strong> radioactive<br />

labels. In addition, <strong>th</strong>e deuterium NMR blood flow determination can be carried out<br />

concomitant wi<strong>th</strong> NMR metabolic analysis, <strong>th</strong>us, correlating in one measurement impaired<br />

substrate delivery and its physiologic consequences. In brief, <strong>th</strong>e tissue or organ in<br />

which blood flow is to be determined is labeled wi<strong>th</strong> D20 via ei<strong>th</strong>er intravenous, intra-<br />

arterial or intratissue bolus injection. Ongoing capillary blood flow, diffusion and<br />

proton-deuteron exchange serve to distribute HOD <strong>th</strong>roughout <strong>th</strong>e tissue's aqueous space.<br />

Fur<strong>th</strong>er blood flow (unlabeled) <strong>th</strong>en washes out <strong>th</strong>e deuterium residue. The residue<br />

decay (washout) curve is accurately defined via external monitoring, i.e., 2H NMR.<br />

Single*, 2 and multicompartment modeling 3'4 and knowledge of <strong>th</strong>e blood:tissue<br />

partition coefffcient (readily determined independently of <strong>th</strong>e NMR residue decay curve~<br />

allows derivation of blood flow and perfusion in units of ml-blood/(100 g-tissue,min).<br />

The extension of <strong>th</strong>is me<strong>th</strong>od to NMR flow-imaging appears feasible s . [References: (i)<br />

J.J.H. Ackerman et al., Proc. Natl. Acad. Sci. USA, 84, 4099 (1987); (2) J.J.H.<br />

Ackerman e~ al., N.Y. Acad. Sci., 508, 89 (1987); (3) S.-G. Kim et al., Cancer<br />

Research, accepted (1987); (4) S.-G. Kim, et al., Magn. Reson. Med., submitted<br />

(1987); (5) C.S. Ewy eC al., Magn. Reson. Med., submitted (1987).]<br />

14 ] SILICON-29 MASNMR ANALYSIS OF SINTERED Si3N 4 CERAMICS:<br />

K. R. Carduner, Ford Motor Company, Dearborn, Michigan, 48121<br />

Silicon nitride is finding application in <strong>th</strong>e transportation industry in<br />

various engine components such as valves, valve seats, or wrist pins <strong>th</strong>at<br />

will operate wi<strong>th</strong> less wear and improved <strong>th</strong>ermal characteristics compared<br />

to metal components. Gas turbine rotors constructed from Si3N 4 ceramic<br />

can operate at higher speeds and temperatures wi<strong>th</strong>out <strong>th</strong>e deformation or<br />

fatigue observed in turbines manufactured from high temperature alloys.<br />

Si3N 4 ceramics are made by conversion at high temperature of ~-Si3N 4<br />

precursor powder packed into a mold to ~-Si3N 4 into which is mixed<br />

approximately 5% of a "sintering aid" such as Y203 . The precursor powder<br />

must be mostly a-Si3N 4 and/or amorphous Si3N 4 phases and low in SiO 2 or<br />

Si2N20 for effective microstructure development during sintering. An NMR<br />

technique to analyze for phase purity in precursor powders has recently<br />

appeared (K. R. Carduner, e t al, Anal. Chem. 59, 2794, 1987). Presently,<br />

it is shown <strong>th</strong>at NMR can provide insight into sintered ceramic as well.<br />

Test ceramics, which are not readily pulverizable, were machined into<br />

cylinders and inserted into alumina MAS rotors. 29Si MASNMR spectra can<br />

distinguish between <strong>th</strong>e ~ and any residual ~-Si3N 4 phase, and it has also<br />

been possible to detect, assign resonances of, and quantify <strong>th</strong>e grain<br />

boundary phases <strong>th</strong>at result from reaction of yttria and Si3N 4. The grain<br />

boundary phases, which are at <strong>th</strong>e level of i to 2 wt%, are often respon-<br />

sible for limiting <strong>th</strong>e high temperature streng<strong>th</strong> of Si3N 4 ceramics.<br />

Quantification of <strong>th</strong>e grain boundary phases by o<strong>th</strong>er techniques are<br />

compared wi<strong>th</strong> <strong>th</strong>e NMR results. NMR shows strong promise as a me<strong>th</strong>od to<br />

study crystalline versus amorphous morphology of <strong>th</strong>e grain boundary<br />

pha~=s.<br />

104


15 II9F CRAMPS OF INORGANIC FLUORIDE COMPOUNDS:<br />

*Karen Ann Smi<strong>th</strong> and Douglas P. Burum , Colgate-Palmolive, 909 River Road,<br />

Piscataway, NJ 08854, and Bruker Instruments, Inc., Manning Park, Billerica,<br />

MAOI821.<br />

The major mineral component of human dental enamel is hydroxyapatite.<br />

Fluoride treatment of apatite can result in formation of calcium fluoride<br />

and/or fluoroapatlte, depending on treatment conditions. In addition,<br />

dentifrices may contain various sodium or potassium salts which could result<br />

in a variety of fluoride-contalnlng compounds precipitating or forming. Many<br />

of <strong>th</strong>ese compounds have large fluorlne-fluorlne dipolar couplings, which<br />

broaden <strong>th</strong>e spectra and ma~ resolution of individual resonances difficult<br />

wi<strong>th</strong> MASS alone. However F CRAMPS allows identification and resolution of<br />

calcium fluoride, fluoroapatite, sodium and potassium fluoride, and sodium<br />

and potassium monofluorophosphate, even when all are present simultaneously.<br />

Fluorine-19 has a large chemical shift range, which can be a problem in using<br />

multl-pulse techniques. Here, quad detection (achieved by data sampling in<br />

all 4 2~wlndows in <strong>th</strong>e MRev-8 cycle and appropriate data manipulation) was<br />

used to double <strong>th</strong>e effective sweep wid<strong>th</strong> of <strong>th</strong>e multiple pulse sequence, and<br />

cover <strong>th</strong>e range of chemical shifts needed.<br />

Spectra taken wi<strong>th</strong> 19F CRAMPS, as well as details of <strong>th</strong>e pulse sequence and<br />

data handling used will be presented.<br />

16 I 13C NMR RELAXATION STUDIES OF GLUCONATE AND MANGANESE-GLUCONATE<br />

INTERACTIONS, W. Robert Carper* and David B. Coffin, Department of Chemistry, Wichita<br />

State University, Wichita, KS 67208.<br />

13<br />

The effect of temperature on <strong>th</strong>e spin-lattice (R I) and spin-spin (Rp) C relaxa-<br />

tion rates of gluconate and manganese(II)-gluconate solutions is determined in D~O.<br />

We observe a R~ vs. temperature minimum for gluconate solutions similar to <strong>th</strong>at ~b-<br />

served in solia-liquid phase transitions. Nuclear Overhauser enhancement factors<br />

indicate predominately dipolar relaxation mechanisms for all except <strong>th</strong>e carbonyl<br />

carbon. Activation energies and chemical shifts indicate a molecular reorientation<br />

involving <strong>th</strong>e carbonyl carbon which results in changes in solvation (hydrogen bond-<br />

ing) effects. Addition of manganese(II) to gluconate in D~O results in an observed<br />

temperature minimum in R 1 vs. reciprocal temperature plots for all except <strong>th</strong>e carbonyl<br />

carbon atom. Activation energies fur<strong>th</strong>er support <strong>th</strong>e concept of changes in solvent-<br />

manganese-gluconate interactions affected by a change in intra-molecular structure.<br />

This work has been supported by a grant from NIDDKD (DK 38853).<br />

105


I~ 17 J QUANTITATIVE 2D NMR STUDIES OF PROTON EXCHANGE IN AMMONIUM ION.<br />

Charles L. Perrin and Tammy J. Dwyer,* Department of Chemistry, University-of<br />

California, San Diego, La Jolla, California 92093.<br />

To investigate kinetic isotope effects on proton exchange, we have studied<br />

ammonium ion by a combination of isotopic substitution and quantitative twodimensional<br />

NMR. Solutions of ISNHANO~ in a 3:2 mixture of D20:H20 result in five<br />

isotopomers of <strong>th</strong>e ammonium ion, four of which are distinguishable in <strong>th</strong>e IH NMR<br />

spectrum. At pH < 1 <strong>th</strong>e protons exchange only wi<strong>th</strong> water. This is detected as<br />

crosspeaks connecting each isotopomer wi<strong>th</strong> its nearest neighbor(s). Base-catalyzed<br />

exchange involves transfer of a proton from an ammonium ion to an ammonia. In <strong>th</strong>is<br />

case, crosspeaks are observed which connect <strong>th</strong>e different spin states of <strong>th</strong>e nitrogen<br />

nucleus as well as <strong>th</strong>e individual isotopomers of <strong>th</strong>e ammonium ion. It has been<br />

shown (Perrin and Gipe, J. Am. Chem. Soc. 1984, 106, 4036) <strong>th</strong>at each crosspeak can<br />

be integrated to determine <strong>th</strong>e site-to-site rate constants for <strong>th</strong>e individual<br />

exchange processes. The rate constant for base-catalyzed proton exchange obtained<br />

by <strong>th</strong>is me<strong>th</strong>od is 2.7 x 108 M -1 sec -1. This agrees nicely wi<strong>th</strong> a value obtained<br />

previously. More importantly, an isotope effect of kD/k H = 0.56 was observed for<br />

<strong>th</strong>is process.<br />

18 J TWO-DIMENSIONAL NMR STUDIES OF THE CONFORMATIONS OF BRADYKININ IN<br />

AQUEOUS SOLUTION AND IN THE PRES<strong>ENC</strong>E OF MICELLES: Susannie C. Lee and Anne F.<br />

Russell, Procter and Gamble Co., Miami Valley Laboratories, P.O. Box 398707,<br />

Cincinnati, Ohio 45239<br />

The conformational properties of a nonapeptide hormone, bradykinin, have been<br />

determined by two-dimensional NMR techniques at 500 MHz. In particular, homonuclear<br />

Hart_mann-Hahn (HOHAHA) and rotating frame cross-relaxation (ROESY) experiments were<br />

essential in <strong>th</strong>e assignment of resonances and <strong>th</strong>e elucidation of <strong>th</strong>e structure of<br />

<strong>th</strong>is 1280 Da polypeptide. Our studies indicate <strong>th</strong>at bradykinin exists, in aqueous<br />

solution, ei<strong>th</strong>er as a completely disordered structure or as an average of several<br />

conformations in fast exchange. To gain a better understanding of <strong>th</strong>e structural<br />

properties of bradykinin in a cell membrane receptor environment, various micellar<br />

systems were examined for <strong>th</strong>eir ability to stabilize a preferred conformation.<br />

Three membrane mimetic systems were studied: sodium dodecyl sulfate (SDS),<br />

myristoyl-lysophosphatidyl choline, and dodecyl phosphocholine. The optimal system<br />

for <strong>th</strong>is investigation was a mixture of bradykinin and sodium dodecyl sulfate<br />

(perdeuterated) at a 1:5 molar ratio, as confirmed by <strong>th</strong>e temperature-dependent<br />

behavior of <strong>th</strong>e amide protons. Under <strong>th</strong>ese conditions, we were able to detect <strong>th</strong>e<br />

presence of a gamma turn at residues 7-9 of bradykinin. Detailed structural<br />

information, in <strong>th</strong>e presence of SDS, was obtained from quantitative 2-D NOE analyses<br />

and distance geometry calculations.<br />

106


19 I DIPOLARAND SPIN-ROTATION POLARIZATION OF METHYL GROUP SPINS<br />

Michael Murphy and David White, Dept. of Chemistry<br />

University of Pennsylvania, Philadelphia, PA 19104<br />

We have investigated <strong>th</strong>e proton NMR of molecules such as CH3CN , CH3CmCH ,<br />

and CH3CI trapped at low concentrations in solid Kr. The me<strong>th</strong>yl groups in<br />

<strong>th</strong>ese matrices undergo nearly free quantum rotation, allowing for polarization<br />

of me<strong>th</strong>yl spins to occur via coupled spin and rotational relaxation following<br />

a temperature jump. Besides proton-proton dipolar polarization (<strong>th</strong>e 'Haupt<br />

I<br />

effect' ), we have identified additional spin polarizations, namely, <strong>th</strong>ose<br />

associated wi<strong>th</strong> secular spin-rotation and heteronuclear dipolar interactions.<br />

Due to <strong>th</strong>e magnetic isolation of <strong>th</strong>e molecules, well-resolved powder line-<br />

shapes are obtained from which <strong>th</strong>e contributions of different spin observables<br />

may be distinguished. We provide evidence <strong>th</strong>at a finite spin-rotation cou-<br />

pling exists and determine <strong>th</strong>e coupling constant for CH3CN/Kr by examining <strong>th</strong>e<br />

signal component due to polarized 'spin-rotation magnetization'. Heteronuclear<br />

2 Is<br />

dipolar polarization is demonstrated in CH3CN/Kr. Lineshape analyses are<br />

shown to provide new information regarding <strong>th</strong>e me<strong>th</strong>yl group rotational levels.<br />

I. J. Haupt, Phys. Lett. 38A, 389 (1972); Z. Naturforsch 28a, 98 (1973)<br />

2. M. Murphy and D. White, J. Chem. Phys. 86, 1640 (1987)<br />

I -- 2 0 I NMR SIGNAL PROCESSING USING PADE APPROXIMANT AND LINEAR<br />

PREDICTION Z-TRANSFORM METHOD: J. Tang*, Y. Zeng and J. R. Norris, Chemistry Division,<br />

Argonne National Laboratory, Argonne, IL 60439<br />

Linear prediction (LP) <strong>th</strong>eory has been widely applied to digital signal processing to overcome<br />

truncation and noise problems often encountered by <strong>th</strong>e fast Fourier transform me<strong>th</strong>od. Here, a new<br />

approach 1 is proposed for NMR spectral analysis wi<strong>th</strong> enhanced resolution and sensitivity using Pad6<br />

rational approximation 2-s and linear prediction z-transform. 4 In <strong>th</strong>e conventional LP me<strong>th</strong>ods 4 such as<br />

LPQRD or LPSVD, <strong>th</strong>e whole spectrum is analyzed. In order to resolve all <strong>th</strong>e spectral lines a very large<br />

LP filter leng<strong>th</strong>, usually several times <strong>th</strong>at of <strong>th</strong>e total number of spectral components, has to be used.<br />

In contrast, <strong>th</strong>is me<strong>th</strong>od can be used to zoom into a small section of <strong>th</strong>e whole spectrum for analysis if<br />

<strong>th</strong>e spectral contents in some zones are of particular interest. Thus, <strong>th</strong>is me<strong>th</strong>od uses a much shorter<br />

LP filter leng<strong>th</strong> and requires a smaller computer memory and shorter computational time. As LPQRD or<br />

LPSVD, <strong>th</strong>is me<strong>th</strong>od also yields a table of spectral parameters wi<strong>th</strong>out additional efforts required by FFT.<br />

Applications of <strong>th</strong>is me<strong>th</strong>od and <strong>th</strong>e comparisons wi<strong>th</strong> LPQRD or LPSVD will be presented. O<strong>th</strong>er LP<br />

me<strong>th</strong>ods using computationally efficient autoregression (AR) or Burg algori<strong>th</strong>m s are particularly useful for<br />

2-D NMR signal processing. By LP extrapolation of <strong>th</strong>e unobserved FID and application of line-<br />

narrowing apodization functions one can significantly improve spectral resolution while avoiding sinc-<br />

wiggling artifacts due to data truncation.<br />

.<br />

2.<br />

3.<br />

4.<br />

.<br />

J. Tang and J. R. Norris, Nature, (in press).<br />

E. Yeramian and P. Claverie, Nature 326, 169 (1987).<br />

J. Tang and J. R. Norris, J. Magn. Reson. (in press).<br />

J. Tang and J. R. Norris, in "Electronic Magnetic Resonance of <strong>th</strong>e Solid State', Vol. 1, p. I11<br />

(1987) (Ed., J. Weil), The Canadian Society for Chemistry, Ottawa, Canada.<br />

J. Tang and J. R. Norris, Chem. Phys. Lett. 131, 252 (1986).<br />

This work was supported by <strong>th</strong>e U.S. Department of Energy, Office of Basic Energy Sciences,<br />

Division of Chemical Sciences under contract W-31-109-Eng-38.<br />

107


21 DETECTION OF LONG-RANGE IH-19F COUPLINGS USING A HETERONUCLEAR<br />

[ EQUIVALENT OF THE COSY PULSE SEQU<strong>ENC</strong>E.<br />

Donald W.Hughes and Alex D.Bain, Department of Chemistry, McMaster University,<br />

Hamilton, Ontario. Canada. LSS 4MI.<br />

Heteronuclear chemical shift correlation has become an indispensable technique for<br />

assigning <strong>th</strong>e spectra of natural products. The original pulse sequence (I)<br />

IH : D1 - 90 ° - t I - 90 °<br />

X : 90 ° - ACQ<br />

has been largely neglected by spectroscopists because of <strong>th</strong>e complications arising from<br />

heteronuclear coupling in bo<strong>th</strong> dimensions. Recently <strong>th</strong>is pulse sequence was reexamined<br />

wi<strong>th</strong> a phase-sensitive modification (2). The principle advantage <strong>th</strong>is heteronuclear<br />

correlation (HETCOSY) me<strong>th</strong>od is <strong>th</strong>at like <strong>th</strong>e homonuclear COSY experiment it is a<br />

robust technique i.e.resistant to errors. HETCOSY can produce correlations between<br />

protons and X nuclei wi<strong>th</strong>out prior knowledge of X-IH coupling constants. This feature<br />

makes HETCOSY useful for establishing correlations between protons and X nuclei such<br />

as 19F and 31p, especially in cases where <strong>th</strong>e X-IH couplings are not well resolved. The<br />

present study deals wi<strong>th</strong> <strong>th</strong>e application of HETCOSY in identifying which fluorine<br />

nuclei are responsible for long-range IH-19F couplings in corticosteriods related<br />

to fluocinonide.<br />

I. A.A.Maudsley and R.R. Ernst. Chem. Phys. Lett.50, 368 (1977)<br />

2. A.D. Bain. J. Magn. Reson. In press (<strong>1988</strong>)<br />

I -- 22 I<br />

STUDIES OF PHOSPHORYLATED SITES IN PROTEINS USING IH -<br />

David H. Live and Dale E. Edmondson #<br />

31p<br />

2-DIMENSIONAL NMR<br />

*Department of Chemistry and #Department of Biochemistry, Emory University,<br />

Atlanta, GA 30322<br />

The application of proton detected IH - 31p multiquantum 2-dimensional<br />

NMR to directly studying <strong>th</strong>e phophorylated sites of proteins is demonstrated<br />

here. This approach works well for proteins up to molecular weight of about 40<br />

kD in spite of <strong>th</strong>e fact ~at <strong>th</strong>e 2D spectrum is mediated by small 3 or more<br />

bond couplings between ~P and protons on phosphorylated amino acid residues.<br />

Results are presented for <strong>th</strong>e protein Azotobacter flavodoxin, an electron<br />

carrier in nitrogen fixation. The results provide <strong>th</strong>e first direct evidence<br />

for <strong>th</strong>e existence of a phosphate diester linkage between a seryl and a<br />

<strong>th</strong>reonyl residue in <strong>th</strong>e protein. Data from <strong>th</strong>is protein are compared to <strong>th</strong>at<br />

from phosphoserine, phospho<strong>th</strong>reonine and ovalbumin.<br />

108


2 3- I A SOLID-STATE 2H and 13C NMR STUDY OF THE STRUCTURE OF POLYANILINES:<br />

Samuel Kaplan* and Es<strong>th</strong>er M. Conwell, Xerox Webster Research Center, 800 Phillips Rd. 011ll-39D,<br />

Webster, NY lt1580; Alan F. Richter and Alan G. MacDiarmid" Department of Chemistry, University of<br />

Permsylania" Philadelphia, PA 1910tl.<br />

Polyaniline, syn<strong>th</strong>esized by <strong>th</strong>e electrochemical or chemical oxidative polymerization of aniline, can<br />

exist as a number of unique structures of <strong>th</strong>e form<br />

. . . . . ly~ . . . . . . x<br />

1A 2A<br />

where 0-


25<br />

-- I NUCLEAR MAGNETIC RESONANCE STUDIES OF GROUP VI METAL CARBONYLS ON<br />

OXIDE SUPPORTS: William M. Shirley, Department of Chemistry, Wichita State<br />

University, Wichita, Kansas 67208.<br />

High-resolution solid-state NMR has become an important technique for<br />

characterizing heterogeneous catalysts. In <strong>th</strong>is study, 13C NMR was used to<br />

characterize surface species prepared by allowing Cr(CO)6 , Mo(CO)6 , and W(CO)6 to<br />

react wi<strong>th</strong> alumina and zeolite supports. Surface trlcarbonyl species, stable up to<br />

200°C for all <strong>th</strong>ree metals, have been observed by NMR on ei<strong>th</strong>er y-alumlna or a NaX<br />

zeolite. The large downfleld shift of 247 ppm observed for Cr(CO)3/NaX indicates an<br />

anionic species. The molybdenum and tungsten carbonyls on alumina show a strong<br />

signal from an intermediate species wi<strong>th</strong> 4 or 5 CO llgands. Al<strong>th</strong>ough diffuse<br />

reflectance visible spectroscopy indicates an intermediate species for <strong>th</strong>e chromium<br />

carbonyl on <strong>th</strong>e NaX zeolite, <strong>th</strong>e NMR signal for <strong>th</strong>is species is barely observable<br />

using maglc-angle spinning (MAS). Interpretation of MAS spectra in <strong>th</strong>e presence or<br />

absence of cross polarization (CP) provides information on <strong>th</strong>e mobility of surface<br />

species on alumina. While <strong>th</strong>e spinning sldebands of <strong>th</strong>e 13C resonance from<br />

Mo(CO)3/alumlna using CP/MAS indicate a very broad resonance (400 ppm), <strong>th</strong>e<br />

intermediate carbonyl has a smaller chemical shift anlsotropy and is not enhanced by<br />

CP. The Mo(CO)3 species is apparently static while <strong>th</strong>e intermediate species is<br />

ra<strong>th</strong>er mobile. Mobility is also indicated for Cr(CO)3/NaX since <strong>th</strong>e resonance is<br />

only about 150 ppm wide. This resonance is narrow enough to be followed from a room<br />

temperature powder pattern to a relatively narrow llne above 150°C using a<br />

conventional liquids probe at 7 T.<br />

_ _<br />

26 I A NOVEL METHOD FOR DETERMING ACTIVATION ENERGIES AND<br />

CORRELATION TIMES FROM NMR SPIN-LATTICE RELAXATION DATA<br />

Morton A. Fineman *<br />

Department of Physics<br />

San Diego State University<br />

San Diego,CA 92182<br />

The task of deducing <strong>th</strong>e activation energies and correlation times from spin-<br />

lattice relaxation data consisting of relaxation time measurements at various<br />

temperatures at a fixed Larmor frequency has, in <strong>th</strong>e past, been accomplished<br />

by employing complicated and tedious iterative programs. In <strong>th</strong>is paper a novel<br />

technique is described which permits one to find accurate values of <strong>th</strong>e activation<br />

energy and correlation times easily and quickly wi<strong>th</strong>out <strong>th</strong>e use of a computer.<br />

The only requirement is <strong>th</strong>at a minimum value for <strong>th</strong>e spin-lattice relaxation<br />

time is observed. A typical set of data from an NMR experiment on penta-<br />

deuterated e<strong>th</strong>ane will be treated to demonstrate <strong>th</strong>is me<strong>th</strong>od. Results<br />

obtained by <strong>th</strong>is technique for several o<strong>th</strong>er compounds reported in <strong>th</strong>e literature<br />

will be compared to <strong>th</strong>e recorded literature values.<br />

The support of EE&G Incorporated , <strong>th</strong>e US Federal Aviation Agency and<br />

<strong>th</strong>e US Navy is gratefully acknowledged.<br />

110


27 1 COLLECTION OF PHOSPHORUS-31 NMR SPECTRA FROM RAT<br />

PUPS WITH INDUCED HYPERTHERMIA: Joseph J. Ford*, Ka<strong>th</strong>erine H. Taber<br />

and R. Nick Bryan, Baylor Magnetic Resonance Center, Houston, Texas 77030<br />

It is well known <strong>th</strong>at hyper<strong>th</strong>ermia in young animals will induce<br />

seizures, which involve <strong>th</strong>e expenditure of a large amount of energy, and<br />

eventually dea<strong>th</strong>. Phosphorous-31 NMR can be used to monitor how seizures<br />

affect <strong>th</strong>e levels of <strong>th</strong>e high energy phosphorous metabolites. Measuring <strong>th</strong>e<br />

phosphorous-31 NMR spectrum on a young, 5-20 day old, rat pup while<br />

inducing hyper<strong>th</strong>ermia and monitoring <strong>th</strong>e EEG presents a technical challenge.<br />

To collect <strong>th</strong>e data, it was necessary to physically restrain <strong>th</strong>e animal to<br />

insure <strong>th</strong>at anes<strong>th</strong>etics not affect <strong>th</strong>e results. There is very little free space<br />

inside <strong>th</strong>e probe <strong>th</strong>at is placed in <strong>th</strong>e NMR magnet and <strong>th</strong>e probe is at least 1<br />

foot inside <strong>th</strong>e narrow (70 mm) cylinder of <strong>th</strong>e NMR magnet. It was<br />

necessary to gently restrain <strong>th</strong>e animal in <strong>th</strong>is isolated, high magnetic field<br />

enviroment, while monitoring <strong>th</strong>e EEG and internal body temperature, and<br />

adjusting <strong>th</strong>e body temperature. A specially designed water blanket and a<br />

commercial <strong>th</strong>ermocouple probe were used to monitor and maintain body<br />

temperture and <strong>th</strong>e use of long lead electrodes enabled <strong>th</strong>e collection of some<br />

EEG data while <strong>th</strong>e animal was in <strong>th</strong>e magnet. Evaluation of <strong>th</strong>e equipment<br />

and techniques used will also be presented.<br />

-- 28 I HIGH PRESSURE DEUTERIUM SOLID STATE NMR OF POLYCRYSTALLINE CdPS 3<br />

I INTERCALATED WITH PYRIDINE: P. L. McDaniel, G. Liu and J. Jonas, University of<br />

Illinois, Urbana, IL 61801<br />

O O<br />

The use of <strong>th</strong>e quadrupole echo sequence (90 -T-90 ) for <strong>th</strong>e collection of<br />

• X. .<br />

deuterium powder pattern lineshapes which provzde inform~tzon about <strong>th</strong>e dynamcs of<br />

<strong>th</strong>e deuterated molecule is well known. We have applied <strong>th</strong>is technique to <strong>th</strong>e study<br />

of ds-pyridine intercalated into <strong>th</strong>e VDW gap of <strong>th</strong>e lamellar CdPS 3 host. Fur<strong>th</strong>ermore,<br />

we d~veloped a probe which allows us to study <strong>th</strong>is system at pressures up to 4.5 kbar.<br />

Pressure experiments were performed for four iso<strong>th</strong>erms, (270K, 300K, 330K and<br />

360K). Due to <strong>th</strong>e absence of any large amplitude reorientational motion at 270K,<br />

pressure had a minimal effect on <strong>th</strong>e lineshape. At 300K, 330K and 360K, however,<br />

increasing pressure results in a decrease in <strong>th</strong>e VDW gap size which in turn has a<br />

marked effect on <strong>th</strong>e reorienting pyridine molecule. Increasing pressure results in<br />

a reduction of <strong>th</strong>e proportion of motionally reduced pyridine (a result of rapid<br />

reorientational motion of 3-fold or higher symmetry about an in-plane axis perpendi-<br />

cular to <strong>th</strong>e molecular C 2 symmetry axis) to <strong>th</strong>e rigid pyridine component.<br />

These high pressure deuteDium solid state NMR experiments show <strong>th</strong>at an elevation<br />

in pressure produces lineshapes similar to <strong>th</strong>ose obtained wi<strong>th</strong> a decrease in<br />

temperature. These two me<strong>th</strong>ods of affecting intercalate dynamics are basically very<br />

different. Thermal expansion of <strong>th</strong>e host material resulting in a larger VDW gap would<br />

be small. The application of pressure, however, results in an actual alteration of<br />

<strong>th</strong>e VDW gap dimension. The use of high pressure to generate changes in <strong>th</strong>e VDW gap<br />

could be useful in <strong>th</strong>e simulation of <strong>th</strong>e effect on intercalated molecules of similar<br />

host compounds whose differences lie only in <strong>th</strong>eir VDW gap size.<br />

111


2 ~ I SOLID-STATE NMR STUDY OF THE STRUCTURE AND<br />

DYNAMICS OF PLANT POLYESTERS AND INTACT PLANT CUTICLE.<br />

Joel R. Garbow', Tatyana Zlotnik-Mazori ~, Lisa M. Ferrantello ~ and Ru<strong>th</strong> E. Stark ~. .<br />

Life Sciences NMR Center, Monsanto Company, St. Louis, MO 63198 and #Department of<br />

Chemistry, College of Staten Island, City University of New York, Staten Island, NY 10301.<br />

Cutin and suberin are <strong>th</strong>e structural polymers of plant cuticle, functioning in conjunction<br />

wi<strong>th</strong> lipid waxes and carbohydrate cell walls as effective barriers to <strong>th</strong>e environment. In <strong>th</strong>is<br />

poster, we report on a high-resolution solid-state 13C NMR study of <strong>th</strong>ese plant polyesters,<br />

designed to determine how <strong>th</strong>eir substituted fatty-acid constituents are linked toge<strong>th</strong>er in<br />

a functionally useful way. Additional molecular information is derived from NMR analysis<br />

of cutin-wax and suberin-cell wall assemblies, as well as from solid residues remaining after<br />

partial depolymerization.<br />

Cross-polarization magic-angle spinning 13C NMR spectra wi<strong>th</strong> dipolar decoupling have<br />

been used to identify and quantitate <strong>th</strong>e magnetically distinct carbons of <strong>th</strong>ese solid biopoly-<br />

mers. In samples for which a subset of <strong>th</strong>e aliphatic carbons is sufficiently flexible to yield<br />

direct-polarization spectra wi<strong>th</strong> scalar decoupling, a quantitative comparison of immobile<br />

and mobile groups has been made. 13C and 1H spin-relaxation experiments (Tip(C), Tip(H)<br />

and TI(C)) have been used to probe polyester motions in <strong>th</strong>e kHz and MHz frequency<br />

regimes, to examine crosslink structures <strong>th</strong>at maintain cuticle integrity and to explore <strong>th</strong>e<br />

nature of cutin-wax and suberin-cell wall interactions.<br />

-- 3o j<br />

A STATIC NMR IMAGE OF A ROTATING OBJECT<br />

S. Matsui,* K. Sekihara, H. Shiono, and H. Kohno<br />

Central Research Laboratory, Hitachi, Ltd.<br />

P.O. Box 2, Kokubunji, Tokyo 185, Japan<br />

An approach to imaging of a rotating object is described and demonstrated experimentally.<br />

The principle is to apply field gradients such <strong>th</strong>at <strong>th</strong>e NMR signal from <strong>th</strong>e<br />

rotating object observed under <strong>th</strong>e applied gradients results in appropriate scanning<br />

in <strong>th</strong>e spatial frequency domain, or <strong>th</strong>e k space. The scanning pattern must cover <strong>th</strong>e<br />

k space as uniformly as possible. A static image of <strong>th</strong>e rotating object can be obtained<br />

from such a scanning pattern by suitable data processing.<br />

When <strong>th</strong>e whole object is moving, one must consider <strong>th</strong>e field gradients in <strong>th</strong>e<br />

moving object frame, 6 (t), (not in <strong>th</strong>e laboratory frame, CR(t)). Then, <strong>th</strong>e signal<br />

r<br />

scanning pattern in <strong>th</strong>e object-frame k space is<br />

r<br />

r<br />

Here, D_ is a transformation depending on <strong>th</strong>e object motion. In <strong>th</strong>e case of rotation<br />

about t~e Y axis at an angular frequency(u s , D G is given by<br />

0 no/<br />

D G = 0 s 1 st<br />

t 0 cos ~ t<br />

-sin ~s s<br />

In our preliminary two-dimensional (x,z) experiment, a gradient sequence in <strong>th</strong>e<br />

laboratory frame, ~R(t) = (GoW t, 0, Go), was applied to obtain a spiral scanning<br />

pattern in <strong>th</strong>e object frame, k ~t) = (~G~tsinw t, 0, ~G^tcos~ t). A phantom,<br />

r u U s<br />

consisting of two water-filled capillaries ~l.SSand 2 mm i.d.), was rotated at 180<br />

Hz. The obtained proton image was consistent wi<strong>th</strong> <strong>th</strong>e dimensions of <strong>th</strong>e phantom.<br />

112


31 DELAYED REFOCUSSING TWO-DIMENSIONAL NMR IN ROTATING SOLIDS<br />

A.C. Kolbert *'1'2, D.P. Raleigh 1'2, H.B. Levitt 2, R.G. Grlffin 2<br />

1<br />

Department of Chemistry<br />

and<br />

2<br />

Francis Bitter National Magnet Laboratory<br />

Massachusetts Institute of Technology<br />

Cambridge, HA 02139<br />

We describe a new class of two-dimenslonal MASS NHR experiments designed to<br />

measure small coupling tensors. The experiment, in its simplest form, involves<br />

<strong>th</strong>e placement of a K-pulse at tl/2 after cross-polarizatlon, <strong>th</strong>at is, in <strong>th</strong>e<br />

middle of <strong>th</strong>e evolution period, followed by unrestricted sampling during t~.<br />

The effect of <strong>th</strong>e n-pulse is to delay rotational echo formation in t I resulting<br />

in <strong>th</strong>e FID in t. having rotor echoes spaced at 2T . The 2-D spectrum resulting<br />

i<br />

from <strong>th</strong>is experiment will have rotational sideban~s spaced at ~ /2 in <strong>th</strong>e ~.<br />

dimension, while maintaining <strong>th</strong>e effective spinning speed in ~2 ~ A fur<strong>th</strong>er i<br />

example of experiments in <strong>th</strong>is class is provided by an experiment which yields<br />

rotational sldebands at ~r/3 in ~I' and involves <strong>th</strong>e placement of E-pulses at t 1<br />

and 2ti/3.<br />

32<br />

MEASUREMENTS OF TWO-DIMENSIONAL NMR POWDER PATTERNS IN ROTATING<br />

ISOLIDS.T. Nakal, J. Ashida and T • Terao* • Department ~ of Chemistr- y•<br />

Faculty of Science• Kyoto University, Kyoto 606• Japan.<br />

Switching-angle sample-spinnlng techniques for measuring <strong>th</strong>e heteronuclear<br />

dipolar/chemical shift 2D powder patterns are reported. The techniques have <strong>th</strong>e<br />

advantages of <strong>th</strong>e high signal-to-noise ratio and <strong>th</strong>e low distortion of <strong>th</strong>e spectrum<br />

compared wi<strong>th</strong> <strong>th</strong>ose in stationary powder samples• Fur<strong>th</strong>ermore, for compounds wi<strong>th</strong><br />

more <strong>th</strong>an one chemically distinct nucleus• <strong>th</strong>e individual 2D powder patterns can be<br />

separately obtained by 3D NMR. Practical applications of <strong>th</strong>ese techniques are<br />

demonstrated wi<strong>th</strong> <strong>th</strong>e 13C 2D powder patterns of calcium formate, polye<strong>th</strong>ylene, and<br />

polyacetylene. The chemical shift tensors and proton positions in calcium formate<br />

were obtained for <strong>th</strong>e two crystallographically inequivalent formate ions, which<br />

agree wi<strong>th</strong> <strong>th</strong>e results already reported by single crystal studies of 13C NMR and<br />

neutron diffraction. The chemical shift principal axes in polye<strong>th</strong>ylene were found<br />

to be only approximately along <strong>th</strong>e symmetry directions of <strong>th</strong>e CH 2 group• indicating<br />

a strong perturbation of <strong>th</strong>e electric environment by <strong>th</strong>e crystal field•<br />

Current address: Department of Chemistry• University of California, Berkeley•<br />

CA 94720.<br />

113


33<br />

INTERPRETATION OF THE NMR NUTATION SPECTRA. A. Samoson* and E.<br />

I Lippmaa, Institute of Chemical Physics and Biophysics, Estonian<br />

Academy of Sciences, 200001Tallinn, USSR.<br />

The quadrupole interaction parameters of half integer spin nuclei are<br />

accessible from <strong>th</strong>e dependence of NMR central transition signal on <strong>th</strong>e rf excitation<br />

pulse leng<strong>th</strong>. The Fourier analysis yields (nutation) spectra, consisting at most<br />

of 21 major lines. The lines can be associated wi<strong>th</strong> single quantum coherences in a<br />

rotating magnetic field created by <strong>th</strong>e rf pulse. The magnetization vectors<br />

describing spin evolution in <strong>th</strong>e rotating magnetic field nutate in different senses,<br />

depending on <strong>th</strong>e quantum numbers of respective energy levels. This provides for<br />

fur<strong>th</strong>er unravelling of 2D spectra via hypercomplex Fourier transform. The ratio of<br />

a first moment to integral intensity of <strong>th</strong>e nutation spectra gives a good estimate<br />

for <strong>th</strong>e quadrupole interaction constant. The nutation spectroscopy applied to <strong>th</strong>e<br />

study of zeolites, glasses and organic conductors provided for identification of<br />

various nuclear sites and interpretation of complicated ID spectra.<br />

Current address: Department of Chemistry, University of California, Berkeley,<br />

CA 94720.<br />

34 I<br />

RF PUMPING EFFECTS IN HEXAMETHYLENETETRAMINE<br />

John P. Sanders *, Morton A. Fineman and Lowell J. Burnett<br />

Department of Physics, San Diego State University<br />

San Diego, CA 92182<br />

Couplings between <strong>th</strong>e hydrogen and nitrogen nuclei in hexa-<br />

me<strong>th</strong>ylenetetramine (HMTA) produce weakly-allowed transitions at<br />

frequencies distinct from ei<strong>th</strong>er <strong>th</strong>e proton or <strong>th</strong>e nitrogen Lar-<br />

mor frequencies. Pumping <strong>th</strong>ese weakly-allowed transitions wi<strong>th</strong> a<br />

CW rf source produces changes in <strong>th</strong>e proton magnetization or,<br />

equivalently, in <strong>th</strong>e apparent proton relaxation time, which are<br />

detectable by conventional pulse NMR techniques.<br />

In HMTA, significant effects were observed at rf pumping frequen-<br />

cies as far as 4.7 MHz away from <strong>th</strong>e proton Larmor frequency of<br />

19.14 MHz. Evidence for a frequency-dependent structure in <strong>th</strong>e<br />

response to rf pumping was also observed. Comparable effects<br />

were not observed for mannitol, a compound wi<strong>th</strong> similar proton<br />

relaxation properties <strong>th</strong>at does not contain nitrogen.<br />

The support of EG&G Incorporated, <strong>th</strong>e US Federal Aviation Agency<br />

and <strong>th</strong>e US Navy is gratefully acknowledged.<br />

114


35 DYNAMIC NUCLEAR POLARIZATION STUDIES OF A MOLECULARLY<br />

DOPED POLYMER by Robert A. Wind, Liyun Li, and Gary E. Maciel,<br />

Department of Chemistry, Colorado State University, Fort Collins, CO 80523,<br />

Nicholas Zumbulyadis," Corporate Research Labora~ri~, Eastman Kodak<br />

Company, Rochester, NY 14650, and Ralph I-L Young, Copy Products Research and Development,<br />

Eastman Kodak Company, Roches~r, NY 14650.<br />

Small organic, charge-transporting molecules doped into inert polymer mal~ices offer many advantages<br />

as model systems for <strong>th</strong>e study of elect~nic processes in amorphous materia~ We have studied<br />

samples of bisphenol-A-polycarbonate doped wi<strong>th</strong> various amounts of trianisylaml-lum percMorate<br />

and U~misylamine using pm~m DNP and C-13 DNP/CPMAS and DNP/HDMAS experiment~ The<br />

H DNP experiments indicam <strong>th</strong>at <strong>th</strong>e electron-proton interactious have bo<strong>th</strong> a time-independent and<br />

a ~ d e n t component. The former lead to enhancements due to <strong>th</strong>e solid-stats and <strong>th</strong>ermal<br />

mixing effects, <strong>th</strong>e latter to an Overhauser enhancement. The Overhauser enhancement is positive,<br />

indicating <strong>th</strong>at scalar electron-proton interactions dominat~ The addition of free amine reduces <strong>th</strong>e<br />

proportion of Overhauser enhancement.<br />

The C-13 DNP/FIDMAS experimenm indicate differcntiat proton nuclear Overhauser enhancement as<br />

well as a mixture of solid-state, <strong>th</strong>ermal mixing and Overhauser enhancement due to <strong>th</strong>e unpaired<br />

• ele~mnL The implications of <strong>th</strong>ese obeervations for charge mobility and small molecu/e clustering<br />

in <strong>th</strong>e polymeric matrix will be diwume&<br />

36 I<br />

FREQU<strong>ENC</strong>Y SWITCHED INVERSION PULSES AND THEIR APPLICATION TO<br />

BROADBAND DECOUPLING; Toshimichi Fujiwara and Kuniaki Nagayama<br />

Biometrology Lab, JEOL Ltd. Nakagami, Akishima, Tokyo 196, Japan<br />

First, <strong>th</strong>e broadband inversion pulses wi<strong>th</strong> coherent<br />

frequency switching were designed. They are made of a few<br />

180°-like pulses which are different in frequency of about<br />

1.5 x B , where B indicates streng<strong>th</strong> of r.f. field. The<br />

refined frequency differences and pulse wid<strong>th</strong>s were numerically<br />

searched under <strong>th</strong>e constraint of symmetry about offset frequency.<br />

The operative frequency range of <strong>th</strong>ese pulses is about<br />

1.2 x B x n, where n is <strong>th</strong>e number of frequencies used, or <strong>th</strong>e<br />

number of 180 ° pulses in <strong>th</strong>e sequence. Second, its performance<br />

and <strong>th</strong>e tolerance to inhomogeneity of B field were improved by<br />

<strong>th</strong>e phase cycling of 0 °, 150 ° , 60 ° , 150 ° , 0°. * Finally,<br />

decoupling pulse sequences were constructed from <strong>th</strong>ese improved<br />

inversion pulses using <strong>th</strong>e phase cycle employed in MLEV-°4. The<br />

performance of <strong>th</strong>ese pulse sequences was experimentally tested,<br />

and <strong>th</strong>eoretically evaluated wi<strong>th</strong> two scaling factors; J-scaling<br />

factor which characterizes <strong>th</strong>e decoupling on a long time scale<br />

(long period scaling) and a scaling factor which characterizes<br />

<strong>th</strong>e decoupling on a short time (short period scaling).<br />

*R.Tycko, A. Pines, Chem. Phys. Letters ll__!l, 462 (1984).<br />

115


37 IMOLECULAR MOTIONS IN SOLIDS MEASURED FROM 13C<br />

LINEWIDTHS: V. A. Nicely and P. M. Henrichs,* Eastman Kodak<br />

Company, Rochester, NY, 14650.<br />

We have found linewid<strong>th</strong>s of <strong>th</strong>e 13C resonances from solids<br />

to be a sensitive indicator of molecular motions. Often non-motional<br />

contributions to <strong>th</strong>e linewid<strong>th</strong>s obscure <strong>th</strong>e motional linewide<strong>th</strong> due<br />

to motion in such cases. Fourier transformation of an entire echo<br />

train to give a spectrum broken into spikes (as demonstrated by<br />

Garroway and later by Zilm) is an efficient way to treat spin-echo<br />

results. The shapes of <strong>th</strong>e individual spikes contain <strong>th</strong>e information<br />

about motion. For examples spinning at <strong>th</strong>e magic angle, <strong>th</strong>e spacing<br />

of <strong>th</strong>e echo pulses must be an integral multiple of <strong>th</strong>e rotation<br />

period. Dime<strong>th</strong>yl sulfone, for which motions are well known, is a<br />

convenient test material. The linewid<strong>th</strong>s are sensitive to bo<strong>th</strong><br />

me<strong>th</strong>yl rotations and reorientation of <strong>th</strong>e_whole molecule. In polymer<br />

below <strong>th</strong>e glass-transition temperature, -~C linewid<strong>th</strong>s reflect <strong>th</strong>e<br />

distribution of correlation times associated wi<strong>th</strong> local chain<br />

motions such as ring flips, me<strong>th</strong>yl reorientations, and me<strong>th</strong>ylene<br />

oscillations. Results have been obtained from bisphenol-A<br />

polycarbonate, poly(e<strong>th</strong>ylene tereph<strong>th</strong>alate), and poly(e<strong>th</strong>ylene<br />

isoph<strong>th</strong>alate). This me<strong>th</strong>od is a useful way to probe motions in<br />

polymers and o<strong>th</strong>er materials for which isotopic labelling is not<br />

practical.<br />

38 HIGH RESOLUTION ELECTROPHORETIC NMR (ENMR) OF A MDflWJRE:<br />

Timo<strong>th</strong>y R. Saarinen and Charles S. Johnson, Jr., University of Nor<strong>th</strong><br />

Carolina, Dept. of Chem., Chapel Hill, NC 27599-3290<br />

Electrophoretic mobilities have been measured in situ using<br />

pulsed field gradient NMR (PFGNMR). Several components in a mixture<br />

can be studied simultaneously by Fourier transformation of <strong>th</strong>e second<br />

b~if of <strong>th</strong>e spin echo. For a U-tube conficjuration application of an<br />

e!ectl'ic field across <strong>th</strong>e sample results in a cosinusoidal modulation<br />

of spectral peak amplitudes, cos(Kv:t) where K equals <strong>th</strong>e area of <strong>th</strong>e<br />

gradient pulse times <strong>th</strong>e gyrcmagnetic ratio, v is <strong>th</strong>e drift velocity<br />

of <strong>th</strong>e i'<strong>th</strong> species, and t is <strong>th</strong>e duration of <strong>th</strong>e electric field<br />

pulse. By working at low ionic streng<strong>th</strong>s electric fields of up to 50<br />

V/cm could be applied for i sec before convection was detected by a<br />

change in <strong>th</strong>e amplitude of <strong>th</strong>e HOD peak. The cationic mobilities in<br />

a mixture of tetra-me<strong>th</strong>yl and tetra-e<strong>th</strong>yl ammonium chloride in D.O<br />

were determined. Application of <strong>th</strong>e technique for studying emu/sions<br />

looks prcnlising.<br />

116


I<br />

39<br />

2D NMR STUDIES AT 600 MHZ OF A PROTEIN-DNA COMPLEX USING IMPROVED TECHNIQUES<br />

FOR WATER SUPPRESSION AND HETERONUCLEAR CORRELATION SPECTROSCOPY<br />

C. OTTINC*, W. LEUPIN, A. EUCSTER, AND K. WOTHRICH, INSTITUT FOR<br />

MOLEKULARBIOLOCIE UND BIOPHYSIK, ETH, CH-8093 ZORICH<br />

The N-terminal DNA-binding domain 1-76 of <strong>th</strong>e P22 c2 repressor was investigated<br />

in a I:I complex wi<strong>th</strong> a 16-base pair DNA duplex related to <strong>th</strong>e ORI binding<br />

site. Starting from <strong>th</strong>e sequence-specific resonance assignments previously<br />

established for <strong>th</strong>e isolated protein and <strong>th</strong>e DNA duplex, resonance assignments<br />

could be made for <strong>th</strong>e complex using conventional 2D NMR techniques. For NOESY<br />

in H20 an improved scheme was developed which suppresses <strong>th</strong>e water resonance<br />

wi<strong>th</strong>out presaturation at <strong>th</strong>e end of <strong>th</strong>e mixing time, and provides uniform<br />

excitation in bo<strong>th</strong> dimensions, except for a region of approximately +/-1.5 ppm<br />

in ~2 centered about <strong>th</strong>e water line. To obtain simplified IH-NMR spectra of <strong>th</strong>e<br />

complex, a protein preparation wi<strong>th</strong> 15N enriched lysine and arginine residues<br />

was prepared. The resonances of <strong>th</strong>e protons directly bound to 15N were <strong>th</strong>en<br />

selectively observed using 15N(~ 2) half-filtered NOESY. IH- detected 15 N<br />

correlation spectroscopy was performed using <strong>th</strong>e pulse sequence by Bodenhausen<br />

and Ruben (Chem. Phys. Lett. 69, 185 (1980)). To record [IH,15N]-COSY spectra<br />

<strong>th</strong>e performance of <strong>th</strong>e experiment was improved by insertion of short spin lock<br />

pulses which purge all undesired signals originating from protons not directly<br />

bound to 15N. The purge pulses enabled us to use <strong>th</strong>is experiment also for<br />

[IH,13C]-COSY at natural abundance wi<strong>th</strong> a 5mM solution of repressor 1-76, and<br />

to extend <strong>th</strong>e pulse sequence wi<strong>th</strong> a TOCSY-type mixing period to obtain relayed<br />

correlations.<br />

~ ALTERNATIVE METHODS FOR COLLECTION OF 2D-NMR SPECTRA: Peter<br />

40 I Rinaldi* and Dan Iverson+, Department of Chemistry, The<br />

University of Akron, Akron, OH 44325* and Varian Instruments, 611 Hansen Way,<br />

Palo Alto, CA 94303+.<br />

The standard me<strong>th</strong>od for obtaining 2D-NMR spectra involves collection of<br />

all NT transients at a single evolution time before incrementing tl, where NT<br />

is an integral multiple of cycles such as CYCLOPS to systematically reduce ar-<br />

tifacts, and n is <strong>th</strong>e number of t I increments.<br />

(90x-O-90x-AT)NT, (90x-0-90y-AT)NT, (90x-T-9Ox-AT)NT,<br />

(90x-T-90y-AT)NT, (90x-2T-9Ox-AT)NT, (90x-2T-90y-AT)NT,<br />

.... (90x-nT-90x-AT)NT, (90x-nT-9Oy-AT)N T<br />

When magnetization is not permitted to fully decay (as is typically <strong>th</strong>e<br />

case) <strong>th</strong>is me<strong>th</strong>od produces systematic t I artifacts such as <strong>th</strong>e characteristic<br />

"false" COSY crosspeaks <strong>th</strong>at appear from sharp singlets. Alternative orders<br />

for collection of 2D-NMR data have been examined using <strong>th</strong>e COSY sequence.<br />

Collection of a single transient for all values of t I and repeating <strong>th</strong>e se-<br />

quence NT times provides considerably better artifact suppression and at <strong>th</strong>e<br />

same time requires fewer steady state cycles if NT is small.<br />

[(90x-0-90x-AT), (90x-T-9Ox-AT), (90x-2T-90x-AT),<br />

.... (90x-nT-9Ox-AT), (90x-0-90y-AT),<br />

(90x-T-9Oy-AT), (90x-2T-90y-AT) .... , (90x-nT-90y-AT)]NT<br />

Sample data obtained from trans-stilbene and me<strong>th</strong>y me<strong>th</strong>acrylate are<br />

shown to illustrate <strong>th</strong>e level of artifact reduction.<br />

117


41<br />

A HYPO-RELAXATION AGENT; SIMULTANEOUS USE WITH HYPER-RELAXATION<br />

AGENTS TO IMPROVE LOCALIZED CONTRAST IN NMR IMAGING.<br />

Jona<strong>th</strong>an P. Lee *<br />

Department of Diagnostic Radiology<br />

The New England Deaconess Hospital and Harvard Medical School<br />

There are at least six types of i~rac~ions which can contribute to spin-<br />

lattice (Tl) relaxation in NMR of solutionsl The relative difference in <strong>th</strong>e<br />

amount <strong>th</strong>af any specific interaction contributes to <strong>th</strong>e total relaxation rate<br />

at discrete locations is believed to be a major contributing factor in image<br />

contrast. So called "contrast agents" (CAs) act in part by increasing <strong>th</strong>e<br />

contribution of paramagnetic interaction to <strong>th</strong>e rate of T 1 relaxation. While<br />

<strong>th</strong>e relative difference between T 1 relaxation at discrete locations is increased,<br />

it can be argued <strong>th</strong>at <strong>th</strong>ere is an overall decrease in <strong>th</strong>e potential dynamic<br />

range for image contrast.<br />

If one were to decrease <strong>th</strong>e contribution of ano<strong>th</strong>er type of interaction<br />

which contributes to T I relaxation, and fur<strong>th</strong>ermore be able to simultaneously<br />

effect spatial localization between <strong>th</strong>is decrease and <strong>th</strong>e increase observed<br />

from CAs, <strong>th</strong>en it follows <strong>th</strong>at <strong>th</strong>e potential dynamic range of image contrast<br />

would be extended. In practice <strong>th</strong>is would "push" one location's T] up, and<br />

ano<strong>th</strong>er's down, <strong>th</strong>us extending in bo<strong>th</strong> directions <strong>th</strong>e relative differences in<br />

T I relaxation and <strong>th</strong>ereby <strong>th</strong>e relative image contrast.<br />

I. Becker, Edwin D.; in High Resolution NMR, Academic Press, 1980.<br />

4 9<br />

]<br />

l Sequence-specific H NMR Assignments for Cobrotoxin<br />

Chin Yu*, Chi-Yina ~Jano<br />

Chemistry Department , National Tsing Hua University, Hsinchu, Taiwan<br />

Cobrotoxin is a neurotoxic protein isolated from <strong>th</strong>e venom of<br />

Taiwan cobra (Naja naja atra). This protein, which blocks <strong>th</strong>e<br />

neuromuscular transmission at <strong>th</strong>e post-synaptic membrane by <strong>th</strong>e<br />

specific binding to <strong>th</strong>e acetylcholine receptors, contains 62 amino<br />

acid residues (Mr 6949) wi<strong>th</strong> four disulfide brid~es.<br />

The assignment of <strong>th</strong>e IH NIIR spectr~n at 30°C of cobrotoxin is<br />

described and ducumented. The assignments are based entirely on <strong>th</strong>e<br />

amino acid sequence, phase-sensitive homonuclear 2D NMR experiments,<br />

idenfication of complete spin systems, NOEs, and studies of pH<br />

dependence of NMR spectrum on 400 MHz.<br />

118


43<br />

Coherent Averaging Theory Under <strong>th</strong>e Condition of Strong<br />

P, dses o4 Finite Wid<strong>th</strong> and Its Application<br />

Wu Xiaoling, Zhang Shanmin , and Wu Xuewen<br />

Department of Physics, East China Normal University,<br />

Shanghai 200062, P.R.China<br />

Abstract<br />

A <strong>th</strong>eory, Coherent Averaging Theory Under <strong>th</strong>e Condition of<br />

Strong Pulses of Finite Wid<strong>th</strong>, is presented by using perturbation<br />

me<strong>th</strong>od of quantum mechanics combining wi<strong>th</strong> Coherent Averaging<br />

Theory. It is proved <strong>th</strong>at under <strong>th</strong>e condition of strong pulse,<br />

i.e. when <strong>th</strong>e interaction coupled wi<strong>th</strong> RF field , ~I , is<br />

stronger <strong>th</strong>an <strong>th</strong>e internal interaction among spins <strong>th</strong>emselves,<br />

~;nt , by a factor of more <strong>th</strong>an six , instead of <strong>th</strong>e whole ~<br />

only <strong>th</strong>e secular part in ~i~t wi<strong>th</strong> respect to ~1 , which<br />

commutes wi<strong>th</strong> ~1 , needs to be remained during <strong>th</strong>e pulse°<br />

Compared wi<strong>th</strong> <strong>th</strong>e me<strong>th</strong>od commonly used to deal wi<strong>th</strong> pulses<br />

wi<strong>th</strong> finite wid<strong>th</strong>, <strong>th</strong>is technique is of much more convenient<br />

and of little lower degree of approximation in <strong>th</strong>e applications.<br />

Some applications of <strong>th</strong>is me<strong>th</strong>od in various experiments are<br />

discussed. Especially, equipped wi<strong>th</strong> <strong>th</strong>is technique , we have<br />

designed a windowless solid echo pulse sequence and a solid<br />

state broadband composite 180 ° pulse, which are superior to<br />

<strong>th</strong>ose scheme~generally utilized.<br />

119


--<br />

I 44<br />

TWO DIMENSIONAL LINEAR PREDICTION NMR SPECTROSCOPY<br />

] •<br />

Henrik Gesmar and Jens J. Led<br />

University of Copenhagen, Dept. of Chemical Physics<br />

The H.C. 8rsted Institute, 5, Universitetsparken<br />

DK-2100 Copenhagen, Denmark.<br />

Linear prediction has been introduced into <strong>th</strong>e field of NMR spectroscopy as a valu-<br />

able me<strong>th</strong>od of quantitative spectral estimation (1,2). Its applicability has been de-<br />

monstrated even in case of broad band spectra wi<strong>th</strong> many narrowly spaced resonances (3),<br />

i.e. cases where LSQ curve fitting procedures (4) would seem to be unfeasible.<br />

In <strong>th</strong>e present study it is demonstrated <strong>th</strong>at <strong>th</strong>e application of <strong>th</strong>e linear predic-<br />

tion principle can be extended to include two dimensional N!IR spectroscopy, wi<strong>th</strong>out<br />

increasing <strong>th</strong>e computation time drastically.<br />

Examples are presented and <strong>th</strong>e advantages as well as <strong>th</strong>e pitfalls of <strong>th</strong>e procedure<br />

are discussed.<br />

(I) H. Barkhuijsen, R. de Beer, W.M.M.Jo Bov6e, and D. van Ormondt,<br />

J. !.lag n. Reson. 6_~I, 465 (1985).<br />

(2) J. Tang, C.P. Lin, M.K. Bov~nan, and J.R. Norris, J_. ~agn. Reson. 6_22, 167 (1985).<br />

(3) H. Gesmar and J.J. Led, J. !4agn. Reson. (<strong>1988</strong>). In press.<br />

(4) F. Abildgaard, H. Gesmar, and J.J. Led, J. Magn. Reson. (<strong>1988</strong>). In press.<br />

45 I INTERGLYCOSIDIC 13C_I H COUPLING CONSTANTS. AN APPROACH TO<br />

D ACCHARIDE AND POLYSACCHARIDE CONFORMATIONS. C. Morat, LEDSS, University of Grenoble<br />

R.F. Taravel, CERMAV-CNRS: F38402 Saint Martin d'Heres FRANCE.<br />

Interglycosidic C-H coupling constants have been measured for different<br />

disaccharides (me<strong>th</strong>yl B-cellobioside, me<strong>th</strong>yl B-maltoside, octa-O acetyl B-gentiobiose<br />

me<strong>th</strong>yl B-isomaltoside, B-D-mannobiose) and one oolysaccharide (5-3-6 triacetyl<br />

cellulose) in natural abundance by <strong>th</strong>e selective 2D-J heteronuclear exoeriment.<br />

Their values give access to <strong>th</strong>e torsion angle of <strong>th</strong>e glycosidic link when used in<br />

conjunction wi<strong>th</strong> a KARPLUS-tyDe relationship.<br />

120


46<br />

CARBON-13 SPECTRAL ASSIGNMENTS OF DNA OLIGOMERS: APPLICATIONS OF PROTON-DETECTED<br />

HETERONUCLEAR 2D-NMR: J. Ashcroft*, and D. Cowbum, The Rockefeller Univ., New York, New York, 10021-6399<br />

Heteronuclear multi.spin coherence proton detected chemical shift correlated NMR (HMP-COSY), may be<br />

used to obtain 2D IH-{13C} correlated spectra. Carbon resonances can <strong>th</strong>en be assigned via NOESY and COSY derived<br />

proton assignnmnts. Proton-carbon correlated spectra can also provide useful information wi<strong>th</strong>out supplementation. In<br />

<strong>th</strong>e 1D proton spectxum of DNA oligomers, <strong>th</strong>e resonances arising from <strong>th</strong>e 1', 3', 4', 5' and <strong>th</strong>e cytidine H5 protons all<br />

occur wi<strong>th</strong>in an approximam.ly 2 ppm wide region, while in <strong>th</strong>e 1D carbon spectra <strong>th</strong>ese groups, except <strong>th</strong>e 1' and 4' are<br />

well separated. In <strong>th</strong>e 1H-{tJC} correlated spectrum all groups are distinct, and.group assignments are greatly facilitated.<br />

Proton and .cybon chemical shifts, along wi<strong>th</strong> single-bond coupling constants (zJcH obtaided in <strong>th</strong>e HMP-COSY experi-<br />

ment when laC decoupfing is not appfied during acquisition), can be used to assign resonances to a specific type of<br />

nucleotide residue. For example, <strong>th</strong>e adenine C2 and <strong>th</strong>e cytidine C5 chemical shifts are unique, enabling identification of<br />

<strong>th</strong>ese resonances. Also, <strong>th</strong>e purine base CH pairs exhibit IJcrl'S at least 30 Hz. greater <strong>th</strong>an pyrimidine base CH pairs.<br />

The I-IMP-COSY experiment uses a mixing period of duration 1/2./, to ensure maximum coherence transfer<br />

between proton and carbon. For single-bond coupling, <strong>th</strong>is value ranges from 2.5 msec. to 4.0 msec., (J = 125 to 200<br />

Hz.). If <strong>th</strong>e mixing period is between 40 and 100 msec., <strong>th</strong>e HMP-COSY experiment is optimized for multiple bond cou-<br />

piing, (J = 12.5 to 5 Hz.). In such an experiment one can obtain a proton-carbon correlated spectra, which contains<br />

proton-non-protonated carbon cross peaks. Thus, assignment of carbonyl and quaternary carbons is possible.<br />

In principle <strong>th</strong>e above two me<strong>th</strong>ods can be used to assign all carbon resonances in a DNA duplex. For practi-<br />

cal reasons,-- extreme spectral crowding, cancellation of anti-phase peaks, and complications of spectral interpretation due<br />

to strong-coupling,-- <strong>th</strong>e 2', 2" and 5' carbon resonances can not be fully assigned using <strong>th</strong>ese techniques. The use of<br />

proton-detected IH-{IH-13C}-RELAY experiments to obtain <strong>th</strong>e 2', 2" and 5' carbon assignments is examined.<br />

The effectiveness of different pulse sequences used to obtain IH-{13C} I-IMP-COSY spectra are compared.<br />

Examples obtained from <strong>th</strong>e study of <strong>th</strong>e duplexes d(TAGCGCTA)2, d(GGTATACC)2 , d(GGAATTCC)2 , are shown.<br />

Supported by grants from NSF, NIH, and <strong>th</strong>e Keck Foundation<br />

121


A New Model for Hartmann-Hahn<br />

Cross Relaxation in NI,iR<br />

Wu Xiaoling , Zhang Shanmin and Wu Xuewen<br />

Department of Physics, East China Normal University,<br />

Shanghai 200062, P.R.China<br />

Ab s tract<br />

It was found out for <strong>th</strong>e first time <strong>th</strong>at Hartmann-I{ahn<br />

cross relaxation between rare and abundant spins in IZ~.~ proceeds<br />

in two stages: first, a fast energy exchange between each rare<br />

spin S and its directly bonded I spins, and <strong>th</strong>en, a much slower<br />

one between <strong>th</strong>ese SI subsystems and remaining I spins. During<br />

n<br />

<strong>th</strong>e cross relaxation, especially in <strong>th</strong>e first stage, <strong>th</strong>e I spin<br />

system is not always in a quasiequilibrium state and so is not<br />

always describable by a single temperature.<br />

122


a<br />

b<br />

48<br />

SEMUT SPECTRAL EDITING, CALIBRATION OF RF FIELD STRENGTHS, AND<br />

TOSS AT HIGH SPINNING SPEEDS IN 13C CPIMAS NMR OF SOLIDS<br />

N.C.Nielsen *a, H.Bildsee a, H.J.Jakobsen a, and O.W. Ssrensen b<br />

Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark<br />

Laboratorium fur Physikalische Chemie, ETH, CH-8092 Zurich, Switzerland<br />

Pulse techniques for spectral editing have become popular tools for assign-<br />

ment of liquid state 13C NMR spectra. This work describes ~xtension of <strong>th</strong>e con-<br />

cept of spectral editing to include 1D and 2D SEMUT editing of 13C CP/MAS NMR<br />

spectra for solids. Fur<strong>th</strong>ermore, as solid state NMR multipulse experiments are<br />

extremely sensitive to missetting of pulse timings we also report a 2D CP/MAS<br />

pulse sequence for fast and accurate calibration of rf field streng<strong>th</strong>s. The se-<br />

quences are based on principles known from ID and 2D NMR experiments of liquids<br />

combined wi<strong>th</strong> techniques for obtaining high-resolution NMR spectra of solids.<br />

Finally, we present new and improved four and six ~-pulse TOSS sequences for ef-<br />

ficient suppression of spinning sidebands under various experimental condi-<br />

tions. Compared to earlier sequences <strong>th</strong>e new TOSS schemes are advantageous for<br />

high-speed MAS experiments, for samples wi<strong>th</strong> short T2's, or for efficient dipo-<br />

lar dephasing of protonated carbons in 13C CP/MAS NMR at high speeds. Experimen-<br />

tal results obtained using our new sequences will be presented.<br />

49 * I CHEMICAL SHIFT IMAGING OF HUMAN INTERNAL ORGANS AT 1.5T<br />

William J. Thoma , June S. Taylor, Sarah J. Nelson and Truman R. Brown.<br />

Fox Chase Cancer Center, Philadelphia, PA 19111<br />

For NMR spectroscopy to be clinically useful, <strong>th</strong>e sensitivity, quantification and<br />

volume localization must be optimized. Sensitivity is a function of field streng<strong>th</strong>,<br />

homogeneity and rf coll design, quantification can be a~hieved by post-acquisitlon<br />

processing. We have implemented chemical shift imaging (CSI) on a 1.5T Siemens<br />

Magnetom (clinical imager) to localize volumes of interest. The simplest me<strong>th</strong>od of<br />

localization is to combine a I-D version of CSI wi<strong>th</strong> a surface coll to achieve 3-D<br />

localization. Localized signal is obtained by spin excitation by a non-selectlve rf<br />

pulse from <strong>th</strong>e surface coil followed by an incremented phase-encodlng gradient pulse of<br />

3.1 msec duration. The ADC is turned on immediately after <strong>th</strong>e rf pulse; data obtained<br />

during <strong>th</strong>e gradient-on time is zeroed before fourier transformation. The technique has<br />

been used to obtain heart and liver spectra (Figure la, b, respectively) in 8 min. The<br />

spectra were obtained wi<strong>th</strong> a i0 cm, 2 turn surface coll and were from 1.5 and 1.0 cm<br />

<strong>th</strong>ick slices, respectively. The repetition time was i sec wi<strong>th</strong> <strong>th</strong>e pulse amplitude<br />

adjusted to produce a nominal 90 ° pulse in <strong>th</strong>e region of interest. 3-D CSI sequences<br />

~ve also been implemented.<br />

T.R. Brown, B.M. Kincaid and K. Ugurbil. PNAS 79, 3523 (1982).<br />

Figure i.<br />

123


-- 50 I PIQABLE: AUTOMATIC AND RELIABLE QUANTIFICATION OF LOW SIGNAL TO<br />

NOISE SPECTRA. Sarah J. Nelson and Truman R. Brown, Fox Chase Cancer Center,<br />

Philadelphia, PA<br />

Interpretation of <strong>th</strong>e results of in vivo spectroscopy requires a rapid, unbiased and<br />

reproducible me<strong>th</strong>od for quantifying low signal to noise spectra. Typically, <strong>th</strong>ese<br />

spectra have variable baseline, a variety of peak shapes and some partially overlapping<br />

peaks. We have recently developed a technique which performs peak identification,<br />

quantification and automatic baseline estimation (hence PIQABLE) for such spectra. The<br />

original version of PIQABLE was calibrated on simulated spectra (Nelson and Brown,<br />

1987). We have now refined <strong>th</strong>e algori<strong>th</strong>ms to include <strong>th</strong>e options of automatically<br />

estimating phase correction parameters and of detecting and estimating areas of<br />

partially overlapping peaks. The accuracy of <strong>th</strong>ese refinements has been examined on<br />

simulated data which have peak signal to noise ratios in <strong>th</strong>e range I00:I to 3:1. The<br />

parameter values and error estimates which PIQABLE provides are accurate to wi<strong>th</strong>in <strong>th</strong>e<br />

limitations imposed by <strong>th</strong>e random noise. The new version of PIQABLE has been applied<br />

to a wide range of experimental data, including human calf, liver, heart and brain.<br />

Because <strong>th</strong>e analysis is automated, it has proved particularly useful for application to<br />

situations where multiple spectra are collected such as kinetic data or chemical shift<br />

imaging data.<br />

-- 51 I SOLID STATE NMR INVESTIGATIONS OF CERAMICS AND GLASSES<br />

WITH EXTREMELY LONG SP•IN-LATTICE RELAY~TION TIMES: T. E. Hammond*,<br />

R. D. Boyer, J. R. Mooney, BP America Research & Development, Cleveland,<br />

Ohio 44128.<br />

Several inorganic ceramics and glasses have been studied by solid state<br />

N~[R which have been found to have extremely long spim-lattice relaxation<br />

times. These materials are typically void of hydrogens. Therefore,<br />

single pulse, Bloch decay-experiments are usually <strong>th</strong>e only me<strong>th</strong>od which<br />

can be used to acquire an NMR spectrum. Included in <strong>th</strong>ese studie~ have<br />

been <strong>th</strong>e C-13 and Si-29 spectra of alpha silicon carbide, Si-29 spectrum<br />

of silicon sulfide glasses, and <strong>th</strong>e Y-89 spectrum of yttrium oxides.<br />

The worst case appears to be for certain compositions of <strong>th</strong>e silicon<br />

sulfide glass, where <strong>th</strong>e Si-29 T I can be on <strong>th</strong>e order of 15-25 hours.<br />

The silicon carbide appears to have a di,tribution of T.'s, ranging from<br />

several seconds to over a <strong>th</strong>ouoand seconds. In <strong>th</strong>e SiC case, it is beiieved<br />

<strong>th</strong>at metal impurities provide paramagnetic sites <strong>th</strong>at induce relaxation<br />

of neighboring silicon atoms. Since <strong>th</strong>ere are no abundant spin active<br />

nuclei present, spin diffusion is not a possible mechanism to induce<br />

relaxation of <strong>th</strong>ose silicon atoms removed from <strong>th</strong>e paramagnetic centers.<br />

Yttrium Tl'S appear to be on <strong>th</strong>e order of 200-1500 seconds for several<br />

yttrium compounds studied.<br />

124


'--- V 5 2 j INTERCONWERSION OF VAL<strong>ENC</strong>E TAUTO~RS IN<br />

CYCLOBUTADIENE-LIC.~ [NAN &RGON MATRIX<br />

~ Onmd~ B. P,. Arnold, J. G. Radziszewski, J. C. FaceUi, IC D. Malsch, H. Sumb, D. lvL Crank and J. Michl<br />

Department of C3~¢mistry, Univer;ity of Utah, Sail Lake City, Utah 84112<br />

The static 13C ]qMR dipolar spectrum of cyclobutadiene in an argon matrix is ~ . Vicinal]y 13C labeled<br />

cyclobutadiene was generated photochemically fzom 1,2-13C2-cyclobutene-3,4.dJcart~xylic anhydride which wa<br />

diluted in argon at a matrix ratio of about I:I00.<br />

0<br />

13 248 nm 13<br />

"--"--- .,. • CO . C02<br />

Ar 13<br />

13 25K A 13<br />

o B<br />

Dipolar spectra of <strong>th</strong>e p~'ursor, cyclobutadiene, and <strong>th</strong>e dimer of cyclobutadiem were at] obtained.<br />

Previous matrix isolation polarized IR specm)scopy results indicate <strong>th</strong>at cyclobutadiene is ei<strong>th</strong>er rotating in <strong>th</strong>(<br />

matrix and/or interconverting between its two tautomers, A and B. Spectral mmuladons of <strong>th</strong>e expected pauem for<br />

<strong>th</strong>e above cas~ as we].l as for <strong>th</strong>e case of a nonmta~g noninterconverting molecule were completed. "Fnese simu.la-<br />

fioas show <strong>th</strong>at <strong>th</strong>ere is interconversion between <strong>th</strong>e two valence mummers, A and B,which is at least comparable to<br />

53 I<br />

NMR CHEMICAL SHIFT ASSIGNMENTS BY ISOLATION OF<br />

MOLECULAR CONFORMATIONS IN SOLUTION AT LOW TEMPERATURES.<br />

PLATINUM- PHOSPHINE COMPLEXES: L. A. Luck*, C. H.<br />

Bushweller, A. L. Rheingold, Department of Chemistry,<br />

University of Vermont, Burlington, Vermont 05404<br />

31p{IH} DNMR has been used to probe <strong>th</strong>e stereodynamics of a series<br />

of [(t-C~Hg:~2PR]2PtCl complexes. (R= CH3, C6H5, C6HsCH2, C2H5) In all<br />

cases, below 150K, <strong>th</strong>e spectra indicate as many as four sub-spectra (4<br />

conformations). Assignment of <strong>th</strong>e NMR peaks to specific conformations<br />

has in <strong>th</strong>e past been speculative. This poster will show how we solved<br />

<strong>th</strong>e dilemma. We will show how X-ray crystallographic data in<br />

conjunction wi<strong>th</strong> isolation of specific conformations in solution at low<br />

temperatures allowed unequivocal assignment of 31p{IH} NMR signals to<br />

specific conformations.<br />

125


s4 IA 13C CP/MAS AND 2H WIDELINE VARIABLE TEMPERA-<br />

TURE STUDY OF BECLOMETHASONE DIPROPIONATE--HEXANE IN-<br />

CLUSION COMPLEX: Thomas A. Early1-* and Mohindar S. Puar§, ~GE NMR<br />

Instruments, Fremont, Califorina 94539 §Schering-Plough Corp., Bloomfield,<br />

New Jersey 07003<br />

A solid inclusion complex, beclome<strong>th</strong>asone dipropionate--hexane, has<br />

been previously studied by magic angle spinning NMR me<strong>th</strong>ods 1. The complex<br />

presents an interesting system for CP/MAS study because of <strong>th</strong>e wide range of<br />

motions present. For example, even <strong>th</strong>ough <strong>th</strong>e hexane me<strong>th</strong>yl reorients at a rate<br />

consistent wi<strong>th</strong> liquid-like tumbling, <strong>th</strong>e hexane carbons easily cross polarize.<br />

When <strong>th</strong>e hexane guest molecule is deuterated, and wideline dueterium<br />

spectra are obtained at a variety of temperatures ranging from 100 ° C to below<br />

-160 ° C, lowering <strong>th</strong>e sample temperature results in an unexpected narrowing of<br />

2H Pake powder pattern resonances of <strong>th</strong>e hexane-d]4 guest molecule. This in-<br />

teresting temperature behavior leads to models <strong>th</strong>at 13C CP/MAS can distinguish.<br />

1 "Carbon-13 Nuclear Magnetic Resonance Studies of a Solid Inclusion Com-<br />

plex", T.A. Early, J.F. Haw, A. Bax, G.E. Maciel, and M.S. Puar, The Journal of<br />

Physical Chemistry, 88, 324(1984).<br />

SS<br />

I<br />

HUMAN IN VIVO SPECTROSCOPY AT 4.0T<br />

Dietmar Hentschel, Jurgen Vetter, Ralf Ladebeck, and Michael J. AIbright*<br />

Siemens AG, D-8520 Erlangen, FDG<br />

A 4 T six-coil SCM wi<strong>th</strong> a warm bore of 1.25 m diameter was designed<br />

wi<strong>th</strong> high homogeneity for use wi<strong>th</strong> in vivo spectroscopy. Computer optimized<br />

design was used to correct terms up to 10<strong>th</strong> order. The magnet can be ramped<br />

to 4 T in 1 hour. The rated current is 376 A, and <strong>th</strong>e stored field energy is 39<br />

MJ. The field drift is less <strong>th</strong>an 3.6 x 10-8/h, and bare homogeneity of 100 ppm<br />

can be corrected to less <strong>th</strong>an +2.5 ppm for a 50 cm dsv. The total magnet<br />

weight is 10.6 tons.<br />

Increased spectral dispersion will be shown by comparison wi<strong>th</strong> 2 T<br />

spectra. Human in vivo 31p spectra at 4 T show resolution of <strong>th</strong>e different<br />

PDE resonances, and, on some spectra, separation of <strong>th</strong>e dinucleotides and<br />

nucleoside diphosphosugars upfield of <strong>th</strong>e (z-ATP peak.<br />

High field RF penetration will be demonstrated wi<strong>th</strong> a 1H image at 4 T.<br />

126


[<br />

~ THE SOURCE OF AN ARTIFACT IN THE IH - IH DECOUPLED<br />

$6 I HETERONUCLEAR CHEMICAL SHIFT CORRELATION EXPERIMENT<br />

Alex D • Bain* , Donald W. Hughes, Dept. of Chemistry, McMaster University,<br />

Hamilton, Ontario, Canada LBS 4MI; and Howard N. Hunter, National<br />

Research Council of Canada, Biotechnology Research Institute, Montreal,<br />

Quebec, Canada H4P 2R2.<br />

When <strong>th</strong>e IH - IH decoupled variation of <strong>th</strong>e heteronuclear<br />

two-dimensional chemical shift correlation experiment (shown below) is<br />

applied to me<strong>th</strong>ylene groups wi<strong>th</strong> inequivalent protons, a strong artifact<br />

may show up at <strong>th</strong>e average chemical shift of <strong>th</strong>e two protons. The<br />

artifact does not appear to be a strong coupling effect, since it appears<br />

in me<strong>th</strong>ylene groups wi<strong>th</strong> large proton chemical shift differences•<br />

However, it behaves apparently erratically wi<strong>th</strong> respect to <strong>th</strong>e shift<br />

difference. Simulations wi<strong>th</strong> <strong>th</strong>e SIMPLTN program indicated a strong<br />

dependence on <strong>th</strong>e delay D2 in <strong>th</strong>e sequence, and <strong>th</strong>is led to a full<br />

explanation. The mechanism for <strong>th</strong>is artifact is presented, along wi<strong>th</strong><br />

experimental confirmation.<br />

90 90 180 90<br />

,H ~-] t,/2 ~ t,/2<br />

I 3 C<br />

180<br />

V-<br />

90<br />

io2<br />

90<br />

F7<br />

: ACQUIRE<br />

57 I STRUCTURAL STUDIES OF LIPIDS IN FIELD ORDERED MODEL<br />

MEMBRANES: Pree<strong>th</strong>a Ram*, Maureen P. O'Brien* and J. H.<br />

Prestegard, Department of Chemistry, Yale Un.iversity, New Haven,<br />

CT 06511<br />

. . . . . . . . . . . °<br />

Oriented, as opposed to randomly dispersed samples of<br />

biological membranes . o~ model membranes offer unusual<br />

opportunities for structural characteriztion. Quadrupole<br />

splittings in deuterium NMR spectra can, for example, be resolved<br />

in multiply labelled compounds and interpreted in terms of<br />

preferred orientation relative to membrane surfaces. In <strong>th</strong>e past<br />

most me<strong>th</strong>ods for obtaining oriented samples have relied on<br />

mechanical orientation. More recently magnetic field ordered<br />

systems have been developed. We compare data on two types of<br />

magnetic field ordered micelles: potassium laurate and bile<br />

salt/dimyristoylphosphatidylcholine wi<strong>th</strong> phospholipid bilayers<br />

mechanically oriented on glass plates. The physical<br />

characteristics of <strong>th</strong>ese systems are investigated using<br />

quadrupole splittings from deuterium NMR and Carbon-13<br />

dipolar couplings obtained from Magic Angle Spinning experiments.<br />

Me<strong>th</strong>ods are presented for obtaining structural data on<br />

conformational aspects of specifically labelled lipids and lipid<br />

like molecules such as phosphatidylcholine, myristic acid and a<br />

galactose terminal lipid. Resulting quadrupole coupling data are<br />

merged wi<strong>th</strong> molecular energetics information derived from a<br />

molecular mechanics program to determine probable geometry at <strong>th</strong>e<br />

bilayer interface.<br />

127


$8 I<br />

MEASUREMENT OF T I RELAXATION RATES OF COUPLED SPINS VIA 2D ACCORDION<br />

SPECTROSCOPY WITH APPLICATION TO ACYL CARRIER PROTEIN<br />

Lewis E. Kay*, Anne F. Frederick*, and James H. Prestegard<br />

Department of Chemistry, Yale University, New Haven, CT 06511<br />

Nuclear magnetic resonance spectroscopy (NMR) is widely recognized as<br />

a useful technique for probing dynamic and structural properties of<br />

macromolecules. Analysis is most commonly approached <strong>th</strong>rough measurements<br />

of NOE spectra. However, <strong>th</strong>e same I/r 6 distance dependence <strong>th</strong>at makes NOE<br />

spectra useful in assessing structure enters into spin-lattice or T 1<br />

relaxation times. In principle, T 1 recoveries can be used for structural<br />

analyses. Application of conventional ID NMR techniques or use of<br />

information on <strong>th</strong>e diagonal in 2D experiments is often impossible due to<br />

lack of spectral resolution, and recently proposed combinations of<br />

inversion recovery experiments wi<strong>th</strong> two dimensional COSY detection (IR-<br />

COSY) are very time consuming.<br />

We have developed a pulse sequence based on <strong>th</strong>e accordion experiment,<br />

which provides a framework for <strong>th</strong>e reduction of <strong>th</strong>e time consuming <strong>th</strong>ree<br />

dimensional IR-COSY experiment to a more practical 2D experiment. We will<br />

present applications of <strong>th</strong>is sequence to <strong>th</strong>e measurement of IH TlS in Acyl<br />

Carrier Protein (ACP), a small protein of molecular weight 8800 D. IH TlS<br />

obtained from a sample of ACP in <strong>th</strong>e absence of metal and in <strong>th</strong>e presence<br />

of Mn 2+ have been used as constraints in molecular mechanics calculations<br />

in order to locate <strong>th</strong>e metal binding sites in <strong>th</strong>is protein.<br />

59 UNTRUNCATIO.~I OF DIPOLE-DIPOLE COUPLINGS IN SOLIDS, OR ZEP, O FIELD<br />

I NMR ENTIRELY IN HIGH FIELD. Robert Tycko, AT&T Bell Laboratories,<br />

Murray Hill, NJ, 07974.<br />

N;:R spectra of powdered or noncrystalline solids in high field commonly exhibit broad<br />

lines <strong>th</strong>at arise from <strong>th</strong>e dependence of <strong>th</strong>e nuclear magnetic dipole-dipole couplings<br />

on molecular orientation. New experiments will be described in which <strong>th</strong>at orientation<br />

dependence is removed by <strong>th</strong>e combination of rapid sample rotation wi<strong>th</strong> a synchronized<br />

rf pulse sequence. The sample rotation and pulse sequence have <strong>th</strong>e effect of con-<br />

verting <strong>th</strong>e usual truncated dipole-dipole couplings into an untruncated form. The<br />

result is N~IR spectra wi<strong>th</strong> sharp lines and splittings <strong>th</strong>at depend only on inter-<br />

nuclear distances, i.e. spectra wi<strong>th</strong> a "zero field" appearance <strong>th</strong>at are obtained<br />

entirely in high field. Such spectra provide a means of studying molecular conforma-<br />

tions in solids wi<strong>th</strong>out requiring single crystals. The <strong>th</strong>eory behind untruncation<br />

experiments will be presented along wi<strong>th</strong> experimental spectra of simple organic<br />

solids.<br />

128


60<br />

GLUCOSE METABOLISM IN PERFUSED HEARTS MONITORED BY<br />

I13C NMR SPECTROSCOPY: A MORE SENSITIVE INDICATOR OF<br />

ALTERED FLOW THAN HIGH ENERGY PHOSPHATE LEVELS.<br />

V. P. Chacko*, R. G. Weiss, J. D. Glickson and G. Gerstenbli<strong>th</strong><br />

The Johns Hopkins Medical Institutions, 600 N. Wolfe St., Baltimore, MD 21205<br />

Cardiac metabolism was studied in <strong>th</strong>e intact, beating, perfused rat heart using<br />

13C NMR Spectroscopy and correlated wi<strong>th</strong> function and 31p NMR assessment of high<br />

energy phosphates, inorganic phosphate, and cellular pH during normal (15 ml/min)<br />

and graded reductions (5 ml/min & 2 ml/min) in coronary flow. Despite a 50% mean<br />

reduction in developed pressure at 5 ml/min flow, <strong>th</strong>ere was no change in levels of<br />

PCr, ATP, Pi or pH <strong>th</strong>roughout <strong>th</strong>e 60 minute period. There were, however, marked<br />

metabolic changes detected by 13C NMR monitoring levels of glutamate and lactate.<br />

These changes were not due to decreased delivery of glucose during low flow, as<br />

matched reductions in delivery achieved by lowering perfusate glucose during normal<br />

flow did not reproduce <strong>th</strong>e low flow profile. The results are consistent wi<strong>th</strong> an<br />

increased dependence on anaerobic metabolism, and a reduction in tricarboxylic acid<br />

cycle flux during low flow. A delayed time to half maximum enrichment of <strong>th</strong>e C2<br />

glutamate peak, but not <strong>th</strong>e increased lactate levels, could be produced by<br />

decreasing workload to match <strong>th</strong>at present during low flow by decreasing perfusate<br />

calcium concentration, indicating a close relationship between workload and <strong>th</strong>is 13C<br />

NMR index of TCA flux. Fur<strong>th</strong>er reduction in flow to 2 ml/minute resulted in fur<strong>th</strong>er<br />

delay in <strong>th</strong>e time to half maximum enrichment of C2 glutamate isotopomer, higher<br />

livels of lactate, as well as <strong>th</strong>e classical "ischemic" changes in <strong>th</strong>e 31p NMR<br />

spectra. Thus, 13C NMR spectroscopy can be used to characterize metabolic changes<br />

during reduced flow and altered workloads and is more sensitive <strong>th</strong>an 31p NMR<br />

spectroscopy in identifying hypofunctional myocardium in which modest flow (supply)<br />

reductions are accompanied by a balanced down-regulated workload (demand).<br />

6~ ] Cu NQR OF YBa2CusO x WITH VARYING OXYGEN CONTENT:<br />

A. J. Vega*, W. E. Farne<strong>th</strong>, R. K. Bordia, and E. M. McCarron, Central<br />

Research and Development Department, E. I. du Pont de Nemours and<br />

Company, Experimental Station, Wilmington, Delaware 19898.<br />

The 63Cu and 6SCu NQR spectra of YBasCusO x show a strong dependence<br />

on <strong>th</strong>e oxygen content when x is varied from 6 to 7. For x=7 two<br />

signals are observed at room temperature. The room-temperature<br />

signals generally consist of a short-T 1 (< 1 ms) and a long-T 1<br />

component (~ 100 ms). The relative intensity of <strong>th</strong>e short-T I<br />

component gradually decreases from 100% to 0% when x is decreased<br />

from 7.0 to 6.0. In addition, <strong>th</strong>e line shapes of <strong>th</strong>e two T 1<br />

components are strongly dependent on <strong>th</strong>e oxygen content. While <strong>th</strong>e<br />

short Tl'S are attributed to a Korringa-type relaxation mechanism<br />

involving <strong>th</strong>e conduction electrons, it may be assumed <strong>th</strong>at <strong>th</strong>e Cu<br />

sites wi<strong>th</strong> <strong>th</strong>e longer T 1 values are not directly associated wi<strong>th</strong> <strong>th</strong>e<br />

conduction process. The NQR data can <strong>th</strong>us be used to help interpret<br />

<strong>th</strong>e strong dependence of T c on <strong>th</strong>e oxygen content of <strong>th</strong>ese<br />

superconducting materials.<br />

129


MEASUREMENT OF 13C-15N DIPOLAR COUPLINGS IN SOLIDS<br />

62 J<br />

Vincent Bork*, Terry Gullion, Andy Hing, and Jacob Schaefer<br />

Washington University, St. Louis, Missouri<br />

The 13C-15N dipolar coupling in solids is measured directly<br />

in 2D double-window Dipolar Rotational Spin Echo (DRSE)<br />

experiments utilizing ei<strong>th</strong>er an odd or even number of = pulses<br />

after <strong>th</strong>e first rotor period. Inserting a ~ pulse into bo<strong>th</strong><br />

carbon and nitrogen channels is equivalent to leaving bo<strong>th</strong> out in<br />

<strong>th</strong>e even double-window C-N DRSE experiment. An odd double-window<br />

DRSE experiment involves using just one • pulse, which can be<br />

placed in ei<strong>th</strong>er <strong>th</strong>e carbon or nitrogen channel. The net C-N<br />

dephasing in <strong>th</strong>e even double-window experiment after one complete<br />

rotor period of dipolar modulation is zero, and its resulting<br />

dipolar powder pattern is indistinguishable from <strong>th</strong>at observed in<br />

a single window DRSE experiment. In contrast, net dephasing<br />

occurs <strong>th</strong>roughout <strong>th</strong>e dipolar evolution period of <strong>th</strong>e odd<br />

double-window experiment because<br />

<strong>th</strong>e single ~ pulse reverses <strong>th</strong>e<br />

sign of <strong>th</strong>e C-N dipolar j<br />

interaction. The dipolar H ~ DEOOUPLE<br />

modulation period is <strong>th</strong>us twice<br />

O-N DIPOLAR MODULATION<br />

<strong>th</strong>e rotor period, and <strong>th</strong>e c ~ ~ i ~=~"~<br />

resulting Fourier transform<br />

reveals a new powder pattern wi<strong>th</strong> N ~ r ~ ~ = _ _ _ ~ _ _ _ _<br />

dipolar sidebands at intervals of<br />

half <strong>th</strong>e rotor frequency, rotor I I I<br />

63 I EFFECT OF 15N PULSE SPACINGS ON 13C-15N REDOR<br />

TERRY GULLION* and JACOB SCHAEFER<br />

Dept. of Chemistry, Washington Univ., St. Louis, MO 63130<br />

Manipulation of <strong>th</strong>e 13C-15N dipolar interaction in a rotational<br />

echo double resonance (REDOR) experiment can lead to a major<br />

reduction in amplitude of 13C rotational echos. (The basic REDOR<br />

experiment will be presented in <strong>th</strong>e Monday Morning Session on<br />

Magic Angle Sample Spinning.) The REDOR experiment produces a<br />

13 C- 15 N dipolar interacti o n <strong>th</strong>at has a non-zero average over each<br />

rotor period. The location of <strong>th</strong>e ~ pulses during each rotor<br />

cycle, and <strong>th</strong>e number of rotor cycles during which <strong>th</strong>e ~ pulses<br />

are applied, bo<strong>th</strong> affect <strong>th</strong>is average. For example, a string of<br />

pulses spaced by one-<strong>th</strong>ird of a rotor period (TR/3) produces<br />

full rotational echos, whereas a string of ~ pulses placed at<br />

Tr/3,Tr,4Tr/3,2Tr, 7TR/3,3Tr, .... produces almost complete<br />

destruction of <strong>th</strong>e 13C rotational echos. In addition, while <strong>th</strong>e<br />

amplitudes of <strong>th</strong>e rotational<br />

echos initially decrease<br />

wi<strong>th</strong> <strong>th</strong>e first few cycles,<br />

amplitudes of <strong>th</strong>e residual<br />

echos oscillate wi<strong>th</strong><br />

increasing number of rotor<br />

cycles.<br />

__J<br />

H ~ CP<br />

REDOR<br />

DECOUPLE<br />

7~<br />

N<br />

,30 root I I I I


. °- F<br />

64 I<br />

MICROSCOPIC IMAGING OF LIVE MOUSE AT 400 MHz<br />

Susanta K. Sarkar*, Russell Greig and Mark Mattingly'<br />

Smi<strong>th</strong> K1ine & French Laboratories, King of Prussia, PA 19406-0939, and<br />

'Bruker Instruments, Billerica, MA, 01821<br />

The development of NMR microscopy is potentially useful in determining<br />

<strong>th</strong>e fine structure of pa<strong>th</strong>ological lesions, and in particular in monitoring<br />

<strong>th</strong>e grow<strong>th</strong> and spread of malignant tumors in small animals. However, since<br />

<strong>th</strong>e signal to noise ratio is <strong>th</strong>e key limitation for imaging experiments wi<strong>th</strong><br />

microscopic resolution, it is necessary to do <strong>th</strong>ese experiments at higher<br />

field streng<strong>th</strong>.<br />

He demonstrate here <strong>th</strong>e feasibility of obtaining live mouse images wi<strong>th</strong> a<br />

resolution of lOOxlOOx650 I~m at 400 MHz. Examples wtll tnclude images of<br />

human tumor xenografts tn nude mtce and mouse kidney. A wide bore Bruker 400<br />

MHz NMR spectrometer, modified for imaging experiments, was used for <strong>th</strong>ese<br />

experiments.<br />

65 I<br />

APPLICATION OF A ONE DIMENSIONAL IMAGING EXPERIMENT=<br />

Babul Borah, Norwich Eaton Pharmaceuticals, Inc., Norwich, NY 13815 and<br />

Nikolaus M. Szeverenyi, SUNY Heal<strong>th</strong> Science Center, Syracuse, NY 13210<br />

Al<strong>th</strong>ough <strong>th</strong>e trend has been towards increasing complexity in imaging experiments,<br />

we have found a useful application for a one dimensional imaging experiment in quan-<br />

tifying and characterizing <strong>th</strong>e fluid changes in <strong>th</strong>e rat leg as a result of ar<strong>th</strong>ritis.<br />

A large rf probe is used to insure <strong>th</strong>at BI is uniform in <strong>th</strong>e region of <strong>th</strong>e rat<br />

leg and a single linear magnetic field gradient is applied continuously in <strong>th</strong>e di-<br />

rection of <strong>th</strong>e leg. A spin echo pulse sequence provides a signal which maps <strong>th</strong>e<br />

spatial distribution of water and fat along <strong>th</strong>e leg. In order to make quantitative<br />

measurements on <strong>th</strong>e leg, a reference capsule containing water is placed Just beyond<br />

<strong>th</strong>e paw. TI and T2 measurements can be obtained using <strong>th</strong>e same techniques as in<br />

spectroscopy and suggest <strong>th</strong>at <strong>th</strong>ere are two fluid components which are sensitive to<br />

infl-,,,atory soft tissue changes. One component has a T2 of 34 ms and <strong>th</strong>e o<strong>th</strong>er 120<br />

ms. These components increase in concentration by a factor of 3 and 7 respectively<br />

as <strong>th</strong>e lesion of <strong>th</strong>e Joint progresses and appear to peak in 15-20 days after <strong>th</strong>e<br />

induction of <strong>th</strong>e ar<strong>th</strong>ritis in <strong>th</strong>e rat.<br />

131


- -<br />

i<br />

66<br />

NMR IMAGING TECHNIQUES IN MATERIALS SCI<strong>ENC</strong>E<br />

Simon Chu* and David Foxall.<br />

Spectroscopy Imaging Systems, Fremont, CA 94538.<br />

We have used NMR imaging as a non-destructive tool to monitor transition and diffusion<br />

between liquid and solid phases in a number of different practical examples. A major problem<br />

associated wi<strong>th</strong> imaging techniqes to date is a lack of ability to quantify fundamental physical<br />

parameters. We have paid strict attention to <strong>th</strong>e problem of obtaining quantitative results from<br />

NMR images.<br />

Adhesives, resins and piasters provide practical examples of systems undergoing<br />

solidification by different mechanisms, which include condensation reaction (silicone glue),<br />

evaporation of solvent (plastic wood filler) and hydration of water (plaster). The<br />

me<strong>th</strong>anol/polyme<strong>th</strong>yl me<strong>th</strong>acrylate system is an example of liquid permeation into solids, of<br />

practical significance in aircraft windshields. Water/agarose provides a controlled model system<br />

for diffusion studies.<br />

We will present results of <strong>th</strong>ese systems in <strong>th</strong>e form of imaging time course studies and<br />

analysis to obtain kinetic data and diffusion coefficients. A disscusion of <strong>th</strong>e problems<br />

encountered in making our measurements and how we have attempted to overcome <strong>th</strong>em should<br />

provide some insight into how NMR imaging can be used in materials science studies.<br />

67<br />

Ramana<strong>th</strong>an,<br />

Philadelphia,<br />

I<br />

DEVELOPMENTS IN NITROGEN-14 NMR SPECTROSCOPY: R. McNamara, K.V.<br />

and S.J. Opella, Department of Chemsitry, University of Pennsylvania,<br />

Pennsylvania 19104<br />

Recent results which extend <strong>th</strong>e utility of nitrogen-14 NMR spectroscopy will<br />

be presented. The experiments involve measurement of relaxation parameters of<br />

model peptides over a range of temperatures down to liquid helium temperaturs and<br />

of nitrogen-carbon dipolar couplings. For example, t4N overtone decoupling results<br />

in simplification of 13C spectra and helps as an additional assignment tool leading to<br />

structure determination. Two-dimensional NMR experiments <strong>th</strong>at enable<br />

measurement of carbon-nitrogen, dipolar couplings will be presented. The 14N<br />

relaxation data will be discussed in terms of possible sensitivity enhancement at low<br />

temperatures and o<strong>th</strong>er applications such as 14N spin exchange experiments.<br />

132


68<br />

69<br />

CONFORMATIONAL ANALYSIS via<br />

VICINAL CARBON-HYDROGEN COUPLING<br />

Andrew L. Waterhouse<br />

Chemistry Department, Tulane University<br />

New Orleans, LA 70118<br />

The Fully Coupled (FUP) Correlation Experiment has been used to analyze<br />

conformation and stereochemistry on two dissimilar compounds, strychnine<br />

and camphor. The FUP experiment detects <strong>th</strong>e vicinal coupling between<br />

hydrogeus and carbons, and <strong>th</strong>e magnitude of <strong>th</strong>is coupling is appraised by<br />

<strong>th</strong>e presence or absence of cross-peaks in <strong>th</strong>e spectrum plot. This corre-<br />

lates wi<strong>th</strong> a first-order approximation Of <strong>th</strong>e Karplus torsional angle-<br />

relationship. The FUP experiment works better <strong>th</strong>an o<strong>th</strong>er similar me<strong>th</strong>ods<br />

<strong>th</strong>at detect vicinal C-H coupling because it has no J-filters to alter <strong>th</strong>e<br />

signal intensity of <strong>th</strong>e coupling.<br />

VECTOR GRAPHICS TO DEPICT MULTIPULSE NMR<br />

Andrew L. Waterhouse<br />

Shawn P. Garbett<br />

Department of Chemistry, Tulane University<br />

New Orleans, Louisiana 70118<br />

An educational program which graphically presents <strong>th</strong>e vector diagrams<br />

often used in explaining multipulse NMR is written for <strong>th</strong>e Commodore<br />

Amiga. It greatly enhances <strong>th</strong>e clarity of <strong>th</strong>e vector explanations as one<br />

can actually see vectors refocus. "Experiments can be entered wi<strong>th</strong> up to<br />

<strong>th</strong>ree independent signals, each of which can be coupled to 0-3<br />

independent nuclei. While <strong>th</strong>e experiment is being run, <strong>th</strong>e vectors are<br />

displayed in <strong>th</strong>ree dimensions, and ~e pulse sequence is shown wi<strong>th</strong> <strong>th</strong>e<br />

current time point indicated. The presentation can be interrupted at any<br />

point. Presentation of a lesson can be done interactively or selected<br />

experiments can be easily recorded on standard videotape for later<br />

playback. Copies of <strong>th</strong>e program are available.<br />

133


70 I 2H NMR STUDIES OF MOTIONS IN SOLID D2S AND D2Se:<br />

M.J. Collins, C.I. Ratcliffe,* and J.A. Ripmeester, Chemistry Division,<br />

Research Council of Canada, Ottawa, Ontario, Canada KIA OR9<br />

National<br />

There have been a number of tH and 2H NMR studies of motions in <strong>th</strong>e <strong>th</strong>ree solid phases<br />

of H2S. There are, however, a number of ambiguities concerning <strong>th</strong>ese results, and <strong>th</strong>e<br />

also yield little insight into <strong>th</strong>e nature of <strong>th</strong>e motion in phase II. The current work<br />

mainly concerns 2H powder lineshapes of D2S as a function of temperature. New work on<br />

phase II of D2Se is also included, since <strong>th</strong>e behaviour appears similar to <strong>th</strong>at of D2S<br />

phase II. In phase III of D2S close to <strong>th</strong>e phase transition <strong>th</strong>e lineshapes indicate<br />

<strong>th</strong>e onset of a motion which is best explained as 180" flips, <strong>th</strong>ough o<strong>th</strong>er alternatives<br />

suggested by earlier IH T I_ results will be discussed. To be compatible wi<strong>th</strong><br />

dielectric results <strong>th</strong>is motion must be about <strong>th</strong>e dipole axis of <strong>th</strong>e molecule. Phase I<br />

of D 25 and D2Se proved to be much more interesting. The narrowed lineshapes indicate<br />

an axially symmetric motion in <strong>th</strong>e fast motion limit, over <strong>th</strong>e whole temperature range<br />

of phase II, but <strong>th</strong>e averaged quadrupole coupling constant decreases substantially as<br />

<strong>th</strong>e temperature increases. This suggests a fast motion for which angular parameters<br />

are varying as a function of T. Al<strong>th</strong>ough a unique motion cannot be assigned possible<br />

models will be presented.<br />

71 ] STUDIES OF FLAVODOXIN BY HOMONUCLEAR AND<br />

HETERONUCLEAR 2D NMR TECHNIQUES. V. Thanabal* & Gerhard Wagner,<br />

Biophysics Research Division, Institute of Science and Technology, University<br />

of Michigan, Ann Arbor, MI 48109<br />

Most studies of protein conformations by NMR have concentrated so far on molecules of<br />

molecular masses below 10 kDalton. We have approached assignments of flavodoxin from<br />

Megasphaera elsdenii which has a molecular weight of 15 kDahon (137 residues). Al<strong>th</strong>ough <strong>th</strong>e<br />

classical 2D NMR pulse sequences (COSY, NOESY, RELAY) yielded satisfactory spectra we<br />

have heavily used TOCSY (HOHAHA) spectra and heteronuclear techniques for characterization of<br />

<strong>th</strong>e amino acid spin systems. Compared to COSY and RELAY experiments <strong>th</strong>ese techniques suffer<br />

much less from cancellation of antiphase cross peaks due to a large linewid<strong>th</strong>. TOCSY spectra<br />

were recorded wi<strong>th</strong> an MLEV17 spin lock as described by Bax and Davis. Experiments wi<strong>th</strong><br />

different mixing times were used to obtain a complete set of connectivities. Heteronuclear 1H-13C<br />

COSY experiments were recorded ei<strong>th</strong>er wi<strong>th</strong> a heteronuclear multiple quantum evolution period or<br />

wi<strong>th</strong> a double DEPT editing sequence to separate CH, CH2 and CH3 carbons. The purpose of <strong>th</strong>e<br />

heteronuclear experiments was mainly to elucidate <strong>th</strong>e spin systems of <strong>th</strong>e coupled protons. First<br />

sequential assignments obtained wi<strong>th</strong> <strong>th</strong>ese techniques will be presented.<br />

A.Bax and D.G.Davis J. Magn. Reson. 65, 355-360 (1985).<br />

134


72 I<br />

SCUBA, A MAY TOHARDS COMPLETE IH SPECTRA IN PROTEINS, AND EFFICIENT USE OF<br />

15N LABELS IN PROTEINS.<br />

Luciano Mueller*, Paul L. Heber and Stephen C. Brown<br />

Smi<strong>th</strong> Kline & French Laboratories<br />

Research & Development Division<br />

P.O. Box 1539<br />

King of Prussia, Pennsylvania 19406-0939<br />

A common problem in proton NMR experiments performed in H20 solution is<br />

<strong>th</strong>e loss of resonances associated wi<strong>th</strong> CH saturation of <strong>th</strong>e solvent peak. Two<br />

recently developed tricks help to alleviate <strong>th</strong>e problem. I. Hu<strong>th</strong>rich and<br />

coworkers proposed to precede 2D sequences wi<strong>th</strong> a homonuclear mixing block<br />

(TOCSY, HOHAHA) to remagnetize <strong>th</strong>e saturated HC=-peaks in proteins. 2. He<br />

proposed a me<strong>th</strong>od based on N0E type cross-relation (SCUBA=SCheme w£<strong>th</strong><br />

Unprecedented Bad Acronym) which is claimed to be more efficient <strong>th</strong>an TOCSY.<br />

Details of SCUBA, which allows protons to brea<strong>th</strong> under water, will be<br />

presented.<br />

The combination of proton-nigrogen-15 chemical shift correlation wi<strong>th</strong><br />

TOCSY, COSY and NOESY appears to be a powerful tool to sort out ambiguities<br />

caused by severe resonance overlaps in proteins. Experimental realizations of<br />

<strong>th</strong>ese me<strong>th</strong>ods will be presented toge<strong>th</strong>er wi<strong>th</strong> software which aids and<br />

automates analysis of heteronuclear spectra.<br />

73 1<br />

THE AUTOMATED NMR LABORATORY<br />

by<br />

Stephen G. Spanton, Peter Fruehan and Richard L. Stephens*<br />

Department of Analytical Research, Abbott Laboratories<br />

Nor<strong>th</strong> Chicago, IL 60064<br />

The integration of an NMR spectrometer wi<strong>th</strong> a robotic workstation and<br />

an external computer network provides a~l efficient means of preparing and<br />

acquiring spectra of l~rge numbers of NMR samples. In <strong>th</strong>e system being<br />

developed at Abbott, a chemist identifies his sample to a computer network.<br />

The computer returns a barcode label which is put on <strong>th</strong>e sample vial.<br />

The robot subsequently reads <strong>th</strong>e barcode, identifying <strong>th</strong>e sample, adds <strong>th</strong>e<br />

previously specified solvent, filters and transfers <strong>th</strong>e solution to an NMR<br />

tube, and inserts <strong>th</strong>e sample into <strong>th</strong>e spectrometer magnet. The computer<br />

system <strong>th</strong>en downloads appropriate commands to <strong>th</strong>e spectrometer which<br />

executes <strong>th</strong>e desired experiment. The resulting data file is transfered to <strong>th</strong>e<br />

computer network where it is numbered, entered into a database, archived,<br />

Fourier transformed and sent to <strong>th</strong>e plotter nearest <strong>th</strong>e submitting chemist.<br />

135


74<br />

PH EFFECTS ON THE SOLUTION CONFORMATION OF<br />

SHIKIMATE-3-PHOSPHATE: DETERMINATION BY NMR AND<br />

DISTANCE GEOMETRY CALCULATIONS.<br />

Stephen Castellino*, Gregory C. Leo and R. Doug Sammons<br />

Monsanto Agricultural Company, A Unit of Monsanto Company,<br />

800 N. Lindbergh Boulevard, St. Louis, Missouri 63167<br />

The solution structure was determined for shikimate-3-phosphate (S3P), a cyclohexenyl<br />

sugar derivative which is a metabolite in aromatic biosyn<strong>th</strong>esis. Nuclear Overhauser effects (NOE)<br />

and coupling constants were measured as a function of solution pH. The preferred conformation<br />

found experimentally is <strong>th</strong>e pseudo-axial chair wi<strong>th</strong> <strong>th</strong>e 3-phosphate occupying an axial position.<br />

This agrees wi<strong>th</strong> <strong>th</strong>e conformation determined by force field calculations (MM-2). Comparisons of<br />

experimental and <strong>th</strong>eoretical <strong>th</strong>ree dimensional structures will be shown as a function of pH.<br />

7s I<br />

ASSIGNMENTS OF 31p AND IH RESONANCES IN OLIGONUCLEOTIDES BY TWO DIMENSIONAL<br />

HETERONUCLEAR HARTMANN-HAHN SPECTROSCOPY. M.G. Zagorski*, M.W. Kalnik, X.Gao,<br />

D. Norman, and M. Kouchakdjian, Department of Biochemistry and Molecular<br />

Biophysics, College of Physicians and Surgeons, Columbia University, New York,<br />

New York 10032, USA.<br />

A modified he~eronuc~ar 2D shift correlation experiment is demonstrated<br />

for assignment of H and P resonances in a variety of DNA olig~ucleotides<br />

ranging in size from a self-complementar~1octamer (seven unique P atoms) up to<br />

a complementary nonamer (sixteen unique J~P atoms). The modified pulse scheme<br />

incorporates a MLEV-17 composite pulse scheme for achieving net magnetization<br />

transfer among protons via a homonuclear Hartmann-Hahn (HOHAHA) type cross<br />

polarization. This net homonuclear magnetization transfer is <strong>th</strong>en relayed to<br />

<strong>th</strong>e --P atoms via an INEPT sequence and consequently recorded and processed to<br />

provide high quality pure phase absorption spectra via <strong>th</strong>e hypercomplex me<strong>th</strong>od.<br />

Despite <strong>th</strong>e relatively broad lin~ of <strong>th</strong>ese large DNA sequences, we were able to<br />

unambiguously assign all of <strong>th</strong>e -~P resonances and many of <strong>th</strong>e C-I', C-2', C-4'<br />

and C-5' sugar protons. These assignments were greatly facilitated by <strong>th</strong>e<br />

presence of rel~ cross peaks spanning 4 and 5 bonds from <strong>th</strong>e C-I' and C-2'<br />

protons to <strong>th</strong>e --P nuclei. This relayed system removed many ambiguities present<br />

from overlap of <strong>th</strong>e C-3', C-4' and C-5' resonances. Al<strong>th</strong>ough <strong>th</strong>e experiment<br />

described here does not provide <strong>th</strong>e gains in sensitivity of <strong>th</strong>e heteronuclear<br />

multiple quantum coherence (indirect) experiments, it clearly provides an order<br />

of magnitude improvement in sensitivity and resolution over ~her currently<br />

available me<strong>th</strong>ods for (direct) detecting <strong>th</strong>e less sensitive --P nuclei.<br />

136


76<br />

NMR CHARACTERIZATION OF THE<br />

GLYPHOSATE-SHIKIMATE-3-PHOSPHATE- ENZYME<br />

DEAD-END COMPLEX.<br />

Stephen Castellino, Gregory C. Leo', R. Douglas Sammons and James A.<br />

Sikorski<br />

Monsanto Agriculture Company, a Unit of Monsanto Company, .800 N.<br />

Lindbergh Boulevard, St. Louis, MO 63167<br />

The herbicidal dead-end ternary complex of glyphosate wi<strong>th</strong> EPSP syn-<br />

<strong>th</strong>ase (EC 2.5.1.19 from E. toll) and <strong>th</strong>e substrate shikimate-3-phosphate<br />

(S3P) has been characterized by 13C,1S N and 31p .NMR. The enzyme bound<br />

glyphosate and S3P have unique chemical shifts. The phosphorus chemical<br />

shifts observed for glyphosate are shown to be dependent upon <strong>th</strong>e position<br />

of <strong>th</strong>e phosphorus atom relative to <strong>th</strong>e free electrons of <strong>th</strong>e nitrogen atom.<br />

77 I<br />

PULSE SHAPING AND SELECTIVE<br />

EXCITATION : THE EFFECT OF SCALAR COUPLING<br />

R. Bazzo0, J. Boyd and N. Soffe, Dept. of Biochemistry,<br />

University of Oxford, Oxford, UK.<br />

Recently, a good deal of interest has centred around <strong>th</strong>e<br />

use of shaped pulses for a variety of ID and 2D experiments.<br />

Long low power rectansular pulses or waWeforms shaped like<br />

Hyperbolic Secants, Sine: func.tions, Oaussian or half-<br />

Gaussian functions have been used in <strong>th</strong>ese experiments.<br />

For very seleotlve pulses <strong>th</strong>e averase r.f. power is<br />

adjusted to be <strong>th</strong>e same order of masnltude as <strong>th</strong>e J<br />

couplin S. A <strong>th</strong>eoretical description suitable for sele,=:tive<br />

shaped pulses is siven, which includes <strong>th</strong>e effect of <strong>th</strong>e<br />

scalar couplin 6. The excitation profile for <strong>th</strong>e different<br />

coherence components of <strong>th</strong>e irradiated spin will be shown<br />

for <strong>th</strong>e commonly used shaped waveforms.<br />

137


PHOSPHATE PLASTICIZER DYNAMICS IN GLASSY POLYMER BLENDS BY 3~F~ CSA<br />

-- LINESHAPES: Paul T. Inglefield*, Alan A. Jones, Ajoy K. Roy and<br />

I 78 IBonnie J. Cauley (Department of Chemistry, Clark University,<br />

Worcester, MA 01610) and Roger P. Kambour (Polymer Physics and Engineering, General<br />

Electric Company, Research and Development Center, Schenectady, NY 12301)<br />

The ability of 3tp CSA lineshape collapse to critically determine subtle details of<br />

<strong>th</strong>e microscopic dynamics in <strong>th</strong>e solid state is presented. The particular example of<br />

<strong>th</strong>e motion of phosphorus containing diluents in solid polymer blends is considered.<br />

No sub-glass transition mechanical loss peaks are observed in 50:50 blends of poly<br />

(2,6-dime<strong>th</strong>yl-1,4-phenylene oxide) and polystyrene. However if organic phosphate,<br />

)lasticizing diluents (e.g. trioctyl phosphate) are added, <strong>th</strong>e modulus is lowered and<br />

a broad low temperature loss peak appears. Non-spinning 3Xp lineshapes were observed<br />

and clearly indicate <strong>th</strong>e onset of plasticizer motion in <strong>th</strong>e glass. An axially symme-<br />

tric lineshape at low temperature evolves to a narrow line below <strong>th</strong>e glass transition.<br />

At intermediate temperatures a superficially bimodal lineshape is observed indicative<br />

of a broad distribution of correlation times. The plasticizer motion appears to be<br />

isotropic in nature and detailed quantification of <strong>th</strong>e dynamics is possible. The dy-<br />

namics of different phosphate diluents correlates wi<strong>th</strong> <strong>th</strong>e glass transition of <strong>th</strong>e<br />

pure diluent and it is postulated <strong>th</strong>at <strong>th</strong>e plasticizer motion is responsible for <strong>th</strong>e<br />

low temperature mechanical relaxation.<br />

7 9 I NON UNIFORM SAMPLING IN NMR EXPERIMENTS<br />

Y. Manassen and G. Navon*, School of Chemistry, Tel Aviv University,<br />

Ramat Aviv, Tel Aviv 69978, Israel.<br />

In many NMR experiments <strong>th</strong>e resonance frequencies and <strong>th</strong>e<br />

linewid<strong>th</strong>s are known a-priory and only <strong>th</strong>e peak intensities are sought.<br />

This includes spectroscopic imaging experiments and 2-D NMR experiments<br />

(such as COSY and NOESY), where <strong>th</strong>e possible frequencies of <strong>th</strong>e peaks<br />

and <strong>th</strong>eir approximate linewid<strong>th</strong>s can be obtained from <strong>th</strong>e 1-D spectrum.<br />

It is shown here <strong>th</strong>at a significant improvement in sensitivity can be<br />

obtained in such cases by collecting <strong>th</strong>e data in a non-uniform manner<br />

instead of constant dwell times. It is fur<strong>th</strong>er shown how <strong>th</strong>e error in <strong>th</strong>e<br />

intensity calculation can be estimated, and how <strong>th</strong>is can be used to select<br />

<strong>th</strong>e sampling times so <strong>th</strong>at <strong>th</strong>e <strong>th</strong>e sensitivity is maximized. The increase<br />

in sensitivity is particularly pronounced in cases wi<strong>th</strong> small number of<br />

peaks and in cases where <strong>th</strong>e distribution of <strong>th</strong>e peaks in <strong>th</strong>e spectrum is<br />

non-uniform. Our simulation experiments indicate <strong>th</strong>at <strong>th</strong>e calculated<br />

amplitudes are not very sensitive to errors in <strong>th</strong>e linewid<strong>th</strong>s.<br />

138


8o I<br />

HIGH RESOLUTION MR IMAGING AT 4.7T OF THE CENTRAL NERVOUS SYSTEM<br />

IN RATS: Paul C. Wang, Alan Muraki, Sunder Rajan, Charles<br />

Wambabe, Alessandro Guidotti, Mark Carvlin, Georgetown<br />

University, Washington, DC 20007.<br />

The rat is used commonly as an animal model in neurological<br />

research. One of <strong>th</strong>e inherent problems has been to discern<br />

extremely small structures and detect pa<strong>th</strong>ological changes in <strong>th</strong>e<br />

rat's brain. High resolution in vivo nuclear magnetic resonance<br />

images of <strong>th</strong>e brain and spinal cord in rats were obtained using a<br />

4.7 Tesla magnet wi<strong>th</strong> a 33 cm bore imaging system (Spectroscopy<br />

Imaging System, Fremont, CA). Detailed anatomic structures are<br />

revealed due to <strong>th</strong>e high resolving capability (resolution: ]20 um<br />

x 120 um, 4 averages). The slice <strong>th</strong>ickness was 1.5 mm. A 2-<br />

Gauss/cm gradient coil wi<strong>th</strong> a 2-inch diameter saddle shaped RF<br />

coil was used. The RF coil was connected to <strong>th</strong>e matching and<br />

running circuit by means of a 50~ transmission cable. Standard<br />

spin warp techniques wi<strong>th</strong> TR range from 0.3 sec to 3.0 sec and TE<br />

range from 22 msec to 50 msec were utilized to obtain <strong>th</strong>e TI and<br />

T2 weighted images. Detailed microscopic structures such as <strong>th</strong>e<br />

basal ganglia, ventricular system, and olfactory bulb as well as<br />

defining <strong>th</strong>e gray matter from <strong>th</strong>e white matter are clearly shown.<br />

In vivo relaxation times of <strong>th</strong>e brain tissue at 4.7 Tesla were<br />

also measured.<br />

81 J SODIUM IMAGING OF OCULAR TUMORS: Susan J. Kohler *,a, Nancy H. Kolodnyb, c,<br />

and Swarna Balasubramaniam b, aBrigham and Womens Hospital, Boston MA 02115; bWellesley<br />

College, Wellesley MA 02181; CMassachusetts Eye and Ear Infirmary, Boston MA 02114<br />

Operating at field streng<strong>th</strong>s of 1.5 and 1.9 T, we have developed 23Na magnetic resonance<br />

imaging protocols which provide high resolution multi-echo sodium images in short times. Using<br />

rapidly switchable gradients wi<strong>th</strong> minimum eddy currents we have implemented a multi-echo gradient<br />

echo technique (J. Granot, J. Magn. Reson. 68, 575 (1986)) which produces acomplete <strong>th</strong>ree-<br />

dimensional set of useable ocular images wi<strong>th</strong> 2x2x2mm voxels in four minutes by co-adding eight<br />

echoes (TE=3.5ms). Alternatively, longer acquisition times may be used, and <strong>th</strong>e echoes processed<br />

individually to yield eight T2-weighted image sets. Since <strong>th</strong>e echo time is only 3.5 ms, T2*'s may be<br />

readily calculated.<br />

Enucleated human and bovine eyes have been studied by <strong>th</strong>ese techniques. Conditions including<br />

intraocular tumor, retinal detachment, and vitreous hemorrhage have been clearly visualized in <strong>th</strong>ese<br />

systems. We have developed procedures to allow voxel by voxel calculations of T2 ° values from <strong>th</strong>e<br />

eight echoes generated from <strong>th</strong>e gradient echo technique we employ. At 1.9 T <strong>th</strong>e T2 ° value measured<br />

from saline solutions is approximately 55 ms. The addition of increasing concentrations of<br />

Tris3DyTTHA shift reagent shortens <strong>th</strong>e T2* values as expected, reaching a value of 8.5 ms for a<br />

solution containing 0.75 M NaCI and 0.05 M shift reagent. The measurement of T2* in <strong>th</strong>e vitreous of<br />

enucleated bovine eyes is more difficult due to increased noise, but preliminary results indicate T2*<br />

values on <strong>th</strong>e order of 50 ms.<br />

Related studies of <strong>th</strong>e "visibility" of sodium in <strong>th</strong>e bovine vitreous have provided <strong>th</strong>e<br />

interesting and provocative result <strong>th</strong>at <strong>th</strong>e sodium in <strong>th</strong>is environment has a visibility of<br />

approximately 80%. This value is intermediate between <strong>th</strong>e 100% visibility predicted for sodium in<br />

an isotropic environment and <strong>th</strong>e 40% visibility predicted for sodium in an anisotropic environment,<br />

and is suggestive of two sodium pools wi<strong>th</strong>in <strong>th</strong>e vitreous.<br />

139


82<br />

BROADBAND PULSES FOR EXCITATION AND INVERSION IN I=i<br />

SYSTEMS<br />

D.P. Raleigh*, E.T. Olejniczak 2 and R.G. Griffin<br />

Massachusetts Institute of Technology, Cambridge, MA 02139 U.S.A.;<br />

2Abbott Park Laboratories, Nor<strong>th</strong> Chicago, IL 60046.<br />

New composite pulses for exciting and inverting <strong>th</strong>ree-level systems<br />

are presented. The n/2-pulse is designed for use in quadrupole echo<br />

spectroscopy and has a bandwid<strong>th</strong> comparable to existing sequences and<br />

is slightly shorter. Two new broadband n-pulses are presented which<br />

have bandwid<strong>th</strong>s larger <strong>th</strong>an o<strong>th</strong>er existing I=I inverting pulses wi<strong>th</strong>out<br />

being significantly longer. The composite n-pulses have bandwid<strong>th</strong>s<br />

exceeding + 2m .. Experimental examples and numerical calculations are<br />

presented ~hic~ldemonstrate <strong>th</strong>e usefulness of <strong>th</strong>ese sequences.<br />

83<br />

I<br />

DEUTERIUM NATURAL ABUNDANCE NMR SPECTROSCOPY:<br />

MONOTERPENE BIOSYNTHESIS, THE LINALOOL-LIMONENE CONNECTION<br />

M.F. Leopold , William W. Epstein, and David M. Grant<br />

Department of Chemistry, University of Utah<br />

Salt Lake City, Utah 84112<br />

The advent of high-field NMR has allowed <strong>th</strong>e accurate and reproducible<br />

measurement of relative deuterium intensities at natural abundance. Most recently<br />

<strong>th</strong>is technique has been applied to <strong>th</strong>e biosyn<strong>th</strong>esis of limonene in citrus and<br />

<strong>th</strong>e results supportl<strong>th</strong>e regiospeci~ic conversion of <strong>th</strong>e proposed ~__-terpinyl<br />

cation to limonene. Study of <strong>th</strong>e -H NMR of limonene suggested <strong>th</strong>e analysis of<br />

an acyclic precursor such as linalool pyrophosphate. Bo<strong>th</strong> linalool acetate<br />

and limonene have been isolated from oil of bergamot and studied to assess<br />

continuity of relative deuterium integration and fractionation due to secondary<br />

deuterium isotope effects.<br />

.OPP<br />

I. Leopold, M.F.; Epstein, W.W.; Grant, D.M.J. Am. Chem. Soc. <strong>1988</strong>, ii0, 616.<br />

140


A PROBE WITH HIGHER DECOUPLING EFFICI<strong>ENC</strong>Y AND<br />

F SENSITIVITY FOR SOLID STATE NMR EXPERIMENTS<br />

84 I<br />

Yi Jin Jiang * Warner R. Woolfenden Mark H. Sherwood Don W. Alderman<br />

Ronald d. Pugmire, and David M. Grant, Departments of Chemistry and Fuels<br />

Engineering, University of Utah, Salt Lake City, Utah 84112<br />

A more efficient double-tuned 13C/1H probe circuit has been developed espe-<br />

cially for higher decoupllng efficiency and improved sensitivity of <strong>th</strong>e observa-<br />

tion channel (13C).<br />

Comparing <strong>th</strong>is wi<strong>th</strong> <strong>th</strong>e circuit in our previous paper (1), <strong>th</strong>is modification<br />

of <strong>th</strong>e circuit of <strong>th</strong>e circuit not only eliminates an expensive capacitor, but<br />

also extends <strong>th</strong>e space inside <strong>th</strong>e probe, which lessens <strong>th</strong>e arcing problem.<br />

Because <strong>th</strong>e capacitor C4 has been replaced by a relatively small stray<br />

capacitance, <strong>th</strong>e inductance L1 can be increased, resulting in a more efficient<br />

decoupling power in <strong>th</strong>e sample coil.<br />

In a solid state NMR probe, for use at high frequencies (1H at 200 MHz or<br />

above) a small coil is often required, and hence <strong>th</strong>e inductance of <strong>th</strong>e coil is<br />

small. This decreases <strong>th</strong>e sensitivity of <strong>th</strong>e 13C channel. This problem can be<br />

alleviated by replacing <strong>th</strong>e single X/4 coaxial cable in <strong>th</strong>e original circuit (1)<br />

wi<strong>th</strong> <strong>th</strong>ree M4 cables in parallel, decreasing <strong>th</strong>e inductance from ooint B to<br />

ground, and increasing <strong>th</strong>e sensitivity of <strong>th</strong>e sample coil of <strong>th</strong>e 13C channel.<br />

(1) Yi Jin diang, Ronald d. Pugmire and David M. Grant, d. Magn. Reson. 71,<br />

485 (1987).<br />

COMPUTER PATTERN MATCHING IN 2D INADEQUATE SPECTRA<br />

85 I<br />

I<br />

Janet Curtis", Charles L. Mayne, Don W. Alderman, Ronald J. Pugmire ÷ and David M. Grant<br />

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112<br />

+ Deparmaent of Fuels Engineering, University of Utah<br />

An automated system for extraction of 13C-13C connectivites as deteci~ by <strong>th</strong>e phase-sensitive, 2D<br />

INADEQUATE NMR experiment is being developed. The cormectivites are contained in characteristic AX or AB<br />

patterns consisting of pairs of plus-minus doublets in <strong>th</strong>e 2D data set which have equal double quantum<br />

frequencies, vl:X~. The software accepts a line list from a quantitative 1D 13C spectrum, sons <strong>th</strong>e lines by intensity,<br />

and selects pairs wi<strong>th</strong> commensurate intensities to establish subsets of <strong>th</strong>e full data set to be searched for a possible<br />

carbon-carbon bond. The program uses a simplex algori<strong>th</strong>m to perform non-linear surface-fitting for each coupled<br />

pair of spins. The adjustable parameters are intensities of <strong>th</strong>e doublets, 1Jcc, <strong>th</strong>e chemical shifts, and <strong>th</strong>e T 2<br />

relaxation parameters. The double quantum frequency is simply <strong>th</strong>e algebraic sum of <strong>th</strong>e chemical shifts. For each<br />

statistically significant pattern obtained, a bond is assigned between <strong>th</strong>e two coupled carbon nuclei. The antiphase<br />

doublets are a pattern more easily recognized in spectra wi<strong>th</strong> low S/N and <strong>th</strong>e computer algori<strong>th</strong>m takes advantage<br />

of <strong>th</strong>is additional information.<br />

The simulation routines will be described. The pattern matching software has been tested for spectra wi<strong>th</strong> up<br />

to 11 shifts and 10 couplings . . . .<br />

The objective of <strong>th</strong>e research is <strong>th</strong>e extraction of maximum information from <strong>th</strong>e 2D INADEQUATE spectra<br />

in complex mixtures such as fossil fuels and in large natural product molecules, etc.<br />

141


86 THE USE OF J-SPECTRUM TYPE PULSE SEQU<strong>ENC</strong>ES<br />

IN COUPLED RELAXATION STUDIES<br />

Liu Fang*, Charles L. Mayne, David M. Grant<br />

Department Of Chemistry, University of Utah, Salt Lake City, Utah 84112<br />

The accuracy wi<strong>th</strong> which one can determine spectral densities in a coupled spin relaxation experiment is<br />

strongly dependent on <strong>th</strong>e nature of <strong>th</strong>e non-equilibrium states from which <strong>th</strong>e spin system is allowed to relax.<br />

Pulse sequences similar to <strong>th</strong>ose used to obtain 2D J-spectra have been used to prepare initial non-equilibrium<br />

states of an AX2 spin system. Figure 1 shows partially relaxed 13C spectra from such a preparation. The sample<br />

studied was 1-decanol-l-13C. Table I compares <strong>th</strong>e values of <strong>th</strong>e relaxation parameters (spectral densities) and<br />

marginal standard deviations obtained from a dataset including <strong>th</strong>e J-spectral preparation to <strong>th</strong>ose obtained from a<br />

dataset including only <strong>th</strong>e preparations previously reported. Inclusion of data obtained using <strong>th</strong>e new preparation<br />

significantly reduces <strong>th</strong>e marginal standard deviations of several of <strong>th</strong>e spectral densities and reduces correlations<br />

among <strong>th</strong>e spectral densities. Thus, a significant improvement in <strong>th</strong>e structural and dynamical parameters extracted<br />

from <strong>th</strong>e spectral densities is achieved.<br />

V ----V---'<br />

Figure 1<br />

Table I: Spectral Densities for 1-Decanol-1-13C in Diglyme at 0 C.<br />

Spectral<br />

Density<br />

JAX<br />

JXX<br />

JXAX<br />

JAXX<br />

JA<br />

Jx<br />

i)o(<br />

Wi<strong>th</strong>out J-Spectral<br />

Preparation<br />

0.09751 (0.00093)<br />

0.06625 (0.0068)<br />

0.00606 (0.0027)<br />

0.05794 (0.0013)<br />

0.0 (locked)<br />

0.05553 (0.0074)<br />

0.065 (0.0323)<br />

Wi<strong>th</strong> J-Spectral<br />

Preparation<br />

0.09645 (0.00076)<br />

0.06219 (0.0033)<br />

0.00399 (0.0025)<br />

0.05635 (0.00091)<br />

0.0 (locked)<br />

0.06456 (0.0038)<br />

0.033 (0.0047)<br />

87 12D CHEMICAL SHIFT ANISOTROPY CORRELATION SPECTROSCOPY. A NEW<br />

SAMPLE POSITIORING MECHANISM WHICH SIMPLIFIES MEASUREMENT OF CHEMICAL SHIFT<br />

ANISOTROPIES IN COMPLEX SINGLE CRYSTALS. Mark H. Sherwood*, D.W. Alderman, &<br />

D.M. Grant, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112<br />

2D chemical shift anisotropy (CSA) correlation spectroscopy permits <strong>th</strong>e<br />

measurement of CSA tensors in complex single crystals wi<strong>th</strong> far more peaks <strong>th</strong>an<br />

have been tractable wi<strong>th</strong> 1D techniques (1). Such measurements open <strong>th</strong>e<br />

possibility of using CSA tensors as structural and conformational probes in<br />

large molecules. The basis of <strong>th</strong>e technique is to obtain 2D spectra in which<br />

<strong>th</strong>e peaks are located by <strong>th</strong>e chemical shift at two different single crystal<br />

orientations. The spectra are obtained by moving <strong>th</strong>e crystal between <strong>th</strong>e two<br />

orientations during <strong>th</strong>e mixing time of a chemical exchange 2D pulse sequence.<br />

It will be shown how <strong>th</strong>e complete CSA tensors for all <strong>th</strong>e nuclei in a<br />

complex single crystal can be determined by measuring peak frequencies at only<br />

six well chosen orientations of <strong>th</strong>e crystal and correlating <strong>th</strong>ese measurements<br />

wi<strong>th</strong> <strong>th</strong>e 2D technique. The special geometry of a mechanism to accomplish <strong>th</strong>e<br />

necessary orientation and reorientation will be explained and <strong>th</strong>e device itself<br />

installed in a 200 MHz probe exhibited. In order to measure all <strong>th</strong>e tensors in<br />

a single crystal <strong>th</strong>e sample need be mounted only once in <strong>th</strong>e mechanism and six<br />

2D spectra obtained.<br />

Six 2D spectra which determine <strong>th</strong>e carbon-13 CSA tensors in a single<br />

crystal of sucrose will be shown. Sucrose has 12 carbons per molecule and two<br />

molecules per unit cell so <strong>th</strong>at 24 peaks are observed.<br />

The possibilities of <strong>th</strong>e technique for measurement of tensors in<br />

much more complicated molecules will be discussed.<br />

(1) C.M. Carter, D.W. Alderman, and D.M. Grant, J. Magn. Reson.<br />

6_55, 183 (1985) and 73, 114 (1987).<br />

142


88 I SOLID STATE ll3cd I~CLEAR }~GENETIC RESONANCE STUDY OF<br />

EXCHAI~GED ~.IOI~-~.IORII/X)NITES: Shelton Bank *a , Janet F. Bank a and<br />

Paul D. Ellis b Departments of Chemistry, aSUNY at Albany, Albany,<br />

New York 12222 and b<strong>th</strong>e University of Sou<strong>th</strong> Carolina, Columbia,<br />

Sou<strong>th</strong> Carolina 2920g<br />

The solid state ll3cd nuclear magnetic resonance spectra of<br />

cadmium adsorbed on montmorillonite clays were investigated. ~o<br />

cadmium oxoanion compents of different linewid<strong>th</strong>s wi<strong>th</strong> different<br />

sensitivities to preparation conditions are identified. Echo train<br />

experiments at various temperatures indicate <strong>th</strong>at <strong>th</strong>e linewid<strong>th</strong>s<br />

are governed by homogenous contributions ra<strong>th</strong>er <strong>th</strong>an chemical shift<br />

dispersion. These results on cadmium environments are considered<br />

in relationship to models derived from adsorption studies of cadmium<br />

and o<strong>th</strong>er metals on clays and related materials.<br />

89<br />

13C NMR ASSIGNMENTS OF DNA OLIGONUCLEOTIDES AND THE DRUG NETROPSIN<br />

Eilis Boudreau, Tim Hyman, Steven LaPlante, Gilles Martin, Graham<br />

Jackson and Philip Borer. NIH Resource for NMR and Data Anaysis,<br />

Syracuse University, Syracuse, NY 13244-1200.<br />

13C nmr resonance assignments of DNA oligonucleotides have<br />

proceeded in two directions. The two-dimensional me<strong>th</strong>od is<br />

presented in a seperate poster by D. Cowburn and J. Ashcroft. The<br />

one-dimensional me<strong>th</strong>od uses spectral comparisons of chemical shift<br />

and chemical shift versus temperature:trends. We have applied a<br />

statistical analysis me<strong>th</strong>od, Bayes Maximum Likelihood, to <strong>th</strong>e<br />

assignment of C-nmr spectra of <strong>th</strong>e bases of oligonucleotides.<br />

We achieved 100% discrimination wi<strong>th</strong> <strong>th</strong>e parameters chemical<br />

shift, temperature, a sequence factor representing <strong>th</strong>e neighboring<br />

bases and <strong>th</strong>e difference from <strong>th</strong>e C5 carbon of <strong>th</strong>e base. The<br />

technique produced 97% accuracy when used to characterize a<br />

spectrum previously assigned by <strong>th</strong>e visual me<strong>th</strong>od.<br />

Netropsin is an anti-tumor,l~nti-cancer drug in which <strong>th</strong>ere is<br />

considerable interest. The C nmr resonances of <strong>th</strong>e I d~g<br />

Netropsin have been assigned using <strong>th</strong>e two-dimensional "H---C<br />

chemical shift correlated and <strong>th</strong>e Attached Proton Test<br />

experiments.<br />

143


9o j<br />

THREE-DIMENS~ONAL STUCTURE DETERMINATION OF DNA: [d(TAGCGCTA) ]~.<br />

Sophia ~ang , Marc Delsuc +, George Levy, Philip Borer and Stev~n<br />

LaPlante , NMR and Data Processing Laboratory, NIH Resource and<br />

Biophysics Program, Syracuse University, Syracuse, NY13244-1200.<br />

+ICSN-CNRS 911 90, Gif-Sur-Yvette, France.<br />

The solution structure of [d(TAGCGCTA)] has been solved by<br />

NOESY-distance-restrained simulations. S~ructures determined by<br />

different me<strong>th</strong>ods were systematically compared (e.g. restrained<br />

dynamics and distance geometry analysis). Assignments have been<br />

completed for all <strong>th</strong>e non-exchangeable proton resonances using NOESY<br />

and double quantum filtered COSY. NOESY spectra were acquired at 50,<br />

i00, 200, 400, 800 and 1200 msec. Volumes were obtained by several<br />

integration algori<strong>th</strong>ms and <strong>th</strong>ose me<strong>th</strong>ods were compared. Completely<br />

isolated peaks and well resolved crosspeaks were used in <strong>th</strong>e<br />

analysis. Distances were calculated from comparison of <strong>th</strong>e initial<br />

NOE build-up rate wi<strong>th</strong> <strong>th</strong>e reference distances (i.e. H2'-H2", H5-H6).<br />

I 91 OPTIMIZATION OF NMR DATAPROCESSING WITH PARALLEL<br />

COMPUTERS: Roy E. Hoffman* and George C. Levy, Nor<strong>th</strong>east Parallel<br />

Architectures Center and NIH Resource, Bowne Hall, Syracuse<br />

University, Syracuse, NY 13244-1200, USA.<br />

For 40 years, most computers have been based on a single<br />

processor in what is known as <strong>th</strong>e Von Neumann architecture. In<br />

<strong>th</strong>e early 1970's, vector and array processors were introduced for<br />

scientific data processing and subsequently for NMR data<br />

reduction. It is only recently <strong>th</strong>at computers wi<strong>th</strong> parallel<br />

processors have become widely available to NMR researchers and<br />

<strong>th</strong>e advent of compilers wi<strong>th</strong> parallel and vector optimization<br />

has enabled <strong>th</strong>e modification of algori<strong>th</strong>ms in order to achieve<br />

speeds previously only possible wi<strong>th</strong> supercomputers.<br />

In <strong>th</strong>is work an Alliant FX/80 system was used. This contains<br />

8 parallel processors, each wi<strong>th</strong> a vector facility, and has a<br />

maximum performance speed of 189 Mflops. Wi<strong>th</strong> a physical memory<br />

of 128 Mbytes and a virtual memory of 2 Gbytes it is ideal for 2D<br />

and 3D-NMR processing.<br />

iD-Fourier transforms are 20 times faster on <strong>th</strong>e Alliant<br />

<strong>th</strong>an on a VAX 8800 and 120 times faster <strong>th</strong>an on a VAX 11/750.<br />

However, <strong>th</strong>e speed o~ a single processor on <strong>th</strong>e Alliant when used<br />

wi<strong>th</strong>out vector optimization is comparable to a VAX 8800. We<br />

report increases of computational speed for o<strong>th</strong>er algori<strong>th</strong>ms such<br />

as 2D lineshape analysis, plotting, and peak-picking. These<br />

increases in speed are achieved in part by <strong>th</strong>e optimization<br />

facilities in <strong>th</strong>e compiler but much of <strong>th</strong>e enhancement arises<br />

from changes in <strong>th</strong>e source code.<br />

144


- - 92 l<br />

CHARACTERIZATION OF NORMAL BRAIN TISSUE USING MRI<br />

PARAMETERS AND A STATISTICAL ANALYSIS SYSTEM. Timo<strong>th</strong>y J. Hyman*,<br />

George C. Levy, Department of Chemistry, Syracuse University,<br />

Syracuse, NY 13244, Robert J. Kurland, Jon D. Shoop, MRI Facility,<br />

Geisinger Medical Center, Danville PA, 17822.<br />

Doctors and scientis~ have been working toward techniques <strong>th</strong>at<br />

utilize Magnetic Resonance Imaging for characterizing tissue types<br />

in <strong>th</strong>e human body. Our study introduces a technique for <strong>th</strong>e<br />

characterization of normal brain tissue. We will present a<br />

statistical analysissystem for discriminating 13 regions in <strong>th</strong>e<br />

brain for 49 volunteers. The statistical me<strong>th</strong>od implemented in our<br />

technique is Bayes Maximum Likelihood which produced a<br />

discrimination accuracy of 90.8% for <strong>th</strong>ree sets of age groups. The<br />

me<strong>th</strong>od for calculating TI, T2 and proton density values implemented<br />

single-echo sequences, along wi<strong>th</strong> multiple-echo and inversion<br />

recovery sequences, in an effort to eliminate <strong>th</strong>e affects of<br />

diffusion and of <strong>th</strong>e inaccurate 90" pulse. T2 values calculated from<br />

single-echo images were found to have a higher accuracy of<br />

reproducibility and discrimination <strong>th</strong>an T2 values calculated from<br />

multiple-echo images. The nine parameters showed excellent<br />

reproducibility wi<strong>th</strong> percent standard deviations between 7% and 18%.<br />

Finally, our study shows <strong>th</strong>at a better discrimination is obtained<br />

when using all nine parameters ra<strong>th</strong>er <strong>th</strong>an using just <strong>th</strong>ree<br />

traditional parameters or <strong>th</strong>ree averaged parameters.<br />

93 TOWARD A COMPUTER ASSISTED ANALYSIS OF NOESY SPECTRA:<br />

A MULTIVARIATE PATYERN RECOGNITION ANALYSIS OF<br />

DNA AND RNA NOESY SPECTRA<br />

Hans Grahn, Frank Delaglio, Ulf Edlundt, Mark W. Roggenbuck and Phil Borer*<br />

NMR and Data Processing Laboratory, NIH Resource and CASE Center,<br />

Syracuse University, NY 13244-1200.<br />

Two dimensional NMR spectra of biomolecules present us wi<strong>th</strong> a weal<strong>th</strong> of data. However, if we wish to<br />

access <strong>th</strong>is information on a routine basis, automated me<strong>th</strong>ods for spectral assignment are essential, since<br />

<strong>th</strong>e spectra are so complex. A 2D NOESY spectrum of a relatively small DNA or RNA fragment can contain<br />

several hundreds of cross-peaks. The situation is especially critical for RNA spectra, which typically include<br />

several regions of severe overlap or minimal resolution. Therefore, even <strong>th</strong>e most basic task of selecting <strong>th</strong>e<br />

peaks to be included in an initial analysis is difficult and time-consuming. For <strong>th</strong>e same reasons, <strong>th</strong>e actual<br />

procedures of manual assignment are also difficult. In <strong>th</strong>is study we show <strong>th</strong>at several of <strong>th</strong>e above issues<br />

can be addressed by appealing to multivariate representations of <strong>th</strong>e NOESY spectra. The analysis generates<br />

projections of <strong>th</strong>e multivariate space by calculating principal components, wi<strong>th</strong> ra<strong>th</strong>er remarkable<br />

consequences. These projections directly identify relevant spectral bands. Subsequent multivariate analysis<br />

can provide peak assignment information according to type of base or conformation, and can even supply<br />

reliability estimates for proposed assignments, based on previously assigned spectra. The techniques are<br />

illustrated for separation of different structural segments of an RNA duplex NOESY spectra of<br />

(CACAUGUG) 2.<br />

NMR Research Group, Department of Chemistry, Ume~ University, S-901 87 Ume~, Sweden.<br />

14,5


94<br />

MULTIVARIATE TECHNIQUES FOR ENHANCEMENT<br />

OF TWO DIMENSIONAL NMR SPECTRA<br />

Hans Grahn, Frank Delaglio °, Mark W. Roggenbuck and George C. Levy<br />

NMR and Data Processing Laboratory, NIH Resource and CASE Center,<br />

Syracuse University, Syracuse 13244-1200.<br />

By using multivariate representations of 2D NMR spectra, we show <strong>th</strong>at systematic noise<br />

such as tl and t2 ridges can be modeled by a Principal Component Analysis (PCA) me<strong>th</strong>od.<br />

Later <strong>th</strong>ese noise models can be subtracted from <strong>th</strong>e original data wi<strong>th</strong>out distorting <strong>th</strong>e<br />

spectral features.<br />

In addition, PCA can generate reconstructions of 2D spectra, which are solely based on <strong>th</strong>e<br />

systematic information from <strong>th</strong>e data, and <strong>th</strong>us exclude random noise. Special data<br />

transformations can be applied in conjunction wi<strong>th</strong> PCA in order to emphasize or reduce<br />

specific features; <strong>th</strong>is approach is employed in a diagonal suppression scheme for 2D NOE<br />

spectra. All of <strong>th</strong>ese me<strong>th</strong>ods can be combined to optimize data in preparation for<br />

automated, multivariate-based spectral analysis procedures, which benefit greatly from such<br />

improvements.<br />

- - NIH RESOURCE FOR MULTI-NUCLEI NMR AND DATA PROCESSING<br />

I AT SYRACUSE UNIVERSITY: Gregory J. Heffron*, Andrew<br />

95 ] S. Lipton, Karl D. Bishop, Steven R. Laplante, Philip<br />

N. Borer and George C. Levy, syracuse university,<br />

Bowne Hall, Syracuse, New York 13244-1200<br />

The NIH Resource at Syracuse University combines research and<br />

services in high sensitivity multi-nuclear nmr spectroscopy wi<strong>th</strong><br />

advanced spectroscopic and o<strong>th</strong>er data processing capabilities.<br />

Emphasis is placed upon biological nmr and innovative processing<br />

me<strong>th</strong>ods. Instrumentation includes a General Electric GNS00 11.7<br />

Tesla multi-nuclear nmr spectrometer, a Bruker WM360 8.5 Tesla<br />

multi-nuclear nmr spectrometer, and a Cryomagnet Systems 5.8 Tesla<br />

multi-nuclear nmr spectrometer. Data processing facilities include<br />

five Sun-based SpecStations and a Stellar Graphics Supercomputer<br />

(May) networked wi<strong>th</strong> all of <strong>th</strong>e spectrometers. Additionally, <strong>th</strong>e<br />

Resource network is connected via Telnet and ftp to campus and<br />

worldwide networks, including several very powerful computers in<br />

S.U.'s Nor<strong>th</strong>east Parallel Architectures Center.<br />

The "Syracuse concept" of nmr and computer networking will be<br />

presented wi<strong>th</strong> recent examples and tests of 2-dimensional maximum<br />

entropy Fourier spectral deconvolution processing on RNA and DNA<br />

data sets. These me<strong>th</strong>ods introduce few distortions and greatly<br />

clarify presentation of data. Users are welcome and inquiries may<br />

be directed to Gregory Heffron.<br />

146


96<br />

AN EVALUATION OF NEW PROCESSING PROTOCOLS FOR IN-VIVO NMR<br />

A.R. Mazzeo and G.C. Levy<br />

NIH Research Resource for Multi-Nuclei NMR and Data<br />

Processing, Syracuse University, Syracuse, NY 13244-1200.<br />

In-vivo NMR spectroscopy is often characterized by relatively<br />

broad resonances of low signal-to-noise superimposed on a<br />

curved baseline formed by broad but, in some cases, real<br />

resonances. A variety of processing techniques have been<br />

used in <strong>th</strong>e past to obtain "quantitative" information from<br />

<strong>th</strong>ese difficult spectra, wi<strong>th</strong> varied success. Here, several<br />

different processing protocols, using software tools<br />

developed in <strong>th</strong>is laboratory for spectral optimization, are<br />

used and evaluated for quantification of test spectra. Bo<strong>th</strong><br />

syn<strong>th</strong>etic and experimental data sets were processed using<br />

conventional techniques (convolution difference) and wi<strong>th</strong> new<br />

protocols involving Maximum Entropy Fourier Spectral<br />

Deconvolution (MEFSD) and Linear Prediction (LP). In some<br />

cases, baselines were corrected using an "intelligent"<br />

baseline conditioning routine. Results show <strong>th</strong>e advantages<br />

and limitations of <strong>th</strong>e various techniques.<br />

We would like to acknowledge NIH Grant RR-01317 for support.<br />

97 [2DNMR DETERMINATION OF '3C SPIN-LATTICE<br />

RELAXATION TIMES IN BPTI BY INDIRECT DETECTION: N.R.Nirmala~and<br />

Gerhard Wagner, Biophysics Research Division, University of Michigan, Ann<br />

Arbor, MI 48109.<br />

13C spin-lattice relaxation times provide an important clue for determining <strong>th</strong>e<br />

mobility of a protein in solution. This is of interest in itself, but it is also essential for<br />

resolving ambiguities concerning variations in structures obtained from calculations of<br />

<strong>th</strong>ree-dimensional structures using NMR data. If <strong>th</strong>ere exists a high degree of mobility in<br />

only selected parts of <strong>th</strong>e molecule, <strong>th</strong>is will be reflected in <strong>th</strong>e variation of spin-lattice<br />

relaxation times of <strong>th</strong>e corresponding 13C nuclei. Therefore, knowledge of <strong>th</strong>e 13C Tl's will<br />

aid in <strong>th</strong>e study of <strong>th</strong>ree-dimensional structures of proteins in solution. Since typical<br />

spectra of proteins are heavily overlapped, individual 13C Tl's can be determined only by<br />

two-dimensional NMR. Fur<strong>th</strong>ermore, direct measurement of 13C spin-lattice relaxation<br />

times is hampered by <strong>th</strong>e low sensitivity of <strong>th</strong>e 13C nucleus, requiring long measuring<br />

times and high sample concentrations. Proton detection increases <strong>th</strong>e sensitivity of <strong>th</strong>e<br />

experiment by a factor of ( 7H/7c)2 and is <strong>th</strong>erefore preferred. In <strong>th</strong>e experiment<br />

described, a double transfer was used [1,2]. Proton magnetization was converted to 13C z-<br />

magnetization using a DEPT-type sequence. The 13C z-magnetization was <strong>th</strong>en allowed to<br />

relax and reconverted to proton magnetization using a reverse DEPT sequence, wi<strong>th</strong><br />

decoupling of <strong>th</strong>e 13C nucleus during detection. The experiment was performed wi<strong>th</strong><br />

natural abundance l aC on basic pancreatic trypsin inhibitor (BPTI). Individual Tl's of <strong>th</strong>e<br />

u-carbons were determined.<br />

,<br />

1. L. E. Kay, T. L. Jue, B. Bangerter and P. C. Demou, J. Mag. Res., 73, 558 (1987).<br />

2. V. Sklenar, D. Torchia and A. Bax, J. Mag. Res., 73, 375 (1987).<br />

147


F 98<br />

I CHEMICAL EXCHANGE OF HETERONUCLEAR LONGITUDINAL<br />

TWO-SPIN ORDER (IzSz): A DYNAMIC PROBE OF CONFORMATIONAL<br />

ISOMERIZATION IN PROTEINS Gaetano T. Montelione* and Gerhard<br />

Wagner, Biophysics Research Division, University of Michigan, Ann<br />

Arbor, MI 48109.<br />

Chemical exchange spectroscopy can provide information about rates of<br />

conformational isomerization for systems which are in slow dynamic<br />

equilibrium. In such measurements it is often necessary to distinguish<br />

magnetization transfer <strong>th</strong>rough chemical exchange from cross-relaxation due<br />

to dipolar coupling. This distinction can be made by developing longitudinal<br />

two-spin order (i.e. zz-order) via scaler coupling wi<strong>th</strong>in one conformer and<br />

transferring it by chemical exchange to <strong>th</strong>e o<strong>th</strong>er conformer(s) which are in<br />

slow-exchange on <strong>th</strong>e chemical shift timescale 1,2. We have employed <strong>th</strong>is<br />

concept in developing 2D-NMR pulse sequences which characterize <strong>th</strong>e chemical<br />

exchange of natural abundance heteronuclear two-spin order (IzSz). These<br />

"heteronuclear zz-exchange" experiments provide information about bo<strong>th</strong> rate<br />

and equilibrium constants for slow dynamic processes in polypeptides and<br />

proteins. The me<strong>th</strong>ods are applicable to studies of slow peptide-bond<br />

isomerization, aromatic ring rotations, and <strong>th</strong>e folding / unfolding dynamic<br />

equilibria of small proteins.<br />

1. Bodenhausen et al. (1984) J. Mag. Reson. 59: 542.<br />

2. Wagner et al. (1985) J. Am Chem. Soc. 107: 6440.<br />

I -- 99 I TEACHING MRI USING COMPUTER ANIMATION, Joseph P. Hornak,<br />

Rochester Institute of Technology, l~ochester, NY 14623<br />

Involving undergraduate students in magnetic resonance research requires a carefully<br />

planned education program in <strong>th</strong>e principles of magnetic resonance. Such a program often<br />

requires <strong>th</strong>e student to learn <strong>th</strong>e principles independently as <strong>th</strong>ere are usually no appropriate<br />

courses at <strong>th</strong>e sophomore and jumor level. Several dynamic aspects of NMR spectroscopy and<br />

imaging are difficult for <strong>th</strong>e student to understand when textbooks wi<strong>th</strong> static diagrams are used,<br />

and consequently, significant amounts of time are spent by <strong>th</strong>e research advisor explaining <strong>th</strong>ese<br />

concepts which could better be taught by o<strong>th</strong>er means. One solution to <strong>th</strong>is problem is to utilize<br />

computer animation for teaching magnetic resonance. A computer based teaching package of <strong>th</strong>e<br />

basics of NMB. imaging is described which presents several of <strong>th</strong>e dynamic processes of magnetic<br />

resonance wi<strong>th</strong> computer animation and text which simultaneously appear on a computer screen.<br />

Some of <strong>th</strong>e topics taught by <strong>th</strong>is package are <strong>th</strong>e rotating frame, pulse sequences, <strong>th</strong>e behavior of<br />

magr/etization during a two dimensional imaging sequence, and two dimensional Fourier<br />

transforms.<br />

148


. .<br />

I00 I NOVEL RESONATOR DESIGNS, E. Marshall, J.J. Listinsky, R.G. Bryant,<br />

J.P. Hornak, University of Rochester, Rochester, NY 14642 and Rochester Institute of<br />

Technology, Rochester, NY 14623<br />

Certain flat sample geometries and anatomies are not conveniently studied by NMR in a<br />

coil of cylindrical symmetry due to poor filling factor or on a surface coil due to signal roll-off. A<br />

single turn solenoid is a high efficiency transmit and receive coil wi<strong>th</strong> a nearly homogeneous RF<br />

magnetic field and sensitivity which may be used for NMR imaging and spectroscopy. We have<br />

designed a single turn solenoid wi<strong>th</strong> rectangular symmetry called a ribbonator. The LC circuit of<br />

<strong>th</strong>e ribbonator is formed from a sheet of copper wrapped around a rectangular form. A gap<br />

between <strong>th</strong>e two edges of <strong>th</strong>e sheet is bridged by <strong>th</strong>e capacitive elements of <strong>th</strong>e resultant LC<br />

circuit. Ribbonators retain <strong>th</strong>e favorable properties of a conventional cylindrical STS such as a<br />

high Q and nearly uniform excitation and receive fields. As a result <strong>th</strong>e ribbonator efficiently<br />

produces MR signals from fiat objects placed wi<strong>th</strong>in its volume. Holes may be cut in <strong>th</strong>e side of<br />

<strong>th</strong>e inductor to allow easier insertion of samples and do not significantly perturb its properties.<br />

The resonance equation for <strong>th</strong>is rectangular parallelopiped shaped resonator will be discussed.<br />

Contour maps of <strong>th</strong>e RF magnetic field along wi<strong>th</strong> images of <strong>th</strong>e hand and wrist obtained from a<br />

ribbonator will be presented.<br />

101<br />

THE USE OF VARIABLE ANGLE SAMPLE SPINNING TO ASSESS AROMATIC CLUSTER<br />

SIZE IN COALS, COAL CHARS AND CARBONACEOUS MATERIALS<br />

Mark S. Solum °, Naresh K. Se<strong>th</strong>i, Julio C. FaceUi, Warner R. Woolfenden,<br />

Ronald J. Pugmire and David M. Grant<br />

Deparunents of Fuels Engineering and Chemistry, University of Utah,<br />

Salt Lake City, Utah 84112<br />

Variable angle sample spinning and powder pattern lineshape analysis techniques have been<br />

employed to study <strong>th</strong>e 13C shielding tensov~ in bituminous coals, an<strong>th</strong>racites, inertinite macerals, and coal<br />

cha~. The shielding tensors have been analyzed as a superposition of different bands due to benzene-<br />

like, condensed (bridgehead and inner) and substituted carbons. A comparison of experimental data and<br />

<strong>th</strong>eoretical calculations on model compounds containing 1-4 aromatic rings plus circumcoronene (C54HIs)<br />

support <strong>th</strong>e interpretation of <strong>th</strong>e shielding tensor data observed in coals and coal derived materials.<br />

Determination of <strong>th</strong>e ratio of non-protonated to protonated aromatic carbons obtained on <strong>th</strong>e coals,<br />

macerals, and chats by spectroscopic analysis are in good agreement wi<strong>th</strong> elemental analysis and previous<br />

dipoar dephasing NMR experiments. The me<strong>th</strong>od <strong>th</strong>erefore constitutes a valuable way to analyze <strong>th</strong>e<br />

strucnue of high rank coals and coal derived carbonaceous residues. The mole fraction of condensed<br />

inner ring carbons obtained by <strong>th</strong>is technique is used to estimate <strong>th</strong>e average cluster size in <strong>th</strong>ese<br />

polycondensed axomalic hydrocarbon materials. These data along wi<strong>th</strong> results from dipolar dephasing<br />

techniques on coals ate <strong>th</strong>en used as input parameters in coal devolatization modeling.<br />

149


102<br />

] STRONG 181Ta OUADRUPOLE INTERACTIONS DETECTED VIA CROSS-RELAXATION<br />

TO HYDROGEN BY PROTON SPIN-LATTICE RELAXATION RATE STUDY IN TAB.322 : D.R.<br />

Torgeson*, J-W. Han and R.G. Barnes, Ames Laboratory + and Department of<br />

Physics, Iowa State University, Ames, Iowa 50011<br />

Proton spin-lattice relaxation rate R 1 measurements of hydrogen in <strong>th</strong>e<br />

Ta2H metallic hydride phase of TaH 0 322 at 130 K have been made as a function<br />

of proton magnetic resonance frequencies from 24 to 105 MHz. Contributions to<br />

<strong>th</strong>e proton Rl.arise from conduction elegl[ons, long-range diffusion (at higher<br />

temperatures) i an~ cross-relaxation by ISITa spins.<br />

The measured H relaxation rates R 1 show a strong, extremely broad (35 MHz<br />

wide) peak or collection R~ peaks centered at 70 MHz <strong>th</strong>at we attribute to<br />

cross-relaxation by <strong>th</strong>e 1°iTa spins which are <strong>th</strong>emselves strongly relaxed by<br />

conduction electrons and quadrupole interactions.<br />

Interpretation of <strong>th</strong>ese resplls is complicated by <strong>th</strong>e increasing streng<strong>th</strong><br />

of <strong>th</strong>e Zeeman splitting of <strong>th</strong>e ~SITa nuclear electric quadrupole energy levels<br />

<strong>th</strong>at results from <strong>th</strong>e stepped increase in <strong>th</strong>e external magnetic field<br />

necessary for <strong>th</strong>e proton R 1 measurements from 24 to 105 MHz. From <strong>th</strong>ese<br />

"spectra", we estimate <strong>th</strong>e 181Ta pure quadrupole frequency ~0 to be - 40 MHz<br />

and <strong>th</strong>e electric field gradient (EFG) asymmetry parameter-~-- 0.5.<br />

The or<strong>th</strong>orhombic crystal structure of Ta2H and <strong>th</strong>e hydrogen occupation of<br />

alternate planes of tetrahedral interstitial sites wi<strong>th</strong>in <strong>th</strong>e structure<br />

indicate <strong>th</strong>e crystalline EFG to have an asymmetry parameter ~ ~ 0.6. A more<br />

detailed interpretation of <strong>th</strong>e results will be given, as well as a description<br />

of <strong>th</strong>e experimental procedures employed to complete <strong>th</strong>ese measurements.<br />

+Operated for <strong>th</strong>e USDOE by Iowa State Univ. under contract No. W-7405-Eng-82.<br />

1p.A. Hornung, A.D. Khan, D.R. Torgeson and R.G. Barnes, Z. Phys. Chemie Neue<br />

Folge 116, 577-86 (1979).<br />

i03 I PRE-PULSE SEQU<strong>ENC</strong>E -- AN INVERSION PULSE (~) AND A<br />

DELAY TIME (aT3): . =Fu-Tyan Lin, Department of Chemistry, University of<br />

Pittsburgh, Pittsburgh, PA 15260 and Fu-Mel Lin, Calgon Corporation,<br />

Pittsburgh, PA 152~-<br />

The use of pre-pulse sequence which includes an inversion pulse<br />

(~) and a delay time (D 2) to null <strong>th</strong>e intensity of a selected peak in<br />

NMR experiments was developed in <strong>th</strong>is work. This delay time D 2<br />

defined as aT 3 is applied right after W pulse and before <strong>th</strong>e pulse<br />

sequence for data acquisition. Here T 3 is a delay time to obtain<br />

zero magnetization for a sufficient long dealy time D 1 before ~ pulse.<br />

1<br />

T 3 is equal to (2n2)T 1 derived from Bloch equations, and =(I - ~)T 1<br />

measured from <strong>th</strong>e experiments. For m~l~iple scans (n), <strong>th</strong>e experi-<br />

(n-l)T3 z<br />

mental coefficient a = exp[- 4n(DI+A+I) ], where A is <strong>th</strong>e free<br />

induction decay (FID) acquisition time. For a single scan wi<strong>th</strong><br />

D 1 > 5T I, <strong>th</strong>e a value becomes I. The presequence of inversion-delay<br />

has <strong>th</strong>e advantages of selective suppression, more easier and accurate<br />

T 1 determination, and <strong>th</strong>e separation of longer T 1 and shorter T 1 peaks<br />

of a molecule.<br />

150


104<br />

TAYLOR TRANSFORMATION OF 2D NMR "Um SERIES<br />

FROM TIME DIMENSION TO POLYNOMIAL DIMENSION<br />

FOR CONVENIENT DETERMINATION OF CROSS<br />

RELAXATION RATES IN NOESY SPECTRA<br />

Sven G. Hyberts* & Gerhard Wagner<br />

Biophysics Research Division, IST; University of Michigan;<br />

2200 Bonisteel Blvd; Ann Arbor, MI 48109<br />

A series of 14 NOESY specra wi<strong>th</strong> 1;m values ranging from 10 ms to 75 ms, was<br />

subject to a point-by-point Taylor transformation around l:m=0. This yields a<br />

zero-order spectrum containing <strong>th</strong>e diagonal and base-line offset, a 1st-order<br />

spectrum containing only <strong>th</strong>e cross relaxation rates and a 2nd-order spectrum<br />

containing <strong>th</strong>e spin-diffusion and Tl-relaxation effects. To improve <strong>th</strong>e signal-<br />

to-noise ratio we have truncated <strong>th</strong>e Taylor expansion after <strong>th</strong>e second order<br />

term. The cross relaxation rate can now be determined directly by integration of<br />

<strong>th</strong>e desired cross-peak in <strong>th</strong>e 1st-order spectrum. In <strong>th</strong>e usual approach, <strong>th</strong>e<br />

selected cross-peak has to be integrated in each 2D spectrum and <strong>th</strong>en, <strong>th</strong>e<br />

build-up curve has to be fitted to determine <strong>th</strong>e cross relaxation rate. This is<br />

quite labour intensive for a macromolecule wi<strong>th</strong> many cross-peaks preventing<br />

<strong>th</strong>e quantitative analysis of NOESY spectra in most structural work sofar. The<br />

me<strong>th</strong>od proposed provides a more convenient measurement of <strong>th</strong>e cross<br />

relaxation Pates and may <strong>th</strong>us encourage quantitative analysis of NOESY<br />

spectra.<br />

- - lOS<br />

I<br />

EVALUATION OF DOUBLE TUNED CIRCUITS USED IN NMR: Toby Zens*<br />

Varian Associates, Palo Alto, CA 94303<br />

Double tuned circuits are frequently used in NMR probes as a<br />

simple means of exciting and detecting nuclei in a single coil<br />

device. General examples of different double tuned<br />

will be examined in terms of efficiency and<br />

application to NMR probes. Examples will include<br />

used in CPMAS and surface coil probes.<br />

151<br />

circuits<br />

practical<br />

circuits


1 0 6 I AR'nFACT'3 IN ECHO-PLANAR IMAGING<br />

Hector E. Avram * 1), Lawrence E. Crooks 2) and David M. Kramer 1)<br />

1) Diasonics MRI, 533 Cabot Rd., Sou<strong>th</strong> San Francisco, CA 94080<br />

2) University of California, San Francisco, 400 Grandview Dr., Sou<strong>th</strong> San Francisco, CA 94080<br />

Since its introduction in 1978 (1), Echo-Planar imaging has developed into a real clinical posibility for<br />

imaging of <strong>th</strong>e human body when very high speed is required as in <strong>th</strong>e case of uncooperative patients and<br />

children (2). Echo-Planar allows acquisition of an entire image in a time under 0.1 sec.. This technique is<br />

based on <strong>th</strong>e use of succesive gradient-recalled echoes, individually phase encoded, to generate a 2DFT<br />

image. By switching readout gradient polarity, phase distortions occur which generate image artifacts<br />

mainly a ghost image L/2 away from <strong>th</strong>e primary image (where L is <strong>th</strong>e y-image dimension). It is found <strong>th</strong>at<br />

<strong>th</strong>ese phase distortions which arise mainly from magnetic field inhomogeneities, gradient instabilities and<br />

eddy current distributions, are to a certain extent predictable and <strong>th</strong>at wi<strong>th</strong> proper zero and first order<br />

phasing of <strong>th</strong>e echoes such artifacts are minimized if not eliminated.<br />

A scheme for an efficient way to phase correct <strong>th</strong>e phase encoded projections will be presented.<br />

(1) Mansfield P, Pykett IL, J Magn Reson 1978; 29:355-373<br />

(2) Crooks LE, et al, Radiology <strong>1988</strong>;166:157-163<br />

... 107<br />

'I~VO DIMENSIONAL NMR SOFTWARE IN THE<br />

WORKSTATION ENVIRONMENT<br />

Frank Delaglio °, Pascale Sole1", Hans Grahnl", Alex Macur,<br />

John Begemann, Molly Crow<strong>th</strong>er, Roy Hoffmanl", and George C. Levy.<br />

New Me<strong>th</strong>ods Research, Inc., 719 East Genesee Street, Syracuse, NY 13210.<br />

We present several techniques for optimal analysis of 2D NMR spectra, which rely bo<strong>th</strong> on <strong>th</strong>e<br />

computational power and advanced graphics capabilities of modern scientific workstations. Examples<br />

include me<strong>th</strong>ods from <strong>th</strong>e field of image processing, such as morphological filters, histogram<br />

equalizations, and various segmentation procedures. Such techniques, which improve data visibility,<br />

are most valuable when results can be obtained and examined quickly in an interactive scheme.<br />

O<strong>th</strong>er examples involve surface fitting of 2D spectra, a task which is of course computationally<br />

strenuous, but also benefits from flexible graphics for presentation and evaluation of results. We use<br />

surface fitting to compensate for baseplane distortions, measure 2D NOE peak volumes, and to<br />

simulate DQF-COSY crosspeak multiplets.<br />

An outline of o<strong>th</strong>er me<strong>th</strong>ods newly implemented in <strong>th</strong>e NMR2 two dimensional NMR software<br />

system is presented, including interactive bicomplex 2D phasing, 2D solvent signal subtraction, and<br />

connectivity analysis. We also illustrate our first-generation implementations for 3D NMR processing<br />

and presentation.<br />

"~ NMR and Data Processing Laboratory, NIH Resource and CASE Center, Syracuse University,<br />

Syracuse, NY 13244-1200.<br />

152


108<br />

PERFORMANCE COMPARISON OF DOUBLE-TUNED SURFACE COILS<br />

J.R. Fitzsimmons*, H.R. Brooker, W. Kuan, and B. Beck<br />

Departments of Radiology and Physics<br />

University of Florida, Sainesville, FL 32611<br />

Recently, several groups have tried to extend <strong>th</strong>e utility of radio frequency (rf)<br />

coils used in NMR spectroscopy and imaging by designing rf coils which resonate at<br />

two or more frequencies (I-3). This study evaluates <strong>th</strong>e advantages and disadvan-<br />

tages of several of <strong>th</strong>e more recent designs suggested by <strong>th</strong>e literature including<br />

one of our own making. In particular, we compare I) <strong>th</strong>e design suggested by<br />

Schnall, et al (I) which makes use of rf "trap" circuits, 2) <strong>th</strong>e loop gap resonator<br />

approach suggested by Grist, et al (2), 3) <strong>th</strong>e transformer coupled planar design by<br />

Fitzsimmons, et al (3). In addition, a set of single tuned coils were constructed<br />

(85 MHz and 34 MHz) to serve as <strong>th</strong>e standard for <strong>th</strong>e above designs. All of <strong>th</strong>ese<br />

designs were constructed using <strong>th</strong>e same conductor type (#14 solid copper), capacitor<br />

type (Sprague IOTCC series), diameter coil (4.8cm) and balanced matching scheme.<br />

Two phantoms were used for <strong>th</strong>ese experiments, one containing DeO and saline to<br />

approximate <strong>th</strong>e loading effects of <strong>th</strong>e human arm muscle and <strong>th</strong>e o<strong>th</strong>er using dilute<br />

phosphoric acid wi<strong>th</strong> saline. The unloaded and loaded Q of each coil was measured<br />

using a sweep generator and 50 ohm bridge and each coil was evaluated on a 2.0T SIS<br />

imager/spectrometer using a one pulse experiment. Signal to noise (S/N) measure-<br />

ments were made for each coil at each frequency. Significant differences were found<br />

between coils and wi<strong>th</strong>in coils on different frequencies.<br />

This research is supported by grants from <strong>th</strong>e National Institute of Heal<strong>th</strong><br />

(P41-RR-02278) and <strong>th</strong>e Veterans Administration Medical Service<br />

I. Schnall, MD, Subramanian, VH, Leigh, JS, and Chance, B. J. Magn. Resort. 65,<br />

122-129 (1985).<br />

2. Grist, T.M., J.B. Kneeland, A. Jesmanowicz, W. Froncisz, and J.S. Hyde.<br />

Fif<strong>th</strong> Annual Meeting of <strong>th</strong>e Society of Mag. Res. in Med. August, 1986.<br />

~. J.R. Fitzsimmons, H.R. Brooker, B. Beck, Mag. Res. In Med. 5,471-477,1987.<br />

I-- 10g I NMR STUDY OF ALKALINE HYDROLYSIS OF POLY-(ACRYLONITRILE)<br />

(PAN): J. Lovy*, V. Stoy, Kingston Technologies, Inc., Dayton, New<br />

Jersey, 08810.<br />

Al<strong>th</strong>ough alkaline hydrolysis of PAN has been utilized commercially<br />

as well as studied for many decades, its mechanism was not sufficiently<br />

known.<br />

According to <strong>th</strong>e former studies, <strong>th</strong>e mechanism of hydrolysis of<br />

PAN was essentially identical wi<strong>th</strong> hydrolysis of an isolated nitrile<br />

group. The formation of cyclic groups of tetrahydronaph<strong>th</strong>yridine type<br />

was suggested as a mere minor by-product.<br />

By detailed NMR study we have found <strong>th</strong>at products of alkaline<br />

hydrolysis contain acrylamidine (which was never reported before) in<br />

substantial concentrations. Its formation requires a cyclic mechanism<br />

involving at least two CN groups in 1,3 position.<br />

The fur<strong>th</strong>er studies of akaline hydrolysis of PAN and a model<br />

compound (glutaronitrile) have shown <strong>th</strong>at <strong>th</strong>e cyclic mechanism is <strong>th</strong>e<br />

dominant one. The influence of reaction conditions and media was also<br />

studied.<br />

153


1 1 0<br />

-- [ DISCRETE ANALYSIS OF STOCHASTIC NMR USING WIENER SERIES:<br />

S.T.S. Wong*, R.D. Newmark & M.S. Roos, Donner Laboratory, Lawrence Berkeley Laboratory, University<br />

of California, Berkeley, California 94720.<br />

Stochastic NMR is an efficient alternative to conventional NMR techniques for spectroscopy and imaging<br />

<strong>th</strong>at can reduce <strong>th</strong>e peak RF power requirement by several orders of magnitude. The stochastic experiment<br />

is analysed by a Wiener series expansion of <strong>th</strong>e non-linear NMR system wi<strong>th</strong> a discrete Gaussian white noise<br />

process for <strong>th</strong>e input. This diifers from Kaiser's analysis for continuous excitation (JMR 48, 293, 1982). A<br />

me<strong>th</strong>od for correcting <strong>th</strong>e distortions in spectra (images) reconstructed by simple 1D cross-correlation due to<br />

<strong>th</strong>e NMR system non-linearity will be presented.<br />

The experiment consists of a series of RF pulses wi<strong>th</strong> Rip angles being a sample of a discrete Gaussian<br />

white noise process. One data point is sampled after every RF pulse. Spectral (image) information is obtained<br />

by Fourier transforming <strong>th</strong>e 1D cross-correlation of <strong>th</strong>e sampled data points wi<strong>th</strong> <strong>th</strong>e white noise sequence.<br />

By modeling <strong>th</strong>e system wi<strong>th</strong> a set of difference equations, analytic expressions for <strong>th</strong>e signal power and<br />

<strong>th</strong>e reconstructed spectra (projections) were obtained. These expressions allow us to choose <strong>th</strong>e Rip angle<br />

variance which maximizes signal-to-noise ratio. Unfortunately, <strong>th</strong>e Rip angle variance <strong>th</strong>at gives <strong>th</strong>e maximum<br />

signal-to-noise ratio is large enough to cause <strong>th</strong>e magnetization response to saturate, giving rise to distortions<br />

in <strong>th</strong>e reconstructed spectra (projections).<br />

When <strong>th</strong>e non-linear magnetization response is expanded into a Volterra series, <strong>th</strong>e desired non-distorted<br />

spectrum corresponds to <strong>th</strong>e linear kernel, hl, of <strong>th</strong>e series. However, <strong>th</strong>ere is no easy way to obtain hl<br />

<strong>th</strong>eoretically or experimentally. The non-linear response cam be expanded into a series of Wiener functionals<br />

which can be obtained by multi-dimensional cross-correlations of <strong>th</strong>e sampled data wi<strong>th</strong> <strong>th</strong>e Gaussian white<br />

noise excitation. The 1D cross-correlation gives <strong>th</strong>e first order Wiener kernel, kl, which approaches hl as<br />

<strong>th</strong>e Rip angle variance approaches zero. As <strong>th</strong>e system becomes more non-linear, hl becomes dispersed into<br />

Wiener functionals of order higher <strong>th</strong>an one: hl = kl + ki(3) + k1(s) + ...... , where k](3), k1(s) etc., are <strong>th</strong>e linear<br />

components of <strong>th</strong>e higher order Wiener functionals. Expressions for kl, ki(3) and k1(s) have been derived.<br />

The sum/=i + ki(3) reduces <strong>th</strong>e distortions significantly for <strong>th</strong>e Rip angle variance which gives <strong>th</strong>e maximum<br />

signal-to-noise ratio.<br />

11 1 J STOCHASTIC NMR IMAGING WITH OSCILLATING GRADIENTS:<br />

S.T.S. Wong, M.S. Roos*, R.D. Newmark, Donner Laboratory, Lawrence Berkeley Laboratory, University of<br />

California, Berkeley, California 94720.<br />

The analysis of NMR imaging and volume selective spectroscopy wi<strong>th</strong> oscillating gradients (A. Macovski,<br />

J. Mag. Res. Med., vol. 2, p. 29-39, 1985) has been extended to include stochastic excitation. Advantages of<br />

<strong>th</strong>e me<strong>th</strong>od described relative to conventional techniques are a large reduction in <strong>th</strong>e peak RF power required<br />

relative to deterministic pulse excitation and <strong>th</strong>e elimination of switching transients using oscillating gradients.<br />

The stochastic experiment consists of a sequence of RF pulses where <strong>th</strong>e Rip angles are a sample of a<br />

discrete Gaussian white noise process. One data point is sampled after every RF pulse in <strong>th</strong>e presence of a B0<br />

gradient which varies sinusoidally <strong>th</strong>roughout <strong>th</strong>e experiment. The magnetization response to RF excitations<br />

is assumed to be linear, which is valid in <strong>th</strong>e limit of small Rip angles. The sampled signal is <strong>th</strong>en cross-<br />

correlated wi<strong>th</strong> <strong>th</strong>e product of <strong>th</strong>e Gaussian white noise sequence and a phase demodulation kernel derived<br />

from <strong>th</strong>e time-varying gradient waveform in order to reconstruct an image.<br />

The expected value of <strong>th</strong>e reconstructed image has <strong>th</strong>e form of a localization function convolved wi<strong>th</strong> <strong>th</strong>e<br />

spin distribution. This function is<br />

e -°/T' 3o (2~Gsin(WmO'/2) z~,<br />

\ Wm /<br />

where 3o is <strong>th</strong>e zero-order Bessel function, G and co. are, respectively, <strong>th</strong>e amplitude and frequency of <strong>th</strong>e<br />

siausoidal gradient. The time lag of <strong>th</strong>e cross-correlation, o, is a free parameter <strong>th</strong>at may be used to manipulate<br />

T2 contrast. Integrating over o also improves localization, resulting in Jo(TGz/a~,n). The sidelobes of <strong>th</strong>e<br />

localization function can be reduced by including harmonics of <strong>th</strong>e gradient frequency in <strong>th</strong>e kernel, allowing<br />

syn<strong>th</strong>esis of a localization function from a series of Bessel functions of increasing order.<br />

The variance of a given pixel of <strong>th</strong>e image obtained by cross-correlation does not approach zero in <strong>th</strong>e<br />

limit of infLnite observation time. It becomes part of <strong>th</strong>e overall image noise in additon to observation noise.<br />

Bo<strong>th</strong> types of noise can be reduced by averaging images reconstructed using separate samples of <strong>th</strong>e excitation<br />

process.<br />

154<br />

. - -


RECENT EXTENSIONS OF NOESYSIM, A PROGRAM FOR RAPID COMPUTATION<br />

112 [OF NOESY INTENSITY MATRICES FROM ATOMIC COORDINATES AND EXPERI-<br />

MENTAL CONDITIONS. Hugh L. Eaton*, Niels H. Andersen, and Xiaonian Lai, University of Wash-<br />

ington, Seattle, WA 98195.<br />

The NOESYSIM program has been extended to allow calculation of NOESY matrices at any of<br />

four levels of <strong>th</strong>eory or approximation: 1) linear-limit isolated spin pairs; 2) isolated spin pairs wi<strong>th</strong><br />

leakage correction; 3) summation over all possible <strong>th</strong>ree spin systems; and 4) complete experiment<br />

simulation by numeric integration (J. Magn. Reson. 74, 212). The latter implicitly includes<br />

all spins and is equivalent to CORMA (Borgias and James, 28<strong>th</strong> <strong>ENC</strong>) for idealized experiments<br />

wi<strong>th</strong> an effectively infinite repetition interval. Me<strong>th</strong>ods 3) and 4), which yield matrices <strong>th</strong>at lack<br />

diagonal symmetry for experiments wi<strong>th</strong> short repetition times, give superior agreement wi<strong>th</strong><br />

experimental data. We find <strong>th</strong>at <strong>th</strong>e <strong>th</strong>ree spin approximation, which requires considerably less<br />

computation time <strong>th</strong>an me<strong>th</strong>od 4, holds to 4- 10% for all systems examined <strong>th</strong>roughout <strong>th</strong>e range<br />

wr c = 0.18 - 12. The <strong>th</strong>ree spin approximation <strong>th</strong>us appears to be suitable for conformational<br />

refinement procedures based on experimental NOESY data. In contrast, we find <strong>th</strong>at isolated spin<br />

pair approximation frequently yields NOESY cross-peak intensities <strong>th</strong>at differ from exact <strong>th</strong>eory by<br />

as much as a factor of 3, which corresponds.to as much as a 40% error in distance estimates.<br />

For <strong>th</strong>e purposes of NOESY analysis carried-out wi<strong>th</strong>out computer assistance, <strong>th</strong>e <strong>th</strong>ree spin<br />

approximation is equivalent to<br />

1 {S~j Sj~ rm<br />

27" m k Sii "}" Sj3 } = Oi~ "}- -2- Z tTjk Oki<br />

k<br />

an equation <strong>th</strong>at holds to better <strong>th</strong>an 10% <strong>th</strong>roughout <strong>th</strong>e correlation time range <strong>th</strong>at is found for<br />

molecules in solution states amenable to high resolution NMR.<br />

[--<br />

{ 115 [alp MAGNETIC RESONANCE IMAGING OF SOLID CALCIUM PHOSPHATES:<br />

POTENTIAL FOR CHEMICAL IMAGING OF BONE: Jerome L. Ackerman, a Daniel P. Raleigh, *b,c and<br />

Melvin J. Glimcher; a aDepartment of Radiology, NMR Facility, Massachusetts General Hospital Boston, MA<br />

02114; bDepartment of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139; CFrancis Bit-<br />

ter National Magnet Laboratory, Massachusetts Institute of Technology Cambridge, MA 02139; aLaboratory<br />

for <strong>th</strong>e Study of Skeletal Disorders and Rehabilitation, Department of Or<strong>th</strong>opedic Surgery, Harvard Medical<br />

School, Children's Hospital Medical Center, Boston, MA 02115<br />

The use of NMR imaging of biological systems has been almost exclusively restricted to <strong>th</strong>e fluid com-<br />

ponents of tissues. An exciting possible application of NMR imaging is <strong>th</strong>at of imaging of <strong>th</strong>e phosphate<br />

resonance in mineralized tissue. Previous spectroscopic experiments have demonstrated <strong>th</strong>e potential of 31p<br />

NMR in elucidating <strong>th</strong>e chemical composition of <strong>th</strong>e mineral phase of bone. Wi<strong>th</strong> <strong>th</strong>e eventual goal of ex-<br />

tending <strong>th</strong>ese measurements to <strong>th</strong>e imaging domain, we have been developing me<strong>th</strong>ods for <strong>th</strong>e production of<br />

phosphorus images in calcium hydroxyapatite (an accepted model for <strong>th</strong>e major mineral phase of bone).<br />

We have obtained one-dimensional projections of <strong>th</strong>e alp resonance in syn<strong>th</strong>etic hydroxyapatite for speci-<br />

mens oil <strong>th</strong>e order of 0.5 to 1.0 cm in linear extent at 7.4 T field streng<strong>th</strong>. Because of <strong>th</strong>e solid state nature of<br />

<strong>th</strong>ese samples, short alp spin-spin relaxation times under 1 msec occur, necessitating echo times on <strong>th</strong>e order:<br />

of 1 msec and phase-encoding magnetic field gradient pulses under 500 /zsec. Al<strong>th</strong>ough such T3 values are<br />

easily managed by spectrometers, <strong>th</strong>ey are well below <strong>th</strong>e range of minimum echo times (typically 15 msec or<br />

greater) achievable by clinical imagers. Optimal projection quality and shortest total image acquisition times<br />

result from pulsed gradient phase-encoding of <strong>th</strong>e spatial dimension, using a compensating gradient pulse to<br />

cancel <strong>th</strong>e distorting effects of gradient waveform transients. The exceedingly long alp spin-lattice relaxation<br />

times could lead to potentially intolerable image acquisition times; we have reduced <strong>th</strong>ese wi<strong>th</strong> a flipback<br />

pulse teclmique. These me<strong>th</strong>ods should be of general utility in <strong>th</strong>e multinuclear imaging of a wide variety of<br />

solids of interest in biophysics .and <strong>th</strong>e materials sciences.<br />

155


-- VOLUME LOCALIZED SPECTRAL EDITING USING ZERO<br />

QUANTUM COHER<strong>ENC</strong>E CREATED IN A STIMULATED ECHO<br />

1 1 4 [ PUI~E SEQU<strong>ENC</strong>E: Christopher H. Sotak and Dominique M. Free-<br />

man, General Electric NMR Instruments, Fremont, CA, 94539.<br />

Wi<strong>th</strong> <strong>th</strong>e advent of myriad pulsed field gradient me<strong>th</strong>ods for volume localization, it is now<br />

possible to obtain reasonable in vivo specua from a region of interest based upon an image. For<br />

protons, we have found <strong>th</strong>e STimulated Echo (STE) technique (1-4) to give good results. Unfor-<br />

tunately, <strong>th</strong>e direct observation protonated metabolites /n vivo is frequendy precluded by <strong>th</strong>e pres-<br />

ence of interfering resonances. Consequently, some me<strong>th</strong>od of spectral editing is usually required,<br />

in conjunction wi<strong>th</strong> <strong>th</strong>e localization technique, to extract <strong>th</strong>e metabolite information.<br />

We have developed a volume localized spectral editing technique using zero quantum<br />

coherences (ZQC's) created in a STE pulse sequence (5). In addition to localization, <strong>th</strong>e STE<br />

sequence (Figu£roe 1) generates ZQ (and higher order) coherences in coupled spin systems following<br />

<strong>th</strong>e first two 90 pulses. The ZQC's evolve during <strong>th</strong>e interval t 1 and manifest <strong>th</strong>emselves as an<br />

amplitude modulation of <strong>th</strong>e corresponding single quantum sign~tl generated following <strong>th</strong>e <strong>th</strong>ird<br />

90 pulse. The ZQ modulation frequency equals <strong>th</strong>e chemical shift difference (in Hz) between <strong>th</strong>e<br />

coupled spins. Noncoupled spins, on <strong>th</strong>e o<strong>th</strong>er hand, experience no modulation during <strong>th</strong>e t 1<br />

period since isolated spin-lf2 nuclei only undergo single quantum transitions. Subtracting two<br />

volume localized spectra wi<strong>th</strong> <strong>th</strong>e appropriate ZQ evolution periods constructively adds signal<br />

from metabolites wi<strong>th</strong> coupled spins and cancels signal from interfering noncoupled resonances.<br />

In addition to discriminating against noncoupled spins, it is also possible to distinguish<br />

among various types of coupled spin systems based upon differences in <strong>th</strong>eir ZQ frequencies.<br />

These frequencies are elucidated in a two-dimensional experiment where <strong>th</strong>e ZQ evolution period<br />

is incremented. Subsequent two-dimensional Fourier transformation yields a plot of chemical shift<br />

vs. ZQ modulation frequency. Peaks due to coupled metabolites are separated in <strong>th</strong>e ZQ fre-<br />

quency domain based upon chemical shift differences between <strong>th</strong>e respective coupled spins. Peaks<br />

due to noncoupled spins appear at zero frequency.<br />

We have applied <strong>th</strong>ese techniques /n vivo to measure 5 to 10 mM lactate concentrations in<br />

implanted mouse tumors in <strong>th</strong>e presence of interfering lipid resonances.<br />

1. J. Frahm, K. D. Merboldt, and W. Hanicke, J. Magn. Reson. 72, 502 (1987).<br />

2. G. McKinnon, Works in Progress, 5<strong>th</strong> Annual Meeting of <strong>th</strong>e Society of Magnetic Resonance<br />

in Medicine, Montreal, August 19-22, 1986, 168.<br />

3. J. Granot, J. Magn. Reson. 70, 488 (1986).<br />

4. R. Kimmieh and D. Hoepfel, J. Magn. Reson. 72, 379 (1987).<br />

5. C.H. Sotak and D. M. Freeman, J. Magn. Reson., in press, (<strong>1988</strong>).<br />

C<br />

O<br />

I C<br />

115<br />

I [ USE OF PURE ABSORPTION PHASE 31p/IH 2D COLOC<br />

NMR SPECTRA FOR ASSIGNMENT OF zip SIGNALS OF OLIGONUCLEOTIDES:<br />

Josepha M. Fu, Stephen A. Schroeder, Claude R. Jones*, Robert Santini* and David G. Goren-<br />

stein*, Department of Chemistry, Purdue University, W. Lafayette, IN 47907<br />

Chemical shift data in 31p NMR spectroscopy serves as an important probe of <strong>th</strong>e conformation<br />

and dynamics of nucleic acids. A major limitation in <strong>th</strong>e use of zip NMR has been <strong>th</strong>e difficuly<br />

in assigning <strong>th</strong>e signals. An 1tO labeling me<strong>th</strong>odology has previously been used for assigning<br />

<strong>th</strong>e zip signals, however, <strong>th</strong>is me<strong>th</strong>odology is ra<strong>th</strong>er costly and time consuming. A 2D 31p _<br />

1H COLOC NMR approach is shown to provide a staightforward, convenient alternative for<br />

assigning <strong>th</strong>e zip of even moderately sized oligonucleotide duplexes. The COLOC pulse sequence<br />

was modified to emphasize 31p _ 1H scalar couplings and to produce pure absorption ph~qe<br />

spectra. The 31p _ l H COLOC spectra showed enhanced sensitivity and resolution relative to 31p<br />

- 1H heteronuclear correlation spectra. The 31p chemical shifts of <strong>th</strong>e self-complementary 14 base<br />

pair oligonucleotide, d(TGTGAGCGCTCACA)2, were determined from <strong>th</strong>e COLOC spectrum,<br />

based upon IH assignments determined by 2D 1H - tH COSY and NOESY spectra. The zip<br />

assignments were verified by 1~O labeling. The zip chemical shifts of ano<strong>th</strong>er oligonucleotide,<br />

d(TATGAGCGCTCATA)2, were also determined by 31p _ l H COLOC and 1H - IH COSY and<br />

NOESY.<br />

156<br />

C<br />

N<br />

k


116 ]<br />

NODIFICATIONS TO A JEOL GX270 WIDEBORE SPECTROMEI'ER<br />

FOR NAGNETIC RESONANCE IMAGING: PETROGRAPHIC APPLICATIONS<br />

By<br />

National<br />

Daryl A. Doughty and Nicida L. Maerefat<br />

Institute for Petroleum and Energy Production<br />

Bartlesvllle, OK 74005<br />

ABSTRACT<br />

Modification of an existing jEOL GX270/89 NMR spectrometer for imaging<br />

studies is described. Inhouse modifications were made because of <strong>th</strong>e<br />

specialized nature of <strong>th</strong>e petrographic samples and <strong>th</strong>eir restrictions on probe<br />

geometry. Because of <strong>th</strong>e wide proton linewid<strong>th</strong>s measured at 270 MHz for<br />

fluids contained in porous rock <strong>th</strong>e magnetic field of <strong>th</strong>e spectrometer was<br />

reduced to 1.41T (60 MHz proton frequency) for <strong>th</strong>e imaging studies. Details<br />

concerning <strong>th</strong>e probe/gradlent coil assembly and <strong>th</strong>e spectrometer interface<br />

board containing <strong>th</strong>e gradient control and slice-selection circuits are<br />

presented. Results showing <strong>th</strong>e operation of <strong>th</strong>e spectrometer in imaging<br />

phantoms, brine in sandpacks, and fluids in Berea, Cottage Grove, and<br />

Cleveland sandstone cores are also presented.<br />

11 7 J RESONANT EFFECTS IN CP-MAS SPECTRA OF HOMONUCLEAR<br />

DIPOLAR-COUPLED SPIN SYSTEMS ~ Thomas M. Barbara and Gerard S. Harbison:<br />

Department of Chemistry, SUNY at Stony Brook, Stony Brook, NY 11794-5400<br />

The CP-MAS spectra of systems which contain homonuclear dipolar couplings between inequivalent spin-I/2<br />

sped,,, exhibit sisnlflcant broadening of <strong>th</strong>e coupled resonances, which is particularly pronounced when <strong>th</strong>e rotational<br />

frequency vr is • areal/integer multiple of <strong>th</strong>e isotropic chemical 8hilt difference between <strong>th</strong>e nuclei ~6. This resonant<br />

effect has been known for over 20 years but has recently attracted considerable interest. We have developed two<br />

formalissm for underetendlng and calculating <strong>th</strong>e lineshspes of <strong>th</strong>ese systems. The first involves a basis transformation<br />

to • rotating frame which reduces <strong>th</strong>e problem to <strong>th</strong>e fsmJ/Jar double-resonance ¢~e for • two-level system. In <strong>th</strong>e<br />

simplest pmudble model system which exhibits <strong>th</strong>ese phenomena (two coupled spin= wi<strong>th</strong>out • ahlelding anlsotropy<br />

but wi<strong>th</strong> distinct isotropic chemical shifts) <strong>th</strong>e solution of <strong>th</strong>e equations of motion for <strong>th</strong>e on-resonance case, where<br />

A6 -- J0r or 2~'r, gives • splitting which is linearly proportional to <strong>th</strong>e dipolar coupling and dependent on <strong>th</strong>e angle<br />

p between <strong>th</strong>e dipolar and <strong>th</strong>e rotor axis. This anKsdar-dependent splitting leads in unoriented samples to scaled<br />

powder patterns, whose quite distinct shapes for A6 ----- JPr and A6 = 2vr reflect <strong>th</strong>e different dependence on/~ of<br />

<strong>th</strong>ese two rotor resonances. The wid<strong>th</strong> of <strong>th</strong>ese patterns is simply (~/'2D/'.~) 6n~l DI~ for Che ~, ~.d ;;r r=o-=ce~<br />

respectively, (D being <strong>th</strong>e dipolar coupling). These values, while exact only for vonishin~y small D, are correct<br />

to wi<strong>th</strong>in S% for D < =*r- Dipolar effects when A6 ~ =*r or 2=*r can similarly be viewed as Bloch-Siegert shifts<br />

Jn <strong>th</strong>e double rwommce formalism. These shifts are asaln an83dar-dependent and <strong>th</strong>erefore also lead to apparent<br />

line-broadening; <strong>th</strong>ey also causo <strong>th</strong>e center of <strong>th</strong>e sis~al to be ahifted away from its uncoupled frequency.<br />

Chemical shielding anleotropy destroys <strong>th</strong>ese sim~le relationships between <strong>th</strong>e linewid<strong>th</strong> and dipolar coupling;<br />

it also causes resonances to appear at nvr for n y~ I or 2. The double-resonance picture is however still intuitively<br />

useful, and gives magnitudes for <strong>th</strong>e dipolar linewid<strong>th</strong>, particularly off-resonance. To calculate exact lineshapes in<br />

<strong>th</strong>ese cases, we have used • numerical solution to <strong>th</strong>e Liouville equation mdng a Rnnge-Kutta algori<strong>th</strong>nL This is<br />

surprisingly modest in its use of computer time, and can be used to calculate spectra to • high degree of accuracy.<br />

Spectra c~Iculsted ~ <strong>th</strong>is me<strong>th</strong>od are in excellent alpreement wi<strong>th</strong> experimental results ond wi<strong>th</strong> <strong>th</strong>ose of <strong>th</strong>e double<br />

resommce fonnalim~ The advantages of <strong>th</strong>e me<strong>th</strong>od are <strong>th</strong>at it does not require assumptions about <strong>th</strong>e ¢yc]Jcity of<br />

<strong>th</strong>e interactien= (as average Hami]tonlen <strong>th</strong>eory does), <strong>th</strong>eir relative aises or <strong>th</strong>e sdiabaticity of <strong>th</strong>e perturbations,<br />

and <strong>th</strong>at it can be extended wi<strong>th</strong> little modification to almost any <strong>th</strong>eoretical problem in NM~<br />

157


118 l APPLICATION OF N-H HETERONUCLEAR CORRELATION<br />

SPECTROSCOPY TO SEVERAL 15N ENRICHED PROTEINS<br />

Ed S. Mooberry* , Brian J. Stockman, Bin Yuan, Byung Ha Oh, and John L. Markley<br />

National Magnetic Resonance Facility at Madison and Department of Biochemistry,<br />

College of Agricultural and Life Sciences, University of Wisconsln-Madlson, Madison,<br />

WI 53706<br />

Several applications of N-H heteronuclear correlation spectroscopy (HETCOR) are<br />

described for 15N enriched proteins. An experimental arrangement is shown for<br />

obtaining 15N decoupled spectra. The proton chemical shift is removed from <strong>th</strong>e<br />

nitrogen dimension by using time proportional phase incrementation. Examples are<br />

shown for [95% ul 15N]Anabaena 7120 flavodoxin (I), [95X ul 15N]Anabaena 7120<br />

ferredoxln and [95% 15N-Leu]staphylococcal nuclease . The HETCOR spectra were<br />

obtained by using Bruker reverse electronics wi<strong>th</strong> <strong>th</strong>e new 451MHz IF frequency and a<br />

5--- reverse probe. Water elimination was accomplished by solvent presaturatlon for<br />

<strong>th</strong>e flavodoxin and ferredoxin spectra. For nuclease, <strong>th</strong>e spln-echo sequence (wi<strong>th</strong>out<br />

decoupling) recently published by Sklenar and Bax was used (2).<br />

I. B.J. Stockman, W.M. Westler, E.S. Mooberry, and J.L. Markley, Biochemlstry'27, 136-<br />

142 (<strong>1988</strong>). 1<br />

2. V. Sklenar and A. Bax, J. Magn. Res. 74, 469-479 (1987).<br />

[Supported by NIH Grants RR02301, RR02781, and GM35976, NSF Grant PCM-845048, and<br />

USDA Competitive Research Grant 85-CRCR-I-1598.]<br />

119 I 13C LABELING AND HIGH RESOLUTION 1H 2-D NMR: MAKING<br />

UNNATURAL ESTERS STAND UP AND BE COUNTED<br />

G.L. Helms~ W.P. Niemczura and R.E. Moore; Dept. of Chemistry,<br />

University of Hawaii, Honolulu, HI. 96822<br />

Polyhydroxylated natural products which also contain ester func-<br />

tionalities can be formidable structure problems. It is often<br />

necessary to peracetylate <strong>th</strong>ese compounds to alleviate solubility<br />

problems or to increase spectral dispersion. Unfortunately <strong>th</strong>e<br />

sites of natural esterification now become indistinguishable from<br />

<strong>th</strong>ose of <strong>th</strong>e introduced esters. Ace~ylg~io ~ wi<strong>th</strong> 1,1'-'~C acetic<br />

anhydride yields products in which -J --C--H couplings label <strong>th</strong>e<br />

sites of <strong>th</strong>e introduced esters. These small couplings (I-4 Hz)<br />

can be visualized even in crowded spectral regions by using<br />

homonuclear H 2-D J Resolved or high resolution phase sensitive<br />

COSY spectra. In bo<strong>th</strong> cases <strong>th</strong>e heteronuclear coupling leads to a<br />

splitting of <strong>th</strong>e cross peak multiplet patterns in <strong>th</strong>e F2 dim-<br />

ension. This splitting not only indicates <strong>th</strong>e location of t~e<br />

introduced esters but also allows <strong>th</strong>e determination of <strong>th</strong>e-J<br />

heteronuclear coupling constant. Examples taken from our work on<br />

novel cyclic peptides and cyclodextrins will be presented.<br />

158


I<br />

12 o I SPECIATION OF WATER IN GLASSES BY HIGH-SPEED 1H MAS-NMR<br />

Hellmut Eckert *+, James P. Yesinowski*§, Lynn A. Silver Y , and Edward M.<br />

Stolper ¥, + Department of Chemistry, UC Santa Barbara, Goleta CA 93106,<br />

§Division of Chemistry and Chemical Engineering, California Institute of<br />

Technology, Pasadena, CA 91125, YDivision of Geological and Planetary<br />

Sciences, California Institute of Technology, Pasadena, CA 91125.<br />

The state of water in silicate glasses has received considerable attention bo<strong>th</strong><br />

in geology and materials science and much effort has been devoted to<br />

identifying and quantitating <strong>th</strong>e H20 and OH species present. This work<br />

describes <strong>th</strong>e first application of high resolution 1H nuclear magnetic resonance<br />

me<strong>th</strong>ods to <strong>th</strong>is problem. 1H MAS-NMR results are reported on a series of<br />

syn<strong>th</strong>etic and naturally-occurring silicate glasses containing 0.04 to 9.4 wt.%<br />

H20. Spinning at 8 kHz results in substantial line-narrowing; in addition,<br />

extensive spinning sideband patterns are observed <strong>th</strong>at reflect <strong>th</strong>e<br />

inhomogeneous character of <strong>th</strong>e 1H-1H dipolar couplings wi<strong>th</strong>in anisotropically<br />

constrained water molecules. The 1H MAS-NMR spectra can be simulated as <strong>th</strong>e<br />

sum of <strong>th</strong>e individual spectra of <strong>th</strong>e model compounds tremolite (OH) and<br />

analcite (H20), and <strong>th</strong>e species concentrations <strong>th</strong>us obtained are in good<br />

agreement wi<strong>th</strong> IR results. The agreement of <strong>th</strong>e experimental 1H MAS-NMR<br />

spectra wi<strong>th</strong> simulations based on compounds, in which <strong>th</strong>e hydrogen-bearing<br />

species are structurally isolated, indicates <strong>th</strong>at no preferential clustering<br />

occurs.<br />

121 J BROADBAND SPIN DECOUPLING IN THE PRES<strong>ENC</strong>E OF SCALAR INTERACTIONS<br />

A. J. Shaka ~, C. J. Lee and A. Pines, University of California, Berkeley,<br />

Berkeley, California 94720<br />

Successful broadband spin decoupling sequences like WALTZ-16 are based on<br />

an underlying model of isolated IS spin pairs. Almost all organic molecules<br />

of interest, however, contain networks of scalar-coupled protons. We have<br />

analyzed <strong>th</strong>e effect of proton scalar coupling on broadband decoupling and<br />

devised a new series of broadband decoupling sequences which we call <strong>th</strong>e<br />

DIPSI sequences. The DIPSI sequences of'fer <strong>th</strong>e same high standard of decoupling<br />

as WALTZ-16 in <strong>th</strong>e isolated IS case, but over somewhat smaller bandwid<strong>th</strong>s.<br />

in <strong>th</strong>e presence of proton-proton coupling <strong>th</strong>e DIPSI sequences are superior<br />

to WALTZ-16, offering an improvement in resolution and sensitivity for<br />

carbon-13 spectroscopy.<br />

The principles used to construct <strong>th</strong>e DIPSI ~eq,,~nrP~ can be applied to<br />

a number of related experiments in two-dimensional spectroscopy.<br />

159


1 22 I IMULTINUCLEAR TWO-DIMENSIONAL APPROACHES TO SEQU<strong>ENC</strong>E-SPECIFIC<br />

RESONANCE ASSIGNMENTS IN A PROTEIN: 13C-13C, 13C-15N, IH-13C, IH-15N, AND IH-IH<br />

CORRELATIONS IN ANABAENA 7120 FLAVODOXIN: Brian J. Stockman*, William M. Westler, Ed<br />

S. Mooberry, and John L. Markley. Department of Biochemistry, College of Agricultural<br />

and Life Sciences, 420 Henry Mall, University of Wisconsln-Madlson, Madison, WI 53706.<br />

A sequential assignment procedure based on heteronuclear correlations is presented. A<br />

two-dlmensional (2D) 13C[13C] Double Quantum Correlation (DQC) NMR experiment (125.76<br />

MHz) has been applied to [26% ul 13C]flavodoxin (MW 21,000). The uniqueness of <strong>th</strong>e<br />

carbon spin systems for 18 of <strong>th</strong>e 20 amino acid types (Asx and Glx degeneracies can be<br />

distinguished via 13C-15N correlations) allowed many aliphatic and aromatic side<br />

chains to be completely outlined, ending wi<strong>th</strong> <strong>th</strong>e carbonyl carbon. Carbon spin<br />

systems were <strong>th</strong>en sequentially assigned in <strong>th</strong>e following way. Carbonyl assignments<br />

were extended across <strong>th</strong>e peptide bond to <strong>th</strong>e alpha nitrogen of <strong>th</strong>e following residue<br />

using 2D 13C-15N correlations of [26% ul 13C, 95% ul 15N]flavodoxin. Amide protons<br />

were assigned using 2D IH-15N correlations (H20 solvent), and were correlated to <strong>th</strong>e<br />

alpha carbon protons of <strong>th</strong>e same residue by a double-quantum-filtered COSY experiment.<br />

2D IH-13C correlations were <strong>th</strong>en used to cross assign alpha protons to alpha carbons,<br />

<strong>th</strong>us allowing identification of <strong>th</strong>e following residue via its carbon spin system.<br />

Alternatively, 13C-15N correlations could be used to assign <strong>th</strong>e alpha carbons of <strong>th</strong>e<br />

next residue (bo<strong>th</strong> procedures could be used for redundancy or to overcome unfavorable<br />

resolution). The advantages of using <strong>th</strong>is strategy for sequential assignments<br />

compared to a homonuclear iH-IH strategy are <strong>th</strong>e relative ease wi<strong>th</strong> which carbon spin<br />

systems can be assigned in comparison to proton spin systems, and <strong>th</strong>e reliability of<br />

correlations based on scalar coupling as opposed to dipolar coupling. Assignments can<br />

be extended to side-chain proton spin systems via IH-Ioc correlations to carbon spin<br />

systems. [Supported by USDA Competitive Research Grant 85-CRCR-I-1589, NSF Grant<br />

RR023021, and NIH Grants RR023021, RR02781, and GM07215.]<br />

SOLID STATE NUCLEAR MAGNETIC RESONANCE INVESTIGATIONS OF<br />

123 I ORGANOPHOSPHONIC ACID ADSORPTION ON ALUMINA<br />

Neal R. Dando; Larry F. Weiserman and Edward S. Martin<br />

Aluminum Company of America, Alcoa Technical Center, Alcoa Center, PA 15069<br />

Me<strong>th</strong>yl and phenyl phosphonic acid adsorption on gan~na alumina was investigated by<br />

phosphorus-31, carbon-13, and aluminum-27 solid state NMR spectrometry. The<br />

population of chemisorbed and physisorbed species was investigated over a 5-20%<br />

loading range. Physisorption was observed at <strong>th</strong>e lowest loading studied (5%) and<br />

increased monotonically as a function of loading. The population of chemisorbed<br />

species remained constant <strong>th</strong>roughout <strong>th</strong>e loading range studied. Motional dynamics<br />

of <strong>th</strong>e adsorbed species were evaluated by a series of static, magic angle spinning,<br />

high power decoupling and relaxation experiments. Carbon-13 and aluminum-27 data,<br />

while less sensitive to surface phenomena, allowed for more complete characterization<br />

of <strong>th</strong>e substrate and adsorbates.<br />

1 6 0 - - -


124<br />

I A COMPLETELY INTEGRATED NETWORK OF HOME--BUILT<br />

AND COMMERCIAL NMR SPECTROMETERS. Donald A. Bouchard*<br />

and Stanley J. Opella, Department of Chemistry, Univ. of Pennsylvania,<br />

Philadelphia, PA 19104-6323<br />

A description of a local-area laboratory network consisting of <strong>th</strong>ree home-<br />

built DEC microVAX-II controlled spectrometer nodes, two DEC PDP-<br />

11/23 commercial spectrometer nodes, and a central data-processing node<br />

will be presented. The design of <strong>th</strong>e microVAX-II home--built spectrometers<br />

will also be presented. The spectrometer software provides a system to de-<br />

sign and execute NMR experiments of any complexity, integrating <strong>th</strong>e large<br />

base of existing applications wi<strong>th</strong> NMR spectroscopy. The local-area NMR<br />

network is bridged to a departmental computer facility consisting of a VAX<br />

11/785 and 1i/750 each utilizing DECnet and TCP/IP networking protocols,<br />

providing transparent links to most national and international networks.<br />

125 NMR vs. CIRCULAR DICHROISM: WrHAT CAN WE SAY ABOUT<br />

HELICITY? Ronald W. Behling,* Peter A. Mirau, and Lynn W. Jelinski, AT&T Bell Laboratories,<br />

Murray Hill, NJ 07974.<br />

The S-peptide is formed by enzymatic cleavage of ribonuclease A, and is composed of amino acids 1 -<br />

20. The S-peptide can be recombined wi<strong>th</strong> residues 21 - 124 (<strong>th</strong>e S-protein), and <strong>th</strong>is non-covalent<br />

complex is enzymatically active and its crystal su'ucture is known. The crystal structure shows <strong>th</strong>at<br />

residues 3 - 13 form an a-helix <strong>th</strong>at is virtually identical to <strong>th</strong>e (x-helix formed by residues 3 - 13 in<br />

intact ribonuclease A. Circular dichroism studies suggest <strong>th</strong>at <strong>th</strong>e S-peptide is approximately 50%<br />

helical under certain salt, pH, and temperature conditions.<br />

We present results <strong>th</strong>at address <strong>th</strong>e question: what does 50% helical mean? High resolution proton<br />

NMR spectra were obtained for <strong>th</strong>e S-peptide in 1.0 M NaC1, pD 5.3, and 0 *C. These spectra include<br />

2D-double quantum filtered COSY, 2D-NOE, and selective and non-selective T: experiments. The<br />

relaxation experiments suggest <strong>th</strong>at <strong>th</strong>e S-peptide in solution has dimensions <strong>th</strong>at are substantially<br />

different from <strong>th</strong>ose predicted from <strong>th</strong>e crystal structure, and <strong>th</strong>at considerable internal motions are<br />

present. The measured 2D-NOE was compared wi<strong>th</strong> <strong>th</strong>e 2D-NOE calculated from <strong>th</strong>e crystal structure.<br />

The experimental NOE's are substantially different from <strong>th</strong>e predicted NOE's, illustrating <strong>th</strong>at all of <strong>th</strong>e<br />

details of <strong>th</strong>e peptide conformation are not preserved in solution.<br />

161


126 I<br />

EXPERIMENTAL EVALUATION OF NMR IMAGING PROBES<br />

S. L. Talagala* and L. D. Hall, Department of Chemistry,<br />

University of British Columbia, Vancouver, B.C., Canada<br />

Several probe designs suitable for high field NMR Imaging have been<br />

suggested in <strong>th</strong>e recent years to overcome <strong>th</strong>e deficiencies of traditional<br />

solenoid and saddle shaped coils. The variety of designs proposed demonstrate<br />

<strong>th</strong>e difficulty in optimizing all necessary criteria wi<strong>th</strong> a single design.<br />

This study presents an experimental evaluation of <strong>th</strong>e performance of four<br />

commonly used probe designs.<br />

The four designs chosen for evaluation, <strong>th</strong>e birdcage design, Alderman &<br />

Grant design, split-ring resonator, and <strong>th</strong>e saddle coil were all constructed<br />

wi<strong>th</strong> <strong>th</strong>e same diameter (7.5cm) and leng<strong>th</strong> for direct comparison. The criteria<br />

chosen to evaluate <strong>th</strong>e performance of each design included <strong>th</strong>e probe 0-factor<br />

(loaded and unloaded), <strong>th</strong>e effect of sample on <strong>th</strong>e probe resonance frequency<br />

and <strong>th</strong>e homogeneity of <strong>th</strong>e rf magnetic field inside <strong>th</strong>e probe. In addition,<br />

<strong>th</strong>e signal-to-nolse ratio and <strong>th</strong>e 90 ° pulse wid<strong>th</strong> for a "point" phantom were<br />

also determined.<br />

Experimental results obtained indicate <strong>th</strong>e relative merits and demerits of<br />

different probe designs. In summary, it is seen <strong>th</strong>at higher 0 values are<br />

afforded by <strong>th</strong>e resonator probe designs (birdcage, Alderman-Grant and<br />

split-ring) and <strong>th</strong>at <strong>th</strong>e split-ring resonator gives <strong>th</strong>e best results. In<br />

general, <strong>th</strong>e dielectric losses associated wi<strong>th</strong> <strong>th</strong>e resonator probes are lower<br />

<strong>th</strong>an <strong>th</strong>at of <strong>th</strong>e saddle coil, and <strong>th</strong>e Alderman-Grant design provides <strong>th</strong>e best<br />

performance wi<strong>th</strong> respect to <strong>th</strong>is parameter. Qualitative estimates show <strong>th</strong>at<br />

<strong>th</strong>e resonators generate higher inductive losses compared to <strong>th</strong>e saddle coil.<br />

The best rf homogeneity in all <strong>th</strong>ree axes is provided by <strong>th</strong>e split-ring<br />

resonator. The rf homogeneity of <strong>th</strong>e saddle coil is comparable to <strong>th</strong>at of <strong>th</strong>e<br />

Alderman-Grant design in <strong>th</strong>e transverse plane and <strong>th</strong>e former offers better<br />

performance along <strong>th</strong>e longitudinal axis.<br />

127 I HETERONUCLEAR TWO-DIMENSIONAL NNR METHODS FOR THE DETERM]NATION<br />

OF THE PRIMARY STRUCTURE OF PEPTIDES<br />

VoLker Bornemann, A. Scott Chesnick, Gregory Helms, Richard E.<br />

Moore and Walter P. Miemczura*<br />

Department of Chemistry, University of Hawaii, Honolulu, HI 96822.<br />

The common me<strong>th</strong>od of determining <strong>th</strong>e primary structure of peptides and<br />

small proteins using RMR spectroscopy involves a combination of homonuctear<br />

experiments in bo<strong>th</strong> protonated and deuterated solvents. These experiments are<br />

generally <strong>th</strong>e most straight-forward me<strong>th</strong>od for solving <strong>th</strong>is problem. There are<br />

several drawbacks to <strong>th</strong>is approach. Data must be obtained in <strong>th</strong>e presence of<br />

protonated solvents. Also, key information is obtained from proton-proton nOe<br />

experiments which can be weak or sometimes absent due to chemical exchange. Finally,<br />

<strong>th</strong>e me<strong>th</strong>od breaks down for non-standard amino acids such as beta amino acids or <strong>th</strong>ose<br />

which are chemically modified. Recently <strong>th</strong>e improved sensitivity of modern<br />

spectrometers and <strong>th</strong>e introduction of proton detected direct and long-range<br />

heteronuctear chemical shift correlation experiments has opened a whole new avenue<br />

towards solving <strong>th</strong>e problem of peptide sequencing wi<strong>th</strong> NNR spectroscopy. Now<br />

hi<strong>th</strong>erto unavailable information concerning <strong>th</strong>e direct and remote connectivities<br />

between carbon or nitrogen and hydrogens can now be obtained on reasonable quantities<br />

of material. Wi<strong>th</strong> <strong>th</strong>e aide of tow level isotopic enrichment (ca 1OX uniform N-15<br />

<strong>th</strong>roughout <strong>th</strong>e molecule) even carbon-nitrogen correlations can be determined. Our<br />

work involves <strong>th</strong>e isolation and identification of biologically active natural<br />

products from blue-green algae. In many instances <strong>th</strong>ese compounds are peptidat in<br />

nature. Because of <strong>th</strong>e modified nature of <strong>th</strong>ese molecules <strong>th</strong>e standard NNR<br />

sequencing techniques are often inadequate. We have found <strong>th</strong>at a broad range of not<br />

only homonuclear but also heteronuctear experiments are often needed in order to<br />

completely characterize <strong>th</strong>ese new compounds. By combining direct and tong-range<br />

correlation of carbon and nitrogen to protons wi<strong>th</strong> carbon-nitrogen correlation<br />

experiments it is possible to determine <strong>th</strong>e primary sequence of peptides using one<br />

end two bond correlation experiments. We will present two recent peptidat compounds<br />

which could not be sequenced wi<strong>th</strong> homonuctear two-dimensional experiments due to<br />

structural modifications or ambiguous homonuctear data. For bo<strong>th</strong> of <strong>th</strong>ese compounds<br />

<strong>th</strong>e availability of data from <strong>th</strong>e heteronuclei was essential in solving <strong>th</strong>e unknown<br />

structures. ALl information wilt be provided for <strong>th</strong>e experiments presented. ]n<br />

addition, hardware and probe modifications necessary for performing <strong>th</strong>e carbon-<br />

nitrogen correlation experiments wilt be discussed.<br />

162


I-- 1 2 8 IVOLUME-SELECTIVE SIGNAL SUPPRESSION IN SURFACE-COIL NrMR<br />

SPECTROSCOPY: COMPARISON OF THREE METHODS. C.D. Smi<strong>th</strong>, G.S. Thomas, S.L. Smi<strong>th</strong>*,<br />

Magnetic Resonance Center, University of Kentucky, Lexington, KY 40506<br />

We compared <strong>th</strong>e radio-frequency (RF) field profile of a 3.0cm 31p-tuned surface<br />

coil, using <strong>th</strong>ree me<strong>th</strong>ods to suppress signal close to <strong>th</strong>e coil while collecting<br />

signal from deeper regions. These me<strong>th</strong>ods are: (I) Bendal's dep<strong>th</strong> pulse using bo<strong>th</strong><br />

first order and second order elimination, (2) spatially-selective prpsaturation wi<strong>th</strong><br />

low-power pulses, and (3) Erst-angle optimization (in a surface coil, <strong>th</strong>is amounts to<br />

a second form of spatially-selective presaturation). The latter two me<strong>th</strong>ods may be a<br />

useful "poor man's" alternative to gradient or multiple coil technique for collecting<br />

in vivo 31p spectra of brain, wi<strong>th</strong> reduced contamination from overlying muscle, for<br />

example. The basis of comparison is intensity ratio of <strong>th</strong>e signal profile at<br />

critical distances from <strong>th</strong>e coil.<br />

Experiments were performed on a Spectroscopy Imaging Systems VIS 4.7 tesla<br />

system, oeprating at 81MHz for phosphorus. The surface coil was placed perpendicular<br />

to a 0.5cm rectangular slab phantom containing 3M sodium dihydrogen phosphate<br />

(T 1 = .Is); <strong>th</strong>is form for <strong>th</strong>e sample makes slice selection gradients unnecessary for<br />

imaging. Images of <strong>th</strong>e RF profiles and associated intensity traces, plotted to <strong>th</strong>e<br />

same scale and window settings to aid visual comparison, are highly instructive and<br />

will be presented. Advantages and disadvantages of each me<strong>th</strong>od for in vivo<br />

applications are discussed.<br />

- - 12 9 I!N VIVO VOLUME LOCALIZED SURFACE COIL SPECTROSCOPY WITH ISIS AND<br />

DRESS: THE CHEMICAL SHIFT DISPLACEmeNT. C.D. Smi<strong>th</strong>, G.S. Thomas, and S.L. Smi<strong>th</strong>*<br />

Magnetic Resonance Center, University of Kentucky, Lexington, KY 40506<br />

A problem in gradient volume selection spectroscopy, dependent directly on main<br />

field streng<strong>th</strong>, is <strong>th</strong>e chemical shift effect, which can be summarized as follows:<br />

<strong>th</strong>e volumes from which signal is collected for individual lines in a spectrum are<br />

displaced in space, <strong>th</strong>e displacement proportional to <strong>th</strong>eir chemical shift. This<br />

means, for e::ample, two peaks in a single rat brain 31p spectrum may originate from<br />

opposite hemispheres. Some spectral lines may be attenuated or absent because <strong>th</strong>e<br />

corresponding volumes lie outside <strong>th</strong>e brain entirely.<br />

In DRESS <strong>th</strong>e selected volumes consist of displaced parallel planes wi<strong>th</strong> centers<br />

.,eparated by distance S, in centimeters, S = o • Bo/g " 102 , where O is <strong>th</strong>e<br />

separation in parts per million between spectral lines of interest, Bo is <strong>th</strong>e main<br />

field in Tesla and g <strong>th</strong>e gradient streng<strong>th</strong> in gauss per centimeter. The gradient<br />

effect on chemical shift is negligible.<br />

In <strong>th</strong>e ISIS experiment, selected voiumes consist of a diagonally displaced stack<br />

of cubes corresponding to each line; <strong>th</strong>e overlap in volume between <strong>th</strong>e cubes depends<br />

bo<strong>th</strong> on gradient streng<strong>th</strong> and pulse bandwid<strong>th</strong>. Wi<strong>th</strong> some combinations of <strong>th</strong>ese, <strong>th</strong>e<br />

volumes may not overlap at all. For example, in a 4.7 tesla system at phorphorus<br />

frequency wi<strong>th</strong> a nominal ma::imum gradient streng<strong>th</strong> of 2.0 gauss/cm, <strong>th</strong>e distance<br />

between centers of cubes corresponding to opposite ends of a typical spectrum is<br />

0.94cm. The effect is significant when considering localization to volumes of <strong>th</strong>is<br />

order= e.g., rat brain. Nuclei wi<strong>th</strong> a large chemical shift range, e.g., carbon,<br />

su~er greatest wi<strong>th</strong> <strong>th</strong>e phenomenon. Spatial variation of metabolic parameters, e.g.,<br />

phosphorylation potential, over a range of centimeters must also be considered in<br />

interpretation of spectra obtained using <strong>th</strong>ese me<strong>th</strong>ods; <strong>th</strong>e assumption of tissue<br />

homogeneity over <strong>th</strong>is range should be included in such interpretations. We wi!7. sho~<br />

in vivo spectra obtained using ISIS and DP~SS demonstrating <strong>th</strong>e above considerations.<br />

163


130 I<br />

SEQUENTIAL ASSIGNMENT OF AMIDE PROTONSIN o~-HELICES IN LARGE PROTEINS<br />

Steven W. Sparks +*, Ad Bax ++, and Dennis A. Torchla +<br />

NIDR +, NIDDK++,National Institutes of Heal<strong>th</strong>, Be<strong>th</strong>esda, MD 20892<br />

We describe an approach <strong>th</strong>at yields sequential assignments of proton signals in u-helices in<br />

proteins <strong>th</strong>at are too large to apply <strong>th</strong>e standard assignment strategy. Deuteration of<br />

non-exchangeable protons is used to enhance dNN connectivities in <strong>th</strong>e protein NOESY spectrum,<br />

<strong>th</strong>ereby revealing long sequences of dNN connectivities <strong>th</strong>at are characteristic of (x-helices. Double<br />

labeling wi<strong>th</strong> 13C/15N is used to edit and assign signals in proton detected heteronuclear shift<br />

correlation (HMQC) spectra of <strong>th</strong>e protein. The sequential assignments are obtained by comparing<br />

i<br />

<strong>th</strong>e amide proton chemical shifts in <strong>th</strong>e NOESY and HMQC spectra. We show <strong>th</strong>at <strong>th</strong>is meihod<br />

provides assignments for all amide protons in <strong>th</strong>e <strong>th</strong>ree (x-helical domains of staphylococcal<br />

nuclease complexed wi<strong>th</strong> pdTp and Ca 2+, MW = 18 kDa. The fact <strong>th</strong>at <strong>th</strong>e assignments were obtained<br />

at a low protein concentration (1.5 raM), and at physiological temperature (36.5 °) and pH (7.7),<br />

indicates <strong>th</strong>at <strong>th</strong>is approach can be applied to a wide range of proteins. The HMC)C spectra also<br />

provide assignments of protons outside of <strong>th</strong>e (x-helices. We show <strong>th</strong>at <strong>th</strong>ese assignments can be<br />

used as starting points for sequential assignments of o<strong>th</strong>er structural domains in <strong>th</strong>e protein.<br />

131<br />

f<br />

MASS TRANSFER PROCESSES STUDIED BY NMR IMAGING.<br />

L.D.HALL AND A.G.WEBB*<br />

Laboratory for Medicinal Chemistry,<br />

Level 4, Radio<strong>th</strong>erapeutic Centre<br />

Addenbrookes Hospital, Hills Road,<br />

Cambridge. CB2 2QQ. England.<br />

Diffusional processes play an important role in many chemical and<br />

biological systems. Examples include <strong>th</strong>e rate determination of chemical<br />

reactions, and <strong>th</strong>e mass transport properties of biological membranes. NMR<br />

imaging can be used to follow <strong>th</strong>ese processes by exploiting <strong>th</strong>e difference in<br />

relaxation properties between <strong>th</strong>e species of interest and <strong>th</strong>e medium <strong>th</strong>rough<br />

which it is diffusing. Quantitative information concerning diffusion<br />

coefficients can <strong>th</strong>en be calculated.<br />

We will present examples of <strong>th</strong>e diffusion of common solvents <strong>th</strong>rough<br />

industrially important polymers such as polyme<strong>th</strong>ylme<strong>th</strong>acrylate. In addition we<br />

have studied <strong>th</strong>e temporal and spatial localisation of <strong>th</strong>e aerially catalysed<br />

reduction of hydroquinone to produce a semiquinone anionic free radical. This<br />

series of radical anions play an important role in various biological pa<strong>th</strong>ways.<br />

All experiments were carried out on an Oxford 2T wide-bore ( 31 cms. )<br />

magnet. The maximum gradient streng<strong>th</strong> of lOmT/m produced a slice <strong>th</strong>ickness of<br />

3.5mm. An inversion recovery spin echo refocussed imaging sequence was used to<br />

produce T 1 weighted images.<br />

164


--<br />

is 2 I<br />

NATURAL ABUNDANCE 13 C and 14 N NMR OF BACTERIAL OSMOLYTES IN VlVO. B.A.<br />

Lewis,~'S.C.Cayley, S Pedmanabhan, and M.T. Record, Jr. Dept. of Chemistry,<br />

University of Wisconsin, Madison Wl 53706.<br />

Bacteria such as E. Coli and _5. Typhimurium are capable of growing under conditions of moderately<br />

high osmotic stress, up to about 0.7 molar salt. To adapt to such high-osmolarity environments, <strong>th</strong>e bacterial<br />

cell accumulates potassium ions and also syn<strong>th</strong>esizes or accumulates one or more small organic molecules.<br />

These include <strong>th</strong>e anion glutamate and <strong>th</strong>e neutral or zwitterionic molecules praline, glycine betaine ( N,N,N-<br />

trime<strong>th</strong>yl glycine) and/or trehalose, a glucose dimer. Because <strong>th</strong>ese small molecules are~ccumulated to<br />

intracollular concentrations on <strong>th</strong>e order of 0.5 molal, <strong>th</strong>ey are readily observed in dense cell slurries by<br />

natural abundance 13 c NMR on our Bruker AM360 wi<strong>th</strong> a I 0 mm broadband probe. 14 N NMR is also useful to<br />

observe glycine betaine, which has a relatively narrow 14 N spectrum due to <strong>th</strong>e symmetric environment of<br />

<strong>th</strong>e nitrogen and its lack of exchangeable protons.<br />

We are able to measure <strong>th</strong>e relative and absolute amounts of <strong>th</strong>e various organic osmolytes accumulated<br />

by <strong>th</strong>e bacteria in viva under a variety of environmental conditions. In minimal medium wi<strong>th</strong> 0.5 M NaCl,<br />

trehalose and glutamate are <strong>th</strong>e only small organic molecules present in high amounts. If I mM praline is added<br />

to <strong>th</strong>e medium, it is accumulated to nearly 0.4 M intracellularly, wi<strong>th</strong> some diminution of <strong>th</strong>e trehalose and<br />

glutamate levels. 61ycine heroine, however, also supplied at I mM, is accumulated to about 0.5 M, and<br />

trehalose is completely eliminated.<br />

Under <strong>th</strong>ese high salt conditions, significant amounts of rf power are absorbed by <strong>th</strong>e sample,<br />

particularly at <strong>th</strong>e high frequencies of 90 MHz for 13 c and 360 for I H. Thus for <strong>th</strong>e i 3 C experiments we<br />

employ gated proton dacoupling to minimize sample heating. In addition, <strong>th</strong>e pulse leng<strong>th</strong>s must be calibrated<br />

for each sample, and internal standards must be used for quantitative measurement.<br />

-- 133 !<br />

CHARACTERIZATION OF HUMAN BLOOD PLASMA USING VERY HIGH FIELD<br />

DIFFEER<strong>ENC</strong>E SPECTROSCOPY.<br />

Dadok, J.*, Bo<strong>th</strong>ner-By, A. A., Mishra, P.K., Carnegie Mellon<br />

15213<br />

Wilkinson, D. A., Giles, R. H., Acevedo, H. F., Shrivastava,<br />

Allegheny-Singer Research Institute, Pittsburgh, PA 15213<br />

RESOLUTION ENHANCED PMR<br />

Univ., Pittsburgh, PA<br />

P.N., Jarmillo, B.,<br />

Blood plasma from cancerous patients was compared wi<strong>th</strong> plasma from heal<strong>th</strong>y males and<br />

females using 620 MHz PMR spectra wi<strong>th</strong> various degrees of resolution enhancement. The<br />

variations in <strong>th</strong>e content of VLDL, LDL and HDL as well as of o<strong>th</strong>er plasma components<br />

was evaluated wi<strong>th</strong> <strong>th</strong>e use of difference spectroscopy. Preliminary results indicate<br />

<strong>th</strong>at <strong>th</strong>is technique may provide useful information on <strong>th</strong>e physiological state of <strong>th</strong>e<br />

blood plasma. We could see also systematic and substantial differences in plasma of<br />

heal<strong>th</strong>y males and females and we feel <strong>th</strong>at comparison should be made wi<strong>th</strong>in well de-<br />

fined groups of <strong>th</strong>e same sex.<br />

References:<br />

I. Fossel,<br />

2. Bell, D.<br />

Letters,<br />

E.T., Carr, J.M. and McDonagh, J., N. Engl. J. Med.,315 1369-1376 (1986).<br />

J., Sandler, P. J., Macleod, A. F., Turner, P. R., LaVille, A., FEB<br />

219, 239-273 (1987).<br />

165


V FERFUSION PROBE FOR A BRUKER AM-400 WIDE-BORE SPECTROMETER.<br />

134 J Mark E. Anderson e# , Michael #Chob a ni an A, Ed S. Mooberry ~. John L.<br />

Markley # and Carlos Ar~s ~. National Magnetic Resonance Facility<br />

at Madison and Department of Biochemistry, College Of AAgriculture and Life Sciences,<br />

University of Wisconsin-Madison, Madison, Wl 53706. University of Wisconsin,<br />

School of Medicine, Madison, WI 53792, ~b Department of Biochemistry, Autonomous<br />

University of Barcelona, Barcelona, Spain.<br />

We constructed a probe for <strong>th</strong>e Bruker AM-400 wide-bore spectrometer <strong>th</strong>at<br />

permits <strong>th</strong>e perfusion of kidney proximal tubules. The design was inspired by <strong>th</strong>e<br />

work of Y. Boulanger, et al., but we chose a solenoidal coil geometry and doubly-<br />

tuned <strong>th</strong>e probe to P-31 and H-2 [1]. The deuterium channel facilitates <strong>th</strong>e shimming<br />

of <strong>th</strong>e uncommon geometry. Since <strong>th</strong>e proximal tubules of <strong>th</strong>e kidney are very oxygen-<br />

dependent, flow rates on <strong>th</strong>e order of 200 ml/min are necessary in a perfused system.<br />

The probe's design permits flow rates up to 1,000 ml/min. The construction of <strong>th</strong>e<br />

perfusion chamber permits easy sample access and minimizes <strong>th</strong>e chances for leaks and<br />

disruptions of coil geanetry. The temperature is monitored by a <strong>th</strong>ermocouple<br />

located in <strong>th</strong>e effluent side of <strong>th</strong>e perfusion chamber. We have tested <strong>th</strong>e system<br />

and have found <strong>th</strong>at it is possible to maintain cell viability for over 12 hours.<br />

The proximal tubules are isolated and injected into hollow dialysis fibers <strong>th</strong>at are<br />

<strong>th</strong>en inserted into <strong>th</strong>e perfusion chamber. The ATP levels of <strong>th</strong>e cells rose to a<br />

steady state value after two hours of perfusion and remained at <strong>th</strong>ose levels for <strong>th</strong>e<br />

duration of <strong>th</strong>e experiment. Wi<strong>th</strong> <strong>th</strong>is system and modifications to <strong>th</strong>e electronics,<br />

a wide range of metabolic experiments of sensitive cells are possible.<br />

[1] Y. Boulanger, P. Vinay, M.T. Phan Viet, R. Guardo and M. Desroches, Magn. Reson.<br />

Ned. 2, 495-500 (1985).<br />

[Supported by: U.S.-Spain Joint Grant CCA-8510/098, NIH grants RR02301 and RR027gl,<br />

NSF Grant PCM-84504g, NKF 133M007, <strong>th</strong>e U.S. Department of Agriculture, and <strong>th</strong>e<br />

University of Wisconsin.]<br />

BO,~IONUCLEAR TWO DIMENSIONAL saC DOUBLE GUANTUM CORRELATION<br />

V SPECTROSCOPY (2D xJC[x~C]DOC) AND IH-{13C]HETCOR AS PRIMARY TOOLS<br />

135 J FOR SPIN SYSTEM AND HE~ ASSIGNmeNTS IN CYTOCHROME Csss: Michael<br />

D. Reilye, Eldon L. Ulrich, William M. Westler and John L. Markley, Department of<br />

Biochemistry, College of Agricultural and Life Sciences, 420 Henry Mall, University of<br />

Wisconsin-Madison, Madison, WI 53706.<br />

The first step in sequence-speciflc resonance assignments, identification of<br />

individual spin systems, has traditionally involved time-consuming acquisition and<br />

analysis of several 2D experiments <strong>th</strong>at correlate scalar-coupled proton networks. We<br />

present an alternative me<strong>th</strong>od for spin system identification <strong>th</strong>at relies mainly on<br />

scalar a3C-IsC and I~C-IH coupling. The IJC[ISC}DOC experiment is first used to<br />

assign carbon spin systems. Next, <strong>th</strong>e IH[13C]HETCOR experiment is used to extend<br />

<strong>th</strong>ese assignments to carbon-bound proton resonances. Amide and amine NH resonances<br />

are <strong>th</strong>en identified and sequential assignments made by XH(I:C)MR-HECTOR(HMBC) or a<br />

combination of NOESY and COSY. This approach has several advantages over proton-<br />

proton me<strong>th</strong>ods. First, <strong>th</strong>ere are eighteen unique amino acid xsC-IsC coupling patterns<br />

and only eight unique IH-IH spin systems. Second, primary assignments are based on<br />

conformation-independent one-bond 13C-I~C and x:C-ZH connectivities. Proton me<strong>th</strong>ods<br />

rely on dihedral-angle-dependent <strong>th</strong>ree bond coupling, and so expected cross peaks may<br />

be weak or nonexistent. Third, proteins have fewer carbons <strong>th</strong>an protons, and <strong>th</strong>ese<br />

have a larger chemical shift range~ <strong>th</strong>is simplifies analysis for larger proteins or<br />

for proteins <strong>th</strong>at have a significant amount of random coil structure. Four<strong>th</strong>, xJC-IsC<br />

connectivities currently provide <strong>th</strong>e only general means of making unambiguous aromatic<br />

side chain assignments. Finally, <strong>th</strong>e new me<strong>th</strong>od reduces <strong>th</strong>e time needed for resonance<br />

assignments. Isotope-enriched proteins can be obtained inexpensively by <strong>th</strong>e use of<br />

modern blotechnology me<strong>th</strong>ods. We demonstrate <strong>th</strong>e technique for cytochrome csss from<br />

Anabaena 7120 uniformly labeled to 26% in I~C. Computer programs are being developed<br />

to automate first and second order assignments based on <strong>th</strong>ese data. [Supported by<br />

USDA 85-CRCR-1-1589, NSF PCM-g4504g and NIH RR02301, RR02781.]<br />

166


. °<br />

THREE-DIMENSIONAL STRUCTURE OF TURKEY OVOMUCOID THIRD DOMAIN BY 2D-<br />

136 J NMR SPECTROSCOPY, AND DISTANCE GEOMETRY CALCULATIONS. Prashan<strong>th</strong><br />

Darba , Andrzej grezel, ~asna Fejzo, S. Macura, Andrew D. Robertson<br />

and 3ohn L. Markley, National Magnetic Resonance Facility at Madison and Department of<br />

Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-<br />

Madison, Madison, WI 53706.<br />

Turkey ovomucoid <strong>th</strong>ird domain (OMTKY3) is a small 56-residue protein <strong>th</strong>at inhibits<br />

serine proteinases. Previous studies [1,2] based on chemical shift differences have<br />

revealed <strong>th</strong>at subtle changes in <strong>th</strong>e tertiary structure occur near and remote from <strong>th</strong>e<br />

cleavage site upon hydrolyzing <strong>th</strong>e reactive-site peptide bond. Recently 247 inter-<br />

proton distances were determined from a series of 2D-NMR experiments. Some of <strong>th</strong>e<br />

distances were estimated crudely from <strong>th</strong>e number of contour levels of well resolved<br />

peaks in a single NOESY spectrum; o<strong>th</strong>ers were determined accurately from a set of<br />

NOESY/ROESY experiments obtained wi<strong>th</strong> 7 different mixing times. [3]<br />

These NMR distance constr'aints were used in two different distance geometry<br />

programs, DG900 [4] based on a metric matrix approach and DISMAN [5] which uses a<br />

variable target function, to determine <strong>th</strong>e solution structure of OMTKY3. A comparison<br />

of <strong>th</strong>e structures calculated from <strong>th</strong>ese me<strong>th</strong>ods wi<strong>th</strong> <strong>th</strong>e X-ray structure of OMTKY3 [6]<br />

will be presented. Implications of crude versus accurate distances on <strong>th</strong>e structure<br />

determination and convergence properties of <strong>th</strong>e two distance geometry programs will be<br />

discussed.<br />

[1] A.D. Robertson, W.M. Westler, and 3.L. Markley, Biochemistry, in press. [2] G.I.<br />

Rhyu and J.L. Markley, Biochemistry, in press. [3] 3. Fejzo, S. Macnra, and 3.L.<br />

Markley, unpublished data. [4] 3. Thomason, M. Day, and I.D. Kuntz, nA Vectorized<br />

Distance Geometry Program, n in prep. [5] W. Braun and N. Go, 3. Mol. Biol. 186, 611-<br />

626 (1985). [6] R.$. Read, M. Fujinaga, A.R. Sielecki, and M.N.G. James, Biochemistry<br />

22, 4420-4433 (1983).<br />

[Supported by: NTH Grants RR 02301 and GM 35976 and <strong>th</strong>e University of Wisconsin-<br />

Madison.]<br />

I<br />

-- TWO-DIb~ENSIONAL xIC(XSN}, x3C{x3C} AND XH{x3C} CHEMICAL SHIFT<br />

137 I CORRELATION IN PROTEINS: SI~U<strong>ENC</strong>E-SPECIFIC ASSIGN~[ENT OF<br />

RESONANCES IN xsC AND XSN LABELED S.TREPTOMYCES SUBTILISIN INHIBITOR. William M.<br />

Westler, *~ M. Kainosho, # H. Nagao, # N. Tomonaga,# and 3ohn L. Markley ~. ~Department<br />

of Biochemistry, College of A~ricnltural and Life Sciences, University of Wisconsin-<br />

Madison, Madison, WI 53706. ~Department of Chemistry, Faculty of Science, Tokyo<br />

Metropolitan University, Fnkazawa, Setagaya-ku, Tokyo, 158 Japan.<br />

Applications of heteronuclear two-dimensional NMR to proteins and o<strong>th</strong>er<br />

macromolecules are proving to be extremely useful for resonance assignments in large<br />

proteins. Here we demonstrate <strong>th</strong>e use of two-dimensional shift correlation me<strong>th</strong>ods<br />

between ssC and ISN, ssC and IsC, and aH and ssC for determinin 8 sequence-specific<br />

assignments in Streptomyces snbtilisin inhibitor (SSI). Two-dimensional ssC{SSN}<br />

correlation spectroscopy is used to detect coupling between selectively ssC labeled<br />

me<strong>th</strong>ionine ssC o resonances at position i in <strong>th</strong>e protein sequence and <strong>th</strong>e SSN labeled<br />

amide peak of <strong>th</strong>e next sequential residue (i+1) in [ul 60% SSN, 99% a3C o me<strong>th</strong>ionine]<br />

SSI. The known assignments of <strong>th</strong>e me<strong>th</strong>ionine xsC o peaks allow sequence-specific<br />

assignment of <strong>th</strong>e XSN a peaks of <strong>th</strong>e i+1 amino acid residue We also report here a<br />

novel me<strong>th</strong>od for sequence-specific assignments of carbon and proton resonances in xsC<br />

labeled proteins by <strong>th</strong>e use of 3 two-dimensional me<strong>th</strong>ods: xsC[s3C} double-quantum<br />

correlation, SB(ssC} one-bond chemical shift correlation, and SH{ssC] multiple-bond<br />

correlation. By <strong>th</strong>ese me<strong>th</strong>ods, <strong>th</strong>e NMR spin system assignments of <strong>th</strong>e nine lencine<br />

residues in [85% ul s3C]leucine SSl are extended from <strong>th</strong>e previously assigned<br />

carbonyl carbons to <strong>th</strong>e intraresidne alpha carbons, alpha protons, and to <strong>th</strong>e alpha<br />

protons of <strong>th</strong>e next sequential amino acid. [Supported by Grants in Aid from <strong>th</strong>e<br />

Ministry of Education of Japan (60430033, 60880022, 62220026), NIH grants RR02301 and<br />

RR02781, NSF Grant PLM-845048, <strong>th</strong>e U. S. Department of Agriculture, and <strong>th</strong>e<br />

University of Wisconsin.]<br />

167


[ 1 3 8 J FERREDOXIN FROM ANABAENA 7120 : UNIFORM CARBON-13 AND/OR<br />

NITROGEN-15 ENRICHMENT AND NUCLEAR MAGNETIC RESONANCE INVESTIGATIONS<br />

Byung Ha Oh% _ William M. Westler, Prashan<strong>th</strong> Darba and John L. Markley0<br />

Department of Biochemistry, 420 Henry Mall, University of Wisconsin-Madison,<br />

Madison, WI53706.<br />

Uniformly carbon-13 (28%) and/or nitrogen-15 (~9b~) enriched ferredoxin (plant<br />

type, 2Fe-2S*) were obtained by growing Anabaena 7120 (a cyanobactertum) wi<strong>th</strong><br />

26% x3C CO 2 and/or )95% XSN KNO~ as <strong>th</strong>e sole carbon and/or nitrogen source. By<br />

applying two-dimensional (2D) ssc[x3C} double-quantum correlated spectroscopy<br />

(xsC{xSC}DOC) to <strong>th</strong>e uniformly xsC enriched ferredoxin, <strong>th</strong>e carbon spin systems<br />

of 75 of <strong>th</strong>e 98 amino acid residues in <strong>th</strong>e protein were identified and<br />

classified by <strong>th</strong>e amino acid type. Most of <strong>th</strong>e carbon spin systems <strong>th</strong>at were<br />

not observed probably correspond to amino acid residues near to <strong>th</strong>e paramagnetic<br />

center. The striking feature of <strong>th</strong>is experiment is <strong>th</strong>e ease of arC spin system<br />

analysis: <strong>th</strong>e data set was analyzed in about a week. Because xH-xsC groups can<br />

be assigned via <strong>th</strong>e xR detected xsC experiment, <strong>th</strong>is approach provides an<br />

efficient way for analyzing xH spin systems. "sC{XSN] heteronuclear correlated<br />

spectroscopy (xsC[XSN}RETCGR) applied to [ul 26% xsC, ul )95% XSN]ferredoxin<br />

revealed Co/N cross peaks from 83 of <strong>th</strong>e peptide bonds and 6 side chains (Gin,<br />

Ash). By applying <strong>th</strong>e x3C{xSC}DOC and ssC{XSN]RETCOR experiments, it should be<br />

possible to obtain sequential assignments along <strong>th</strong>e pepttde backbone wi<strong>th</strong> a<br />

single dual xsC/XSN labeled protein. These two novel 2D experiments which<br />

exploit direct one-bond coupling, represent a new me<strong>th</strong>odology for assigning<br />

protein NblR spectra. [Supported by USDA Competitive Research Grant 85-CRCR-1-<br />

1598, NIB Grant RR02301, NIH Grant RR02781 and NSF Grant PCg-845048.]<br />

TWO-DIMENSIONAL HYDROGEN-1 NUCLEAR MAGNETIC RESONANCE STUDIES OF<br />

159 1 STAPHYLOCOCCAL N~CLEASE: SPIN SYSTEM ASSIGNMENTS IN THE (NUCLEASE<br />

B124L) "DEOXYTHYMIDINE-3 ' ,5 '-BISPHOSPHATE" CA2 + TERNARY COMPLEX<br />

Jinfeng Wang and John L. Markley, National Magnetic Resonance Facility at Madison<br />

and Department of Biochemistry, College of Agriculture and Life Sciences, University h<br />

of Wisconsin, Madison, WI 53706<br />

Two-dimensional NMR me<strong>th</strong>ods have been used to assign resonances from <strong>th</strong>e<br />

aromatic and a substantial number of non-aromatic residues in <strong>th</strong>e XH NMR spectra of<br />

<strong>th</strong>e staphylococcus aureus V8 variant nuclease ternary complex: (nuclesse H124L)"<br />

deoxy<strong>th</strong>ymidine-3',5'-bisphosphate'Ca z+. Specific assignments are presented for all<br />

14 of <strong>th</strong>e aromatic spin systems. The assignment me<strong>th</strong>ods used relied heavily on <strong>th</strong>e<br />

two-dimensional NMR experiments. The aromatic ring resonances were identified by<br />

combining ROHAHA, COSY, and NOESY experiments. Ambiguities in distinguishing<br />

between phenylalanine and tyrosine spin systems were resolved by making use of<br />

sequential backbone assignment of two unique dipeptide segments in <strong>th</strong>e primary<br />

structure of staphylococcal nuclease, and by comparison of NOE data wi<strong>th</strong> <strong>th</strong>e<br />

structure derived from single crystal X-ray diffraction.<br />

Heteronuclear two-dimensional NMR studies have assisted <strong>th</strong>e assignments and<br />

provide more information for detailed analysis of <strong>th</strong>e conformation of nuclease<br />

H124L in <strong>th</strong>e presence and absence of pdTp and Ca 2+.<br />

[Supported by Nil] Grant GM35976 and NSF Grant DMB 84-10222; NMR studies were<br />

supported by NSF Grant PCM-845048, NIH Grants RR02301 and RR02781, <strong>th</strong>e USDA and <strong>th</strong>e<br />

University of Wisconsin.]<br />

168


~-'-- 140<br />

DIRECT OBSERVATION OF LONG RANGE HETERONUCLE~ SPLIETINGS IN<br />

• PROTON 2DJ SPECTRA: T. K. Pratum, P. K. Hammen* and N. H.<br />

] Andersen, University of Washington, Seattle WA 98195<br />

Pr0ton-detected heteronuclear 2DJ-resolved experiments have been designed<br />

a/_lo~ring <strong>th</strong>e observation of long range heteronuclear couplings (nJcH). Placement<br />

of a 180 ~ carbon pulse at <strong>th</strong>e midpoint of <strong>th</strong>e hon~nuclear 2DJ evolution period pr~ah~ces<br />

a signal n~dulated by bo<strong>th</strong> heteronuclear and hamonuclear coupling. Selective<br />

detection of protons ~ri<strong>th</strong> long range coupling to 13C nuclei surmounts <strong>th</strong>e inherent<br />

d C~p'ul c r~l~Be difficulty encount~d wi<strong>th</strong> proton dete.ct.ion. For <strong>th</strong>is selection <strong>th</strong>e<br />

se at <strong>th</strong>e nlidpoint of t I is n~Ddulated or an additlona_l n~ulated 180 n C_I<br />

pulse is placed ei<strong>th</strong>er at <strong>th</strong>e end of t I or at <strong>th</strong>e beginning but a fixed, (2 JCH ) ,<br />

delay a~ter <strong>th</strong>e initial proton 90 ° pulse. %~nese lead to differs_noes in <strong>th</strong>e signal<br />

detected, and corLsequently in data presentation. Of <strong>th</strong>em <strong>th</strong>e most useful sequence<br />

, ,2 "* I I "'*<br />

IH I I Acq(e.)<br />

In <strong>th</strong>is case, a 45 ° projection of <strong>th</strong>e 2D data matrix elindnates proton J couplings<br />

preser~ring <strong>th</strong>e long range heteronuclear couplings. A~litude reduction of <strong>th</strong>e mod-<br />

ulated 13C pulse, nmk/_ng it sendselective for a desired sl~ect-ral region, pr~)vides<br />

ano<strong>th</strong>er advantage. It elind_nates all but <strong>th</strong>e couplings to <strong>th</strong>e selected carbons<br />

which is beneficial when several couplings exist wi<strong>th</strong> nearly identical n~gnitude.<br />

%~nese me<strong>th</strong>eds have been developed ~sing ar~m~itic an~o acids as test systems<br />

• ~ri<strong>th</strong> selective 13 C edifying in <strong>th</strong>e carbonyl region. %~ne experiment has been extend-<br />

ed to l~=-ptides where it provides a means for assigning diastereotopic me<strong>th</strong>ylene<br />

protons and deter~dzling <strong>th</strong>e side cha/in dihedral angles.<br />

141 I BRANCH LOCATION STUDIED BY SOLVENT SWELLING AND SOLID<br />

STATE NMR IN ISOTOPICALLY ENRICHED ETHYLENE-I-BUTENE COPOLYHERS:<br />

D. HcFaddin, Queen's University, Kingston, Ontario, Canada. K7L 3N6<br />

Homogenous e<strong>th</strong>ylene-l-butene copolymers (isotoplcally enriched<br />

at <strong>th</strong>e me<strong>th</strong>yl group) have been studied by solid state NHR, as a<br />

function of crystallization conditions and comonomer content. Two<br />

enviror~nents are seen for <strong>th</strong>e branches Ln all cases.<br />

Ln <strong>th</strong>e solution crystallized samples <strong>th</strong>e me<strong>th</strong>yl region of <strong>th</strong>e<br />

spectrum is characterized by two broad overlapping peaks. However,<br />

<strong>th</strong>e addition of excess solvent (carbon tetrachloride) causes an<br />

increase in <strong>th</strong>e mobility of <strong>th</strong>e amorphous chains and improved<br />

resolution in <strong>th</strong>e me<strong>th</strong>yl region of <strong>th</strong>e spectrum. The solvent does<br />

not penetrate <strong>th</strong>e crystalline regions of <strong>th</strong>e polymer and <strong>th</strong>erefore<br />

only effects <strong>th</strong>e amorphous branches of <strong>th</strong>e sample.<br />

In a 0.2 tool% sample (crystallized from <strong>th</strong>e melt)<br />

approximately 18% of <strong>th</strong>e branches reside in a restricted region,<br />

while 37% of <strong>th</strong>e branches exist in a crystalline-like (non-swollen)<br />

region in <strong>th</strong>e solution crystallized polymer. In a 2.5 mol% sample<br />

approx~ately 12% (melt crystallized) and 22% (solution<br />

crystallized) of <strong>th</strong>e total branches exist in <strong>th</strong>is crystalline-like<br />

(non-swollen) region of <strong>th</strong>e polymer. These sidechains are probably<br />

located in a defective crystalline overlayer.<br />

169


142 ]<br />

TRANSITIONS:<br />

Laboratory,<br />

INDIRECT DETECTION OF 14N ~M=2 (OVERTONE) NMR<br />

A. N. Garroway* and J. B. Miller, Naval Research<br />

Code 6122, Washington D. C. 20375-5000<br />

For quadrupolar spin systems in high magnetic field,<br />

<strong>th</strong>e ~M=2 NMR transition is weakly allowed, due to <strong>th</strong>e slight<br />

distortion of <strong>th</strong>e pure Zeeman states by <strong>th</strong>e quadrupolar<br />

perturbation. For such overtone transitions, <strong>th</strong>e <strong>th</strong>eory and<br />

direct observation of <strong>th</strong>e 14N resonance, occurring at about twice<br />

<strong>th</strong>e 14N Larmor frequency, have been already presented by o<strong>th</strong>er<br />

workers. Here we extend <strong>th</strong>e me<strong>th</strong>od by using <strong>th</strong>e IH spin system<br />

to detect indirectly <strong>th</strong>e nitrogen overtone transition. First IH<br />

dipolar order is created and <strong>th</strong>en progressively destroyed by<br />

repetitive contacts wi<strong>th</strong> <strong>th</strong>e nitrogen rotating frame Zeeman<br />

reservoir; we monitor <strong>th</strong>e loss of <strong>th</strong>e IH signal. The 14N<br />

irradiation is stepped in frequency during <strong>th</strong>e cross-relaxation<br />

to compensate partly for <strong>th</strong>e reduced effective 14N rf field<br />

streng<strong>th</strong>. The merit of <strong>th</strong>e indirect over <strong>th</strong>e direct detection<br />

scheme is <strong>th</strong>e corresponding increase in signal intensity. We<br />

demonstrate 14N indirect detection me<strong>th</strong>ods on some crystalline<br />

solids including hexame<strong>th</strong>ylene tetramine.<br />

14 3 I DIFFERENTIAL DEVELOPMENT OF MULTIPLE-QUANTUM COHER<strong>ENC</strong>E IN A<br />

LIQUID CRYSTAL: W. V. Gerasimowicz*l", A. N.Garroway, and J. B. Miller, Chemistry Division, Code<br />

6122, Naval Research Laboratory, Washington, D. C. 20375-5000.<br />

A 2:1 molar mixture of 4'-cyanophenyl-4-n-heptylbenzoate and 4'-cyano-phenyl-4-n-<br />

butylbenzoate exhibits nematic liquid crystal behavior in <strong>th</strong>e temperature range from 25 o<br />

to 50o C. The proton NMR spectra suggest <strong>th</strong>at two regimes of dipolar interaction are<br />

present L e. <strong>th</strong>ose characteristic of partially-isolated proton spin pairs, presumably on <strong>th</strong>e<br />

phenyl rings, and weakly-coupled spins originating from <strong>th</strong>e alkyl chain moieties<br />

comprising <strong>th</strong>e remainder of <strong>th</strong>e system. A solid-echo pulse sequence permits <strong>th</strong>e<br />

observation and separation of <strong>th</strong>ese unique regions wi<strong>th</strong>in <strong>th</strong>e molecules on <strong>th</strong>e basis of<br />

<strong>th</strong>eir differing relaxation properties. We have combined <strong>th</strong>is technique wi<strong>th</strong> multiple-<br />

quantum NMR, so <strong>th</strong>at <strong>th</strong>e spins are first prepared by means of a variable delay solid-echo<br />

sequence followed by MQ NMR experiments. Differential development of proton spin<br />

coherence can <strong>th</strong>en be distinguished (in <strong>th</strong>is case) for different segments of <strong>th</strong>e same<br />

molecule. We find <strong>th</strong>at over <strong>th</strong>e course of <strong>th</strong>e multiple-quantum preparation times, <strong>th</strong>e<br />

phenyl proton pairs do not interact appreciably wi<strong>th</strong> <strong>th</strong>e remaining protons of <strong>th</strong>e molecule.<br />

1"Permanent Address: U. S. D. A., Eastern Regional Research Center, 600 E. Mermaid Lane,<br />

Philadelphia, PA 19118<br />

170


144 I<br />

I IH AND 13C REFOCUSED GRADIENT IMAGING OF SOLIDS<br />

J. B. Miller* and A. N. Garroway<br />

Naval Research Laboratory, Code 6120<br />

Washington, DC 20375-5000<br />

We have previously demonstrated a technique for removing<br />

distortions from NMR images due to chemical shift and susceptibility<br />

effects which we call refocused gradient imaging (RGI). The technique<br />

relies on <strong>th</strong>e Carr-Purcell pulse sequence to refocus <strong>th</strong>e chemical-<br />

shift-like evolution of <strong>th</strong>e spins. The sign of <strong>th</strong>e gradient is<br />

switched synchronously wi<strong>th</strong> <strong>th</strong>e rf pulses so <strong>th</strong>at gradient evolution<br />

is not refocused.<br />

Here we extend refocused gradient imaging to <strong>th</strong>e observation of<br />

solids. For high natural abundance spins where <strong>th</strong>e homonuclear<br />

dipole-dipole interaction dominates, <strong>th</strong>e Carr-Purcell sequence is<br />

replaced by a pulse sequence which simultaneously refocuses <strong>th</strong>e<br />

dipolar and chemical-shift-like interactions. For low natural<br />

abundance spins <strong>th</strong>e Carr-Purcell sequence is used. Where necessary,<br />

high power decoupling of heteronuclei may be added.<br />

We describe <strong>th</strong>e pulse sequences used for RGI of solids and show<br />

examples of bo<strong>th</strong> IH and 13C images. The relative merits of IH and<br />

13C RGI are discussed. We find <strong>th</strong>at because of differences in<br />

experimental parameters and more efficient line-narrowing for 13C RGI,<br />

<strong>th</strong>e low natural abundance of 13C is not a severe limitation for carbon<br />

imaging of solids.<br />

145 I<br />

DERIVATION OF POLYMER RI~IEOLOGICAL CONSTANTS<br />

FROM THE VISCOSITY AND TEMPERATURE DEPEND<strong>ENC</strong>E OF xsC NMP.<br />

RELAXATION PARAMETERS: Anita J. Brandolini, Mobil Chemical<br />

Company, Edison Laboratory, P.O. Box 240, Edison, New<br />

Jersey 08818<br />

NMR relaxation parameters characterize polymer chain<br />

motions on a local scale; <strong>th</strong>eological constants describe<br />

<strong>th</strong>e viscoelastic properties of a bulk material.<br />

CorrelatinE bulk property measurements wi<strong>th</strong> spectroscopic<br />

data enables one to determine <strong>th</strong>e contribution of local<br />

seEmental reorientations to overall chain motions. The<br />

IsC NMR llnewid<strong>th</strong>s of low molecular-weight<br />

polyisobutylenes exhibit power-law dependences on sample<br />

viscosity. The exponent, which is different for each<br />

carbon type (quaternary, me<strong>th</strong>ylene, and me<strong>th</strong>yl), specifies<br />

<strong>th</strong>e fractional contribution of each carbon type to <strong>th</strong>e<br />

polymer's free volume and monomeric friction coefficient.<br />

Fur<strong>th</strong>ermore, <strong>th</strong>e IsC NMR linewid<strong>th</strong>s have a<br />

Williams-Landel-Ferry (WLF) dependence on temperature,<br />

which is <strong>th</strong>e same form observed for <strong>th</strong>e temperature<br />

variation of many bulk viscoelastic properties. The<br />

derived values for free volume and <strong>th</strong>ermal expansion<br />

coefficient aEree wi<strong>th</strong> published rheological parameters to<br />

wi<strong>th</strong>in ±10%.<br />

171


146 I SO~ APPLICATIONS OF THE ~TR EXPERI~IENT: Dallas L. Rabenstein,<br />

Uei Guo and Erin Smi<strong>th</strong>, Department of Chemistry, University of<br />

California, Riverside, California, 92521.<br />

In <strong>th</strong>e WATR (w_ater ~ttenuation by T__ 2 r_elaxation) experiment, <strong>th</strong>e<br />

water resonance is eliminated by selectively decreasing <strong>th</strong>e spin-spin<br />

relaxation time of <strong>th</strong>e water protons by chemical exchange and <strong>th</strong>en<br />

measuring <strong>th</strong>e spectrum by <strong>th</strong>e Carr-Purcell-Meiboom-Gill (CPMG) pulse<br />

sequence.l, 2 Wi<strong>th</strong> <strong>th</strong>is me<strong>th</strong>od, <strong>th</strong>e water resonance can be selectively<br />

eliminated and resonances at <strong>th</strong>e chemical shift of <strong>th</strong>e water resonance<br />

can be observed. In <strong>th</strong>is poster, we describe several applications of<br />

<strong>th</strong>e WATR me<strong>th</strong>od, including measurement of IH-NMR spectra of peptides in<br />

99% H20/1% D20 , observation of resonances for protons bonded to<br />

natural-abundance15N in peptide bonds, and measurement of IH-NMR<br />

spectra for aqueous samples, including biological fluids. Resonances<br />

for protons on <strong>th</strong>e a-carbons of peptides are normally obscurred by <strong>th</strong>e<br />

water resonance, however <strong>th</strong>ey are readily observed by <strong>th</strong>e WATR me<strong>th</strong>od<br />

and can provide useful information in studies of <strong>th</strong>e chemistry of peptides,<br />

as will be illustrated by results from studies of <strong>th</strong>e<br />

<strong>th</strong>iol/disulfide chemistry of peptides.<br />

I D.L. Rabenstein, S. Fan and T.T. Nakashima<br />

541 (1985).<br />

J. Magn. Reson., 64,<br />

2 D.L. Rabenstein and S. Fan, Anal. Chem. 58, 3178 (1986).<br />

147<br />

-- I THERMALLY INDUCED VOLUtlE CI~NGES IN A BLOCK COPOL~IER: Franco Cau*<br />

Serge Lacelle, D~partement de chimie, Universit6 de Sherbrooke, Sherbrooke, Quebec<br />

CANADA JIK 2R1<br />

Recently some temperature induced molar volume changes have been reported for<br />

solutions of block copolymers of propylene oxide (P) and e<strong>th</strong>ylene oxide (E) wi<strong>th</strong><br />

structures of <strong>th</strong>e type (E) _ (D) - E (i). We have studied <strong>th</strong>e expansibility of a<br />

m n o<br />

- P - wi<strong>th</strong> IH T I and lineshape as a function of <strong>th</strong>e<br />

polymer solution of El00 44 El00<br />

temperature and concentration. The resonances of <strong>th</strong>e E and "D monomers are well<br />

resolved <strong>th</strong>ereby permitting to monitor <strong>th</strong>e microscopic environments in <strong>th</strong>e different<br />

blocks of <strong>th</strong>e Dolymer. Our findings include I) <strong>th</strong>e volume changes can be associated<br />

wi<strong>th</strong> <strong>th</strong>e P block, 2) determinatio~3of <strong>th</strong>e overlap <strong>th</strong>reshold concentration, 3) <strong>th</strong>e<br />

radius of Ryration scales wi<strong>th</strong> N ~ , where N is <strong>th</strong>e degree of polymerization. These<br />

results will be discussed in <strong>th</strong>e light of various scalinE behavior (2).<br />

i. R.K. ~Jilliams, H.A. Simard, C. Jolicoeur, J. Phys. Chem. 89, 179, (1985).<br />

2. P.C. de Gennes, Scalin~ Concepts in Polymer Physics, Cornell U. Press 1979.


~<br />

(POSTER ABSTRACT) BARBARA LYONS/CORNELL UNIVERSITY<br />

CHALLENGES TO THE CLASSICAL MODELS OF REACTIVITY<br />

148 I The possibility of heavy atom tunneling, in <strong>th</strong>is case <strong>th</strong>at of<br />

carbon atoms, has been investigated <strong>th</strong>rough calculational me<strong>th</strong>ods by several different<br />

researchers in recent years. However, <strong>th</strong>e molecules of interest used in <strong>th</strong>e calculations<br />

of <strong>th</strong>ese researchers have not been readily feasible as models for study in <strong>th</strong>e<br />

laboratory. To test <strong>th</strong>e <strong>th</strong>eory of heavy atom tunneling a suitable molecule needed to bE<br />

found: one which would lend itself to available laboratory techniques. We turned to <strong>th</strong>e<br />

molecule semibullvalene as a possibility, due partly to its startlingly low energy of<br />

activation(5.5+0.1kcal/mol at -140°C).<br />

Semibul~alene undergoes a degenerate cope rearrangement at room temperature. The<br />

classical'~C isotope effect for <strong>th</strong>e rearrangement at -170°C is k../k.~=l.04. However<br />

~ 1~<br />

by performing a simplistic quantum mechanical calculation we preozcted <strong>th</strong>at, including<br />

tunneling contributions, <strong>th</strong>e isotope effect for semibullvalen~3at -170°C should be<br />

about kl2/k =2 8 The k value is determined from <strong>th</strong>e fully C subst, molecule.<br />

3 " " 13<br />

To test t~zs hypo<strong>th</strong>esis we turned to variable temperature n.m.r.line-shape analysis<br />

using a 400 MHz spectrometer. Spectra were taken of <strong>th</strong>e natural abundance molecule fro~<br />

-160°C to -35°C in 3°C increments. Likewise, after <strong>th</strong>e all C molecule had been syn<strong>th</strong>esized,<br />

spectra were taken in <strong>th</strong>e same temperature range. A two-site exchange model<br />

was used on a mainframe computer to calculate <strong>th</strong>e relevant n.m.r, line-shapes for each<br />

temperature. This gave us <strong>th</strong>e rat~_constants for <strong>th</strong>e natural abundance molecule.<br />

However, upon comparing <strong>th</strong>e all~3C spectra to <strong>th</strong>e ~tural abundance spectra by overlap<br />

plotting an unpleasant fact was noticed. The all--C line-shape wid<strong>th</strong> for each temperature<br />

was <strong>th</strong>e same as <strong>th</strong>e natural abundance line-shape wid<strong>th</strong> for <strong>th</strong>at same temperature.<br />

Unfortunately only one conclusion was possible: <strong>th</strong>at <strong>th</strong>e fullyl3c molecule had<br />

virtually <strong>th</strong>e same rate constants at any given temperature. Therefore, in at least <strong>th</strong>e<br />

temperature range we were looking at, tunneling was not a major contributing factor<br />

to <strong>th</strong>e reaction process.<br />

149<br />

I 19F NMR STUDIES OF FLUORINE SUBSTITUTED Ba2YCu307_ x<br />

C. E. Lee*, D. White, P.K. Davies, J. A. Stuart<br />

University of Pennsylvania, Philadelphia, PA 19104<br />

Gaseous phase exchange has been used to introduce substantial<br />

concentrations of fluorine into or<strong>th</strong>orhombic perovskite powder<br />

samples. The temperature dependence of <strong>th</strong>e NMR lineshape and<br />

signal amplitude in <strong>th</strong>e normal and superconducting states are<br />

presented for several fluorine concentrations. In general, it is found<br />

<strong>th</strong>at <strong>th</strong>e presence of <strong>th</strong>e oxy-fluoride phase does not significantly<br />

affect <strong>th</strong>e superconducting transition temperature of <strong>th</strong>e bulk<br />

sample, but does decrease <strong>th</strong>e extent of field exclusion, i.e., <strong>th</strong>e<br />

Meissner effect of <strong>th</strong>e bulk powder. Some preliminary spin lattice<br />

relaxation data are presented in which <strong>th</strong>e 19F NMR is used as a<br />

probe of <strong>th</strong>e electronic environment of <strong>th</strong>e oxide in <strong>th</strong>e normal and<br />

superconcucting states.<br />

173


-- 150 I ISOTOPE DETECTED NOE EXPERIMENTS ON 13C LABELED tRNAPhe: William<br />

H. Gmeiner*and C. Dale Poulter, Department of Chemistry, University<br />

of Utah, Salt Lake City, UT 84112<br />

Isotope directed and isotope detected nuclear Overhauser effect experiments are<br />

performed on tRNA^ ne from E. coli in which all <strong>th</strong>e adenine residues were labeled at<br />

position 8 wi<strong>th</strong> ±jC. The experiments are used to establish <strong>th</strong>e presence of <strong>th</strong>e<br />

unusual Hoogsteen type base-pair in <strong>th</strong>e solution structure of <strong>th</strong>e molecule. A<br />

relaxation p~file of <strong>th</strong>e lab~edlsite is presented in which <strong>th</strong>e effect of two<br />

quadrupolar --N spins on <strong>th</strong>e -C- H spin system is analyzed. The rel~ation effect<br />

on <strong>th</strong>e imino proton of uridine in adenosine-uridine base-pairs by <strong>th</strong>e--C label is<br />

used to measure <strong>th</strong>e relative populations of Watson-Crick and Hoogsteen base-pairs in<br />

a chloroform soluble model system.<br />

- - isi<br />

I<br />

Inversion Recovery Cross Polarization (IRCP) techniques are used to probe <strong>th</strong>e<br />

structures of morphologlcally different polye<strong>th</strong>ylenes. Crystalline and amorphous<br />

components were resolved by <strong>th</strong>eir different cross polarization (CP) rates which were<br />

discriminated by an IRCP pulse sequence. At least two major magnetically distinct<br />

environments were detected in each sample. The arystalllne-amorphous interfaclal<br />

domains were also detected in some samples. The cross polarization time, TCH, of<br />

each phase was compared among <strong>th</strong>ese morphologically different samples and can be<br />

interpreted in terms of structural details.<br />

The effect on TCH by varying magic angle spinning speed and spln-lock power<br />

were also studied. The chemical shift anlsotropy (CSA) of each component and <strong>th</strong>e<br />

degree of crystalllnlty of <strong>th</strong>ese semicrystalllne polymers were also discussed in <strong>th</strong>e<br />

study.<br />

174


1 52 I ~IR STUDY OF NAPHTHALENE TRANSPORT AND P~ELA)LATIOtq IN THE NAPHTHA-<br />

LENE-SUPERCRITICAL ETIIYLENE SYSTEM: K. W. Woo , S. Adamy and J. Jonas, University<br />

of Illinois, Urbana, IL 61801<br />

The purpose of <strong>th</strong>is study is to investigate <strong>th</strong>e motional dynamics of naph<strong>th</strong>alene<br />

in <strong>th</strong>e naph<strong>th</strong>alene-e<strong>th</strong>ylene supercritical mixture using T 1 and diffusion measurements.<br />

The deuterium TI for d,-naDh<strong>th</strong>alene were measure'd along <strong>th</strong>ree iso<strong>th</strong>erms<br />

_ _o . i . o -. . , . f<br />

(lu, 30, 4J C) in <strong>th</strong>e solld-supercrltlcal e<strong>th</strong>ylene ohase at pressures rom i00 to<br />

i000 bar, and along two iso<strong>th</strong>erms (70, 78°C) . from 20-200 bar for <strong>th</strong>e liquid naph<strong>th</strong>a-<br />

lene-suoercritica] e<strong>th</strong>ylene phase. The pressure dependences of <strong>th</strong>e relaxation rate<br />

of d_-naoh<strong>th</strong>alene in <strong>th</strong>e two phases show quite a different behavior. In particu]ar,<br />

tile effect of dissolved e<strong>th</strong>ylene dominates tile motional characteristic of naph<strong>th</strong>alene<br />

in <strong>th</strong>e liquid naph<strong>th</strong>alene phase. In order to complement <strong>th</strong>e data, <strong>th</strong>e diffusion<br />

coefficients of naph<strong>th</strong>alene were also measured using tile fixed-field gradient Bessel<br />

• function analysis technique. The experimental data are interpreted in terms of<br />

current <strong>th</strong>eoretical models. A brief discussion of tlfe potential of i,~ techniques<br />

to orovide unique molecular level information on suDercritical fluid systems is<br />

also included.<br />

NMR CHARACTERIZATION OF THE SOLUTION, GEL AND<br />

153 SOLIDS STRUCTURES OF [(I-3)-~-D-GLUCAN (CURDLAN)]<br />

P. H. Bolton and P. J. Giammatteo*, Wesleyan<br />

University, Middletown, CT and A. J. Stipanovic, Texaco Research<br />

Center, Beacon, NY, 12508<br />

Naturally occuring microbial polysaccharides represent an<br />

important class of compounds whose characteristic properties are<br />

used in applications ranging from foods to enhanced oil recovery.<br />

While typically composed of one to five simple sugars per repeat<br />

unit, polysaccharides can exhibit complex tertiary structure such<br />

as single, double and/or triple helices. Through hydrogen<br />

bonding and/or cross-linking mechanisms, <strong>th</strong>ese systems can form<br />

interchain networks. Fur<strong>th</strong>er, varying degrees of crystallinity<br />

can result depending on bo<strong>th</strong> <strong>th</strong>e monomeric makeup and <strong>th</strong>e<br />

linkages betweeen monomers on <strong>th</strong>e polysaccharide. Depending on<br />

precipitation, hydration and/or solution conditions, Curdlan,<br />

[(l-3)-~-D-Glucan], a linear homopolymer of glucose, can exist in<br />

one of <strong>th</strong>ree distinct solid structures, can form <strong>th</strong>ermally<br />

setting gels, or can exist in ei<strong>th</strong>er a triple or single helix in<br />

solution. CP/MAS 13C NMR was used to study <strong>th</strong>e solid and gel<br />

forms and a variety of 2D solution NMR experiments were employed<br />

to elucidate <strong>th</strong>e molecular conformation,<br />

| • •<br />

self-assoclatlon<br />

mechanism and gel domain structure of Curdlan. All experimental<br />

procedures and applications will be presented and discussed.<br />

175


-- 154 I<br />

DISCRIMINATION BETWEEN SYMMETRIC AND ASY~9~ETRIC HYDROGEN BONDS BY<br />

ISOTOPIC PERTURBATION OF EQUILIBRIUM. Charles L. Perrin and John<br />

D. Thoburn*, Department of Chemistry, University of California,<br />

San Diego, La Jolla, California 92093.<br />

The me<strong>th</strong>od of isotopic perturbation of equilibrium was used to<br />

distinguish symmetric and asymmetric hydrogen bonds in monoanions<br />

of two carboxylic acids. Oxygen-18 substituted maleic and succinic<br />

acids were prepared by hydrolyzing <strong>th</strong>eir respective anhydrides wi<strong>th</strong><br />

H2180. The 13C resonances of <strong>th</strong>ese acids as well as <strong>th</strong>eir dianions<br />

in aqueous solution show an intrinsic isotope shift of 0.027 ppm.<br />

Titration wi<strong>th</strong> KOH to <strong>th</strong>e monoanion of succinic acid produces an<br />

increase in chemical-shift difference to 0.048 ppm, which is at-<br />

tributed to an asymmetric hydrogen bond. The mmleic acid monoanion<br />

shows no such increase in chemical-shift difference, demonstrating<br />

<strong>th</strong>at its proton lies in a symmetric single-well potential. This is<br />

a general me<strong>th</strong>od which can be used to~stinguish between symmetric<br />

and asymmetric hydrogen bonds in a wide variety of systems.<br />

155 I<br />

NMR STLIDIES OF PHOSPHATIDYLCHOLINES AND THIOPHOSPHATIDYLCHOL]NES<br />

Mufeed H. Basti* and Laurine A. LaPlanche<br />

Department of Chemistry<br />

Nor<strong>th</strong>ern ]11inois University<br />

DeKalb, II. 60115<br />

The substitution of a sulfur atom for oxygen in <strong>th</strong>e polar head<br />

group of dioctanoylphosphatidylcholine causes siqnificant<br />

differences in <strong>th</strong>e NHR spectrum of <strong>th</strong>e two phospSolipids.<br />

Three-bond proton-proton, phosphorus-carbon and phosphorus-<br />

proton coupling constants for groups near to <strong>th</strong>e sulfur (oxygen)<br />

atom indicate conformational differences not only in <strong>th</strong>e polar head<br />

group region but also in <strong>th</strong>e glycerol portion of <strong>th</strong>e two molecules.<br />

Chemical shifts of nearby proton and phosphorus nuclei are also<br />

affected by <strong>th</strong>e substitution. The me<strong>th</strong>ylene protons adjacent to<br />

<strong>th</strong>e sulfur atom in <strong>th</strong>e <strong>th</strong>io-analogue exhibit magnetic nonequivalence<br />

at bo<strong>th</strong> 200 and 500 HHz, while <strong>th</strong>ose of <strong>th</strong>e oxygen analogue are<br />

equivalent.<br />

Results are analyzed in terms of population differences betweer,<br />

preferred conformations of phosphatidylcholine and <strong>th</strong>iophospha-<br />

t idylchol ine.<br />

o o~o" l<br />

o<br />

176<br />

o 0,, xo" .<br />

o


is6 I<br />

ROTATING FRAME COHER<strong>ENC</strong>E TRANSFER DUE TO TUNNELLING<br />

Eric R. Johnston Haverford College Haverford, PA 19041<br />

Slow tunnelling of protons and heavier atoms in chemical reactions is a<br />

subject of considerable interest but <strong>th</strong>e unambiguous demonstration of it is<br />

difficult. Unlike <strong>th</strong>ermally activated chemlcal exchange (which randomly averages<br />

chemical shift differences) tunnelling coherently averages such differences and<br />

its effects in NMR are expected to be quite different from <strong>th</strong>ose due to exchange.<br />

In particular in <strong>th</strong>e Hennig-Limbach rotating frame exchange experiment (i) <strong>th</strong>e<br />

tunnelling frequency should appear not in <strong>th</strong>e decay rate of <strong>th</strong>e spln-locked<br />

magnetization but as an oscillation imposed upon <strong>th</strong>e decay (2). Moreover,<br />

tunnelling is expected to be invisible in selective inversion transfer exper-<br />

iments in contrast to chemical exchange.<br />

The <strong>th</strong>eory describing <strong>th</strong>ese effects is briefly d¢scussed and experiments<br />

illustrating <strong>th</strong>em are presented. We have employed coherent spin decoupllng as<br />

a (ma<strong>th</strong>ematically equivalent) model for a tunnelling process in experiments on<br />

an AX spin system which involve spin locking of <strong>th</strong>e X doublet components in <strong>th</strong>e<br />

presence of weak resonant decoupling of <strong>th</strong>e A spin. The question of proton<br />

tunnelling in tetraphenyl porphine (TPP) ~s cr~t~cally addressed ~n light of o6r<br />

results and <strong>th</strong>e possibility of employing a spin locking experiment to detect<br />

slow tunnelling is assessed.<br />

i. J. Hennlg and H. H. Limbach, J. Ma~n. Reson., 49, 322 (1982).<br />

2. E. Johnston, J. Magn. Reson., in press (July, <strong>1988</strong>).<br />

157<br />

ldllclnomlldn-1<br />

+4 5 "It,<br />

+ INTACT STRUCTURE. OF ACLACINOMYCIN-A<br />

n,~_J+3B_~L~_~g~, I<br />

Satish Arora § and Mohan CharP<br />

* Department of Chemistry, Rice University, Houston, Texas 77254;<br />

§ College of Pharmacy, DDI, University of Texas, Austin, Texas 75712;<br />

+~ Baylor MRI Center, Woodlands, Texas 77381<br />

04 $' l - llllilsUlll~l<br />

4 '.,- -" '+-"-<br />

- 140 0~_'+~.~041 5"<br />

2 " j'+ i" "0<br />

.... 177<br />

TI~ InU~ ~ amit~e ol ms sr~l~o~ ,~la¢l'mmycln-A, has l~en<br />

obu~l bY • o~mblnsllon ~ nwllnuci~ ~ aml 3-I) compumr OraI)PEs<br />

Im:hn~ues. Thedsgmmtl~dlsolON, al-~L.1 donoldemonstr~oa<br />

COml~miy ac~rste oonlornationaJ pl~Jm of mls molscul, whk:~ Is<br />

now In actlve dlrlCal ~mls. Desl~) <strong>th</strong>s fact <strong>th</strong>al <strong>th</strong>ls molecule exhb~<br />

an extmmsly elflck)r0 mlaxatlon Woomm~ {'r t's ~; 0.75 seconds) due to<br />

<strong>th</strong>e ~ side ctw~. <strong>th</strong>o solution structure of Adaclncmyc+n-A<br />

l.m been ol~n~l.."¢~c/non"yc+n~ undo rg ~s a ~ cl°l~nci~<br />

I~¢utat, Mff-a~clatl~ d ms ak/vlnone slmlelon dngs. They<br />

mack ,xtl-,ogonally wl~h ors snomw and c~,,.,, an Imom'~ol~lar o~chw',,go<br />

o+ lablle l't~Irogsrl fmm ttw 4,.OH and 6-OH PC61tlons. "Tllm~ Is<br />

mymallogralmiC evideme for tits In <strong>th</strong>e I:mm~


158 I SOME TRICKS OF THE TRADE FOR BETTER 2D NMR SPECTRA<br />

( ou comment monter une mayonnaise ~ la main . . )<br />

Dominique MARION *+ and Ad BAX<br />

Lab. of Chemical Physics N.I.D.D.K.<br />

BETHESDA MD 20892 U.S.A.<br />

N.I.H.<br />

The information content of most 2D NMR experiments, in <strong>th</strong>e context of<br />

conformational analysis, is presently underestimated, since several expe-<br />

rimental imperfections still prevent one from interpreting <strong>th</strong>e more subtle<br />

pieces of information actually present in <strong>th</strong>e spectrum. In any 2D map re-<br />

corded in <strong>th</strong>e phase sensitive mode, improper phase correction as well as<br />

baseline rolls are major concerns for correct quantification of <strong>th</strong>e spec-<br />

tral parameters. On <strong>th</strong>e basis of <strong>th</strong>e pulse phases and durations and delays,<br />

<strong>th</strong>e necessary phase corrections can be computed ab initio, avoiding <strong>th</strong>e<br />

waste of time caused by trial-and-error iterative correction. By a proper<br />

setting of <strong>th</strong>e experiment, <strong>th</strong>e phase correction can even be minimized<br />

before acquisition. Similarly, <strong>th</strong>e apparently irreproducible baseline dis-<br />

tortions, which originate in part from an incorrect quantification of <strong>th</strong>e<br />

first data polnt(s), can be rationalized and <strong>th</strong>us minimized. These features<br />

will be illustrated on <strong>th</strong>e conformational study of maEainin (I), a 23-re-<br />

sidue antimlcrobial peptide from <strong>th</strong>e frog skin.<br />

(I) D. Marion, M. Zasloff and A. Bax (<strong>1988</strong>) FEBS Lett 227:21<br />

(+) on leave from <strong>th</strong>e Centre de Biophysique Mol~culaire Orldans France<br />

159 I<br />

DEVELOPMENT OF FLUORINATED, NMR ACTIVE SPIN TRAPS FOR<br />

STUDIES OF FREE RADICAL CHEMISTRY: Barry S. Selinsky , Louis A. Levy,<br />

Ann G. Motten, and Robert E. London, National Institute of<br />

Environmental Heal<strong>th</strong> Sciences, Research Triangle Park, NC 27709.<br />

The use of spin traps, nitrone or nitroso compounds which react<br />

wi<strong>th</strong> free radicals leading to <strong>th</strong>e production of <strong>th</strong>ermodynamically<br />

stable spin adducts, has greatly enhanced <strong>th</strong>e detection of reactive<br />

radicals by electron spin resonance. Five fluorinated analogs of <strong>th</strong>e<br />

spin trap phenyl-tert-butyl nitrone (PBN) have been syn<strong>th</strong>esized and<br />

evaluated for use as NMR active traps. The introduction of <strong>th</strong>e<br />

fluorine substituent allows selective observation of chemical re-<br />

actions involving <strong>th</strong>e spin traps. Al<strong>th</strong>oug~_<strong>th</strong>e paramagnetic adducts<br />

<strong>th</strong>emselves are not directly observable by ~F NMR as a consequence of<br />

extensive broadening, <strong>th</strong>e reduced forms (hydroxyl amines) can be<br />

readily observed. The series of 2-F, 4-F, 2,6-F 2-CF_, and 4-CF 3<br />

substituted PBN analogs have been syn<strong>th</strong>esized. The'relative trapping<br />

efficiencies of <strong>th</strong>e syn<strong>th</strong>esized spin traps were tested by reaction<br />

wi<strong>th</strong> known concentrations of phenyl radical generated from phenyl-azo-<br />

triphenylme<strong>th</strong>ane in benzene. In addition, <strong>th</strong>e trapping efficiencies<br />

of 2,6-F 2 PBN and 2-CF~ PBN relative to unsubstituted PBN could be<br />

compared due to significant differences in ESR proton hyperfine<br />

coupling constants of <strong>th</strong>eir phenyl adducts. The fluorinated spin<br />

traps syn<strong>th</strong>esized here could potentially be useful in in vivo studies<br />

of biological free radicals, where reduction of nitroxides makes ESR<br />

analysis difficult.<br />

IZ8


16 0 I A 27AL MAS STUDY OF AMORPHOUS ANODIC ALUMINA: STRUCTURAL<br />

INFORMATION COMBINED WITH QUANTITATIVE UNCERTAINTY. *I. Farnan (1)t, R.<br />

Dupree (1), M.E. Smi<strong>th</strong> (1), Y.S. Jeong (2) and G. Thompson (2). (1) Physics Department, University<br />

of Warwick, Coventry CV47AL, U.K.; (2) Corrosion and Protection Centre, UMIST, Manchester<br />

SK97AL, U.IL<br />

The ability of 27A1 MAS-NMR to distinguish between aluminium in different coordination<br />

states in aluminas and aluminosilicates has been known for some time. Here <strong>th</strong>e technique is ap-<br />

plied to technologically important amorphous anodic aluminas whose structures are poorly known.<br />

The study reveals five-fold coordinated aluminium in <strong>th</strong>ese materials in addition to <strong>th</strong>e more usual<br />

aluminium coordinations of four and six, all wi<strong>th</strong> a symmetry comparable to crystalline alumi-<br />

nas. The film formation conditions are observed to influence <strong>th</strong>e relative amounts of <strong>th</strong>is quasi-<br />

crystalline aluminium observed in <strong>th</strong>e spectrum.<br />

Because of <strong>th</strong>e range of bond leng<strong>th</strong>s and angles in <strong>th</strong>ese amorphous materials <strong>th</strong>ere re-<br />

mains a broad contribution to <strong>th</strong>e spectrum associated wi<strong>th</strong> aluminium electric field gradients<br />

which are not averaged by MAS. As well as causing un-narrowed lines in <strong>th</strong>e spectrum, electric<br />

field gradients can cause <strong>th</strong>e aluminium signal to be broadened beyond detection, or not to be excited<br />

by <strong>th</strong>e RF pulse. This results in <strong>th</strong>e need to compare signal intensities wi<strong>th</strong> a standard in order to<br />

establish <strong>th</strong>e fraction of <strong>th</strong>e aluminium in <strong>th</strong>e sample which is represented by <strong>th</strong>e NMR spectrum.<br />

Signal fractions for anodic alumina films toge<strong>th</strong>er wi<strong>th</strong> signal fractions for crystalline materials<br />

wi<strong>th</strong> known electric field gradients are presented. The amount of aluminium signal varies de-<br />

pending on <strong>th</strong>e anodizing conditions and <strong>th</strong>e electrolyte used, which can be related to <strong>th</strong>e film mor-<br />

phology observed by electron microscopy.<br />

t Present address: Dept. of Geology, Stanford University, Stanford, California 94305-2115<br />

_ _<br />

r<br />

161 I<br />

LOCALIZED PROTON SPECTROSCOPY AND SPECTROSCOPIC IMAGING OF THE HUMAN BRAIN<br />

* Peter Luyten and Jan den Hollander<br />

Philips Medical Systems, PO Box i0.000<br />

Best, The Ne<strong>th</strong>erlands<br />

We have developed and optimized a pulse seouence to obtain localized<br />

watersuppressed proton spectra in <strong>th</strong>e human brain. By combining selective<br />

excitations wi<strong>th</strong> phase encoding gradients one dimensional spectroscopic imaging<br />

could be performed, resulting in <strong>th</strong>e simultaneous aquisition of watersuppressed<br />

proton spectra from different slices <strong>th</strong>rough <strong>th</strong>e human brain. Slice selective<br />

excitation pulses were given in <strong>th</strong>ree or<strong>th</strong>ogonal directions. Two directions<br />

restrict <strong>th</strong>e volume of <strong>th</strong>e slices and one direction parallel to <strong>th</strong>e phase encoding<br />

direction suppresses <strong>th</strong>e very intens signals of subcutaneous fat and bone marrow.<br />

These signals may obscure <strong>th</strong>e metabolite resonances wi<strong>th</strong>.~n <strong>th</strong>e same chemical shift<br />

range. Volume selection was achieved by stimulated echo's. Watersuppression was<br />

obtained by binomial pulses and selective dephasing pulses. Using <strong>th</strong>is sequence<br />

spectra can be obtained showing well resolved resonances of choline, creatine,<br />

N Acetyl Aspartate and lactate in <strong>th</strong>e submillimolar range. Studies are in progress<br />

to examine cerebral infarcts and brain tumors in patients ...............<br />

179


162 I<br />

HIGH RESOLUTION IOC-IH SHIFT CORRELATION WITH FULL [H-IH DECOUPLING.<br />

163 I<br />

M. PERPICK-DUMONT, *a W.F. REYNOLDS a AND R.G. ENRIQUEZ, b DEPARTY~NT OF<br />

CHEMISTRY UNIVERSITY OF TORONTO AND INSTITUTO DE QUIMICA, Utah7 ...... zDAD<br />

AUTONOM~ DE M~XICO.<br />

A COLOC-like sequence combined wi<strong>th</strong> a selective BIRD refocussinz<br />

pulse is used to generate fully IH-IH decoupled 13C-IH shift correlated<br />

spectra wi<strong>th</strong> F 1 line wid<strong>th</strong>s of ca. 7Hz. The sequence is generally freer<br />

of artifacts and more sensitive <strong>th</strong>an earlier sequences measured under<br />

comparable conditio:=s. A minor modification of <strong>th</strong>e sequence, which<br />

allows simultaneous observation of IJcH couplings, is particularly<br />

useful for determination of small differences in IJcH for non-equivalent<br />

CH 2 groups. IH chemical shifts and IJcH couplings can be measured wi<strong>th</strong><br />

a precision of < iHz, except in cases of strongly coupled CH 2 groups.<br />

However, even in <strong>th</strong>ese cases, it may still be possible to de:ermine<br />

very small chemical shift differences by simolation-of ~' ~<br />

_LI~ non--first<br />

order behavior.<br />

laC AND *SN MASS SPECTRA OF LABELED<br />

STAPHYLOCOCCAL NUCLEASE CRYSTALS<br />

Holly B.R. Cole* and Dennis A. Torchia<br />

NIDR, National Institutes of Heal<strong>th</strong>, Be<strong>th</strong>esda, HD 20892<br />

Osing genetically transformed E. Coli (provided by<br />

Professor John Gerlt), we have labeled staphylococcal.<br />

nuclease (Nase), an 18 kDa enzyme , wi<strong>th</strong> a variety of<br />

selectively enriched amino acids. We report MASS spectra of<br />

Nase, labeled wi<strong>th</strong> [me<strong>th</strong>yl-lee] me<strong>th</strong>ionine and [15N] valise.<br />

Lyophilized Nase has relatively broad, poorly resolved lines<br />

indicating local disorder. In contrast, crystalline Nase has<br />

well resolved lines whose chemical shifts may be compared to<br />

Nase chemical shifts observed in solution. This technique<br />

provides <strong>th</strong>e means to compare protein structures in <strong>th</strong>e<br />

crystalline and solution states using <strong>th</strong>e same experimental<br />

parameters. In addition, because of <strong>th</strong>e high sensitivity and<br />

resolution of <strong>th</strong>e MASS spectra, one has <strong>th</strong>e opportunity to<br />

study protein internal dynamics at numerous assigned single<br />

atomic sites in <strong>th</strong>e protein crystals.<br />

180


164<br />

I MODIFICATIOH OF A BRUKER WH-300 SPECTP.OI~TEP. FOP.<br />

B.~OADBAI[D/nlGd POWER SOLID STATE IR~ EXPEP.II~E~ITS<br />

Virgil Simplaceanu (*) and Chien Ho<br />

Department of Biological Sciences, Carnegie Mellon University<br />

4400 Fif<strong>th</strong> Avenue, Pittsburgh, PA 15213<br />

A modification is described <strong>th</strong>at allows performing broadband/high power I~<br />

experiments on a commerci~l spectrometer originally designed for high resolution<br />

I~. in liquids.<br />

Additional P~F gating and four phase channels are provided, gated by a timing<br />

simulator under <strong>th</strong>e control of <strong>th</strong>e Aspect computer. One RF channel has amplitude<br />

control capability for spin locking experiments and can also be used for shaped pulse<br />

applications if driven by an arbitrary waveform generator. A !lenry ~adio tunable i kW<br />

amplifier and/or a 50W broadband ENI amplifier are used as transmitters. The standard<br />

preamplifier is replaced by a fast mecovery, non-saturating preamplifier.<br />

Full compatibility and easy switchover from standard configuration to high power<br />

and back is maintained. The standard Bruker ~. software can be used to control <strong>th</strong>e<br />

execution of (automated) experiments via microprograms.<br />

165 I<br />

/ , /<br />

IN VIVO PHOSPHOROUS-31 NMR STUDIES OF HUMAN BRAIN AT 1.5T<br />

~aplan D. # , Pa,chalingam K. + McEvoy J. +, Spiker D. +, Keshavan M.S.+, Wolf GE #, Pettegrew J. 4--<br />

"The Pittsburgh NMR Institute, 3260 Fif<strong>th</strong> Ave, Pittsburgh, PA 15213<br />

+Western Psychiatric Institute and Clinic, 3211 O'Hara St., Pittsburgh, PA 15213<br />

We have studied <strong>th</strong>e dorsal prefrontal cortex in eight human subjects by 31p NMR. All studies were<br />

conducted on a General Electric Signa Scanner coordinating bo<strong>th</strong> imaging and spectroscopic protocols.<br />

Spectroscopic localization wi<strong>th</strong>in <strong>th</strong>e prefrontal cortex was achieved by surface coil B 1 profiling, and confirmed<br />

by proton imaging. Peak areas were calculated for phospho-monoesters, or<strong>th</strong>o-inorganic phosphate,<br />

phospho-dicsters, phosphocreatine, and <strong>th</strong>e nucleotide phosphates via a computerized spectral deconvolution<br />

program yielding a simulated spectrum of Iorentzian lines wi<strong>th</strong> frequencies, linewid<strong>th</strong>s, and areas<br />

corresponding to <strong>th</strong>e experimental spectrum. The observed values from normal adult volunteers, given in<br />

mole percent, are as follows: PME = 15.9, Pi = 8.06, PDE = 38.65. PCr = 11.15, gamma-ATP (ionized<br />

ends) = 9.44, alpha-ATP (esterified ends) = 9.89, beIa-ATP = 6.86. These values yield <strong>th</strong>e f¢~llowing<br />

ratios: PME/PDE = 0.41, PCr/P i = 1.38, PCr/ATP = 1.62. These results compal" ~ very well to bo<strong>th</strong><br />

classical biochemical assay of freeze clnmped extracted mammalian brain, as well as "P NMR studies of<br />

freeze-clamped exhacled mammalian brain.<br />

These results suggest <strong>th</strong>at in vivo NMR spectroscopy of adult human brnin conld provide metabolic<br />

insights into neuropsychiatric diseases. Schizophrc,ia, in particular, would be particulnrly applicable since<br />

bo<strong>th</strong> structural and metabolic alterations of <strong>th</strong>e dorsal prefrontal cortex have been implicated.<br />

181


SOLID STATE NMR STUDY ON THE STRUCTURE OF GRAMICIDIN A: Teng, Q.,<br />

155 I Nor<strong>th</strong>, C.L., Brenneman, M.T., LoGrasso, P.V. and Cross, T.A., Department of<br />

Chemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-3006.<br />

Gramicidin A is a fifteen amino acid polypeptide <strong>th</strong>at forms a cation selective channel in natural and<br />

syn<strong>th</strong>etic membranes. Structural information is being derived from solid state NMR studies of gramicidin<br />

in hydrated lipid bilayers. 13C and 15N labeled gramicidins have been syn<strong>th</strong>esized bo<strong>th</strong> by biosyn<strong>th</strong>esis<br />

wi<strong>th</strong> Bacillus brevis and by solid phase peptide syn<strong>th</strong>esis. Extensive lipid bilayers containing gramicidin<br />

are studied bo<strong>th</strong> as oriented and unoriented preparations. Solid state 15N chemical shift and dipolar spectra<br />

are analyzed to yield bond orientations for determining <strong>th</strong>e polypeptide backbone torsion angles.<br />

Fur<strong>th</strong>ermore, limitations on <strong>th</strong>e N-H bond leng<strong>th</strong>s in <strong>th</strong>is polypeptide are presented. These solid state NMR<br />

experiments provide basic information for <strong>th</strong>e calculation of <strong>th</strong>e gramicidin A channel structure.<br />

[<br />

~ DYNAMICS OF THE GRAMICIDIN A TRANSMEMBRANE CHANNEL BY<br />

1 67 [ SOLID STATE 15N NMR: L.K. Nicholson, M. T. Brenneman, P.V. LoGrasso and<br />

T.A. Cross, Florida State University, Institute of Molecular Biophysics and<br />

Department of Chemistry, Tallahassee, Florida 32306.<br />

The dynamics of specific sites in <strong>th</strong>e peptide backbone of <strong>th</strong>e gramicidin A cation selective-<br />

transmembrane channel have been studied using solid state 15 N NMR. Gramicidin A is a polypeptide<br />

consisting of fifteen amio acids which dimerizes to form a single stranded helical pore in a lipid bilayer.<br />

Its generally accepted structure is <strong>th</strong>e ~6.3 helix which, due to <strong>th</strong>e uniquely alternating L/D amino acid<br />

sequence places <strong>th</strong>e hydrophobic side chains on <strong>th</strong>e outside of <strong>th</strong>e channel where <strong>th</strong>ey interact wi<strong>th</strong> <strong>th</strong>e<br />

hydrocarbon core of <strong>th</strong>e bilayer, and <strong>th</strong>e polar peptide linkages along <strong>th</strong>e interior of <strong>th</strong>e channel which<br />

enhances solvation of <strong>th</strong>e channel ion. Al<strong>th</strong>ough gramicidin is <strong>th</strong>e most extensively studied channel, an<br />

atomic resolution mechanism of ion transport is not known. Characterization of motions of various groups<br />

wi<strong>th</strong>in <strong>th</strong>e channel backbone will help to elucidate <strong>th</strong>e specific interactions <strong>th</strong>at result in transport of <strong>th</strong>e ion<br />

across <strong>th</strong>e membrane. Motions of specific sites along <strong>th</strong>e channel backbone have been detected by observing<br />

<strong>th</strong>e averaging of <strong>th</strong>e lSN chemical shift anisotropy (CSA) tensor as a function of temperature in bo<strong>th</strong> oriented<br />

and unoriented samples. It has previously been shown <strong>th</strong>at fast overall channel rotation occurs in and<br />

above <strong>th</strong>e lipid phase transition region, and <strong>th</strong>at <strong>th</strong>e axis of rotation coincides wi<strong>th</strong> <strong>th</strong>e channel axis which is<br />

parallel to <strong>th</strong>e bilayer normal. This global rotation becomes slow on <strong>th</strong>e 3kHz timeframe of <strong>th</strong>e NMR<br />

experiment when <strong>th</strong>e temperature is below <strong>th</strong>e onset of <strong>th</strong>e phase transition. Recent studies of <strong>th</strong>e temperature<br />

dependence of <strong>th</strong>e l SN spectra of bo<strong>th</strong> oriented and unoriented samples show evidence for local motions of <strong>th</strong>e<br />

peptide linkages existing above <strong>th</strong>e onset of <strong>th</strong>e gel to liquid crystalline phase transition, and <strong>th</strong>at <strong>th</strong>e<br />

amplitude of <strong>th</strong>ese motions varies along <strong>th</strong>e channel backbone. These local motions have a large amplitude<br />

at <strong>th</strong>e monomoer - monomer juction where <strong>th</strong>e peptide linkage planes contribute a proton to <strong>th</strong>e hydrogen<br />

bonds linking <strong>th</strong>e two monomers. The temperature dependence of oriented samples where yield a very<br />

sharp resonance above <strong>th</strong>e phase transition region has proved to be a very sensitive indicator of dynamics<br />

when <strong>th</strong>e temperature is lowered. The resonance linewid<strong>th</strong> below <strong>th</strong>e phase transition reflects directly on <strong>th</strong>e<br />

range of orientations swept out by <strong>th</strong>e dynamic process at higher temperatures. This new tool for assessing<br />

dynamics should have broad application in systems <strong>th</strong>at can be oriented.<br />

182


IN VIVO 31p AND IH NMR SPECTROSCOPY AND IMAGING<br />

I-- OF RAT LIVER EXPOSED TO HALOCARBONS<br />

1 68 IRheal A. Towner$, Manfred Brauer*t, David Foxallt, and Edward G. Janzent.<br />

Guelph~Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry and<br />

Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2WI; $ Spectroscopy<br />

Imaging Systems Corp., 1120 Auburn St., Fremont, California USA 94538.<br />

Intoxication by hepatotoxins such as carbon tetrachloride (CCI~) is characterized<br />

by centrilobular necrosis and fatty degeneration of <strong>th</strong>e liver. The specific damage to<br />

<strong>th</strong>e liver is directly related to <strong>th</strong>e metabolism of CCI~ by <strong>th</strong>e liver.<br />

3~p-NMR in vivo spectroscopy was used to demonstrate metabolic changes in rat<br />

liver as a function of time after exposure to ei<strong>th</strong>er CCI~ or bromotrichlorome<strong>th</strong>ane<br />

(BrCCI3). The inorganic phosphate peak shifts upfield which is associated wi<strong>th</strong> a<br />

decrease in cytosolic pH. CCI~ or BrCCI3 intoxication causes an intracellular acidosis<br />

to pH 7.02 or 6.80 (±0.05), respectively. Also, it has been found <strong>th</strong>at halocarbon<br />

exposure alters <strong>th</strong>e relative amounts of phosphomonoesters and phosphodiesters detected.<br />

CCl~ and BrCCI3 induced changes which were readily detectable by NMR imaging<br />

techniques. Respiratory gating was used to attenuate motion artefacts due to<br />

brea<strong>th</strong>ing, and standard transverse multi~slice images were obtained on a SIS 200/330<br />

system (TE 18 ms). Two to four hours after <strong>th</strong>e administration of ei<strong>th</strong>er CCI~ or<br />

BrCC1 a, regions of high signal intensity appeared in <strong>th</strong>e rat liver images. These<br />

affected areas were in <strong>th</strong>e region where <strong>th</strong>e portal vein enters <strong>th</strong>e liver. Localized<br />

~H NMR spectra, using <strong>th</strong>e VOSY technique, indicated <strong>th</strong>at <strong>th</strong>e high proton signal<br />

intensity was due to water, ra<strong>th</strong>er <strong>th</strong>an a localized fatty infiltration. T 2<br />

determinations of <strong>th</strong>e water resonance wi<strong>th</strong>in <strong>th</strong>e affected regions of <strong>th</strong>e liver showed<br />

a significantly longer water T2 relaxation time <strong>th</strong>an unaffected areas of <strong>th</strong>e liver.<br />

Interestingly,3<strong>th</strong>e administration Of halo<strong>th</strong>ane anes<strong>th</strong>etic alone produced very similar<br />

results. These studies indicate localized tissue damage, wi<strong>th</strong> cell rupture and<br />

release of intracellular water. (Financial support from <strong>th</strong>e Univ. of Guelph<br />

MRI Facility, University of Guelph.)<br />

; 169<br />

SPECTROSCOPY WITH EXACT APODIZATION TRANSFORMATION ( SWEAT );<br />

M. Lisicki, A. A. Bo<strong>th</strong>ner-By, R. Shukla, J. Dadok, P.C.M. van Zijl,<br />

Carnegie Mellon University, Pittsburgh, PA., 15213<br />

The finite discrete Fourier Transform applied to a <strong>th</strong>eoretical time<br />

function of infinite duration produces frequency domain spectra distorted by<br />

truncation effects (sync wiggles) which interfere wi<strong>th</strong> precise spectral<br />

measurement. For example, doublet splittings determined by measuring <strong>th</strong>e<br />

frequency separation between line maxima will be incorrect if <strong>th</strong>e sync<br />

wiggles from one llne produce a significant slope at <strong>th</strong>e maxima of <strong>th</strong>e o<strong>th</strong>er<br />

line.<br />

On <strong>th</strong>e o<strong>th</strong>er hand, a line shape created in <strong>th</strong>e frequency domain will<br />

have a unique inverse transform. The inverse transform of <strong>th</strong>is novel line-<br />

shape used as an apodization function will produce <strong>th</strong>e exact desired llne<br />

shape in <strong>th</strong>e experimental spectra once <strong>th</strong>e natural line shape has been<br />

removed from <strong>th</strong>e experimental fid. The removal of <strong>th</strong>e natural llne shape<br />

can be accomplished by using <strong>th</strong>e inverse transform of a singlet in <strong>th</strong>e<br />

experimental spectra which contains <strong>th</strong>e desired natural line shape.<br />

We will demonstrate <strong>th</strong>e application of deconvolution and line-shape<br />

generation using exact apodization. Fur<strong>th</strong>ermore, we will show <strong>th</strong>eir use in<br />

exact spectral measurement. The computer program SWEAT which will implement<br />

<strong>th</strong>ese techniques will be available.<br />

18S


170 ]<br />

FLOW-COMPENSATED NMR IMAGING TECHNIQUES FOR RHEOLOGY OF<br />

SUSPENSIONS<br />

P.D. Majors, S.A. Altobelli, E. Fukushima, Lovelace Medical Foundation, Albuquerque, N.M.<br />

87108., and R.C. Givler, Sandia National Laboratories, Albuquerque, N.M. 87185.<br />

A suspension is a mixture of solid particles in a viscous fluid. Many natural processes (e.g.,<br />

blood circulation and river sedimentation) and industrial processes (e.g., transport of slurries and<br />

filtration) are affected by <strong>th</strong>e properties of suspensions. Unforttmately, <strong>th</strong>ere is a dear<strong>th</strong> of rhe-<br />

ological information for suspensions at ILigh concentrations due to limitations suffered by most<br />

measurement teclmiques. NMR yields spatially resolved quantitative velocity mid particle density<br />

information.<br />

We used flow-compensating NMR imaging techniques to determine <strong>th</strong>e flow properties (fluid<br />

and particle velocity distributious, particle density distribution) of viscous suspensions. Constituent<br />

concentrations for flowing two-phase systems can be obtained by time-averaging <strong>th</strong>e resonant signal<br />

of, say, <strong>th</strong>e fluid phase. The concentration of <strong>th</strong>e second phase is <strong>th</strong>us inferred from <strong>th</strong>e 'reduced'<br />

fluid signal. Preliminary NMR studies of two-phase stationary and flowing systems demonstrate<br />

<strong>th</strong>e quantitative nature of <strong>th</strong>e tecludques wi<strong>th</strong> good sensitivity and resolution.<br />

RAPID ROTATING FRAME IMAGING WITH RETENTION OF CHEMICAL SHIFT<br />

INFOP~MATION .~ M #*<br />

171 J P.M. Macdonald ~, K.R. etz , J.P. Boehmer +<br />

#Radiology Department, New England Deaconess Hospital, Harvard Medical School, 185<br />

Pilgrim Road, Boston, MA 02215<br />

+Department of Internal Medicine, University of Massachusetts Medical Center, 55 Lake<br />

Avenue Nor<strong>th</strong>, Worcester, MA 01605<br />

Rotating frame imaging (RFI) is an elegant and simple technique for mapping <strong>th</strong>e<br />

spatial distribution of NMR spectral information (I). The image is formed by using a<br />

homogeneous static field B and an rf field gradient B.(x) generated wi<strong>th</strong> a surface<br />

coil. Spins in different s~atial regions exhibit nutatlon frequencies u I which are<br />

proportional to <strong>th</strong>e rf field streng<strong>th</strong>: Ul=YBl(X)/2~. In Rapid RFI, whic~ is several<br />

orders of magnitude faster <strong>th</strong>an conventional RFI, <strong>th</strong>e spectral line of interest is<br />

)laced on-resonance and a single FID of n points is acquired (2) using:<br />

Preparation - (Pulse - Acquire One Point) - Relaxation.<br />

[DFT <strong>th</strong>en produces an image relating spin density and nutati~nal frequency (spatial<br />

distribution). Unfortunately, spatial information from off-resonance signals remains<br />

intermixed.<br />

Our approaches to removing <strong>th</strong>e undesired signals include: a) selective +90 vs -90 °<br />

tipping of <strong>th</strong>e signal of interest using DANTE such <strong>th</strong>at <strong>th</strong>e difference image contains<br />

only <strong>th</strong>e desired information, b) P~I wi<strong>th</strong> and wi<strong>th</strong>out selective inversion using shaped<br />

pulses (3) in order to eliminate extraneous signals using subtraction, and c) removal<br />

of off-resonance contributions by virtue of <strong>th</strong>eir fast decay in <strong>th</strong>e Rapid RFI sequence.<br />

(I) D.Hoult, J.Magn.Reson. 33, 183 (1979).<br />

(2) K.Metz and J. Boehmer, J.Magn. Reson., submitted.<br />

(3) M.Silver, R.Joseph, and D.Hoult, J.Magn.Reson. 59, 347 (1984).<br />

184 ....


. r<br />

172 JMAGIC ANGLE SPINNING SEPARATED LOCAL FIELD SPECTROSCOPY: SOME<br />

EXPERIMENTAL OBSERVATIONS RELEVANT TO THE DETERMINATION OF C-H DISTANCES BY NMR:<br />

Gretchen G. Webb* and Kurt W. Zilm, Department of Chemistry, Yale University 225<br />

Prospect Street, New Maven, CT 06511<br />

The calibration of <strong>th</strong>e homonuclear scaling factor is very important in<br />

obtaining accurate results for 13C-IH bond distances by separated local field<br />

spectroscopy (SLF). It has generally been noted <strong>th</strong>at <strong>th</strong>e best fits of SLF data always<br />

give an effective scaling factor <strong>th</strong>at is significantly less <strong>th</strong>an <strong>th</strong>at measured on a<br />

standard liquid sample if C-H distances from diffraction studies are used to calculate<br />

<strong>th</strong>e dipolar couplings. This discrepency has been attributed by o<strong>th</strong>er workers to <strong>th</strong>e<br />

effects of molecular motion or alternatively interpreted as indicating <strong>th</strong>at C-H<br />

distances are in fact longer <strong>th</strong>an measured by ei<strong>th</strong>er neutron or x-ray diffraction. In<br />

<strong>th</strong>is paper <strong>th</strong>e problems wi<strong>th</strong> calibrating <strong>th</strong>e homonuclear scaling factor in CPMAS<br />

probes is discussed and it is suggested <strong>th</strong>at scaling of 1H-13C J couplings for a<br />

liquid sample may be <strong>th</strong>e most accurate approach. Using <strong>th</strong>is technique <strong>th</strong>e scaling<br />

factor for a semi-wlndowless MREV-8 sequence is found to be <strong>th</strong>at predicted by <strong>th</strong>eory.<br />

When <strong>th</strong>e scaling factor is determined from HAS SLF patterns <strong>th</strong>e scaling factor is<br />

found to always be reduced by <strong>th</strong>e same amount if C-H bondleng<strong>th</strong>s are assumed to be<br />

1.09 A. This reduction in <strong>th</strong>e scaling factor occurs for bo<strong>th</strong> CH and CH 2 groups and is<br />

apparently independent of temperature down to 77K. The results indicate <strong>th</strong>at molecular<br />

and lattice libratlons are <strong>th</strong>e principal sources of <strong>th</strong>e reduction in observed dipolar<br />

couplings.<br />

~ --- 173 I<br />

Determination of H-H Bond Distances in Transition Metal Dihydrogen Complexes<br />

by Solid State NMR<br />

M. Chinn, M. Cozine, M. Heinekey, G. Kubas, t J. Millar*and K. Zilm<br />

Dept. of Chemistry, Yale University, New Haven, CT 06511<br />

1"Los Alamos National Laboratory, Los Alamos, NM 87545<br />

Molecular hydrogen (H 2) somewhat surprisingly acts as a ligand in a large number of transition metal<br />

complexes LnM(Vl2-H2 ). These complexes are of great interest to <strong>th</strong>e organometallic community since <strong>th</strong>ey<br />

may model an intermediate in <strong>th</strong>e oxidative addition of H 2 to form dihydrides. Not surprising is <strong>th</strong>e fact <strong>th</strong>at<br />

<strong>th</strong>e interaction of <strong>th</strong>e H 2 ligand and <strong>th</strong>e metal exhibits a wide degree of variation depending on <strong>th</strong>e metal and<br />

<strong>th</strong>e basicity of <strong>th</strong>e ligands, L. In <strong>th</strong>e simplest model, stronger binding of <strong>th</strong>e H 2 by <strong>th</strong>e metal should result in<br />

leng<strong>th</strong>ening of <strong>th</strong>e H-H bond. These distances have been studied by techniques such as x-ray and neutron<br />

diffraction as well as by solution 1H T 1 measurements. We report measurements of H-H distances by a 1H<br />

solid state selective pulse me<strong>th</strong>od which suppresses <strong>th</strong>e homogeneous lineshape of <strong>th</strong>e ligands, L, and<br />

allows observation of <strong>th</strong>e H 2 dipolar Pake pattern. These Pake patterns are complicated by torsional<br />

oscillations of <strong>th</strong>e H 2, but study of <strong>th</strong>e lineshapes as a function of temperature in most cases leads to models<br />

for <strong>th</strong>e motion and allows determination of <strong>th</strong>e H-H distances..In <strong>th</strong>e Mo, Ru and W complexes studied to<br />

date, observed powder pattems are -500 kHz in wid<strong>th</strong>, indicating bond distances ranging from 0.89 to 1.02<br />

Angstroms.<br />

185


It<br />

174 I<br />

DESIGN OF A HIGH RESOLUTION HIGH PRESSURE DOUBLE RESONANCE<br />

NMR PROBE: P. J. Grandinetti', D. Vander Velde, C.-L. Xie, N. A. Walker, and<br />

J. Jonas, University of Illinois, Urbana, IL 61801<br />

High pressure NMR studies have demonstrated <strong>th</strong>e importance of pressure in under-<br />

standing molecular dynamics in liquids. We have extended <strong>th</strong>is technique to study<br />

complex disordered systems using double resonance (i.e. x3C{1H}) NMR at pres-<br />

sures from 1 to 4000 bar. The new design minimizes <strong>th</strong>e leng<strong>th</strong> of rf transmission<br />

hnes between <strong>th</strong>e sample coil (in <strong>th</strong>e high pressure environment) and <strong>th</strong>e resonant<br />

circuit (in <strong>th</strong>e ambient environment). The sample coil is double-tuned so <strong>th</strong>at large<br />

sample volumes (12 mm diameter) can be used wi<strong>th</strong>in <strong>th</strong>e pressure vessel for cases<br />

of low sensitivity.<br />

Prehminary results are reported for a study of <strong>th</strong>e pressure effects on <strong>th</strong>e molecular<br />

motion of 2-e<strong>th</strong>yl hexylbenzoate, a model syn<strong>th</strong>etic elastohydrodynamic lubricant.<br />

175<br />

CARBON-13 CP/MAS NMR STUDY OF THE NYLON-6 POLYMOPHS AND DYNAMICS:<br />

Dehua Wang',Jianzhi Hu, Xin Yan, Guoxi Wan9 and Baogon9 Qian,<br />

Wuhan Institute of Physics, Academia Sinica, Wuhan, Hubei, P.R. China<br />

C-13 CP/MAS spectra of nyton-5 were obtained on MSL-400 instrument.<br />

was found<strong>th</strong>at <strong>th</strong>e ~ carbon<br />

has two peaks in<br />

originate from d<br />

in sotution spec<br />

existence of dif<br />

state <strong>th</strong>e = , p<br />

A series o<br />

contact time to<br />

feast square opt<br />

potarization rat<br />

a 15 ~' 5<br />

- [-CO-CH= -CH= -CH= -CH, -CH= -NH-] -. ny t on-6<br />

sotid state. They are designated as ~ = and ~ , which<br />

ifferent crystattine components. The two peaks coatesced<br />

tru= of <strong>th</strong>e same sampte. It 9ires <strong>th</strong>e evidence of co-<br />

ferent crystattine re9ions in sotid nyton-6.In <strong>th</strong>e sotid<br />

eak is 2.2 ppm to upfietd from <strong>th</strong>e ~ • peak.<br />

f CP/MAS spectra of nyton-6 was measured by varyin9 <strong>th</strong>e<br />

investigate <strong>th</strong>e dynamic behavior. A SIMPLEX nontinear<br />

imization at9ori<strong>th</strong>m was apptied to catcutate <strong>th</strong>e cross-<br />

es T,, and <strong>th</strong>e proton T• p . The dynamic parameters of<br />

sotid nyton-6 we re catcutated accordin9 to Ngai formatism.<br />

186


2<br />

. °<br />

I-<br />

176 I<br />

Michael A. Kennedy and Paul D. Ellis<br />

Department of Chemistry<br />

University of Sou<strong>th</strong> Carolina<br />

Columbia, Sou<strong>th</strong> Carolina 29208<br />

SING~.CRYSTAL NMR STUDIES OF II3cD COMPLEXES<br />

AND --SCD NMR OF CADMIUM PROTOPORPHYRIN IX AND<br />

CADMIUM MYOGLOBIN.<br />

For <strong>th</strong>e past ~eral years, we have been involved in establishing a<br />

understanding of ~Cd NMR chemical-shift-structure correlations <strong>th</strong>roug<br />

single crystal oriented NMR experiments. A major impetus for <strong>th</strong>es<br />

studies has be~ 3 <strong>th</strong>e desire to interpret chemical shift tenso<br />

information for Cd substituted proteins. In <strong>th</strong>e absence of adequat<br />

single crystals, one must rely on trends established <strong>th</strong>rough singl<br />

crystal experiments for interpretation. In <strong>th</strong>e case of oxocadmiu<br />

complexes, <strong>th</strong>e following has been established; i) <strong>th</strong>e least shieldeq<br />

element is aligned most nearly perpendicular to <strong>th</strong>e plane containin,<br />

water oxygens, ii)two tensor elements having similar values must havq<br />

similar or<strong>th</strong>ogonal environments, iii) in <strong>th</strong>e absence of water oxygen<br />

<strong>th</strong>e deshielded element is oriented to maximize <strong>th</strong>e short-bond oxygel<br />

shielding contribution, and iv) <strong>th</strong>e most shielded element is most nearl'<br />

perpendicular to <strong>th</strong>e longest cadmium-oxygen bond. The results o<br />

investigation of some mixed cadmium-oxo-nitrogen complexes and cadmium<br />

oxo-halogen ~plexes will be presented here.<br />

Also, Cd solid and solution state NMR for i) cadmium<br />

protoporphyrin IX dime<strong>th</strong>yl esterl13a model complex for cadmium-myoglobil<br />

and cadmium-hemoglobin, and ii) Cd-myoglobin will be presented an,<br />

discussed. This work was supported by <strong>th</strong>e National Science Foundation<br />

grant #CHE86-11306, and <strong>th</strong>e National Institues of Heal<strong>th</strong>, grant #GM26295<br />

- - 177<br />

I<br />

Be<strong>th</strong> Crockett and Paul D. Ellis<br />

Department of Chemistry<br />

University of Sou<strong>th</strong> Carolina<br />

Columbia, Sou<strong>th</strong> Carolina 29208<br />

~E ADSORptiON OF Rb + AND Cs + TO TRANSITION ALUMINAS BY<br />

"Rb AND ---Cs SOLID STATE NMR SPECTROSCOPY<br />

8~ecently, in <strong>th</strong>is lab, Cheng and Ellis have shown <strong>th</strong>e effects on<br />

<strong>th</strong>e Rb I solid state nmr of varying coverages of RbCl adsorbed on 7-<br />

iAlumina. Through <strong>th</strong>is work, <strong>th</strong>e following conclusions have been made:<br />

IFirst, <strong>th</strong>ere are at least four different species present on <strong>th</strong>e surface<br />

fat sub-monolayer coverages of RbCl. Secondly, going from lower to higer<br />

Icoverages corresponds to a relative decrease in <strong>th</strong>e rate of grow<strong>th</strong> of<br />

<strong>th</strong>e surface species compared to <strong>th</strong>~ salt specles. And <strong>th</strong>irdly, <strong>th</strong>e<br />

Rb ion motion in <strong>th</strong>e interstitial sites<br />

~ resence of water facilitates<br />

f <strong>th</strong>e surface, giving credence to <strong>th</strong>e idea of adsorbate islanding.<br />

In work to be presented here, we intend to show <strong>th</strong>e effects of RbCl<br />

and CsCI adsorbed onto aluminas wi<strong>th</strong> varying surface areas. These<br />

transition aluminas are prepared by heating boehmite in a tube furnace<br />

under N~, and <strong>th</strong>eir surfa~g area de~mined wi<strong>th</strong> a Quantachrome surface<br />

area analyzer. Through U'Rb and - =Cs solid state nmr, <strong>th</strong>e following<br />

questions: how will going from higher to lower surface areas affect <strong>th</strong>e<br />

relative formations of <strong>th</strong>e salt and surface species, and how will <strong>th</strong>e<br />

varying forms of <strong>th</strong>e alumina affect <strong>th</strong>e motion of <strong>th</strong>e cations on <strong>th</strong>e<br />

surface, will be addressed. This work was partially supported by <strong>th</strong>e<br />

National Science Foundation, grant #CHE86-I1306.<br />

i. Cheng, J. T. and Ellis P. D., submitted to J. Amer. Chem. Soc.


178 CROSS-POLARIZATION NAS NMR OF 27AI IN =- AND T-ALUMINA.<br />

H. Douglas Morris and Paul D. Ellis<br />

Department of Chemistry<br />

University of Sou<strong>th</strong> Carolina<br />

Columbia , Sou<strong>th</strong> Carolina 29208<br />

The NMR characterization of catalyst supports such as T- and ~-<br />

aluminas has been accomplished <strong>th</strong>rough <strong>th</strong>e observation of "probe"<br />

molecules absorbed on <strong>th</strong>e surface. This me<strong>th</strong>odology is accurate only for<br />

<strong>th</strong>e sites and site distributions accessible to <strong>th</strong>e probe, we report here<br />

intrinsic observation of surface A1 sites on ~- and y- alumina via<br />

~I CPMAS.- The absence of sub-surface IH allows only surface Br~nsted<br />

site A1 atoms to contribute to <strong>th</strong>e spectra. This observation combined<br />

wi<strong>th</strong> cross-polarization to quadrapolar nuclei will allow <strong>th</strong>e surface<br />

characteriza-tion of many catalytic supports which hi<strong>th</strong>erto were<br />

described via probe molecules.<br />

We have been able to clearly distinguish octahedral from tetrahedral<br />

A1 sites. These sites have shown a population distribution dependent on<br />

<strong>th</strong>e degree of surface dehydration. The addition of a weak Lewis base,<br />

pyridine, has shown selective signal enhancement of <strong>th</strong>e T site over <strong>th</strong>e<br />

O h site, which agrees wi<strong>th</strong> Majors a~d Ellis, in <strong>th</strong>e a~signment of a<br />

hYgher percentage of T d Lewis sites.<br />

Experimental spectra are presented for different levels of surface<br />

dehydration, and addition of pyridine. Analysis of T I and T b~havior<br />

is presented to describe <strong>th</strong>e spin-dynamics of <strong>th</strong>e surface ;AI-IH<br />

interaction. This work was partially supported by <strong>th</strong>e NSF, grant #CHE86-<br />

11306.<br />

i. Ellis, P. D. and Morris, H. Douglas, submitted to J. Am. Chem. Soc.<br />

2. Majors, P. D. and Ellis, P. D., J. A. C. S., 109, 1648 (1987).<br />

179 I<br />

DYNAMICS OF CHAIN SEGMENTS IN THERMOSKT RESINS* C. G. Fry and<br />

A. C. Lind, McDonnell Douglas Research Laboratories, P. O. Box 516,<br />

St. Louis, Missouri, 631 66<br />

The dynamics of chain segments between crosslinks in <strong>th</strong>ermoset<br />

resins are investigated by use of solid-state deuterium NMR and<br />

molecular modeling techniques. Diamino-alkanes labeled at specific<br />

sites are used as curing agents for <strong>th</strong>e <strong>th</strong>ermoset resins. ~H NMR<br />

spectra obtained at various temperatures are sensitive to <strong>th</strong>e site-<br />

specific motions of <strong>th</strong>e alkane chain. Molecular modeling provides a<br />

powerful technique for interpreting <strong>th</strong>e NMR spectra, and forms a basis<br />

for <strong>th</strong>e modeling of crosslinked polymers in general. The effects of <strong>th</strong>e<br />

mobility of <strong>th</strong>e crosslink points at <strong>th</strong>e chain ends, of <strong>th</strong>e alkane chain<br />

leng<strong>th</strong>, and of intermolecular chain interactions on <strong>th</strong>e line shapes will<br />

be discussed.<br />

*This research was conducted under <strong>th</strong>e McDonnell Douglas Independent<br />

Research and Development program.<br />

188


. o<br />

. o<br />

180 l17o/Is NMR MICROSCOPY AT CWRU: G. Mateescu* G. Yvars D. Pazara and<br />

N.A. Alldridge b Departments of Chemistry and Biology b Case Western Reserve University<br />

Cleveland, Ohio 44106.<br />

A 9.4 T NMR microscope recently installed on our MSL-400 is opening fascinating new<br />

avenues for interdisciplinary research on our campus. The outstanding feature of <strong>th</strong>e<br />

system is a double resonance probe which allows exact superposition of 170 and IH<br />

images taken from <strong>th</strong>e same slice of <strong>th</strong>e specimen. This is particularly useful in<br />

human, plant, animal, or materials studies where 170 is used ei<strong>th</strong>er as direct imaging<br />

IH Microimage of<br />

African violet<br />

petiole; individual<br />

cells can be seen.<br />

IH image of 5 mm<br />

tube wi<strong>th</strong> H2170<br />

in 20 mm H2160 tube;<br />

note 0-17<br />

induced contrast.<br />

source or as a relaxation agent for characteristic enhancement of proton images. We<br />

will present <strong>th</strong>e first results of combined 170/IH imaging which lead to new insights<br />

into <strong>th</strong>e chemistry of life processes in plants and animals. The resolution limits will<br />

be illustrated wi<strong>th</strong> micrographs of human hair, plant, and animal cells and tissues.<br />

Imaging of chemical reactions and tridimensional diffusion will also be demonstrated.<br />

Support from NIH, NSF, and <strong>th</strong>e Ohio Board of Regents is gratefully acknowledged.<br />

181 I APPLICATION OF I-D AND 2-D SODIUM-23 MAGNETIZATION<br />

TRANSFER NMR TO STUDY TRANSMEMBRANE CATION EXCHANGE<br />

Dikoma C. Shungu*and Richard W. Briggs<br />

Department of Radiology,<br />

University of Florida, Gainesville, FL 32610.<br />

While I-D magnetization transfer NMR experiments (i) are use-<br />

ful for determining kinetic rate information in <strong>th</strong>e slow exchange<br />

regime, <strong>th</strong>eir use in <strong>th</strong>e study of rapidly relaxing nuclei (e.g.,<br />

Na-23) is a challenging practical problem due to difficulties in<br />

obtaining frequency-selective pulses which are short enough to en-<br />

sure negligible relaxation during <strong>th</strong>eir application. This poster<br />

describes how selective inversion of Na-23 resonances wi<strong>th</strong> a<br />

spin-lattice relaxation time as short as 12 msec can be effective-<br />

ly achieved. Na-23 inversion transfer experiments performed using<br />

<strong>th</strong>is me<strong>th</strong>od are shown to yield reliable rate constants for ion ex-<br />

change across prototype lipid membranes. It is also shown <strong>th</strong>at 2-D<br />

Na-23 NMR can be used to detect transmembrane cation exchange<br />

processes. Possibility of application to in vivo systems is dis-<br />

cussed.<br />

(i) S. Forsen and R.A. Hoffman, J. Chem. Phys., 3_99, 2892 (1963);<br />

40, 1189 (1964); 45, 2049 (1966).<br />

189


-- 182 I<br />

SUPPRESSION OF ARTIFACTS<br />

IN MULTIPLE ECHO NUCLEAR MAGNETIC RESONANCE<br />

G.J.Barker*, T.H.Mareci.<br />

Department of Radiology,<br />

University of Florida, Gainesville, FL 32610.<br />

Many techniques in bo<strong>th</strong> Magnetic Resonance Imaging (MRI) and<br />

Magnetic Resonance Spectrosopy (MRS) use two or more rf pulses to ex-<br />

cite <strong>th</strong>e spin system and detect <strong>th</strong>e echo signals which form between or<br />

after <strong>th</strong>e pulses. After <strong>th</strong>e initial excitation <strong>th</strong>e evolution of <strong>th</strong>e<br />

spin system depends upon relaxation times, exchange rates, diffusion<br />

constants and o<strong>th</strong>er properties, wi<strong>th</strong> <strong>th</strong>e dominant mechanisms being<br />

determined by <strong>th</strong>e details of <strong>th</strong>e timing and tip angles of <strong>th</strong>e pulses.<br />

In general many different echoes form during each acquisition inter-<br />

val, one of which carries <strong>th</strong>e information required. The o<strong>th</strong>ers lead to<br />

distortion of peak heights and line shapes in MRS, and to ghost images<br />

and similar artifacts in MRI.<br />

The 'coherence transfer pa<strong>th</strong>way' formalism (1) allows <strong>th</strong>e evo-<br />

lution of each echo to be studied and suggests me<strong>th</strong>ods of removing <strong>th</strong>e<br />

unwanted signals. Phase cycling schemes haye been investigated which<br />

cause cancellation of <strong>th</strong>e unwanted echoes, in certain cases during a~l<br />

acquisition intervals of a multiple echo sequence. Such schemes re ~<br />

qulre a large number of transients to be collected, however, so a<br />

second me<strong>th</strong>od has been developed whereby <strong>th</strong>e systematic application of<br />

magnetic field gradients produce similar results wi<strong>th</strong>in a single tran-<br />

sient. Examples of <strong>th</strong>e a~plication of bo<strong>th</strong> me<strong>th</strong>ods to <strong>th</strong>e spin echo<br />

and TART (2) sequences In Imaglng, and to RED NOES¥ (3) in spectros =<br />

copy, show <strong>th</strong>eir success in remove artifacts.<br />

This research was supported in part by NIH Biotechnology<br />

Resource Grant (P41-RR-02278) and <strong>th</strong>e Veteran Administration<br />

Medical Research Service.<br />

(1) G.Bodenhausen et al. , J. Magn. Reson. 58, 370, (1984)<br />

(2) T.H.Mareci et al. , J. Magn. Reson. 67, 55, (1986)<br />

(3) T.H.Mareci et a]. : 27<strong>th</strong> RNC_ R~]t~mn~A (lqR~%<br />

--183 I<br />

QUANTITATION OF EXCHANGE RATES<br />

USING THE RED NOESY SEQU<strong>ENC</strong>E<br />

M.D. Cockman* and T.H. Mareci<br />

Departments of Chemistry, Radiology, and Physics<br />

University of Florida, Gainesville, FL 32610.<br />

We have previously introduced <strong>th</strong>e RED NOESY pulse sequence<br />

for <strong>th</strong>e simultaneous acquisition of several 2D NOESY spectra, each<br />

wi<strong>th</strong> a different mixing time (i). The RED NOESY sequence is similar<br />

to <strong>th</strong>e NOESY sequence but <strong>th</strong>e final 90 degree pulse of <strong>th</strong>e latter is<br />

replaced by a series of "read" pulses of tip angles less <strong>th</strong>an 90 de-<br />

grees to sample <strong>th</strong>e exchanging longitudinal magnetization. This is<br />

<strong>th</strong>e same principle behind <strong>th</strong>e TART and STEAM T1 imaging sequences<br />

(2,3). Recently, Meyerhoff, et.al, have applied <strong>th</strong>e sequence to a<br />

small lactone and report good success in routlne use of <strong>th</strong>e pulse se-<br />

quence for <strong>th</strong>e observation of NOEs (4). We have investigated <strong>th</strong>e use<br />

of RED NOESY for <strong>th</strong>e quantitation of exchange rates for <strong>th</strong>ree small<br />

N,N-dime<strong>th</strong>[lamides. The most limiting aspects of RED NOESY are: i)<br />

<strong>th</strong>at <strong>th</strong>e slgnal acquisition time imposes a lower bound on <strong>th</strong>e mixing<br />

times and 2) <strong>th</strong>at <strong>th</strong>e read pulses form unwanted echoes. We present a<br />

homospoiling scheme designed to overcome <strong>th</strong>e second factor and exam-<br />

ine <strong>th</strong>e implications of <strong>th</strong>e first.<br />

This research was supported in part by <strong>th</strong>e NIH Biotechnology<br />

Resource Grant (P41-RR-02278) and <strong>th</strong>e Veterans Administration Medical<br />

Research Service.<br />

(I) T.H. Mareci, S. Donstrup, and M.D. Cockman, 27<strong>th</strong> <strong>ENC</strong>, Baltimore,<br />

1986.<br />

(2) T.H. Mareci, W. Sattin, K.N. Scott, and A. Bax, J. Magn. Reson,<br />

67, 55 (1986).<br />

(3) A. Haase and J. Frahm, J. Magn. Reson. 65, 481 (1986).<br />

(4) D.J. Meyerhoff, R. Nunlist, and J.F. O'Connell, Magn. Reson.<br />

Chem., 843, Oct (1987).<br />

190


To be presented at <strong>th</strong>e 29<strong>th</strong> Experimental Nuclear Magnetic Resonance Spectroscop~<br />

<strong>Conference</strong>, April I?-21, <strong>1988</strong> at Rochester, New York.<br />

1 84 I MULTINUCLEAR N-MR METHODOLOGY FOR DECONVOLUTING NATURAL<br />

MIXTURES AND CATALYTICALLY ACTIVE LAYER SILICATESt: Ar<strong>th</strong>ur R. Thompson*,<br />

Ka<strong>th</strong>leen A. Carrado and Robert E. Botto, Chemistry Division, Argonne National<br />

Laboratory, 9700 Sou<strong>th</strong> Cass Avenue, Argonne, IL 60439<br />

The combined use of a variety of pulse sequences and variable field has expanded<br />

<strong>th</strong>e utility of solid-state aluminum-27 and silicon-29 NMR of layer silicates.<br />

The goal of <strong>th</strong>is research has been to improve our knowledge of <strong>th</strong>e possible roles<br />

of layer silicates in coal formation and catalysis. Many natural systems such as<br />

coal contain a mixture of layer silicates and <strong>th</strong>eir similar structures coupled<br />

wi<strong>th</strong> a lack of uniformity wi<strong>th</strong>in a clay often yield broad overlapping spectra.<br />

Therefore, we analyzed several clays and <strong>th</strong>eir chemically modified variants to<br />

determine how to selectively distinguish <strong>th</strong>at particular layer silicate. Some<br />

layer silicates when chemically modified to increase <strong>th</strong>eir catalytic activity<br />

show radical changes in <strong>th</strong>eir NMR spectra while o<strong>th</strong>ers show remarkably little<br />

change. We have used <strong>th</strong>ese selective me<strong>th</strong>ods to determine which layer silicates<br />

present are more intimately associated wi<strong>th</strong> <strong>th</strong>e organic portion of coal, and<br />

hence more likely to have played a role in coaliflcati0n. We feel <strong>th</strong>ese results<br />

demonstrate <strong>th</strong>e feasibility of using NMR spectroscopy to study complex systems of<br />

layer silicates.<br />

tWork performed under <strong>th</strong>e auspices<br />

Division of Chemical Sciences, U.<br />

number W-31-109-ENG-38.<br />

of <strong>th</strong>e Office of Basic Energy Sciences,<br />

S. Department of Energy, under contract<br />

PARSING THE EDITED 1H NMR SIGNALS INTOI2c-1H ANDI3C-IH SUBSPECYRA:<br />

185 I ASTRATEGYTO STUDY SPECIFIC A£TIVITY IN VIVO.<br />

T. Jue*<br />

Dept. Molecular Biophysics and Biochemistry, Yale University, ~wHaven, Ct. 06511<br />

The general concern wi<strong>th</strong> <strong>th</strong>e indirect detection experiment is sensitivity<br />

enhancement; a particular requirement of an in vivD experiment is specific activity.<br />

Tracing <strong>th</strong>e metabolic flux entails an isotopic precursor infusion and a subsequent<br />

product analysis. However, <strong>th</strong>e product is diluted by fluxes <strong>th</strong>rough <strong>th</strong>e many pa<strong>th</strong>-<br />

ways, start'.~ng wi<strong>th</strong> endogenous, unlabeled precursors.<br />

Wi<strong>th</strong> 13C isotope strategy bo<strong>th</strong> <strong>th</strong>e 12C-IH and 13C-I~ si~%als are neoessary<br />

to access fractional enrichment information. St~m~dard [ C[-'H heteronuclear<br />

editing sequence (i) does not always yield <strong>th</strong>e 12C-IH signal, being often masked<br />

by <strong>th</strong>e background lipid reson~ces. Howe~. homonuclear editing sequences will<br />

select sinultaneously <strong>th</strong>e 12C- H and 13C- H resonances (2).<br />

Because in vivo experiments are conducted at lower field, ~e have refined<br />

<strong>th</strong>e editing strategy to separate <strong>th</strong>e edited 12C-IH and 13C-IH signals into sub-<br />

spectra. This strategy permits us to decouple and to impl~t <strong>th</strong>e fractional<br />

.enrichment study at lower field.<br />

i. M. R. Bendall, D. T. Pegg, D. M. Doddrell, and J. Field J. Am. Qhem. Soc. 103,<br />

934, 1981.; R. Freeman, T. H. ~reci, G. A. Morris J. Magn. Neson. 42, 341, 1981.<br />

2. T. Jue J. Magn. Reson. 73, 524, 1987.<br />

191


186 (Poster)<br />

The 13C Relaxation Behavior of E<strong>th</strong>ane Through Its Critical Point<br />

Ronald F. Evilia and Scott L. WhittenSurg:' Dept. of Chemistry,<br />

Univ. of New Orleans, New Orleans, La. 70148<br />

, Jan M. Robert: Dept. of Chemistry, S.G. Mudd Bldg. #6, Lehigh<br />

Univ., Be<strong>th</strong>lehem, Pa. 18015<br />

The longitudinal relaxation time of 13C in <strong>th</strong>e e<strong>th</strong>ane molecule has been<br />

measured over a temperature range of -i01 to +50°C, for a sample at <strong>th</strong>e<br />

critical density. T I appears to vary wi<strong>th</strong> temperature, as anticipated;<br />

however, a discontinuity in <strong>th</strong>e relaxation behavior is apparent at <strong>th</strong>e<br />

critical point. From <strong>th</strong>e experimental data, <strong>th</strong>e critical constant may<br />

be obtained.<br />

[~ 1 87 INMR INVESTIGATION OF THE CYCLOPHILIN:CYCLOSPORIN COMPLEX. Heald SL,<br />

Gooley P, Armitage IM, Johnson C, Harding MW*, Handschumacher RE*. Departments of<br />

Molecular Biophysics and Biochemistry, Diagnostic Radiology and *Pharmacology, Yale<br />

University Schoor of Medicine, New Haven, CT 06510.<br />

Cyclophllln (CyP) is a low molecular weight protein which specifically binds<br />

<strong>th</strong>e potent immunosuppressant, cyclosporin A (CsA). The amino acid sequence has been<br />

determined (163 residues, Mr 17,737) on <strong>th</strong>e major bovine isoform of CyP. The primary<br />

goal of <strong>th</strong>is work is to identify <strong>th</strong>e CsA-binding site in cyclophilin. This<br />

investigation has proceeded along 3 pa<strong>th</strong>ways: (I) conformational studies on <strong>th</strong>e<br />

drug, CsA; (II) probing <strong>th</strong>e CsA:CyP complex by IH NMR and (III) <strong>th</strong>rough NMR-labelled<br />

CsA analogues.<br />

Cyclosporln A goes from a single averaged conformation observed in CDCI 3 to<br />

multiple conformations in polar solvents. Several of <strong>th</strong>e individual conformations<br />

observed in <strong>th</strong>e CH3OD/"H20 mixture are identified based on <strong>th</strong>e HOHAHA and ROESY spin-<br />

locking experiments.<br />

Drug-free cyclophilin has been characterized by <strong>th</strong>e IH 2D NMR experiments:<br />

COSY, HOHAHA and NOESY. Amino acid types have been assigned in <strong>th</strong>e aromatic and<br />

upfield me<strong>th</strong>yl spectral regions. A comparative study has been carried out on <strong>th</strong>e<br />

CsA:CyP complex. The amino acid residues predominately involved in complexation are<br />

readily identified by <strong>th</strong>is me<strong>th</strong>od. Site-specific assignment of <strong>th</strong>ese residues is<br />

assisted by <strong>th</strong>e use of NMR-labelled CsA analogues in conjunction wi<strong>th</strong> heteronuclear<br />

multiple quantum and isotope-directed nOe NMR experiments. (Supported by NIH grant<br />

DE 18778, American Cancer Society CH-67-28 and Merck & Co., Inc.).<br />

192


INHIBITION OF ALANINE RACEMASE BY THE PHOSHATE ANALOG OF<br />

188 ~LANINE, I-(AMINOETHYL)PHOSPHATE (ALA-P): IDENTIFICATION<br />

~ A SCHIFF BASE LINKAGE IN THE ENZYME-INHIBITOR COMPLEX BY SOLID STATE<br />

-N-NMR. ,<br />

Val~rie Copi~, W. Stephen Faraci, Christopher T. Walsh,<br />

and Robert G. Griffin<br />

Departments of Chemistry and Biology,<br />

and <strong>th</strong>e Francis Bitter National Magnet Laboratory,<br />

Massachusetts Institute of Technology, Cambridge, MA 02139<br />

Alanine racemases are a group of pyridoxal-5'-phosphate (PLP)<br />

containing enzymes which catalyze <strong>th</strong>e racemization of L- and D-alanine,<br />

<strong>th</strong>e latter being an essential component of <strong>th</strong>e peptidoglycan layer of<br />

bacterial cell wall. Al<strong>th</strong>ough <strong>th</strong>e kinetics of inactivation of alanine<br />

racemases from gram positive bacteria by Ala-P have been well<br />

determined, <strong>th</strong>e structure of <strong>th</strong>e inactive enzyme complex remained to be<br />

determined.<br />

Solid State NMR technique was used to address <strong>th</strong>e issue of whe<strong>th</strong>er<br />

or not AIa-P forms a covalent linkage to ~e enzyme's PLP cofactor.<br />

Solid State, Magic Angle Sample Spinning N-NMR experiments combined<br />

wi<strong>th</strong> cross-polarization technique were performed at low temperatures on<br />

microcrystals of Ala-P-alanine racemase complex. The NMR results show<br />

<strong>th</strong>at <strong>th</strong>e inactive complex forms a protonated Schiff base to<br />

pyridoxal-5'-phosphate (PLP) in <strong>th</strong>e enzyme's active site. Solid State<br />

NMR spectra of Schiff bases and Ala-Pl~Odel compounds were also<br />

accumulated to provide a database of N-chemical shifts.<br />

Dynamic and Confromational Structure of CORD Factor Glycolipids in<br />

] 8 9 I Model Membranes as Determined by Solid-State 2H NMR:<br />

, r<br />

R. A. Byrd and T. K. Lira, Biophysics Laboratory, Division of Biochemistry and<br />

Biophysics/FDA, 8800 Rockville Pike, Be<strong>th</strong>esda, MD 20892<br />

As part of our studies of cell surface carbohydrates and <strong>th</strong>eir intermolecular interactions,<br />

a recent study has dealt Wi<strong>th</strong> <strong>th</strong>e structural features of a particular glycolipid. Our studies are<br />

aimed at elucidating <strong>th</strong>e role of <strong>th</strong>ese glycolipids in defining <strong>th</strong>e physical and chemical properties<br />

of <strong>th</strong>e mycobacterial cell surface. The glycolipid is a syn<strong>th</strong>etic analog of a natural component<br />

referred to as CORD FACTOR. Certain virulent strains of bacteria form long filaments or<br />

serpentine-like 'cords'. The cord factor has been isolated and characterized as trehalose-6,6'-<br />

dimycolate. Recently, <strong>th</strong>ere is renewed interest in its immunostimulant properties and its<br />

antitumor activities, which prompted <strong>th</strong>e testing of several syn<strong>th</strong>etic analogues.<br />

The dynamical behaviors of <strong>th</strong>e trehalose head-group and of <strong>th</strong>e hydrocarbon tails<br />

(dipalmitate and di{2-tetradecylhexadecanoate}) in <strong>th</strong>e liquid-crystalline phase were investigated<br />

by solid-state 2H NMR. Selective syn<strong>th</strong>etic incorporation of 2H on bo<strong>th</strong> saccharide rings and <strong>th</strong>e<br />

hydrocarbon chains leads to a complete study of <strong>th</strong>e entire molecule. From <strong>th</strong>e fully assigned 2H<br />

spectra and <strong>th</strong>e respective quadrupole splittings, <strong>th</strong>e conformation of <strong>th</strong>e head group was<br />

determined in a number of systems. Clear evidence exists for pronounced ring strain in <strong>th</strong>e<br />

trehalose moiety. This may have significant implications for understanding <strong>th</strong>e surface<br />

carbohydrate structures such as LPS.<br />

193


THE VISUALIZATION OF PROBE ELECTRIC FIELDS<br />

by<br />

190 j D.I. Hoult* and C-N. Chen<br />

Biomedical Engineering and Instrumentation Branch, Division of Research Services,<br />

Bldg. 13, Rm. 3W13, National Institutes of Heal<strong>th</strong>, Be<strong>th</strong>esda, MD 20892.<br />

Conservative electric fields in <strong>th</strong>e sample volume of NMR probes are responsible for twin<br />

evils - <strong>th</strong>e detuning of <strong>th</strong>e probe upon insertion of a sample wi<strong>th</strong> high dielectric constant (e.g.<br />

tissue or water, E = 80), and losses which result in sample heating and reduced signal-to-noise<br />

ratio. Several probe designs have adopted <strong>th</strong>e strategy of distributing <strong>th</strong>e tuning capacitance<br />

about <strong>th</strong>e probe coil in order to reduce <strong>th</strong>e electric fields and extend <strong>th</strong>e usable frequency range,<br />

but it is always difficult to know whe<strong>th</strong>er or not <strong>th</strong>e adopted strategy has been successful, <strong>th</strong>e<br />

principal difficulty's being in distinguishing" dielectric" loss from "magnetic" (induction) loss.<br />

Differentiation of <strong>th</strong>ese two mechanisms usually requires a tedious plot of loss versus<br />

frequency, <strong>th</strong>e onset of dominant dielectric loss being <strong>th</strong>e point at which losses increase far more<br />

rapidly <strong>th</strong>an <strong>th</strong>e usual = (02 dependency.<br />

Working wi<strong>th</strong> a simple me<strong>th</strong>od first described by Chute and Vermeulen t, we have been able<br />

to produce cheaply and quickly a color picture of <strong>th</strong>e electric fields in a probe - an inestimable<br />

aid in deciding whe<strong>th</strong>er a design is viable. The required components are a sheet of resistive paper<br />

glued to mylar film containing temperature-sensitive liquid crystals. The combination is <strong>th</strong>en<br />

mounted as necessary to simulate <strong>th</strong>e sample, and when power is applied to <strong>th</strong>e probe, <strong>th</strong>at<br />

portion of <strong>th</strong>e sheet <strong>th</strong>at is in a sizable electric field is warmed, whereupon <strong>th</strong>e crystals change<br />

color. Clearly, contours of constant color deliniate regions of constant electric field, and<br />

undesirable "hot spots" are quickly noticed. Thus <strong>th</strong>e poster will give fabrication details, and<br />

results from several common coil configurations will be displayed.<br />

IF. S. Chute and F. E. Vermeulen, AJP 42, 1075-1077, 1974.<br />

191 ] NMR ANALYSIS AND IMAGING OF OIL CORES: W. A. Edelstein .1,<br />

H. J. Vinegar 2, P. B. Roemer 1, P. N. Tutunjian 2, and O. M. Mueller 1. (1) GE Corporate Research and<br />

Development Center, Schenectady, NY 12345. (2) Shell Development Company, Houston, TX 77025.<br />

Oil cores in <strong>th</strong>e form of cylinders up to 6" diameter are routinely taken during oil exploration and<br />

production. It is important to measure several petrophysical properties of <strong>th</strong>e oil cores, such as oil and<br />

water saturation, porosity and permeability. Traditional me<strong>th</strong>ods of obtaining such information involve hot<br />

solvent extraction and take several days or longer. NMR can, in many cases, make <strong>th</strong>e required<br />

measurements in minutes. Imaging allows variations of <strong>th</strong>e rock and fluid properties to be visualized on<br />

<strong>th</strong>e scale of mm and allows discrimination against artefacts such as fractures and invasion of <strong>th</strong>e core by<br />

drilling mud. There are a number of technical difficulties involving <strong>th</strong>e NMR. In certain rock formations,<br />

such as clean sandstones and carbonates, <strong>th</strong>e NMR linewid<strong>th</strong> is narrow and <strong>th</strong>e oil and water saturation<br />

can be easily separated by chemical shift spectroscopy or imaging. In o<strong>th</strong>er cases, such as shaly<br />

formations, <strong>th</strong>e water and oil linewid<strong>th</strong>s may be inhomogeneously broadened. NMR imaging under <strong>th</strong>ese<br />

circumstances requires fast and strong magnetic field gradients. We have shown <strong>th</strong>at <strong>th</strong>e NMR signals in<br />

some of <strong>th</strong>e shaly sandstones can be refocussed and should be imageable wi<strong>th</strong> very fast data acquisition.<br />

We are presently examining <strong>th</strong>e relaxation mechanism in sandstones by comparative proton/deuterium<br />

studies, and are investigating <strong>th</strong>e suitability of o<strong>th</strong>er nuclei (i.e. carbon and sodium) for<br />

measurementftmaging of core properties.<br />

194


192 RESOLUTION ENHANCEMENT OF PHOSPHORUS-31 SPECTRA<br />

I<br />

THE USE OF CDTA IN PERCHLORIC ACID EXTRACTS OF DICTYOSTELIUM DISCOIDEUM<br />

Kenne<strong>th</strong> L. Williamson* and E<strong>th</strong>el F. Fromm*<br />

Department of Chemistry, Mount Holyoke College, Sou<strong>th</strong> Hadley, MA 01075<br />

Dramatic increases in resolution of 31p spectra have been found in<br />

perchloric acid extracts of <strong>th</strong>e cellular slime mold, Dictyostelium discoideum,<br />

by using CDTA (trans-l,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid<br />

hydrate) in place of <strong>th</strong>e traditional EDTA (e<strong>th</strong>ylenediaminetetraacetic acid) to<br />

L 193<br />

complex wi<strong>th</strong> cations. These high resolution spectra have been used to study<br />

<strong>th</strong>e phosphorus metabolism of D, discoideum during all stages of its<br />

development during <strong>th</strong>e 24 hr time period in which it undergoes, under<br />

conditions of starvation, development from single-celled amoebae to a<br />

multicellular organism containing stalk cells and spores. The present study<br />

has focused on <strong>th</strong>e latter part of <strong>th</strong>e developmental process.<br />

IADDITIVITY OF CARBON-13 SPIN-LATTICE RELAXATION TIMES IN OCTENES<br />

Kenne<strong>th</strong> L. Williamson*, Maureen A. Simonds* and Thomas R. Stengle<br />

*Department of Chemistry, Mount Holyoke College, Sou<strong>th</strong> Hadley, MA 01075<br />

Department of Chemistry, University of Massachusetts, Amherst, MA 01003.<br />

Carbon-13 spin lattice relaxation times have been measured for a number of<br />

isomeric octenes in order to explore <strong>th</strong>e relationships between T I and<br />

molecular dynamics and conformations. Systematic trends were observed in <strong>th</strong>e<br />

relaxation times so <strong>th</strong>at an empirical relationship could be derived which<br />

allows one to estimate <strong>th</strong>e T I of a given carbon atom by summing additivity<br />

parameters based on <strong>th</strong>e location of <strong>th</strong>e given carbon relative to <strong>th</strong>e double<br />

bond, to me<strong>th</strong>yl groups, and to centers of branching. These additivity<br />

parameters were obtained by performing a linear multiple regression analysis<br />

on <strong>th</strong>e Tl'S of individual carbons in <strong>th</strong>e octenes. The T I of a given carbon<br />

atom can <strong>th</strong>en be derived by simply summing appropriate combinations of<br />

regression coefficients in exactly <strong>th</strong>e same way <strong>th</strong>at 13C chemical shifts can<br />

be calculated.<br />

195


--194<br />

I CPMAS ANALYSIS OF A POLYIMIDE/GLASS CIRCUIT BOARD:<br />

B. L. Myers-Acosta*, S. J . Selover, Lockheed Missiles & Space Company,<br />

Inc., Sunnyvale, California 94088-3504.<br />

The effects of starting material chemistry and processing on <strong>th</strong>e final<br />

properties of cured polyimide/glass composites has been investigated<br />

using CPMAS spectroscopy. We have found <strong>th</strong>at bo<strong>th</strong> changes in<br />

stoichiometry and processing can be detected using <strong>th</strong>is technique.<br />

Previously, only starting material chemistry could be readily<br />

investigated making it difficult or impossible to evaluate <strong>th</strong>e effects<br />

of processing on <strong>th</strong>e material chemistry. We have found <strong>th</strong>at several<br />

features of <strong>th</strong>e performance of <strong>th</strong>ese polyimide materials, after<br />

processing into circuit boards, are a function of <strong>th</strong>e interaction<br />

between material chemistry and processing. CPMAS spectroscopy<br />

provided a unique way to evaluate <strong>th</strong>e chemistry of <strong>th</strong>e cured composite<br />

in finished parts to establish <strong>th</strong>e processing requirements of specific<br />

materials. Fur<strong>th</strong>er, processing latitude could be evaluated by<br />

examining <strong>th</strong>e chemical state in cured composites from various<br />

lamination schedules. Spectroscopic details will be presented.<br />

--195 I A STUDY ON 3',5'-AMP BY TWO-DIMENSIONAL DOUBLE QUANTUM<br />

SPECTROSCOPY IN 'H NMR, Gang Wu*, Wei Gun, Y. Huang, Shouping Jiang, Shaohui LJan,<br />

Physics Department, East China Normal University, Shanghai 200062, People's<br />

Repub]ic of China.<br />

The results of two-dimensional double quantum spectroscopy on 3',5'-AMP will be<br />

presented. The resonances of H(2) and H(8) are resolved in <strong>th</strong>e spectrum, which are<br />

partially overlapped in ttle 1D spectrum, and <strong>th</strong>e coupling of H(1')-H(8) is revealed<br />

from which we are able to deduce <strong>th</strong>at <strong>th</strong>e glycosyl bond conformation of 3',5'-AMP<br />

in solution (ph 7, O.04M, 23°C) is in <strong>th</strong>e form of syn conformation wi<strong>th</strong> <strong>th</strong>e<br />

dihedral angle ~ in a range of 79 ° ~ 90 ° . The spectrum also shows<br />

<strong>th</strong>e direct coupling between H(2) and H(8) by Type I signals, which coupling is<br />

unresnlvable in ID spectr.m because of its small value.<br />

c,.,<br />

C,+ o~<br />

¢8<br />

~o-P=o q'Hl~ H /1 It<br />

*Present address: Department of Chemistry, York University, 4700<br />

Keele St., Nor<strong>th</strong> York, Ontario M3J 1P3 Canada.<br />

196


196 1<br />

TR FLUOROETHOXY DERIVATIVES: SELECTIVE DEACTIVATION OF<br />

OXYGEN CONTAINING FUNCTIONAL GROUPS IN LANTHANIDE INDUCED SHIFTS<br />

AND/OR RELAXATION NMR STUDIES. C. Wild*, C. Tsiao*, T. E. Glass,<br />

J. Roy, H. C. Dorn, Chem. Dept. VPI&SU, Blacksburg, VA 24061.<br />

During <strong>th</strong>e last twenty years, a considerable number of<br />

lan<strong>th</strong>anide shift reagents (LSR) have been used for structural<br />

studies in organic chemistry. These shift reagents generally<br />

function as weak Lewis acids which can form weak complexes wi<strong>th</strong><br />

nucleophilic functional groups present in <strong>th</strong>e substrate of<br />

interest. For <strong>th</strong>e case of polyfunctional molecules, most<br />

structural studies have been hampered because of <strong>th</strong>e posssiblity<br />

of complexation at <strong>th</strong>e various nucleophilic sites in a given<br />

molecule.<br />

To overcome <strong>th</strong>is problem, we have made use of trifluoro-<br />

e<strong>th</strong>oxy group to selectively deactivate oxygen containing func-<br />

tional groups towards complexation wi<strong>th</strong> lan<strong>th</strong>anide shift<br />

reagents. Our initial studies illustrate <strong>th</strong>e utility of <strong>th</strong>ese<br />

reagents by comparing <strong>th</strong>e lan<strong>th</strong>anide induced shifts (LIS) of<br />

several trifluoroe<strong>th</strong>yl ketals wi<strong>th</strong> <strong>th</strong>eir corresponding e<strong>th</strong>yl<br />

analogs. The practical aspects of <strong>th</strong>ese reagents are explored<br />

in a study which involved <strong>th</strong>e selective deactivation of<br />

specific sites in several polyfunctional molecules. In <strong>th</strong>is<br />

manner, structural information (e.g. cis/trans isomer assign-<br />

ments) can be obtained from <strong>th</strong>e LIS and spin-lattice relaxation<br />

(TI) data.<br />

197 I TIME DOMAIN ENDOR STUDIES OF DISORDERED SOLIDS: P. J. Tindall, H.<br />

Bernardo, and H. Thomann, EXXON Corporate Research Laboratory, Route 22 East,<br />

Annandale, N. J. 08801<br />

Spectral simplification, resolution enhancement, and sensitivity enhancement are well<br />

known advantages of multiple frequency techniques used in NMR. The ability to<br />

coherently excite and coherently transfer longitudinal or transverse magnetization<br />

among sub-levels of <strong>th</strong>e spin system elgenstates is fundamental for <strong>th</strong>e success of<br />

most of <strong>th</strong>ese experiments and is only possible wi<strong>th</strong> time domain pulsed excitation. In<br />

contrast to NMR, <strong>th</strong>e most widely applied multiple resonance technique in ESR, <strong>th</strong>e<br />

ENDOR experiment, has traditionally been performed in <strong>th</strong>e frequency domain. However,<br />

recent advances in instrumentation have now made time domain ENDOR more feasible.<br />

The time domain analog of <strong>th</strong>e CW-ENDOR exper-lment [is magnetization transfer (MT)<br />

ENDOR using <strong>th</strong>e Davies pulse sequence. MT-ENDOR has <strong>th</strong>e advantage <strong>th</strong>at <strong>th</strong>e ENDOR<br />

enhancement does not depend on <strong>th</strong>e ratio of <strong>th</strong>e electron and nuclear T 1 rates as it<br />

does in CW-ENDOR. Fur<strong>th</strong>ermore, time domain excitation also makes possible more<br />

complex double resonance experiments which depend on coherence transfer, such as<br />

CT-ENDORand splnor ENDOR recently demonstrated by Mehring et al. The general<br />

applicability of <strong>th</strong>ese techniques to disordered solids will be governed by electron<br />

T 1 and T m (phase memory) times which are typically shortened by disorder effects.<br />

Fortunately, in many cases of interest, relaxation times for hydrocarbon radicals in<br />

condensed hydrocarbons are sufficiently long for successful magnetization and<br />

coherence transfer experiments even at room temperature. Experiments on transition<br />

metal ion complexes and metal clusters are possible at liquid He temperatures. Some<br />

recent time domain ENDOR results on isolated coal macerals, polyacetylene, and frozen<br />

solutions of transition metal ion complexes will be presented.<br />

197


198 I NUMERICAL STUDIES OF STIMULATED ESEEM WAVEFORMS: H. Jin and H.<br />

omann, Corporate Research Laboratory, EXXON Research and Engineering Company,<br />

Route 22 East, Annandale, N. J. 08801<br />

Electron spin echo envelope modulation (ESEEM) spectroscopy has proven to be a<br />

powerful me<strong>th</strong>od for studying hyperfine and quadrupolar interactions of nuclei<br />

coordinated to paramagnetic electron centers. Important areas of application<br />

include <strong>th</strong>e study of nitrogen coordination in metalloproteins; surface adsorbate<br />

interactions of supported transition metals; and <strong>th</strong>e electron density distribution<br />

on organic paramagnetic radicals important in photosyn<strong>th</strong>esis and in photoexcited<br />

triplet states. Analysis of <strong>th</strong>e ESEEM patterns for S-I/2, I -I spin systems in<br />

randomly oriented solids is usually performed using frequency spectrum analysis.<br />

ESEEM spectra are simulated by calculating <strong>th</strong>e superposition of <strong>th</strong>e two powder<br />

pattern quadrupolar spectra obtained when <strong>th</strong>e isotropic hyperfine coupling adds or<br />

subtracts to <strong>th</strong>e Zeeman field. Such simulations will accurately predict ESEEM<br />

frequencies but will usually not even give qualitatively correct modulation dep<strong>th</strong>s<br />

in <strong>th</strong>e ESEEM waveform or reproduce <strong>th</strong>e correct linewid<strong>th</strong>s in <strong>th</strong>e ESEEM spectrum.<br />

These depend on <strong>th</strong>e anisotropic hyperfine interactions and are <strong>th</strong>erefore important<br />

spectroscopic parameters which can reveal additional chemical information about <strong>th</strong>e<br />

coordination complex. This provides <strong>th</strong>e impetus for numerical studies of <strong>th</strong>e ESEEM<br />

spectrum and time domain waveforms in which <strong>th</strong>e psuedodipolar as well as <strong>th</strong>e<br />

isotropic hyperfine and quadrupolar interactions are retained. Some preliminary<br />

numerical results of <strong>th</strong>is study will be presented in <strong>th</strong>is poster. In particular, we<br />

explore <strong>th</strong>e importance of <strong>th</strong>e relative magnitudes of <strong>th</strong>e Zeeman, isotropic and<br />

psuedodipolar hyperfine, and quadrupolar interactions in determining <strong>th</strong>e modulation<br />

dep<strong>th</strong> of <strong>th</strong>e ESEEM waveform. We also explore <strong>th</strong>e ESEEM waveform and frequency<br />

spectrum in <strong>th</strong>e presence of anisotropic hyperfine interactions wi<strong>th</strong> only a partial<br />

cancellation of <strong>th</strong>e Zeeman field by <strong>th</strong>e isotropic hyperfine coupling.<br />

-- 1 99 l HIGH PRESSURE 13C CROSS-POLARIZATION AND SPIN RELAXATION STUDY OF<br />

ADAMANTANE: K.O. Prins and D. van der Putten, Van der Waals Laboratory, University<br />

of Amsterdam, Postbus 20216, 1000 HE Amsterdam, The Ne<strong>th</strong>erlands.<br />

The poster presents a description of a double resonance probe suitable for IH-I~C<br />

cross-polarization experiments at hydrostatic pressure up to 10 kbar. The probe is<br />

placed in a liquid nitrogen cryostat, constructed inside <strong>th</strong>e 13 cm bore of a 4.2 T<br />

superconducting magnet.<br />

Cross-polarization has been used in a study of <strong>th</strong>e effect of high pressure on<br />

molecular reorientation in <strong>th</strong>e orientationally disordered solid phase I and in <strong>th</strong>e<br />

ordered phase II of adamantane. It is shown <strong>th</strong>at knowledge of <strong>th</strong>e iH and 13C<br />

relaxation times T and T allows distinction between isotropic rotational diffusion<br />

i 10<br />

and discrete reorientations in <strong>th</strong>e two solid phases. In phase I adamantane spends<br />

a non-negligible time between its equilibrium orientations. In phase II <strong>th</strong>e experimen-<br />

tal results are well described by a discrete reorientational model. A broadening of<br />

<strong>th</strong>e 13C resonance observed while spin-locking <strong>th</strong>e protons occurs at increasing<br />

pressure.<br />

198


200<br />

INTERPRETAT IION OF 13 C NHR MIXTURE SPECTRA BY MULTIVARIATE ANALYSIS:<br />

Trond Brekke, 01av M. Kvalheim and Einar Sletten<br />

Dep. of Chemistry, Univ. of Bergen 5007 Bergen, Norway<br />

High-resolution 13C NMR spectroscopy oT complex mixtures, e.g fossil hydro-<br />

carbons, provides large amounts of data. The interpretation and quanti-<br />

fication of such spectra require <strong>th</strong>e use of multivariate data analysis.<br />

Principal Component (PC) analysis of 13C spectra of 12-component syn<strong>th</strong>etic<br />

hydrocarbon mixtures £nd£cates <strong>th</strong>at more <strong>th</strong>an 98Z of <strong>th</strong>e variat£on in <strong>th</strong>e<br />

spectra is due to chemical variation among <strong>th</strong>e Samples and an efficient<br />

means of reveaZing correZations among resonances (e.g. subspectra of single<br />

components) is presented. Partial-Least-Squares (PLS) regression is used to<br />

establish models for <strong>th</strong>e prediction of densitY, mean molecular weight and<br />

refractive index of <strong>th</strong>e samples from <strong>th</strong>e spectra.<br />

2oi I<br />

THE CORRELATION OF IH-lmF COUPLINGS BY HETERONUCLEAR BODE _PULSED DECOUPLING<br />

(HUltPD)<br />

Stephen H. Grode and Russell W. Gillis, The Upjohn Co., Fine Chemicals,<br />

Kalamazoo, HI 49071<br />

The identification and characterization of fluorinated compounds is complicated<br />

by <strong>th</strong>e ubiquitous nature of <strong>th</strong>e 1H-19F scalar interaction. This is<br />

particularly true of fluorinated steroids in which <strong>th</strong>e observation of 5 bond<br />

1H-19F couplings is not unusual. The typical me<strong>th</strong>od used to identify IH-19F<br />

coupling is to apply a CW signal to each proton of interest and observe its<br />

effect on <strong>th</strong>e 19F resonance. This is unsatisfactory for <strong>th</strong>ree reasons: I) The<br />

small long range couplings often go unobserved, 2) In a crowded spectrum it is<br />

difficult to irradiate a single proton wi<strong>th</strong>out affecting neighboring protons,<br />

and 3) If a number of protons need to be irradiated <strong>th</strong>e experiment is time<br />

consuming. These problems can be alleviated by performing <strong>th</strong>e experiment in<br />

<strong>th</strong>e opposite configuration (i.e. 19F decouple IH observe in place of 1H<br />

decouple 19F observe). A HeteronUclear Bode -pulsed Decoupling (HUMPD) me<strong>th</strong>od<br />

was developed to acquire 19F spin decoupled 1H-NMR spectra. This is a gated<br />

decoupling me<strong>th</strong>od in which 19F transmitter is triggered to pulse between<br />

sampling times. The purchase of a heteronuclear decoupler is not required.<br />

This me<strong>th</strong>od is demonstrated in <strong>th</strong>e ID and 2D (HUMPD-COSY) realms by application<br />

to fluocinolone acetonide. In <strong>th</strong>e 2D experiment, HUMPD is applied during<br />

acquisition, <strong>th</strong>us collapsing <strong>th</strong>e IH-IgF interaction during <strong>th</strong>e T2 time domain<br />

only. This yields a 2D spectrum in which it is possible to observe all <strong>th</strong>e<br />

IH-IH couplings, as in a normal COSY, and identify <strong>th</strong>e fluorine interacting<br />

protons by virtue of a crosspeak collapse along F2.<br />

199


L<br />

202 ___]<br />

SOLID STATE BACK PROJECTION IMAGING<br />

JOHN LISTERUD AND GARY DROBNY<br />

DEPARTMENTS OF ELECTRICAL ENGINEERING AND CHEMISTRY<br />

UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195<br />

Abstract<br />

The requirements of an NMR imaging system dedicated to materials science will be<br />

quite distinct from <strong>th</strong>ose of medical imaging. Not <strong>th</strong>e least of <strong>th</strong>ese differences will be <strong>th</strong>e<br />

degree of flexibility demanded of a research laboratory system as compared to <strong>th</strong>e turn-<br />

key philosophy of <strong>th</strong>e clinical imager. In particular, <strong>th</strong>e materials sciences challenge <strong>th</strong>e<br />

spectroscopist to combine <strong>th</strong>e classic NMR spectroscopies wi<strong>th</strong> <strong>th</strong>e imaging experiment.<br />

To <strong>th</strong>ese ends we describe <strong>th</strong>e construction of a multi-purpose microscopic NMR imaging<br />

probe for use on a standard spectrometer, and <strong>th</strong>e efficient adaptation of standard two<br />

dimensional NMR data processing utility to image processing. The probe is capable of<br />

a variety of experiments, including <strong>th</strong>e Kumar-Welti- Ernst experiment, backprojection<br />

by mechanical rotation of <strong>th</strong>e sample, and backprojection by electronic rotation of gradi-<br />

ents. Because of its simplicity, backprojection promises to be especially straightforward<br />

to combine wi<strong>th</strong> spectroscopic techniques such as chemical shift and multiple quantum<br />

spectroscopy. Fur<strong>th</strong>ermore, "macro" feature of <strong>th</strong>e standard two dimensional NMR data<br />

processing utility has a natural extension to tailored image processing, as demonstrated<br />

here by Tl and diffusion weighting of image grey scales.<br />

2o3 I<br />

LONG-RANGE SHIELDING AND CHEMICAL SHIFT IN SILICON CARBIDE<br />

POLYTYPES. M. F. Richardson, J. S. Hartman*, and D. Guo, Department of<br />

Chemistry, Brock University, St. Ca<strong>th</strong>arines, Ontario L2S 3AI, Canada.<br />

Silicon carbide, which has many polytyplc modifications of a very simple and<br />

symmetric structure, is an excellent model system for exploring relationships<br />

between chemical shift and crystal structure in network solids. A simple<br />

McConnell equation treatment of bond anlsotropy effects (H. M. McConnell, J.<br />

Chem. Phys., 1957, 27, 226) predicts chemical shifts for s ilicon and carbon<br />

sites which agree well wi<strong>th</strong> experiment (J. S. Hartman et al ., J. Amer. Chem.<br />

Soc., 1987, 109, 6059), provided <strong>th</strong>at contributions from bonds up to i00 A from<br />

<strong>th</strong>e site are included in <strong>th</strong>e calculation. The calculated shlf ts depend on bo<strong>th</strong><br />

<strong>th</strong>e layer stacking sequence (i.e., <strong>th</strong>e polytype) and on <strong>th</strong>e spacings between<br />

silicon and carbon layers. Unambiguous assignment of peaks to lattice sites<br />

should now be possible for all polytypes, but chemical shifts are so sensitive<br />

to layer spacings <strong>th</strong>at our calculations are limited by <strong>th</strong>e accuracy of layer<br />

spacing values determined by careful X-ray diffraction work. It appears <strong>th</strong>at<br />

chemical shifts in network solids can in principle be more sensitive to atomic<br />

positions <strong>th</strong>an <strong>th</strong>e most carefully obtained X-ray data. While X-ray diffraction<br />

is necessary to determine <strong>th</strong>e polytype, <strong>th</strong>e most accurate values of layer<br />

spacings in polytypes and o<strong>th</strong>er highly correlated structures should in future be<br />

derived from nmr chemical shift values ra<strong>th</strong>er <strong>th</strong>an from <strong>th</strong>e X-ray data.<br />

200


204 RECENT PROGRESS IN HIGH RESOLUTION NMR OF SOLIDS. Charles<br />

E. Bronnimann, Stephen L. Dec, James S. Frye, Bruce L.<br />

Hawkins and Gary E. Maciel, Regional NMR Center, Colorado State<br />

University, Fort Collins, CO 80523<br />

Over <strong>th</strong>e past several years <strong>th</strong>is NSF-sponsored regional instrumentation facili-<br />

ty (303-491-6455) has developed and applied a number of experimental strategies in<br />

ongoing NMR studies of a variet~ of solids.loTe~niques used have included CP/MAS,<br />

very high speed (> 20 KHz) MAS, =H CRAMPS, =~F-~C cross polarization, magic-angle<br />

hopping and angle flipping; in each case <strong>th</strong>e necessary instrumentation has been de-<br />

signed and developed in <strong>th</strong>e laboratory. Classes of materials <strong>th</strong>at have been studied<br />

include a variety of crystalline and amorphous organic and inorganic solids, poly-<br />

mers and polymer blends, catalytically important surface systems, materials impor-<br />

tant in separation science, organic goechemical solids, solid electrolytes, semi-<br />

conductors and superconductors.<br />

Current experimental <strong>th</strong>rusts in <strong>th</strong>is laboratory include <strong>th</strong>e improvement of 1H<br />

CRAMPS characteristics, time-domain CRAMPS experiments, use of higher magnetic<br />

fields (11.7 and 14.0 T) and higher MAS rates (> 23 kHz), development of new pulse<br />

sequences, use of multiple-quantum techniques for examining hydrogen clustering,<br />

improving pulse programming capabilities, and <strong>th</strong>e integration and networking of<br />

modern and more powerful computer capabilities wi<strong>th</strong> our spectrometers.<br />

Selected examples of recent developments in <strong>th</strong>ese areas will be presented and<br />

discussed.<br />

205<br />

HIGH-FIELD PULSED GRADIENTDIFFUSIONMEAS~S<br />

Ronald L. Haner and Thomas Schleich<br />

Department of Chemistry, University of California<br />

Santa Cruz, CA 95064<br />

Self-diffusion measurements obtained by <strong>th</strong>e use of pulsed gradient spin echo<br />

(PGSE) techniques are usually performed wi<strong>th</strong> modified spectrometers containing<br />

resistive magnets at static fields of 2.35 Tesla or less. Few measurements have<br />

been reported using spectrometers wi<strong>th</strong> superconducting magnets, and all have been<br />

done wi<strong>th</strong> relatively weak gradient streng<strong>th</strong>s. We have developed pulsed gradient<br />

diffusion instrumentation for use in high field (7.05 Tesla) spectrometer systems,<br />

employing gradient streng<strong>th</strong>s <strong>th</strong>at have been tested up to I00 gauss/cm.<br />

The apparatus includes specially designed gradient probes and a simple,<br />

stable current pulser. The gradient coil fringe field is minimized by using an<br />

active screen, similar in design to <strong>th</strong>at proposed by Mansfield and Chapman (J__~.<br />

Phys. E: Sci. Instrum. t 19, 540, 1986).<br />

Our PGSE spectrometer has been used to measure protein and solvent diffusion<br />

in protein solutions and i__nn vitro intact cellular systems. Lysozyme<br />

self-diffusion has been measured to an accuracy and precision of 5-10% in aqueous<br />

solutions at concentrations as low as 0.5% w/w. Solvent (H20 and }[DO)<br />

self-diffusion coefficients have been measured to an accuracy and precision of<br />

less <strong>th</strong>an 3%. Extensions to studies of restricted and anisotropic diffusion,<br />

o<strong>th</strong>er nuclei, and spatially localized applications are anticipated.<br />

The description of <strong>th</strong>is high field PGSE spectrometer system, experimental<br />

protocol, and some experimental results will be presented. (Supported by NIH<br />

grant EY 04033.)<br />

201


- - 206<br />

THE WORLD AND WONDERS OF 3H NMR SPECTROSCOPY: Philip G.<br />

/i.lliam:s. ,* National Tritium Labeling Facility, Lawrence Berkeley Laboratory 75-123,<br />

mverslty of California, Berkeley, California 94720.<br />

The NTLF is a national User Facility, funded by <strong>th</strong>e National Institutes of Heal<strong>th</strong>. The Facility combines<br />

e availability of high levels of carrier free tritium gas, extensive radiochemical purification resources, and an<br />

n-house NMR instrument dedicated to tritium NMR spectroscopy. The NTLF combines its User service<br />

unction wi<strong>th</strong> core and collaborative research based on <strong>th</strong>e use of hydrogen isotopes.<br />

Tritium is an excellent nucleus for NMR observation, but NMR applications in <strong>th</strong>e chemical and biological<br />

ciences have been very limited in number. "Onepulse" tritium measurements can quickly and cleanly give <strong>th</strong>e<br />

hemical shift and relative abundance of tritons in a sample, and in combination wi<strong>th</strong> o<strong>th</strong>er physical me<strong>th</strong>ods<br />

an rapidly assure quality control in labelling experiments. In catalysis hydrogen isotope exchange is readily<br />

nonitored, wi<strong>th</strong> <strong>th</strong>e relative incorporation at each position of a substrate yielding specificity rules for <strong>th</strong>e<br />

atalyst as well as mechanistic detail.<br />

Hydrogenation and halogen replacement reactions are <strong>th</strong>e cornerstone of high level tritium labelling<br />

procedures. Little is known about concomitant side-reactions, but <strong>th</strong>ese are extremely important when specific<br />

abelling is required. Observation of tritium NMR peaks from supposedly "unlabelled" positions obviates<br />

hese extra mechanisms, and allows <strong>th</strong>e choice of appropriate precursors and reaction conditions for <strong>th</strong>e<br />

lesired tritiation.<br />

As one example, allylic me<strong>th</strong>yl exchange in <strong>th</strong>e hydrogenation of I]-me<strong>th</strong>yl styrene to yield n-<br />

,ropylbenzene is readily detected, and <strong>th</strong>e full range of isotopomers can be distinguished by J-resolved<br />

pectroscopy. Secondly, tritio-dehalogenation of 2-chloro-2'-deoxyadenosine wi<strong>th</strong> pure T2 does not give<br />

,roduct wi<strong>th</strong> <strong>th</strong>e <strong>th</strong>eoretical specific activity, and factors influencing <strong>th</strong>is "dilution" may be followed.<br />

Important and developing uses of tritium NMR spectroscopy include monitoring of <strong>th</strong>e conversion of<br />

ntermediates in biological systems, studies of substrate binding, and as an aid in spectral elucidation of proton<br />

~VMR spectra. The use of modern multipulse techniques in concert wi<strong>th</strong> simple and elegant older sequences<br />

aas <strong>th</strong>e potential for giving a great deal of conformational and coupling information, <strong>th</strong>rough <strong>th</strong>e interaction of<br />

I-H and 1-H atoms. NMR work at <strong>th</strong>e Tritium Facility is intent on establishing <strong>th</strong>e benefits and problems<br />

tssociated wi<strong>th</strong> tritium NMR spectroscopy of many diverse substrates - from simple organics to solids and<br />

nacromolecules.<br />

202


Page No.<br />

ACEVEDO, H F 165<br />

ACKERMAN, J J H 104<br />

ACKERMAN, J L 155<br />

ACKERMAN, J L 53<br />

ADAMY, S 175<br />

ALBRIGHT, M J 126<br />

ALDERMAN, D W 141<br />

ALDERMAN, D W 142<br />

ALDERMAN, D W 141<br />

ALLDRIDGE, N A 189<br />

ALLEN, L 28<br />

ALTOBELLI, S A 184<br />

ANDERSEN, N H 155<br />

ANDERSEN, N H 169<br />

ANDERSON, M E 166<br />

ARAJAN, S 139<br />

ARMITAGE, I M 192<br />

ARNOLD, B R 125<br />

ARORA, S 177<br />

ARUS, C 166<br />

ASHCROFT, J 121<br />

ASHIDA, J 113<br />

AVRAM, H E 152<br />

BACHOVCHIN, W H 38<br />

BAIN, A D 108<br />

BAIN, A D 127<br />

BALASUBRAMANIAM, S 139<br />

BANK, J F 143<br />

BANK, S 143<br />

BARBARA, T M 157<br />

BARKER, G J 190<br />

BARNES, R G 150<br />

BASTI, M M 176<br />

BAX, A 178<br />

BAX, A 36<br />

BAX, A 164<br />

BAZZO, R 137<br />

BECK, B 153<br />

BECKER, N N 104<br />

BEGEMANN, J 152<br />

BEHLING, R W 61<br />

BEHLING, R W 161<br />

BELL, R F 45<br />

BERNARDO, M 197<br />

BIELECKI, T 38<br />

BILDSOE, H 123<br />

BISHOP, K D 146<br />

BLUMICH, B 101<br />

BODENHAUSEN, G 32<br />

BOEHMER, J P 184<br />

BOHLEN, J -M 32<br />

BOLTON, P H 175<br />

BORAH, B 131<br />

BORDIA, R K 129<br />

BORER, P 144<br />

BORER, P 145<br />

BORER, P 143<br />

BORER, P N 146<br />

BORK, V 130<br />

BORNEMANN, V 162<br />

203<br />

BOTHNER-BY, A A<br />

BOTHNER-BY, A A<br />

BOTTO, R E<br />

BOTTO, R E<br />

BOUCHARD, D A<br />

BOUDREAU, E<br />

BOYD, J<br />

BOYER, R D<br />

BRANDOLINI, A J<br />

BRAUER, M<br />

BREKKE, T<br />

BRENNEMAN, M T<br />

BRENNEMAN, M T<br />

BRENNERT, G F<br />

BREY, W S<br />

BRIGGS, R W<br />

BRONNIMANN, C E<br />

BRONNIMANN, C E<br />

BROOKER, H R<br />

BROWN, S C<br />

BROWN, T R<br />

BROWN, T R<br />

BRUSCHWEILER, R<br />

BRYAN, R N<br />

BRYANT, R G<br />

BUCHANAN, G W<br />

BURNETT, L J<br />

BURUM, D P<br />

BUSHWELLER, C H<br />

BYRD, R A<br />

CABASSO, I<br />

CARDUNER, K R<br />

CARPER, W R<br />

CARRADO, K A<br />

CARVLIN, M<br />

CASTELLINO, S<br />

CASTELLINO, S<br />

CAU, F<br />

CAULEY, B J<br />

CAVA, R J<br />

CAYLEY, S C<br />

CERDAN, S<br />

CHACKO, V P<br />

CHARI, M<br />

CHEN, C-N<br />

CHESNICK, A S<br />

CHINN, M<br />

CHOBANIAN, M<br />

CHU, S<br />

COCKMAN, M D<br />

COFFIN, D B<br />

COLE, H B R<br />

COLLINS, M J<br />

CONWELL, E M<br />

COPIE, V<br />

CORY, D G<br />

COWBURN, D<br />

COZINE, M<br />

CREUZET, F<br />

CROCKETT, B<br />

Page No.<br />

165<br />

183<br />

98<br />

191<br />

161<br />

143<br />

137<br />

124<br />

171<br />

183<br />

199<br />

182<br />

182<br />

45<br />

109<br />

189<br />

20<br />

201<br />

153<br />

135<br />

124<br />

123<br />

35<br />

111<br />

149<br />

98<br />

114<br />

105<br />

125<br />

193<br />

103<br />

104<br />

105<br />

191<br />

139<br />

137<br />

136<br />

172<br />

138<br />

45<br />

165<br />

55<br />

129<br />

177<br />

194<br />

162<br />

185<br />

166<br />

132<br />

190<br />

105<br />

180<br />

134<br />

109<br />

193<br />

50<br />

121<br />

185<br />

24<br />

187


CROOKS, L E<br />

CROSS, T A<br />

CROSS, T A<br />

CROWTHER, M<br />

CROWTHER, M W<br />

CURTIS, J<br />

D'AVIGNON, D A<br />

DADOK, J<br />

DADOK, J<br />

DANDO, N R<br />

DARBA, P<br />

DARBA, P<br />

DAVIES, P K<br />

DEC, S F<br />

DEC, S L<br />

DELAGLIO, F<br />

DELAGLIO, F<br />

DELAGLIO, F<br />

DELAGLIO, F<br />

DELSUC, M<br />

DORN, H C<br />

DORN, H C<br />

DOUGHTY, D A<br />

DROBNY, G<br />

DUPREE, R<br />

DWYER, T J<br />

EARLY, T A<br />

EATON, H L<br />

ECKERT, H<br />

EDELSTEIN, W A<br />

EDELSTEIN, W A<br />

EDLUND, U<br />

EDMONDSON, D E<br />

EGGENBERGER, U<br />

ELLINGSON, W A<br />

ELLIS, P D<br />

ELLIS, P D<br />

ELLIS, P D<br />

ELLIS, P D<br />

ENRIQUEZ, R G<br />

EPSTEIN, W W<br />

ERNST, R R<br />

ESPINOSA, G P<br />

EUGSTER, A<br />

EVERS, A S<br />

EVILIA, R F<br />

EWY, C S<br />

FACELLI, J C<br />

FACELLI, J C<br />

FANG,<br />

FARACI~ W S<br />

FARNAN, I<br />

FARNETH, W E<br />

FEJZO, J<br />

FERRANTELLO, L M<br />

FINEMAN, M A<br />

FINEMAN, M A<br />

FITZSIMMONS, J R<br />

FORD, J J<br />

FOXALL, D<br />

Page No.<br />

152<br />

182<br />

182<br />

152<br />

103<br />

141<br />

103<br />

183<br />

165<br />

160<br />

167<br />

168<br />

173<br />

20<br />

201<br />

152<br />

145<br />

100<br />

146<br />

144<br />

28<br />

197<br />

157<br />

200<br />

179<br />

106<br />

126<br />

155<br />

159<br />

57<br />

194<br />

145<br />

108<br />

32<br />

53<br />

143<br />

187<br />

188<br />

187<br />

180<br />

140<br />

35<br />

45<br />

117<br />

103<br />

192<br />

104<br />

125<br />

149<br />

142<br />

193<br />

179<br />

129<br />

167<br />

112<br />

114<br />

110<br />

153<br />

111<br />

183<br />

204<br />

FOXALL, D<br />

FREDERICK, A F<br />

FREEMAN, D M<br />

FREEMAN, R<br />

FROMM, E F<br />

FRUEHAN, P<br />

FRY, C G<br />

FRYE, J S<br />

FU, JM<br />

FUJIWARA, T<br />

FUKUSHIMA, E<br />

GALVIN, M E<br />

GAO, X<br />

GARBETT, S P<br />

GARBOW, J R<br />

GARRIDO, L<br />

GARROWAY, A N<br />

GARROWAY, A N<br />

GARROWAY, A N<br />

GARROWAY, A N<br />

GERASIMOWICZ, W V<br />

GERSTENBLITH, G<br />

GESMAR, H<br />

GIAMMATTEO, P j<br />

GILES, R H<br />

GILLIS, R W<br />

GITTI, R<br />

GIVLER, R C<br />

GLASS, T E<br />

GLASS, T E<br />

GLICKSON, J D<br />

GLIMCHER~ M J<br />

GLOVER, H<br />

GMEINER, W H<br />

GONEN, 0<br />

GOOLEY, P R<br />

GORENSTEIN, D G<br />

GRAHN, H<br />

GRAHN, H<br />

GRAHN, H<br />

GRANDINETTI, P j<br />

GRANT, D M<br />

GRANT, D M<br />

GRANT, D M<br />

GRANT, D M<br />

GRANT, D M<br />

GRANT, D M<br />

GRANT, D M<br />

GREIG, R<br />

GRIESINGER, C<br />

GRIFFIN, R G<br />

GRIFFIN, R G<br />

GRIFFIN, R G<br />

GRIFFIN, R G<br />

GRODE, S H<br />

GRUNDY, H D<br />

GUIDOTTI, A<br />

GULLION, T<br />

GULLION, T<br />

GULLION, T<br />

Page No.<br />

132<br />

128<br />

156<br />

42<br />

195<br />

135<br />

188<br />

201<br />

156<br />

115<br />

184<br />

69<br />

136<br />

133<br />

112<br />

53<br />

170<br />

49<br />

171<br />

170<br />

170<br />

129<br />

120<br />

175<br />

165<br />

199<br />

28<br />

184<br />

28<br />

197<br />

129<br />

155<br />

57<br />

174<br />

14<br />

192<br />

156<br />

152<br />

146<br />

145<br />

186<br />

149<br />

142<br />

125<br />

141<br />

141<br />

142<br />

140<br />

131<br />

35<br />

193<br />

140<br />

113<br />

24<br />

199<br />

101<br />

139<br />

130<br />

22<br />

130


1:~ge No.<br />

GUO, D 200<br />

GUO, W 196<br />

GUO, W 172<br />

HALL, L D 164<br />

HALL, L D 162<br />

HAMMEN, P K 169<br />

HAMMOND, T E 124<br />

HAN, J-W 150<br />

HANDSCHMACHER, R E 192<br />

HANER, R L 201<br />

HARBISON, G S 157<br />

HARDING, M W 192<br />

HARTMAN, J S 200<br />

HASENFELD, A 102<br />

HAWKINS, B L 201<br />

HAWKINS, B L 20<br />

HAYCOCK, J C 103<br />

HEALD, S L 192<br />

HEFFRON, G J 146<br />

HEINEKEY, M 185<br />

HELMS, G 162<br />

HELMS, G L 158<br />

HENRICHS, P M 116<br />

HENTSCHEL, D 126<br />

HILL, H 46<br />

HING, A 130<br />

HO, C 181<br />

HOFFMAN, R 152<br />

HOFFMAN, R E 144<br />

HOLLANDER, J D 179<br />

HORNAK, J P 148<br />

HORNAK, J P 149<br />

HOULT, D I 194<br />

HU, J 186<br />

HUANG, Y 196<br />

HUGHES, D W 127<br />

HUGHES, D W 108<br />

HUNTER, H N 127<br />

HWANG, Y C 104<br />

HYBERTS, S G 151<br />

HYMAN, T 143<br />

HYMAN, T J 145<br />

INGLEFIELD, P T 138<br />

IVERSON, D 117<br />

JACKSON, G 143<br />

JAKOBSEN, H J 123<br />

JANZEN, E G 183<br />

JARAMILLO, B 165<br />

JELINSKI, L W 61<br />

JELINSKI, L W 161<br />

JEONG, Y S 179<br />

JIANG, S 196<br />

JIANG, Y J 141<br />

JIN, H 198<br />

JOHNSON, C S 116<br />

JOHNSON, W C 192<br />

JOHNSTON, E R 177<br />

JONAS, J 111<br />

JONAS, J 186<br />

JONAS, J 175<br />

205<br />

JONAS, J<br />

JONES, A A<br />

JONES, C R<br />

JUE, T<br />

KAINOSHO, M<br />

KALNIK, M W<br />

KAMBOUR, R P<br />

KAPLAN, D<br />

KAPLAN, S<br />

KAY, L E<br />

KENDRICK, R D<br />

KENNEDY, M A<br />

KESHAVAN, M S<br />

KIM, S-G<br />

KIRBY, R A<br />

KNEIP, G<br />

KOHLER, S J<br />

KOHNO, H<br />

KOLBERT, A C<br />

KOLODNY, N H<br />

KOOK, A M<br />

KOUCHAKDJIAN, M<br />

KRAMER, D M<br />

KREZEL, A<br />

KUAN, W<br />

KUBAS, G<br />

KUHNS, P L<br />

KURLAND, R J<br />

KVALHEIM, 0 M<br />

LACELLE, S<br />

LADEBECK, R<br />

LAI, X<br />

LAPLANCHE, L A<br />

LAPLANTE, S<br />

LAPLANTE, S<br />

LAPLANTE, S R<br />

LEAHY, D J<br />

LED, J J<br />

LEE, C E<br />

LEE, C J<br />

LEE, J P<br />

LEE, S C<br />

LEO, G C<br />

LEO, G C<br />

LEOPOLD, M F<br />

LERNER, L<br />

LEUPIN, W<br />

LEVITT, M H<br />

LEVITT, M H<br />

LEVITT, M H<br />

LEVY, G<br />

LEVY, G C<br />

LEVY, G C<br />

LEVY, G C<br />

LEVY, G C<br />

LEVY, G C<br />

LEVY, G C<br />

LEVY, G C<br />

LEVY, G C<br />

LEVY, L A<br />

Page No.<br />

26<br />

138<br />

156<br />

191<br />

167<br />

136<br />

138<br />

181<br />

109<br />

128<br />

69<br />

187<br />

181<br />

104<br />

98<br />

46<br />

139<br />

112<br />

113<br />

139<br />

177<br />

136<br />

152<br />

167<br />

153<br />

185<br />

14<br />

145<br />

199<br />

172<br />

126<br />

155<br />

176<br />

144<br />

143<br />

146<br />

65<br />

120<br />

173<br />

159<br />

118<br />

106<br />

136<br />

137<br />

140<br />

36<br />

117<br />

38<br />

113<br />

24<br />

144<br />

146<br />

147<br />

100<br />

146<br />

152<br />

144<br />

103<br />

145<br />

178


LEWIS, B A<br />

LI, L<br />

LI, L<br />

LIAN, S<br />

LIM, T K<br />

LIMAT, D<br />

LIN, F M<br />

LIN, F T<br />

LIND, A C<br />

LINK, J<br />

LIPPMAA, E<br />

LIPTON, A S<br />

LISICKI, M<br />

LISTERUD, J<br />

LISTINSKY, J J<br />

LIU, G<br />

LIVE, D<br />

LIVE, D H<br />

LOCK, H<br />

LOGRASSO, P V<br />

LOGRASSO, P V<br />

LONDON, R E<br />

LOVY, J<br />

LUCK, L A<br />

LUYTEN, P<br />

LYONS, B<br />

MACDIARMID, A G<br />

MACDONALD, P M<br />

MACIEL, G E<br />

MACIEL, G E<br />

MACIEL, G E<br />

MACIEL, G E<br />

MACOVSKI, A<br />

MACUR, A<br />

MACURA, S<br />

MAEREFAT, N L<br />

MAJORS, P D<br />

MALSCH, K D<br />

MANASSEN, Y<br />

MARECI, T H<br />

MARECI, T H<br />

MARESCH, G G<br />

MARION, D<br />

MARION, D<br />

MARKLEY, J L<br />

MARKLEY, J L<br />

MARKLEY, J L<br />

MARKLEY, J L<br />

MARKLEY, J L<br />

MARKLEY, J L<br />

MARKLEY, J L<br />

MARKLEY, J L<br />

MARSHALL, E<br />

MARTIN, E S<br />

MARTIN, G<br />

MATEESCU, G<br />

MATSUI, S<br />

MATTINGLY, M<br />

MAYNE, C L<br />

MAYNE, C L<br />

Page No.<br />

165<br />

70<br />

115<br />

196<br />

193<br />

32<br />

150<br />

150<br />

188<br />

55<br />

114<br />

146<br />

183<br />

200<br />

149<br />

111<br />

61<br />

108<br />

70<br />

182<br />

182<br />

178<br />

153<br />

125<br />

179<br />

173<br />

109<br />

184<br />

70<br />

20<br />

115<br />

201<br />

59<br />

152<br />

167<br />

157<br />

184<br />

125<br />

138<br />

190<br />

190<br />

69<br />

178<br />

36<br />

166<br />

167<br />

158<br />

167<br />

166<br />

168<br />

168<br />

160<br />

149<br />

160<br />

143<br />

189<br />

112<br />

131<br />

141<br />

142<br />

206<br />

MAZZEO, A R<br />

MAZZOLA, L T<br />

MCCONNELL, H M<br />

MCCOY, M<br />

MCDANIEL, P L<br />

MCEVOY, J<br />

MCFADDIN, D<br />

MCNAMARA, R<br />

METZ, K R<br />

MICHL, J<br />

MILLAR, j<br />

MILLER, J B<br />

MILLER, J B<br />

MILLER, J B<br />

MILLER, j B<br />

MIRAU, P A<br />

MISHRA, P<br />

MONTELIONE, G T<br />

MOOBERRY, E S<br />

MOOBERRY, E S<br />

MOOBERRY, E S<br />

MOONEY, J R<br />

MOORE, R E<br />

MOORE, R E<br />

MORAT, C<br />

MORAT, C<br />

MORRIS, H D<br />

MOTTEN, A G<br />

MUELLER, L<br />

MUELLER, 0 M<br />

MULLER, S<br />

MUNTEAN, J V<br />

MURAKI, A<br />

MURPHY, M<br />

MYERS-ACOSTA, B L<br />

McCARRON, E M<br />

NAGAO, H<br />

NAGAYAMA, K<br />

NAKAI, T<br />

NAVON, G<br />

NELSON, S J<br />

NELSON, S J<br />

NEWMARK, R D<br />

NEWMARK, R D<br />

NICELY, V A<br />

NICHOLSON, L K<br />

NIELSEN, N C<br />

NIEMCZURA, W P<br />

NIEMCZURA, W P<br />

NIISAN, R A<br />

NIRMALA, N R<br />

NISHIMURA, D G<br />

NORMAN, D<br />

NORRIS, J R<br />

NORTH, C L<br />

O'BRIEN, P<br />

OH, BH<br />

OH, BH<br />

OLEJNICZAK, E T<br />

OPELLA, S J<br />

Page No.<br />

147<br />

62<br />

65<br />

102<br />

111<br />

181<br />

169<br />

132<br />

184<br />

125<br />

185<br />

170<br />

49<br />

171<br />

170<br />

161<br />

165<br />

148<br />

160<br />

158<br />

166<br />

124<br />

158<br />

162<br />

98<br />

120<br />

188<br />

178<br />

135<br />

194<br />

55<br />

98<br />

139<br />

107<br />

196<br />

129<br />

167<br />

115<br />

113<br />

138<br />

124<br />

123<br />

154<br />

154<br />

116<br />

182<br />

123<br />

158<br />

162<br />

99<br />

147<br />

59<br />

136<br />

107<br />

182<br />

127<br />

158<br />

168<br />

140<br />

132


OPELLA, S J<br />

ORENDT, A M<br />

OTTING, G<br />

PADMANABHAN, S<br />

PAFF, J<br />

PANCHALINGAM, K<br />

PAZARA, D<br />

PERPICK-DUMONT, M<br />

PERRIN, C L<br />

PERRIN, C L<br />

PETTEGREW, J<br />

PFANDLER, P<br />

PINES, A<br />

PINES, A<br />

PLANT, H D<br />

POULTER, C D<br />

PRATUM, T K<br />

PRESTEGARD, J H<br />

PRESTEGARD, J H<br />

PRESTEGARD, J H<br />

PRINS, K 0<br />

PUAR, M S<br />

PUGMIRE, R J<br />

PUGMIRE, R J<br />

PUGMIRE, R J<br />

~ IAN, B<br />

ABENSTEIN, D L<br />

RADZISZEWSKI, J G<br />

RALEIGH, D P<br />

RALEIGH, D P<br />

RALEIGH, D P<br />

RALEIGH, D P<br />

RAM, P<br />

RAM, .P<br />

RAMANATHAN, K V<br />

RATCLIFFE, C I<br />

RATCLIFFE, C I<br />

RECORD, M T<br />

REICHWEIN, A<br />

REILY, M D<br />

REMEIKA, J P<br />

REYNOLDS, W F<br />

RHEINGOLD, A L<br />

RICHARDSON, M F<br />

RICHTER, A F<br />

RINALDI, P<br />

RIPMEESTER, J A<br />

RIPMEESTER, J A<br />

RITCHEY, W M<br />

ROBERT, J M<br />

ROBERTSON, A D<br />

ROEMER, P B<br />

ROEMER, P B<br />

ROGGENBUCK, M W<br />

ROGGENBUCK, M W<br />

ROOS, M S<br />

ROOS, M S<br />

ROY, A K<br />

ROY, J<br />

RULE, G S<br />

Page No.<br />

161<br />

125<br />

117<br />

165<br />

101<br />

181<br />

189<br />

180<br />

176<br />

106<br />

181<br />

32<br />

18<br />

159<br />

109<br />

174<br />

169<br />

128<br />

127<br />

62<br />

198<br />

126<br />

149<br />

141<br />

141<br />

186<br />

172<br />

125<br />

155<br />

140<br />

24<br />

113<br />

127<br />

62<br />

132<br />

134<br />

98<br />

165<br />

50<br />

166<br />

45<br />

180<br />

125<br />

200<br />

109<br />

117<br />

98<br />

134<br />

174<br />

192<br />

167<br />

57<br />

194<br />

146<br />

145<br />

154<br />

154<br />

138<br />

197<br />

65<br />

207<br />

RUSSELL, A F<br />

RUTAR, V<br />

SAARINEN, T R<br />

SAMMONS, R D<br />

SAMMONS, R D<br />

SAMOSON, A<br />

SANCTUARY, B C<br />

SANDERS, J K M<br />

SANDERS, J P<br />

SANTINI, R<br />

SARKAR, S K<br />

SCHAEFER, J<br />

SCHAEFER, J<br />

SCHAEFER, J<br />

SCHLEICH, T<br />

SCHONENBERGER, C<br />

SCHROEDER, S A<br />

SEELIG, J<br />

SEKIHARA, K<br />

SELINSKY, B S<br />

SELOVER, S J<br />

SETHI, N K<br />

SHAKA, A J<br />

SHALWITZ, R A<br />

SHANMIN, Z<br />

SHERRIFF, B L<br />

SHERWOOD, M H<br />

SHERWOOD, M H<br />

SHIONO, H<br />

SHIRLEY, W M<br />

SHOOP, J D<br />

SHRIVASTAVA, P N<br />

SHUKLA, R<br />

SHUNGU, D C<br />

SIKORSKI, J A<br />

SILVER, L A<br />

SIMONDS, M A<br />

SIMPLACEANU, V<br />

SKLENAR, V<br />

SLETTEN, E<br />

SLICHTER, C P<br />

SLOMP, G<br />

SMITH, C D<br />

-SMITH, C D<br />

SMITH, E<br />

SMITH, K A<br />

SMITH, M E<br />

SMITH, S L<br />

SMITH, S L<br />

SOFFE, N<br />

SOLE, P<br />

SOLE, P<br />

SOLUM, M S<br />

SORENSEN, 0 W<br />

SOTAK, C H<br />

SPANTON, S G<br />

SPARKS, S W<br />

SPIKER, D<br />

STARK, R E<br />

STENGLE, T R<br />

Page No.<br />

106<br />

99<br />

116<br />

137<br />

136<br />

114<br />

102<br />

30<br />

114<br />

156<br />

131<br />

22<br />

130<br />

130<br />

201<br />

35<br />

156<br />

55<br />

112<br />

178<br />

196<br />

149<br />

159<br />

104<br />

119<br />

101<br />

142<br />

141<br />

112<br />

110<br />

145<br />

165<br />

183<br />

189<br />

137<br />

159<br />

195<br />

181<br />

39<br />

199<br />

44<br />

100<br />

163<br />

163<br />

172<br />

105<br />

179<br />

163<br />

163<br />

137<br />

152<br />

100<br />

149<br />

123<br />

156<br />

135<br />

164<br />

181<br />

112<br />

195


STEPHENS, R L<br />

STIPANOVIC, A J<br />

STOCK, L M<br />

STOCKMAN, B J<br />

STOCKMAN, B J<br />

STOLPER, E M<br />

STOY, V<br />

STRUB, H<br />

STUART, J A<br />

SUDMEIER, J L<br />

SZEVERENYI, N M<br />

TABER, K H<br />

TALAGALA, S L<br />

TANG, J<br />

TARAVEL, R F<br />

TAYLOR, J S<br />

TENG, Q<br />

TERAO, T<br />

THANABAL, V<br />

THOBURN, J D<br />

THOMA, W J<br />

THOMANN, H.<br />

THOMANN, H<br />

THOMAS, G S<br />

THOMAS, G S<br />

THOMPSON, A R<br />

THOMPSON, G<br />

TINDALL, P J<br />

TOMONAGA, N<br />

TORCHIA, D A<br />

TORCHIA, D A<br />

TORGESON, D R<br />

TOWNER, R A<br />

TSAIO, C<br />

TSCHUDIN, R<br />

TSIAO, C<br />

TUTUNJIAN, P N<br />

TYCKO, R<br />

ULRICH, E L<br />

VAN DER PUTTEN, D<br />

VAN OS, J W M<br />

VAN ZIJL, P C M<br />

VANDERAH, T A<br />

VANDERVELDE, D<br />

VEEMAN, W S<br />

VEGA, A J<br />

VETTER, J<br />

VINEGAR, H J<br />

WAGNER, G<br />

WAGNER, G<br />

WAGNER, G<br />

WAGNER, G<br />

WALKER, N A<br />

WALSH, C T<br />

WALSTEDT, R E<br />

WAMBABE, C<br />

WANG, C<br />

WANG, D<br />

WANG, G<br />

WANG, J<br />

Page No.<br />

135<br />

175<br />

98<br />

160<br />

158<br />

159<br />

153<br />

125<br />

173<br />

38<br />

131<br />

111<br />

162<br />

107<br />

120<br />

123<br />

182<br />

113<br />

134<br />

176<br />

123<br />

198<br />

197<br />

163<br />

163<br />

191<br />

179<br />

197<br />

167<br />

164<br />

180<br />

150<br />

183<br />

28<br />

36<br />

197<br />

194<br />

128<br />

166<br />

198<br />

50<br />

183<br />

99<br />

186<br />

50<br />

129<br />

126<br />

194<br />

134<br />

148<br />

147<br />

151<br />

186<br />

193<br />

45<br />

139<br />

118<br />

186<br />

186<br />

168<br />

208<br />

WANG, P C<br />

WANG, S<br />

WARREN, W S<br />

WARREN, W W<br />

WATERHOUSE, A<br />

WATERHOUSE, A L<br />

WAUGH, J S<br />

WEBB, A G<br />

WEBB, G G<br />

WEBER, P L<br />

WEISERMAN, L F<br />

WEISS, R G<br />

W<strong>ENC</strong>KEBACH, W Th<br />

WESTLER, W M<br />

WESTLER, W M<br />

WESTLER, W M<br />

WESTLER, W M<br />

WEYAND, J D<br />

WHITE, D<br />

WHITE, D<br />

WHITTENBURG, S L<br />

WILD, C<br />

WILD, C<br />

WILKINSON, D A<br />

WILLIAMS, P G<br />

WILLIAMSON, K L<br />

WILLIAMSON, K L<br />

WIMPERIS, S<br />

WIND, R A<br />

WIND, R A<br />

WIND, R A<br />

WOLF, G E<br />

WONG, S T S<br />

WONG, S T S<br />

WOO, K W<br />

WOOLFENDEN, W R<br />

WOOLFENDEN, W R<br />

WU, G<br />

WU, X L<br />

WU, X W<br />

WUTHRICH, K<br />

XIAOLING, W<br />

XIE, C-L<br />

XUEWEN, W<br />

YAMANE, T<br />

YAN, X<br />

YANG, T S<br />

YANNONI, C S<br />

YANNONI, C S<br />

YESINOWSKI, J P<br />

YOUNG, R H<br />

YU, C<br />

YUAN, B<br />

YVARS, G<br />

ZAGORSKI, M G<br />

ZENG, Y<br />

ZENS, T<br />

ZHANG, S M<br />

ZILM, K<br />

ZILM, K W<br />

Page No.<br />

139<br />

144<br />

102<br />

45<br />

133<br />

133<br />

14<br />

164<br />

185<br />

135<br />

160<br />

129<br />

67<br />

160<br />

168<br />

167<br />

166<br />

53<br />

173<br />

107<br />

192<br />

28<br />

197<br />

165<br />

202<br />

195<br />

195<br />

32<br />

70<br />

115<br />

20<br />

181<br />

154<br />

154<br />

175<br />

149<br />

141<br />

196<br />

122<br />

122<br />

117<br />

119<br />

186<br />

119<br />

61<br />

186<br />

174<br />

69<br />

28<br />

159<br />

115<br />

118<br />

158<br />

189<br />

136<br />

107<br />

152<br />

122<br />

185<br />

185


ZLOTNIK-MAZORIo T<br />

ZUMBULYADIS, N<br />

Page No.<br />

112<br />

115<br />

209


William Abraham<br />

University of Iowa<br />

270 Med Labs<br />

Iowa City, IA 52242<br />

Telephone: 314 335-8078<br />

Connie Ace<br />

E<strong>th</strong>icon Inc.<br />

Route 22<br />

Somerville, NJ 08876<br />

Telephone: 201 218-3036<br />

Jerome L. Ackerman<br />

Mass General Hospital<br />

Dept. of Radiology<br />

Boston, MA 02114<br />

Telephone: 617 726-3083<br />

Joseph J.H. Ackerman<br />

Dept of Chemistry, Box 1134<br />

University of Washington<br />

St. Louis, MO 63130<br />

Telephone: 314 889-6357<br />

Bruce Adams<br />

Univ of Wisconsin<br />

1101 University Avenue<br />

Madison, WI 53706<br />

Telephone: 608 262-3182<br />

Michael J. Albright<br />

Siemens Medical Systems<br />

186 Wood Ave. Sou<strong>th</strong><br />

Iselin, NJ 08830<br />

Telephone: 201 632-2884<br />

Dr. James L. A1derfer<br />

Roswell Park Memorial Inst.<br />

Biophysics Dept.<br />

Buffalo, NY 14263<br />

Telephone: 716 845-4471<br />

Donald W. Alderman<br />

Chemistry Dept<br />

Univ of Utah<br />

Salt Lake City, UT 84112<br />

Telephone: 80i 581-7184<br />

Lawrence Alemany<br />

Mobil Research & Development<br />

Billingsport Road<br />

Paulsboro, NJ 08066<br />

Telephone: 609 423-1040<br />

Willi Ammann<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

George Anastasi<br />

Mannlng Park<br />

Bruker Instruments, Inc<br />

Billerica, MA 01821<br />

Telephone: 617 667-9580<br />

Niels H. Andersen<br />

Univ. of Washington<br />

Dept. of Chemistry<br />

Seattle, WA 98195<br />

Telephone: 206 543-7099<br />

A. M. (ANDY) Anderson<br />

Wilmad Glass Co. Inc.<br />

Rte. 40 & Oak Road<br />

Buena, NJ 08310<br />

Telephone: 805 492-5808<br />

John A. Anderson<br />

University of Illinois<br />

PO Box 69~8-M/C 937<br />

Chicago, I[ 60680<br />

Telephone: 312 996-6640<br />

Mark Anderson<br />

Univ of Wisconsin-Madison<br />

420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 262-4687<br />

William R. Anderson<br />

Lehigh University<br />

S. G. Mudd Building #6<br />

Be<strong>th</strong>lehem, PA 18015<br />

Telephone: 215 758-3465<br />

Clemens Anklin<br />

Manning Park<br />

Bruker Instruments, Inc<br />

Billerica, MA 01821<br />

Telephone: 617 667-9580<br />

Byron Arison<br />

Merck & Co.<br />

P.O. Box 2000<br />

Rahway, NJ 07065<br />

Telephone: 201 574-5394<br />

Dr. lan M. Armitage<br />

Yale University<br />

PO Box 3333-333 Cedar Street<br />

New Haven, CT 06510<br />

Telephone: 203 785-4443<br />

David A. Armour<br />

Siemens Medical Systems, Inc.<br />

186 Wood Avenue Sou<strong>th</strong><br />

Iselin, NJ 08830<br />

Telephone: 201 321-4832<br />

Robert D. Armstrong<br />

GE NMR Instruments<br />

255 Fourier Avenue<br />

Fremont, CA 94539<br />

Telephone: 415 683-4408<br />

Henry C Arndt<br />

Miles Inc<br />

1127 Myrtle St<br />

Elkhart, IN 46514<br />

Telephone: 219 262-7692<br />

Joseph Ashcroft<br />

Rockefeller University<br />

1230 York Ave<br />

New York, HY 10021-6399<br />

Telephone: 212 570-7589<br />

Albert Attalla<br />

Monsanto Research Corp<br />

Mound Road<br />

Miamisburg, OH 45342<br />

Telephone: 513 865-3454<br />

Hector E. Avram<br />

Diasonics MRI<br />

400 Grandview Drive<br />

Sou<strong>th</strong> San Francisco, CA 94080<br />

Telephone: 415 952-1366<br />

Alvin C. Bach<br />

E I Dupont Med Products<br />

Experimental Station E336/029<br />

Wilmington, DE 19898<br />

Telephone: 302 695-3306<br />

Dave H Badtke<br />

GE NMR Instruments<br />

255 Fourier Ave<br />

Fremont, CA 94539<br />

Telephone: 415 683-4342


David B. Bailey<br />

USI Chemicals Co.<br />

1275 Section Rd.<br />

Cincinnati, OH 45237<br />

Telephone: 513 761-4130<br />

Alex D. Bain<br />

McMaster University<br />

1280 Main St. W.<br />

Hamilton, Ont., L8S 4MI<br />

CANADA<br />

Telephone: 416 525-9140<br />

Laima Baltusis<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Ben W Bangerter<br />

Dept of Chem; Yale Univ<br />

225 Prospect St; PO Box 6666<br />

New Haven, CT 06511<br />

Telephone: 203 432-3942<br />

Edmund L. Baniak<br />

Texaco Inc<br />

PO Box 509<br />

Beacon, NY 12508<br />

Telephone: 914 831-3400<br />

Shelton Bank<br />

State Univ of New York<br />

1400 Washington Avenue<br />

Albany, NY 12222<br />

Telephone: 518 442-4447<br />

Daniel J. Barabino<br />

Pennsylvania State Universit)<br />

Dept of Chemical Engineering<br />

University Park, PA 16802<br />

Telephone: 814 865-1261<br />

Thomas Barbara<br />

Suny; Dept of Chem<br />

Stony Brook, NY 11794<br />

Telephone: 516 632-7991<br />

Dr. Gare<strong>th</strong> J Barker<br />

University of Florida<br />

Box J-374, JHMHC<br />

Gainesville, FL 32610<br />

Telephone: 904 392-3087<br />

Mufeed M. Basti<br />

Nor<strong>th</strong>ern Illinois University<br />

820 Kimberly Drive, #201<br />

DeKalb, IL 60115<br />

Telephone: 815 753-1131<br />

Vladimir J Basus<br />

Univ of California<br />

School of Pharm; Box 0446<br />

San Francisco, CA 94143 "<br />

Telephone: 415 476-3027<br />

Lynne S. Batchelder<br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2600<br />

Lorenz Bauer<br />

Allied Signal EMRC<br />

50 E. Algonquin Rd.<br />

Des Plaines, IL 60017<br />

Telephone: 312 391-3381<br />

Mary W. Baum<br />

Dept. of Chemistry<br />

Princeton University<br />

Princeton, NJ 08544<br />

Telephone: 609 987-2902<br />

Ad Bax<br />

Natl Institute of Heal<strong>th</strong><br />

Bldg. 2, Rm 109<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-2848<br />

Renzo Bazzo<br />

Dept. of Biochemistry<br />

Oxford Univ.<br />

Oxford, England,<br />

OX1 3QR U.K.<br />

Telephone: 0865 275720<br />

William H Bearden<br />

JEOL USA INC<br />

11 Dearborn Rd<br />

Peabody, MA 01960<br />

Telephone: 617 535-5900<br />

William T. Beaudry<br />

US Army Chem Res Dev & Eng Ctr<br />

Attn: SMCCR-RSC-P/Beaudry<br />

Aberdeen Proving Grd, MD 21010-5423<br />

Telephone: 301 671-3863<br />

Edwin D. Becker<br />

National Institutes of Heal<strong>th</strong><br />

Bldg. I/Room 118<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-2215<br />

Nancy N. Becker<br />

Washington Univ-Dept of Chem<br />

Box 1134-I Brookings Drive<br />

St. Louis, MO 63130<br />

Telephone: 314 889-6583<br />

Alvin Beeler<br />

E.I. DuPont de Nemours<br />

Experimental Station E302/132<br />

Wilmington, DE 19898 "<br />

Telephone: 302 695-4595<br />

John H. Begemann<br />

New Me<strong>th</strong>ods Research<br />

719 East Genesee St.<br />

Syracuse, NY 13210<br />

Telephone: 315 424-0329<br />

Ron Behlin<br />

AT&T Bell ~aboratories<br />

IC-432, 600 Mountain Avenue<br />

Murray Hill, NJ 07974-2070<br />

Telephone: 201 582-4719<br />

Russell A. Bell<br />

McMaster University<br />

Hamilton, Ontario,<br />

CANADA<br />

L8S 4MI<br />

George M Benedikt<br />

BF Goodrich<br />

9921Brecksville Road<br />

Brecksville, OH 44141<br />

Telephone: 216 447-5448<br />

Alan Benesi<br />

Pennsylvania State University<br />

152 Davey Lab-Chemistry Dept.<br />

University Park, PA 16802<br />

Telephone: 814 865-0941<br />

Donald G. Bennett<br />

Carnegie Mellon University<br />

4400 5<strong>th</strong> Avenue, Mellon Inst.<br />

Pittsburgh, PA 15213<br />

Telephone: 412 268-3161


\ ,<br />

Lawrence Bennett<br />

Doty Scientific<br />

600 Clemson Road<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

Mabry Benson<br />

Western Regional Lab - USDA<br />

800 Buchanan Street<br />

Albany, CA 94610<br />

Telephone: 415 559-5757<br />

Debra Berg<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Wolfgang Bermel<br />

Bruker Instruments<br />

Manning Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Michael Bernstein<br />

Merck Frosst Canada, Inc.<br />

P.O. Box 1005<br />

Pointe Claire-Dorval, HgR 4P8<br />

CANADA<br />

Telephone: 514 695-7920<br />

Richard Bertrand<br />

Dept of Chemistry, PO Box 7150<br />

Univ of Colorado<br />

Colorado Springs, CO 80933-7150<br />

Telephone: 303 593-3139<br />

Serge Berube<br />

Univ De Sherbrooke Chimie<br />

2500 Boul. Universite<br />

Sherbrooke, Quebec, JIK 2RI<br />

CANADA<br />

Telephone: 8198217000x3099<br />

Kebede Beshah<br />

MIT/Magnet Lab<br />

77 Mass Ave<br />

Cambridge, MA 02139<br />

Telephone: 617 253-0258<br />

Norman Bhacca<br />

Chemistry Department<br />

Louisiana State University<br />

Baton Rouge, LA 70803<br />

Telephone: 504 388-3356<br />

Roy Bible<br />

G.D. Searle & Co.<br />

4901Searle Parkway<br />

Skokie, IL 60077<br />

Telephone: 312 982-7787<br />

An<strong>th</strong>ony Bielecki<br />

MIT, National Magnet Lab<br />

77 Massachusetts Avenue<br />

Cambridge, MA 02139<br />

Telephone: 617 253-7561<br />

Glen Bigam<br />

Chemistry Department<br />

University of Alberta<br />

Edmonton, Alberta, T6G 2G2<br />

CANADA<br />

Telephone: 403 432-2573<br />

Karl Bishop<br />

Syracuse University<br />

306 Bowne Hall<br />

Syracuse, NY 13210<br />

Telephone: 315 423-1021<br />

Barbara A. Blackwell<br />

Agriculture Canada, C.E.F.<br />

Plant Res Ctr~ Research Branch<br />

Ottawa, Ontarlo, KIA OC6<br />

CANADA<br />

Telephone: 61399537007554<br />

C. Scott Blackwell<br />

Union Carbide Corp.<br />

Old Sawmill River Rd.<br />

Tarrytown, NY 10591<br />

Telephone: 914 789-3678<br />

Susan L. Blake<br />

Chemistry Dept.<br />

Queen's University<br />

Kingston, Ont., K7L 3N6<br />

CANADA<br />

Telephone: 613 547-6180<br />

Bernhard Bluemich<br />

Max Planck Inst Poiymerfosch<br />

Postfach 3148<br />

D-6500 Mainz,<br />

F.R. GERMANY<br />

Michael Blumenstein<br />

Hunter College<br />

695 Park Avenue<br />

New York, NY 10021<br />

Telephone: 212 772-5337<br />

Jo-Anne Bonesteel<br />

DuPont Experimental Station<br />

PPD E269/200<br />

Wilmington, DE 19898<br />

Telephone: 302 772~1076<br />

Phillip Borer<br />

Syracuse University<br />

Chemistry Department<br />

Syracuse, NY 13244-1200<br />

Telephone: 315 423-1021<br />

Vincent P. Bork<br />

Chemistry Dept.<br />

Washington Univ.<br />

St. Louis, MO 63122<br />

Telephone: 314 889-4665<br />

Marie Borzo<br />

Hoechst Celanese Res Division<br />

86 Morris Avenue<br />

Summit, NJ 07901<br />

Telephone: 201 522-7969<br />

Coleen Bosch<br />

Washington University<br />

1Brookings Drive, Box 1134<br />

St. Louis, MO 63130<br />

Telephone: 314 889-6583<br />

A.A. Bo<strong>th</strong>ner-By<br />

Carne~gieTMellon Univ<br />

qquu rlftn ~ve.<br />

Pittsburgh, PA 15213<br />

Telephone: 412 268-3125<br />

Robert E. Botto<br />

Chem. F189<br />

Argonne Natlional Lab<br />

Argonne, IL 60439<br />

Telephone: 312 972-3524<br />

Donald Bouchard<br />

Chemistry Dept.<br />

Univ of Pennsylvania<br />

Philadelphia. PA 19104<br />

Telephone: 215 898~4886<br />

Ellis Boudreau<br />

Syracuse University<br />

306 Bowne Hall<br />

Syracuse, NY 13210<br />

Telephone: 315 423-I021


Yvan Boulanger<br />

Univ de Montreal<br />

Inst. Genie Biomedical CP 6128<br />

Montreal, Quebec, H3C 3J7<br />

CANADA<br />

Telephone: 514 343-6369<br />

Jona<strong>th</strong>an Boyd<br />

University of Oxford<br />

Sou<strong>th</strong> Parks Road<br />

Oxford,<br />

U.K. OXl 3QU<br />

Telephone: 44 865-275335<br />

Robert D. Boyer<br />

B P America<br />

4440 Warrensville Center Road<br />

Cleveland, OH 44128<br />

Telephone: 216 581-5537<br />

Joel Bradley<br />

Cambridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, MA 01801<br />

Telephone: 617 938-0067<br />

Raymond Brambilla<br />

Allied-Signal Corp<br />

Post Office Box I021R<br />

Morristown, NJ 07960<br />

Telephone: 201 455-2984<br />

Anita Brandolini<br />

Mobil Chemical Co.<br />

PO Box 240<br />

Edison, NJ 08818<br />

Telephone: 201 321-6288<br />

Amy Braveman<br />

University of Rochester<br />

Strong Mem Hosp, Biophy Dept<br />

Rochester, NY 14642<br />

Telephone: 716 275-8268<br />

Trond Brekke<br />

University of Bergen<br />

Department of Chemistry<br />

5007 Bergen,<br />

NORWAY<br />

Telephone: 05 213356<br />

Richard W. Briggs<br />

Univ of FL-Dept of Radiology<br />

Box J-374<br />

Gainesville, FL 32610<br />

Telephone: 904 392-3087<br />

Douglas E. Brown<br />

Eastmen Kodak<br />

Kodak Park Bldg.82C<br />

Rochester, NY 14560<br />

Telephone: 716 477-6469<br />

Dr. Rodney D Brown<br />

IBM Research<br />

PO Box 218, Loc 26-250<br />

Yorktown Heights, NY 10598<br />

Telephone: 914 945-2320<br />

L.R. Brown<br />

Australian National University<br />

Res Sch of Chem, GPO Box 4<br />

Canberra, ACT 2601,<br />

AUSTRALIA<br />

Telephone: 062 49-3771<br />

Leo Brown<br />

GE NMR Instruments<br />

255 Fourier Avenue<br />

Fremont, CA 94539<br />

Telephone: 415 683-4408<br />

Truman R. Brown<br />

Fox Chase Cancer Center<br />

7701Burholme Ave.<br />

Philadelphia. PA 19111<br />

Telephone: 215 728-3049<br />

Robert G. Bryant<br />

Biophysics Dept. Box BPHYS<br />

University of Rochester<br />

Rochester, NY 14642<br />

Telephone: 716 275-4877<br />

G. W. Buchanan<br />

Dept. of Chemistry<br />

Carelton University<br />

Ottawa, Ont., KIS 5B6<br />

CANADA<br />

Telephone: 613 564-2723<br />

Dr. David E. Bugay<br />

E. R. Squibb & Sons<br />

Rte. I @ College Farm Road<br />

New Brunswick, NJ 08903<br />

Telephone: 201 519-3211<br />

Dr. S. Bulusu<br />

US Army ARDEC<br />

Building 3028<br />

Dover, NJ 07801<br />

Telephone: 201 724-6450<br />

Lowell J. Burnett<br />

Physics Department<br />

San Diego State University<br />

San Diego, CA 92182<br />

Telephone: 619 265-3006<br />

Deborah Burstein<br />

Be<strong>th</strong> Israel Hospital<br />

330 Brookline Ave<br />

Boston, MA 02215<br />

Telephone: 617 735-3349<br />

Douglas P. Burum<br />

Bruker Instruments<br />

Manning Park<br />

Billerica, MA 01821<br />

Telephone: 617 667-9580<br />

R. Andrew Byrd<br />

Biophysics/FDA/NIH<br />

8800 Rockville Pike<br />

Be<strong>th</strong>esdao MD 20892<br />

Telephone: 301-496-2542<br />

Sean M. Cahill<br />

Hunter College<br />

Chem Dept/695 Park Avenue<br />

New York, NY 10021<br />

Telephone: 212 772-5337<br />

Dale Campau<br />

Dow Chemical USA<br />

P.O. Box 400/Bldg. 2503<br />

Baton Rouge, LA 70765-0400<br />

Telephone: 504 389-6559<br />

Steve Caravajal<br />

Procter and Gamble<br />

5299 Spring Grove Ave<br />

Cincinnati, OH 45217<br />

Telephone: 513 627-5005<br />

Kei<strong>th</strong> R. Carduner<br />

Ford Motor Co.<br />

925 N Elizabe<strong>th</strong> ST.<br />

Dearborn, MI 48128<br />

Telephone: 313 337-5454<br />

James L. Carolan<br />

Nalorac Cryogenics Corp.<br />

837 Arnold Dr., Ste. 600<br />

Martinez, CA 94553<br />

Telephone: 415 229-3501


J~<br />

W. Robert Carper<br />

Wichita State University<br />

Chemistry Department<br />

Wichita, KS 67208<br />

Telephone: 316 689-3120<br />

Stephen Castellino<br />

Monsanto<br />

Mail Zone U3D, 800 N Lindbergh<br />

St. Louis, MO 63167<br />

Telephone: 314 694-4457<br />

Franco Cau<br />

Univ De Sherbrooke Chimie<br />

2500 Boulevard de l'Univ Sherb<br />

Sherbrooke, Quebec, JIK 2Rl<br />

CANADA<br />

Telephone: 8198217000x3099<br />

Toni L. Ceckler<br />

Univ. of Rochester Med Center<br />

Biophysics Dept - Box BPHYS<br />

Rochester, NY 14642<br />

Telephone: 716 275-4378<br />

V.P. Chacko<br />

Johns Hopkins Med Institutions<br />

MRI-110, 600 Nor<strong>th</strong> Wolfe St<br />

Baltimore, MD 21205<br />

Telephone: 301 955-4220<br />

Jar-Bee Chan<br />

Univ of Illinois/Champaign<br />

505 S. Ma<strong>th</strong>ews, 24-I NL<br />

Urbana, IL 61801<br />

Telephone: 217-333-3897<br />

S. Chandrasekar<br />

Dept of Chemistry, Univ Plaza<br />

Georgia State Un)v<br />

Atlanta, GA 30303<br />

Telephone: 404 651-3120<br />

Lydia L. Chang<br />

ICI Americas, Inc.<br />

1200 S. 47<strong>th</strong> Street<br />

Richmond, CA 94804<br />

Telephone: 415 231-1043<br />

Shoumo Chang<br />

Dept. of Chemistry<br />

UC Irvine<br />

Irvine, CA 92717<br />

Telephone: 714 856-6010<br />

Mohan V. Chari<br />

Baylor College of Med, MRI Ctr<br />

9450 Grogan's Mill Road<br />

Woodlands, TX 77380<br />

Telephone: 713 363-4844<br />

Mark Chaykovsky<br />

Bruker Instruments<br />

Mannin~ Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Deng-Ywan Chen<br />

Dept. of Chemistry<br />

Univ. of Pennsylvania<br />

Philadelphia. PA 19104<br />

Telephone: 215 898-4886<br />

Shiow-Meei Chen<br />

Univ of Wisconsin - Milwaukee<br />

3210 Nor<strong>th</strong> Cramer Street<br />

Milwaukee, WI 53201<br />

Telephone: 414 229-5220<br />

Wenqiao Chen<br />

Hunter College, Cuny<br />

695 Park Ave<br />

New York, NY 10021<br />

Telephone: 212 772-5337<br />

Doris Chen~<br />

Exxon Chemical Co<br />

1900 W. Linden Ave<br />

Linden, NJ 07036<br />

Telephone: 201 474-2591<br />

Guang-Qiang Chen 9<br />

Syracuse Universlty<br />

Bowne Hall<br />

Syracuse, NY 13244-1200<br />

Telephone: 315-423-1021<br />

Jung Tsang Cheng<br />

Chemistry Department. #26<br />

University of Sou<strong>th</strong> Carolina<br />

Columbia, SC 29208<br />

Telephone: 803 765-0247<br />

Gwendol~n N. Chmurny<br />

NCI-FCRF<br />

PO Box B. Bldg. 469, Rm. 162<br />

Frederick, MD 21701<br />

Telephone: 301 698-1226<br />

Shin-Il Cho<br />

Doty Scientific<br />

600 Clemson Road<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

Ashok Cholli<br />

BOC Group<br />

100 Mountain Ave<br />

Murray Hill, NJ 07974<br />

Telephone: 201 464-8100<br />

Kenner Christensen<br />

Univ of Arizona<br />

Chem Dept<br />

Tucson, AZ 85721<br />

Telephone: 602 621-2308<br />

Po-Jen Chu<br />

Texas A&M University<br />

Dept of Chem, Room 2407<br />

College Station, TX 77840<br />

Telephone: 409 845-8299<br />

Simon Chu<br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2600<br />

Ted Claiborne<br />

MedRad Inc<br />

Post Office Box 730<br />

Indianola, PA 15051<br />

Telephone: 412 767-9877<br />

Mike C1ingan<br />

Doty Scientific, Inc.<br />

600 Clemson Road<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

David W. Cochran<br />

Wye<strong>th</strong>-Ayerst Research<br />

CN 8000<br />

Princeton, NJ 08543<br />

Telephone: 201 274-4481<br />

Michael D. Cockman<br />

University of Florida<br />

Box 71, Leigh Hall<br />

Gainesville, FL 32611<br />

Telephone: 904 392-3087


Helga Cohen<br />

Univ of So Carolina<br />

Chem Dept NMR Facility<br />

Columbia, SC 29208<br />

Telephone: 803 777-2649<br />

Holly Cole<br />

National Institutes of Heal<strong>th</strong><br />

Building 30 Room 106<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-6307<br />

Lawrence D Colebrook<br />

Concordia Univ, Chem Dept<br />

1455 deMaissoneuve Blvd W<br />

Montreal, Quebec, H3G IM8<br />

CANADA<br />

Telephone: 514 848-3336<br />

Kim Colson<br />

Bristol-Myers Company<br />

Analy Chem-5 Research Parkway<br />

Wallingford, CT<br />

Telephone: 203 284-7535<br />

James W. Cooper<br />

IBM<br />

472 Wheelers Farm Rd.<br />

Milford, CT 06460<br />

Telephone: 203 783-4536<br />

Paul Cope<br />

Wilmad Glass Co., Inc.<br />

Route 40 & Oak Rd.<br />

Buena, NJ 08310<br />

Telephone: 609 697-3000<br />

Valerie Copie<br />

Mass Institute of Technology<br />

170 Albany Street. NW 14-5111<br />

Cambridge, MA 02139<br />

Telephone: 617 253-5416<br />

Chris Coretsopoulos<br />

Univ of II; Box 24 Noyes Lab<br />

505 Sou<strong>th</strong> Ma<strong>th</strong>ews<br />

Urbana-Champaign, IL 61821<br />

Telephone: 217 333-5544<br />

Mary Lou Cotter<br />

Or<strong>th</strong>o Pharmaceutical Corp<br />

Route 202 - Box 300<br />

Raritan, NJ 08869-0602<br />

Telephone: 201 218-6292<br />

Charles E. Cottrell<br />

Ohio State University<br />

120 West 18<strong>th</strong> Avenue<br />

Columbus, OH 43210<br />

Telephone: 614 292-0489<br />

S. H. Couturie<br />

Chevron Oil Field Research Co.<br />

Post Office Box 446<br />

La Habra, CA 90633-0446<br />

Telephone: 213/694-9332<br />

David Cowburn<br />

Rockefeller University<br />

1230 York Avenue<br />

New York, NY 10021-6399<br />

Telephone: 212 570-8270<br />

Bruce Coxon<br />

National Bureau of Standards<br />

Chemistr~ Bldg. A361<br />

Gai<strong>th</strong>ersburg. MD 20899<br />

Telephone: 301 975-3135<br />

Madeleine H. Cozine<br />

Yale Univ-Sterling Chem Labs<br />

225 Prospect Street<br />

New Haven, CT 06511<br />

Telephone: 203 432-3933<br />

Ray Crandall<br />

Xerox Corp<br />

800 Phillips Rd<br />

Webster, NY 14580<br />

Telephone: 716 422-1797<br />

Roger W Crecely<br />

Unlv of Delaware<br />

Chem Dept<br />

Newark, DE 19716<br />

Telephone: 302 451-8901<br />

R. William Creekmore<br />

FMC Corporation<br />

PO Box 8<br />

Princeton, NJ 08540<br />

Telephone: 6094522300x4391<br />

F J Creuzet<br />

Nat'l Magnet Lab, MIT<br />

77 Mass Ave, B1dg NW14-5107<br />

Cambridge, MA 02139<br />

Telephone: 617 253-5586<br />

William R. Croasmun<br />

Kraft Research & Development<br />

801Waukegan Rd.<br />

Glenview, IL 60025<br />

Telephone: 312 998-3647<br />

Be<strong>th</strong> A. Crockett<br />

Dept of Chemistry<br />

Univ of S Carolina<br />

Columbia, SC 29208<br />

Telephone: 803 777-7399<br />

Bob Crosby<br />

M-R Resources Inc<br />

38 Parker Street<br />

Gardner, MA 01440<br />

Telephone: 617 632-7000<br />

Timo<strong>th</strong>y Cross<br />

Florida State University<br />

Chemistry Department<br />

Tallahassee, FL 32306-3006<br />

Telephone: 904 644-2824<br />

Michael Crowley<br />

Harper Hospital/MR Center<br />

3990 John R<br />

Detroit, MI 48201<br />

Telephone: 313 745-1379<br />

Molly Crow<strong>th</strong>er<br />

New Me<strong>th</strong>ods Research<br />

719 E. Genesee Street<br />

Syracuse, NY 13210<br />

Telephone: 315 423-0329<br />

Phillip Cruz<br />

Wright State University<br />

Dayton, OH 45435<br />

Telephone: 513 873-2024<br />

Janet Curtis<br />

University of Utah<br />

210 Park Building<br />

Salt Lake City, DT 84112<br />

Telephone: 801 581-7351<br />

John D. Cutnell<br />

Dept. of Physics<br />

Sou<strong>th</strong>ern Illinois University<br />

Carbondale, IL 62966<br />

Telephone: 618 453-3735


Andre D'Avignon<br />

• Dept. of Chemistry Box 1134<br />

Washington University<br />

St LOUlS, MO 63130<br />

~elephone: 318 889-4715<br />

Dr. Josef Dadok<br />

Carnegie Mellon University<br />

4400 Fif<strong>th</strong> Avenue<br />

Pittsburgh, PA 15213<br />

Telephone: 412 ~68-3146<br />

Jerry L. Dallas<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Telephone: 415 683-4363<br />

Neal Dando<br />

ALCOA<br />

Rt 780 Alcoa Technical Ctr<br />

Alcoa Center, PA 15069<br />

Telephone: 412 337-5367<br />

Charles Danehey<br />

Union Carbide<br />

Old Saw Mill River Road<br />

Tarrytown, NY 10591<br />

Telephone: 914 789-3235<br />

Prashan<strong>th</strong> Darba<br />

Univ of Wisconsin-Madison<br />

Dept of Biochem-Natl Nag Reso<br />

Madison, WI 53706<br />

Telephone: 608 263-9494<br />

Donald G. Davis<br />

Natl Inst of Env Hl<strong>th</strong> Sciences<br />

Box 12233; MD 5-01<br />

Research Triangle, NC 27709<br />

Telephone: 919 541-1986<br />

Nicolette Davis<br />

1280 Walnut Avenue, #68<br />

Tustin, CA 92680<br />

Telephone: 714 544-4035<br />

Brian Dawson<br />

Heal<strong>th</strong> & Welfare Canada<br />

Banting Bldg( Tunney's Pasture<br />

Ottawa/Ontario, KIA O12<br />

CANADA<br />

Telephone: 613 957-1068<br />

William H. Dawson<br />

CANMET - Department of Energy<br />

555 Boo<strong>th</strong> Street<br />

Ottawa/Ontario, KIA OGI<br />

CANADA<br />

Telephone: 613 996-5298<br />

A. De Groot<br />

Koninklyke Shell Lab Amsterdam<br />

Badhuisweg 3 Post Bus 3003<br />

1003 AA Amsterdam,<br />

THE NETHERLANDS<br />

Telephone: 020 302218<br />

Huub J. M. De Groot<br />

Francis Bitter Lab/NIT<br />

170 Albany Street<br />

Cambridge, MA 02139<br />

Telephone: 617 253-0962<br />

Jeff De Ropp<br />

NMR Facility<br />

UC Davis<br />

Davis, CA 95616<br />

Telephone: 916 752-7677<br />

Paul A. DeMu<strong>th</strong><br />

Univ of Rochester-Biophysics<br />

Strong Memorial Hospital<br />

Rochester, NY 14642<br />

Telephone: 716 275-4378<br />

James J. Oechter<br />

Arco Oil & Gas, Co.<br />

2300 W. Piano Pkwy<br />

Piano, TX 75075<br />

Telephone: 214 754-6607<br />

Alan J. Deese<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Freemont, CA 94539<br />

Telephone: 415 683-4408<br />

Frank Delaglio<br />

New Me<strong>th</strong>ods Research Inc.<br />

719 East Genesee Street<br />

Syracuse, NY 13210<br />

Telephone: 315 424-0329<br />

John Delayre<br />

TECMAG<br />

6006 Bellaire Blvd.<br />

Houston, TX 77081<br />

Telephone: 713 667-1507<br />

Peter C. Demou<br />

Yale University<br />

Chemistry Dept. PO Box 6666<br />

New Haven, CT 06511<br />

Telephone: 203 432-3940<br />

Hea<strong>th</strong>er D Dettman<br />

Univ of Ottawa; Chem Dept<br />

32 George Glinski<br />

Ottawa/Ontario, KIN 6N5<br />

CANADA<br />

Telephone: 613 564-7894<br />

Lisa A. Deuring<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415-493-4000<br />

Alice Oi Gioia<br />

Ashland Chemical Company<br />

PO Box 2219<br />

Columbus, OH 43216<br />

Telephone: 614 889-4597<br />

Lisa DiMichele<br />

Merck & Co, Inc.<br />

PO Box 2000; R801-210<br />

Rahway, NJ 07065<br />

Telephone: 201 574-7139<br />

Dr. Joseph A D/Verdi<br />

Chemagnetics Inc<br />

208 Commerce Drive<br />

Ft. Collins, CO 80524<br />

Telephone: 303 484-0428<br />

Frank J. D/nan<br />

Occidental Chemical Corp<br />

2801 Long Road<br />

Grand Island, NY 14072<br />

Telephone: 716 773-8607<br />

Peter J. Oomaille<br />

DuPont Experimental Station<br />

Experimental Station E356/33<br />

Wilmington, DE 19898<br />

Telephone: 302 695-2723<br />

Harr~ C. Dorn<br />

Virglnla Tech<br />

Chem Oept<br />

Blacksburg, VA 24061<br />

Telephone: 703 961-5953


F. David Doty<br />

Doty Scientific Inc.<br />

600 Clemson Road<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

Judy Doty<br />

Doty Scientific Inc.<br />

600 Clemson Road<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

Daryl A. Doughty<br />

Natl.lnst for Petro & Engy Kes<br />

220 N Virginia Ave, POBox 2128<br />

Bartlesville, OK 74005<br />

Telephone: 918336-2400X296<br />

Daniel R Draney<br />

American Cyanamid Co.<br />

1937 W. Main St.<br />

Stamford, CT 06904<br />

Telephone: 203 348-7331<br />

Gary Drobny<br />

University of Washington<br />

Department of Chemistry, BG-IO<br />

Seattle, WA 98195<br />

Telephone: 206 545-2052<br />

Maureen A. Duffy<br />

Cambridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, MA 01801<br />

Telephone: 617 938-0067<br />

R. William Dunlap<br />

Amoco Research Center<br />

PO Box 400<br />

Naperville, IL 60566<br />

Telephone: 312 420-5154<br />

Lois J. Durham<br />

Stanford Univ<br />

Chem Dept<br />

Stanford, CA 94305<br />

Telephone: 415 723-1610<br />

April Dutta<br />

Resonex Inc<br />

720 Palomar Avenue<br />

Sunnyvale, CA 94086<br />

Telephone: 408 720-8600<br />

Tammy J. Dwyer<br />

Univ of. California, San Diego<br />

Dept of Chem-Mail Code DO06<br />

La Jolla, CA 92093<br />

Telephone: 619 534-3173<br />

Cecil Dybowski<br />

Dept. of Chem. & Biochem.<br />

University of Delaware<br />

Newark, DE 19716<br />

Telephone: 302 451-2726<br />

Thomas A. Early<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Telephone: 415 683-4364<br />

Margaret A. Eastman<br />

Baker Lab of Chemistry<br />

Cornel I<strong>th</strong>acal University<br />

NY 14853-1301<br />

Telephone: 607 255-4860<br />

Hugh L. Eaton<br />

Unlv of Wash, Biomembrane Inst<br />

201 Elliot Avenue, West<br />

Seattle, WA 98119<br />

Telephone: 206 545-2086<br />

Hellmut Eckert<br />

UC Santa Barbara<br />

Department of Chemistry<br />

Goleta, CA 93106<br />

Telephone: 805 961-8163<br />

Richard Eckman<br />

Exxon Chemical Company<br />

5200 Bayway Drive<br />

Baytown, TX 77520<br />

Telephone: 713 425-2474<br />

Heinz Egloff<br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2600<br />

Keiji Eguchi<br />

JEOL USA INC<br />

II Dearborn Rd<br />

Peabody, MA 01960<br />

Telephone: 617 535-5900<br />

Irena Ekiel<br />

National Research Council<br />

100 Sussex Drive<br />

Ottawa, Ontario, KI~ OR6<br />

CANADA<br />

Telephone: 613 990-0905<br />

Paul D. Ellis<br />

Chemistry Department<br />

University of Sou<strong>th</strong> Carolina<br />

Columbia, SC 29208<br />

Telephone: 803 777-6490<br />

Carl Engelman<br />

Ohio State University<br />

120 West 18<strong>th</strong> Avenue<br />

Columbus, OH 43210<br />

Telephone: 614 292-8625<br />

Helen R. Engese<strong>th</strong><br />

GE Medical Systems<br />

W-804, Post Office Box 414<br />

Milwaukee, WI 53201<br />

Telephone: 414 521-6338<br />

Alan D. English<br />

EI DuPont de Nemours & Co.<br />

Experimental Station<br />

Wilmington, DE 19898<br />

Telephone: 302 695-4851<br />

Raul G. Enri~u?z.<br />

Facultad de Hulmlca Unam<br />

Oiv. Est. Posgrado<br />

Mexico City,<br />

20 DF MEXICO<br />

Telephone: 905 658-9534<br />

George Entzminger<br />

Doty Scientific<br />

600 Clemson Rd.<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

C. Anderson Evans<br />

Schering Corporation .<br />

86 Orange Street (B-9-B)<br />

Bloomfield, NJ 07003<br />

Telephone: 201 429-3957<br />

Frederick E. Evans<br />

Natl Center for Tox. Res.<br />

HFT 110<br />

Jefferson, AR 72079<br />

Telephone: 501 541-4317


Edward Ezell<br />

Dept HBC&G, F-20;3.362 GB B4dg<br />

Univ of Texas<br />

Galveston, TX 77550<br />

Telephone: 409-761-3997<br />

Fouad Ezra<br />

Proctor & Gamble Miami Valley<br />

PO Box 398707<br />

Cincinnati, OH 45239<br />

Telephone: 513 245-2485<br />

Kevin L. Facchine<br />

ORTHO Pharmaceutical Corp.<br />

Route 202<br />

Raritan, NJ 08869<br />

Telephone: 201 218-6230<br />

Paul E. Fagerness<br />

The Upjohn Co.<br />

Prod Contr II, MS 4822-259-12<br />

Kalamazoo, HI 49001<br />

Telephone: 616 329-3931<br />

Liu Fan 9<br />

Universlty of Utah<br />

Department of Chemistry<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-7351<br />

Rod Farlee<br />

DuPont Central Research<br />

Experimental Station 328<br />

Wilmington, DE 19898<br />

Telephone: 302 669-1757<br />

Sandy Farmer<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

lan Farnan<br />

Stanford University<br />

Department of Geology<br />

Stanford, CA 94305<br />

Telephone: 415 723-3831<br />

Margaret R. Farrar<br />

Nat Rag Lab/Brandeis Univ<br />

HIT NW14-5107, 170 Albany St.<br />

Cambridge, HA 02139<br />

Telephone: 617 253-5586<br />

Timo<strong>th</strong>y R. Fennell<br />

Chem Ind Inst of Toxicology<br />

P 0 Box 12137<br />

Research Triangle Pk, NC 27709<br />

Telephone: 919 541-2070<br />

James Ferretti<br />

National Institutes of Heal<strong>th</strong><br />

Bldg 10 Room 7N315<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone:, 301 496-3341<br />

Morton A. Fineman<br />

Physics Dept.<br />

San Diego State Univ.<br />

San Diego, CA 92182<br />

Telephone: 619 265-4326<br />

Kenne<strong>th</strong> W. Fishbein<br />

Nat1 Magnet Lab, M.I.T.<br />

150 Albany Street<br />

Cambridge, HA 02139<br />

Telephone: 617 253-5586<br />

Jeffrey Fitzsimons<br />

University of Florida<br />

J-374 JHMHC<br />

Gainesville, FL 32610<br />

Telephone: 904 395-0293<br />

William W. Fleming<br />

IBM Almaden Research Center<br />

K91/801; 650 Harry Rd.<br />

San Jose, CA 95120-6099<br />

Telephone: 408 927-1611<br />

Charles E. Forbes<br />

Hoechst Celanese<br />

86 Morris Ave<br />

Summit, NJ 07901<br />

Telephone: 201 522-7913<br />

Jeffrey Forbes<br />

Box 42, 505 S. Ma<strong>th</strong>ews<br />

Univ of Illinois<br />

Urbana, IL 61801<br />

Telephone: 217 333-3004<br />

Joseph J. Ford<br />

Baylor College of Medicine<br />

9450 Grogan's Mill Road<br />

Woodlands, TX 77380<br />

Telephone: 713 363-4844<br />

Hans Forster<br />

Bruker Instruments<br />

Mannin~ Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Natalie Foster<br />

Lehigh Univ<br />

• Dept of Chem Mudd Bldg @6<br />

Be<strong>th</strong>lehem, PA 18015<br />

Telephone: 215 758-3646<br />

Jocelyn Fowler<br />

Univ of Pennsylvania-Dept Chem<br />

34<strong>th</strong> & Spruce Streets<br />

Philadelphia, PA 19104<br />

Telephone: 215 898-4886<br />

David Foxall<br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2600<br />

Anne Frederick<br />

Yale University<br />

Dept of Chem-225 Prospect St.<br />

New Haven, CT 06511<br />

Telephone: 203 432-3992<br />

James E. Freeman<br />

The Upjohn Company<br />

M.S. 4820-259-12<br />

Kalamazoo, HI 49001<br />

Telephone: 616 323-4103<br />

Michael A Freeman<br />

Exxon Res. and Dev Labs<br />

PO Box 2226<br />

Baton Rouge, LA 70821<br />

Telephone: 504 359-4444<br />

Ray Freeman<br />

Dept Phys Chem., Lensfield Rd<br />

Cambridge University<br />

Cambridge, CB2 IEP<br />

ENGLAND<br />

Telephone: 0223 336450<br />

Michael H Frey<br />

JEOL USA INC<br />

II Dearborn Rd<br />

Peabody, MA 01960<br />

Telephone: 617 535-5900


Alan Freyer<br />

Pennsylvania State University<br />

6 Chahdlee Lab-Chemistry Dept<br />

University Park, PA 16802<br />

Telephone: 814 865-0231<br />

E<strong>th</strong>el From<br />

Mount Holyoke College<br />

Chemistry Department<br />

Sou<strong>th</strong> Hadley, MA 01075<br />

Telephone: 413 538-2349<br />

Eiichi Fukushima<br />

Lovelace Medical Foundation<br />

2425 Ridgecrest Drive, S.E.<br />

Albuquerque, NM 87108<br />

Telephone: 505 262-7155<br />

Bing M Fung<br />

Univ of Oklahoma<br />

Dept of Chem "<br />

Norman, OK 73019<br />

Telephone: 405 325-3092<br />

George T. Furst<br />

Univ of Pennsylvania<br />

2505 33RD Street<br />

Philadelphia, PA 19104<br />

Telephone: 215 898-3407<br />

Michael M. Fuson<br />

Wabash College<br />

Crawfordsville, IN 47933<br />

Telephone: 317 364-4241<br />

Colin A. Fyfe<br />

Chemistry Department<br />

Univ of British Columbia<br />

Vancouver, BC, V6T IY6<br />

CANADA<br />

Telephone: 604 228-2293<br />

Robert A. Gale<br />

M R Resources<br />

38 Parker Street<br />

Gardner, MA 01440<br />

Telephone: 617 632-7000<br />

Ka<strong>th</strong>leen S. Gallagher<br />

Univ of New Hampshire<br />

Parsons Hall<br />

Durham, NH 03824<br />

Telephone: 603 862-3597<br />

Michael Gamcsik<br />

Johns Hopkins Univ<br />

720 Rutland Ave.<br />

Baltimore, MD 21205<br />

Telephone: 301 955-7491<br />

Xiaolian'Gao<br />

Columbia Univ; Dept of Biochem<br />

630 W 168<strong>th</strong> Street<br />

New York, NY 10032<br />

Telephone: 212 305-5280<br />

Albert R. Garber<br />

Univ of So Carolina<br />

Chemistry Department<br />

Columbia, SC 29208<br />

Telephone: 803 777-2088<br />

Joel R Garbow<br />

Monsanto Co.<br />

700 Chesterfield Vill Pkwy<br />

St. Louis, MO 63198<br />

Telephone: 314 537-6004<br />

Janice Koles Garde<br />

Monsanto Co.<br />

800 N. Lindberg Blvd.<br />

St. Louis, MO 63166<br />

Telephone: 314 694-1172<br />

Dale R. Gardner<br />

Procter & Gamble<br />

6071 Center Hill Road<br />

Cincinnati, OH 45224<br />

Telephone: 513 659-4846<br />

Allen N. Garroway<br />

Naval Research Laboratory<br />

Code 6122<br />

Washington, DC 20375-5000<br />

Telephone: 202 767-2323<br />

Dr. Thomas Gedris<br />

Florida State University<br />

Chemistry Dept. NMR Lab<br />

Tallahassee, FL 32306<br />

Telephone: 904 644-5586<br />

Leslie Gelbaum<br />

Georgia Tech<br />

Research Center for Biotech<br />

Atlanta, GA 30332<br />

Telephone: 404 894-3700<br />

Dr. Walter V Gerasimowicz<br />

Naval Research Laboratory<br />

Code 6122, Chemistry Division<br />

Washington, DC 20375-5000<br />

Telephone: 202 767-2323<br />

B. C. Gerstein<br />

Iowa State University<br />

229 Spedding I SU<br />

Ames, IA 50011<br />

Telephone: 515 294-3375<br />

Henrik Gesmar<br />

HC Orsted Inst, Dept of Chem<br />

5, Universitetsparken<br />

DK-2100 Copenhagen,<br />

DENMARK<br />

Telephone: 1 35 31 33 X610<br />

Paul J Giammatteo<br />

Texaco Inc.<br />

PO Box 509<br />

Beacon, NY 12508<br />

Telephone: 914 831-3400 X6<br />

A<strong>th</strong>oll A. Gibson<br />

Nalorac Cryogenics Corp<br />

837 Arnold Drive, Suite 600<br />

Martinez, CA 94553<br />

Telephone: 415 229-3501<br />

Russell Gillis<br />

The Upjohn Company<br />

M/S 1140-230-2, 7171 Portage<br />

Kalamazoo, MI 49001<br />

Telephone: 616 323-5779<br />

T. E. Glass<br />

Virginia Tech<br />

Dept of Chem<br />

Blacksburg, VA 24060<br />

Telephone: 703 961-5385<br />

John Glushka<br />

The Rockefeller University<br />

1230 York Avenue, Box 299<br />

New York, NY 10021<br />

Telephone: 212 570-8269<br />

William Gmeiner<br />

University of Utah<br />

Department of Chemistry<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-3014


John Gobbi<br />

Dow Chemical; PO Box 3030<br />

Vidal St; AR&D, Bldq 63<br />

Sarnia/Ontario, N7T 7MI<br />

CANADA<br />

Telephone: 519 339-5221<br />

Wendy Goldberg<br />

Merck Isotopes<br />

PO Box 2000 Ry 33-50<br />

Rahway, NJ 07065<br />

Telephone: 201 574-4207<br />

Oded Gonen<br />

MIT<br />

RM. 6-133<br />

Cambridge, MA 02139<br />

Telephone: 617 253-2380<br />

Nina C. Gonnella<br />

CIBA GEIGY<br />

556 Morris Ave.<br />

Summit, NJ 07928<br />

Telephone: 201 277-7265<br />

Ricardo Gonzalez-Mendez<br />

Stanford Univ Sch of Medicine<br />

Department of Pediatrics, $214<br />

Stanford, CA 94305-5119<br />

Telephone: 415 723-5859<br />

Mary C Goodberlet<br />

Eastman Kodak<br />

B339 ATD<br />

Rochester, NY 14650<br />

Telephone: 716 722-3253<br />

Myra Gordon<br />

Isotec Inc<br />

3858 Benner Road<br />

Miamisburg, OH 45342<br />

Telephone: 800 448-9760<br />

Dr. David Gorenstein<br />

Purdue University<br />

Department of Chemistry<br />

West Lafayette, IN 47907<br />

Telephone: 317 494-7851<br />

Koji Goto<br />

Asahi Chemical Industry Amer<br />

350 Fif<strong>th</strong> Ave. Suite 7412<br />

New York, NY 10118<br />

Telephone: 212 695-6720<br />

David W Graden<br />

Janssen Res Foundation<br />

McKean & Welsh Rds<br />

Spring House. PA 19477<br />

Telephone: 215 628-5884<br />

Philip Grandinetti<br />

Univ of lllinois-Urbana<br />

505 S Ma<strong>th</strong>ews Box 48-I<br />

Urbana, IL 61801<br />

Telephone: 217 244-1140<br />

Anne Grant<br />

Hoffmann-LaRoche Inc<br />

340 Kingsland Street<br />

Nutley, NJ 07110<br />

Telephone: 201 235-5108<br />

David M. Grant<br />

University of Utah<br />

1320 HEB, Chemistry Department<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-8854<br />

Peter Grant<br />

Varian Associates<br />

611Hansen<br />

Palo Alto,<br />

~Y94303<br />

Telephone: 415 493-4000<br />

David Graves<br />

Dept of Chemistry<br />

Univ. of Mississlppi<br />

University, MS 38677<br />

Telephone: 601 232-7732<br />

George Gray<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Dr Christian Griesinger<br />

ETH Zurich-Phy Chem Lab<br />

ETH Zentrum<br />

Zurich,<br />

CH-8092 SWITZERLAND<br />

Telephone: 01 256 4375<br />

Robert G. Griffin<br />

MIT<br />

NW14-5113, 77 Mass Avenue<br />

Cambridge, MA 02139<br />

Telephone: 617 253-5597<br />

Bruce Griffi<strong>th</strong><br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Stephen Grode<br />

The Upjohn Co.<br />

1140-230-2<br />

Kalamazoo, MI 49001<br />

Telephone: 616 323-4316<br />

Terry W. Gullion<br />

Washlngton University<br />

Department of Chemistry<br />

St. Louis, MO 63130<br />

Karl Gunderson<br />

Ciba-Geigy Corp.<br />

556 Morrls Avenue<br />

Summit, NJ 07901<br />

Telephone: 201 277-5285<br />

Fred Haberle<br />

Brucker Instruments<br />

Mannin 9 Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Myrna Hagedorn<br />

Int'l. Flavors & Fragrances<br />

1515 Highway 36<br />

Union Beach, NJ 07735<br />

Telephone: 201 264-4500<br />

Elisabe<strong>th</strong> Hajdu<br />

G.D. Searle & Co.<br />

4901Searle Parkway<br />

Skokie, IL 60056<br />

Telephone: 312 982-4675<br />

James E. Hall<br />

ICl Americas<br />

Concord Pike and Murphy Road<br />

Wilmington, DE 19897<br />

Telephone: 302 575-8302<br />

~ e!en-Ne]l Hallada~.<br />

eton Mall university<br />

Chemistry Sou<strong>th</strong> Orange Ave.<br />

Sou<strong>th</strong> Orange. NJ 07079<br />

Telephone: 201 761-9029


Gordon Hamer<br />

Xerox Research Center-Canada<br />

2660 Speakman Drive<br />

Mississauga, Ont., L5K 2LI<br />

CANADA<br />

Telephone: 416 823-7091<br />

Philip K. Hammen<br />

University of Washington<br />

Department of Chemistry, B6-I0<br />

Seattle, WA 98195<br />

Telephone: 206 545-2086<br />

Dr Charles F Hammer<br />

Georgetown University<br />

Department of Chemistry<br />

Washington, DC 20057<br />

Telephone: 202 687-6170<br />

Terry E. Hammond<br />

B P America<br />

4440 Warrensville Road<br />

Cleveland, OH 44128<br />

Telephone: 216 581-5929<br />

Ronald L. Haner<br />

University of California<br />

Department of Chemistry<br />

Santa Cruz, CA 95064<br />

Telephone: 408 429-4382<br />

Dr. Wayne Harris<br />

ICN Biomed Inc-Stable Isotopes<br />

3300 Hyland Avenue<br />

Costa Mesa, CA 92626<br />

Telephone: 714 545-0113<br />

Aidan T. Harrison<br />

Cornell University<br />

Dept of Chem, B-71 Baker Lab<br />

I<strong>th</strong>aca, NY 14853-1301<br />

Telephone: 607 255-8548<br />

Arnold M. Harrison<br />

Union Carbide Tech Center<br />

P.O. Box 8361<br />

Sou<strong>th</strong> Charleston, WV 25303<br />

Telephone: 304 747-5898<br />

J. Stephen Hartman<br />

Dept of Chemistry<br />

Brock University<br />

St. Ca<strong>th</strong>arines, Ont., L2S 3AI<br />

CANADA<br />

Telephone: 416 688-5550<br />

Cyn<strong>th</strong>ia Hartzell<br />

Los Alamos National Lab<br />

P. O. Box 1663, LANL C345<br />

Los Alamos, NM 87545<br />

Telephone: 505 667-9806<br />

Syed Hasan<br />

Nutra Sweet<br />

601 East Kensington Road<br />

Mt. Prospect, IL 60056<br />

Telephone: 312 506-2376<br />

Andy Hasenfeld<br />

Dept of Chemistry<br />

Princeton University<br />

Princeton, NJ 08544<br />

Telephone: 609 987-2901<br />

Galen R. Hatfield<br />

Allied-Signal<br />

Corporate Technology<br />

Morristown, NJ 07960<br />

Telephone: 201 455-2794<br />

Bruce Hawkins<br />

Colorado State University<br />

Department of Chemistry<br />

Ft. Collins, CO 80523<br />

Telephone: 303 491-6455<br />

Sarah L. Heald<br />

Yale University<br />

333 Cedar Street, Box 3333<br />

New Haven, CT 06515<br />

Telephone: 215 785-4607<br />

Jerry Heeschen<br />

Dow Chemical Company<br />

Analytical Sciences 1897<br />

Midland, MI 48667<br />

Telephone: 517 636-5330<br />

Gregory J. Heffron<br />

Syracuse University<br />

305 Bowne Hall<br />

Syracuse, NY 13244-1200<br />

Telephone: 315 423-1021<br />

Gregory L. Helms<br />

Univ of Hawaii-Dept of Chem<br />

2545 The Mall<br />

Honolulu, HI 96822<br />

Telephone: 808 948-6471<br />

Roseann Helms<br />

Doty Scientific<br />

600 Clemson Rd.<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

Janet M. Henderson<br />

Nabisco Brands Tech Ctr<br />

100 Deforest Avenue<br />

East Hanover, NJ 07936<br />

Telephone: 201-503-3418<br />

P. Mark Henrichs<br />

Eastman Kodak Co.<br />

FI. 2, B.81<br />

Rochester, NY 14650<br />

Telephone: 716 477-6229<br />

Griselda Hernandez<br />

University of Rochester<br />

Chemistry Department<br />

Rochester, NY 14627<br />

Telephone: 716 275-8268<br />

J. Michael Hewitt<br />

Eastman Kodak<br />

B339 Kodak Park<br />

Rochester, NY 14650<br />

Telephone: 716 722-3208<br />

Robert Highet<br />

Natl Heart Lung & Blood Inst<br />

Bldg. 10, Rm. 7N320<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-3237<br />

Howard Hill<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

David F. Hillenbrand<br />

OTS Inc<br />

46 Manning Road<br />

Billerica, MA 01821<br />

Telephone: 617 671-0811<br />

Bruce Hilton<br />

NCI-FCRF; Prog Resources Inc<br />

PO Box B, Bldg 469, Room 162<br />

Frederick, MD 21701<br />

Telephone: 301 694-1226


Tetsuo Hinomoto<br />

JEOL USA Inc<br />

11 Dearborn Rd.<br />

Peabody, MA 01960<br />

Telephone: 617 535-5900<br />

Robert C. Hirst<br />

Goodyear Tire & Rubber Co.<br />

142 Goodyear Blvd, 415A<br />

Akron, OH 44305<br />

Telephone: 216 796-9104<br />

Gina Hoatson<br />

College of William & Mary<br />

Physics Department<br />

Williamsburg. VA 23185<br />

Telephone: 804 253-4471<br />

Roy Hoffman<br />

Syracuse University<br />

NMR/Data Proc Lab, Bowne Hall<br />

Syracuse, NY 13244-1200<br />

Telephone: 315 423-1201<br />

Bruce R Hofman<br />

Wye<strong>th</strong>-Ayerst<br />

CN 8000<br />

Princeton, NJ 08540<br />

Telephone: 201 274-4335<br />

Wade G. Holcomb<br />

Yale Univ School of Medicine<br />

185 Linden St.<br />

New Haven, CT 06511<br />

Telephone: 203 785-5296<br />

Robert S. Honkonen<br />

Procter & Gamble<br />

11810 East Miami River Road<br />

Ross, OH 45061<br />

Telephone: 513 245-2959<br />

Joseph P. Hornak<br />

Rochester Inst. of Tech.<br />

Chemistry Dept.<br />

Rochester, NY 14623<br />

Telephone: 716 475-2904<br />

Phil Hornung<br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2600<br />

David I. Hoult<br />

.NIH, Bldg. 13 Room 3W13<br />

9000 RocEville Pike<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-5771<br />

Grace Hsu<br />

M & T Chemicals<br />

PO Box 1104<br />

Rahway, NJ 07065<br />

Telephone: 201 499-2177<br />

Victor L. Hsu<br />

Univ of Calif, San Diego<br />

Dept of Chemistry. B-042<br />

ta Jolla, CA 92093-0342<br />

Telephone: 619 534-4896<br />

Jianzhi Hu<br />

Wuhan Institute of Physics<br />

Wuhan, Post Office Box 241<br />

Wuhan, Hubei, 430071<br />

P. R. of China<br />

Telephone: 812 541-204<br />

Dee-Hua Huang<br />

Univ of Alabama<br />

NMR FacilitylCHSB B-31<br />

Birmingham, AL 35294<br />

Telephone: 205 934-5695<br />

Shaw Huang<br />

Harvard University<br />

12 Oxford Street<br />

Cambridge, MA 02138<br />

Telephone: 617-495-3939<br />

Tai-huang Huang<br />

Georgia Inst of Tech<br />

School of Physics<br />

Atlanta, GA 30332<br />

Telephone: 404 894-2821<br />

Donald W. Hughes<br />

Dept. of Chemistry<br />

McMaster University<br />

Hamilton, Ont., LBS 4MI<br />

CANADA<br />

Telephone: 416 525-9140<br />

Stephen Huhn<br />

Nabisco Brands<br />

I00 DeForest Ave<br />

East Hanover, NJ 07396<br />

Telephone: 201 503-4719<br />

Ann H. Hunt<br />

Lilly Research Labs<br />

Dept. MC525<br />

Indianapolis, IN 46285<br />

Telephone: 317 276-4404<br />

Ca<strong>th</strong>erine T. Hunt<br />

Rohm & Haas Co<br />

727 Norristown Rd, B1dg 8B<br />

Spring House. PA 19477<br />

Telephone: 215 641-2035<br />

Robert W. G. Hunt<br />

10 Kewferry Road<br />

Nor<strong>th</strong>wood<br />

Middlesex,<br />

ENGLAND HA2 2NY<br />

Brian K. Hunter<br />

~ ueen's University<br />

ingston, Ontario, K7L 3N6<br />

CANADA<br />

Telephone: 613 545-2620<br />

Ralph Hurd<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Telephone: 415 683-4396<br />

Howard Hutchins<br />

JEOL USA INC<br />

11 Dearborn Rd .--<br />

Peabody, MAO~960<br />

Telephone: 617 535-5900<br />

William C. Hutton<br />

Monsanto Co. BB3K<br />

lO0 Chesterfield Vill Pwy<br />

St. Louis, MO 63198<br />

Telephone: 314 537-6021<br />

Yuying C. Hwang<br />

Washington Univ-Dept of Chem<br />

1Brookings Drive<br />

St. Louis, MO 63130<br />

Telephone: 314 889-6583<br />

Sven G. Hyberts<br />

U of Mich-Biophy Res Division<br />

2200 Bonisteel Boulevard<br />

Ann Arbor, MI 48109<br />

Telephone: 313 936-3852


Timo<strong>th</strong>y Hyman<br />

Syracuse University<br />

305 Bowne Hall<br />

Syracuse, NY 13210<br />

Telephone: 315 423-1021<br />

Geno lannaccone<br />

VPI & SU<br />

Chemistry Dept<br />

Blacksburg, VA 24061<br />

Telephone: 703 961-6578<br />

Paul T. Inglefield<br />

Chemistry Dept.<br />

Clark Universi~{610<br />

Worcester, MA<br />

Telephone: 617 793-7653<br />

Ru<strong>th</strong> R. Inners<br />

Bruker Instruments<br />

Mannin 9 Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Dan Iverson<br />

Varian Associates<br />

611 Hansen<br />

Palo Alto, W~Y94303-0883<br />

Telephone: 415 493-4000<br />

Pradeep Iyer<br />

UNOCAL<br />

376 Sou<strong>th</strong> Valencia Avenue<br />

Brea, CA 92621<br />

Telephone: 71452872011432<br />

Cyn<strong>th</strong>ia Jackson<br />

Univ. of Rochester<br />

Dept. of Chemistry<br />

Rochester, NY 14627<br />

Telephone: 716 275-8268<br />

Victoria Jacob<br />

Spectral Data Services, Inc.<br />

818 Pioneer<br />

Champaign, IL 61820<br />

Telephone: 217 352-7084<br />

Nazim J. Jaffer<br />

Dept. of Chemistry & Biochem<br />

UCLA<br />

Los Angeles, CA 90024<br />

Telephone: 213 825-1816<br />

Na<strong>th</strong>an Janes<br />

Thomas Jefferson University<br />

11<strong>th</strong> & Walnut St-Pavillion 405<br />

Philadelphia. PA 19107<br />

Telephone: 215 928-5022<br />

Norma Jardetzky<br />

SMRL, 5055 Lomita Drive<br />

Stanford University<br />

Stanford, CA 94305-5055<br />

Telephone: 415 723-6270<br />

Linda A. Jelicks<br />

Albert Einstein Col Med/Biophy<br />

1300 Morris Park Ave, Bldg U<br />

Bronx, NY 10461<br />

Telephone: 212 430-3591<br />

Lynn W. Jelinski<br />

AT&T Bell Laboratories<br />

600 Mountain Ave.<br />

Murray Hill, NJ 07974<br />

Telephone: 201 582-2511<br />

Gary L. Jewett<br />

Dow Chemical<br />

1897 Building<br />

Midland, MI 48667<br />

Telephone: 517 636-4694<br />

Yi Jin Jiang<br />

Univ of Utah<br />

210 Park Building<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-7351<br />

Boban K. John<br />

GE NMR Instruments<br />

255 Fourier Ave<br />

Fremont, CA 94539<br />

Telephone: 415 683-4358<br />

Bruce A. Johnson<br />

Yale University<br />

Dept of Mol Biophys PO 3333<br />

New Haven, CT 06510<br />

Telephone: 203 785-4605<br />

Connie Johnson<br />

Bruker Instruments<br />

Manning Park<br />

Billerica,.MA 01821<br />

Telephone: 617 667-9580<br />

James H. Johnson<br />

Hoffmann-La Roche<br />

340 Kingsland St./Bldg. 71<br />

Nutley, NJ 07110<br />

Telephone: 201 235-2415<br />

LeRoy Johnson<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Telephone: 415 683-4410<br />

Michael E. Johnson<br />

Univ of Ill Med Chem Dept<br />

M/C 781, P. O. Box 6998<br />

Chicago, IL 60680<br />

Telephone: 312 996-0796<br />

Robert D. Johnson<br />

IBM Almaden Research<br />

650 Harry Road<br />

San Jose, CA 95120<br />

Telephone: 408 927-1661<br />

Eric R. Johnston<br />

Haverford College<br />

Department of Chemistry<br />

Haverford, PA 19041<br />

Telephone: 215 896-1216<br />

Jiri Jonas<br />

Univ of Illinois, Chem Dept<br />

1209 W. California<br />

Urbana, IL 61801<br />

Telephone: 217 333-2572<br />

Claude R Jones<br />

Purdue Univ.<br />

Dept. of Chemistry<br />

W. Lafayette..IN 47907<br />

Telephone: 317 494-5287<br />

Paul-James Jones<br />

Yale University<br />

225 Prospect Street<br />

New Haven, CT 06511<br />

Telephone: 203 432-3992<br />

Robert L. Jones<br />

Emory Univ~ Chem Dept<br />

1515 Pierce Dr<br />

Atlanta, GA 30322<br />

Telephone: 404 727-6621


F<br />

Andrew Joseph<br />

Phospho-Ener~etics<br />

2 Raymond Drive .<br />

Havertown, PA 19083<br />

Telephone: 215 789-7474<br />

Beat Jucker<br />

Syracuse University<br />

305 Bowne Hall<br />

Syracuse, NY 13244<br />

Telephone: 315 423-1021<br />

Gary P juneau<br />

Olin Corp<br />

350 Knotter Dr PO Box 586<br />

CheShire, CT 06410-0586<br />

Telephone: 203 271-4~2<br />

Alicia D. Kahle<br />

E.R. Squibb& Sons<br />

PO Box 4000<br />

Princeton~ NJ 08540<br />

Telephone: 609 921-4992<br />

Mat<strong>th</strong>ew W Kalnik<br />

Columbia Univ; Dept of Biochem<br />

630 W 168<strong>th</strong> St; P&S 3-444<br />

New York, NY 10032<br />

Telephone: 212 305-5280<br />

Lou-Sing Kan<br />

Johns Hopkins University<br />

615 Nor<strong>th</strong> Wolfe Street<br />

Baltimore, MD 21205<br />

Telephone: 301 955-2043<br />

Rasesh Kapadia<br />

Case Western Reserve Univ<br />

Univ Circle; Dept of Chem<br />

Cleveland, OH 44106<br />

Telephone: 216 368-2636<br />

David B. Kaplan<br />

Pittsburgh NMR Institute<br />

3260 Fif<strong>th</strong> Avenue<br />

Pittsburgh, PA 15213<br />

Telephone: 412 647-6674<br />

Samuel Kaplan<br />

Xerox Webster Res Center<br />

800 Phillips Rd../S 24-0<br />

Webster, NY 14580<br />

Telephone: 716 422-4784<br />

Leela Kar<br />

Univ of I11inois at Chicago<br />

Dept of Med Chem. Box 6998<br />

Chicago, IL 60680<br />

Telephone: 312.996-5278<br />

Rodney V. Kastrup<br />

Exxon Research & Engineering<br />

Rte. 22 E. Clinton Township<br />

Annandale, NJ 08801<br />

Telephone: 201 730-2117<br />

Larry Kasuboski<br />

Georgetown Univ Hosp Radiology<br />

3800 Reservoir Road, NW<br />

Washington, DC 20007-2197<br />

Telephone: 202 784-3359<br />

Roger Kautz<br />

Yale M. B. & B.<br />

260 Whitney Avenue, POBox 6666<br />

New Haven, CT 0651t<br />

Telephone: 203 432-5649<br />

Lewis E. Kay<br />

Yale University<br />

225 Prospect Street<br />

New Haven, CT 06511<br />

Telephone: 203 432-3937<br />

Paul A. Keifer<br />

School of Chem. Sci. Box 95-9<br />

Univ. of Illinois<br />

Urbana, IL 61801<br />

Telephone: 217 333-2041<br />

Toni Keller<br />

Bruker Instruments<br />

Mannin~ Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

M. F. Kelly<br />

Kodak Limited<br />

Research W92 Headstone Drive<br />

Harrow, Middlesex, HA1 4TY<br />

U.K.<br />

Telephone: 441427438033198<br />

Michael F. Kelly<br />

GE NMR Instruments<br />

2S5 Fourier Avenue<br />

Fremont, CA 94539<br />

Telephone: 415 683-4419<br />

Larry Kelts<br />

Eastman Kodak Co<br />

Research Laboratories Bldg 82<br />

Rochester, NY 14650<br />

Telephone: 716 722-9121<br />

Raymond Kendrick<br />

IBM<br />

650 Harry Road<br />

San Jose, CA 95120-6099<br />

Telephone: 408 927-2455<br />

Gordon J. Kennedy<br />

Union Carbide Co.<br />

PO Box 670<br />

Bound Brook, NJ 08805<br />

Telephone: 201 563-5074<br />

Michael A. Kennedy<br />

Univ of S Carolina<br />

Dept of Chemistry, 621 Main St<br />

Columbia, SC 29208<br />

Telephone: 803 777-7399<br />

Scott Kennedy<br />

Univ. of Rochester<br />

601Elmwood Avenue<br />

Rochester, NY 14642<br />

Telephone: 716 275-8268<br />

Bill Kenney<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

Kenne<strong>th</strong> Keymel<br />

Eastman Kodak Co<br />

ATD Bldg-339; 1669 Lake Ave<br />

Rochester, NY 14650<br />

Telephone: 716 722-3218<br />

Mohammad A Khadim<br />

Hoechst Celanese Corp<br />

SOD Washington Street<br />

Coventry, RI 02816<br />

Telephone: 401 823-2111<br />

Roy W. King<br />

Dept. of Chemistry<br />

University of Florida<br />

Gainesville, FL 32611<br />

Telephone: 904 342-0592


Robert A Kinsey<br />

BF Goodrich<br />

9921Brecksville Road<br />

Brecksville, OH 44141<br />

Telephone: 216 447-5317<br />

Ernest Kirkwood<br />

John Wiley & Sons<br />

Baffins Lane<br />

Chichester, Sussex,<br />

ENGLAND P019 IUD<br />

Telephone: 01 44 243770303<br />

Hans J Koch<br />

MSD Isotopes<br />

PO Box 899; Pte-Claire<br />

Dorval, Quebec, HgR 4P7<br />

CANADA<br />

Telephone: 514 695-7920<br />

Frank Koehn<br />

Harbor Branch Oceanogr. Inst.<br />

5600 Old Dixie Highway<br />

Ft. Pierce, FL 34946<br />

Telephone: 305 465-2400<br />

Susan Kohler<br />

HMS NMR Lab<br />

221Longwood Ave.<br />

Boston, MA 02115<br />

Telephone: 617 732 1377<br />

Andrew C. Kolbert<br />

MIT, Francis Bitter Mag Lab<br />

150 Albany Street<br />

Cambridge, MA 02139<br />

Telephone: 617 253-0462<br />

Marvin Kontney<br />

Univ of Wisconsin<br />

1101 University Avenue<br />

Madison, WI 53706<br />

Telephone: 608 262-0563<br />

Alan M. Kook<br />

Rice University<br />

Dept. Chemistry/Rm. 309<br />

Houston, TX 77251<br />

Telephone: 713 527-8101<br />

Kenne<strong>th</strong> D. Kopple<br />

Smi<strong>th</strong> Kline French Labs<br />

P.O. Box 1539<br />

King of Prussia, PA 19406<br />

Telephone: 215 270-6659<br />

Donald W. Kormos<br />

Case Western - University Hosp<br />

2074 Abington Rd, Dept/Radiolg<br />

Cleveland, ON 44106<br />

Telephone: 216 844-7750<br />

L. S. Kotlyar<br />

Natl Research Coun of Canada<br />

Ottawa, Ontario, KIA OR6<br />

CANADA<br />

Telephone: 613 993-2011<br />

Michael Kouchakdjian<br />

Columbia Univ; Dept of Biochem<br />

630 W 1681h St<br />

New York, NY 10032<br />

Telephone: 212 305-5280<br />

Thomas Krick<br />

University of Minnesota<br />

1479 Gortner Avenue<br />

St. Paul, MN 55108<br />

Telephone: 612 624-7715<br />

Richard Kriwacki<br />

Boehringer Ingelheim Ltd.<br />

90 E. Ridge Rd.<br />

Ridgefield, CT 06877<br />

Telephone: 203 798-5184<br />

Thomas R. Krugh<br />

Department of Chemistry<br />

University of Rochester<br />

Rochester, NY 14627<br />

Telephone: 716 275-4224<br />

Katsuhiko Kushida<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

David Kwoh<br />

International Paper<br />

Long Meadow Road<br />

Tuxedo, NY 10987<br />

Telephone: 914 577-7413<br />

Laurine A. LaP1anche<br />

Nor<strong>th</strong>ern Illinois University<br />

Department of Chemistry<br />

DeKalb, IL 60115<br />

Telephone: 815 753-6873<br />

Steven R. LaPlante<br />

Syracuse University<br />

306c Bowne Hall<br />

Syracuse, NY 13244-1200<br />

Telephone: 315 423-1021<br />

Serge Lacelle<br />

Universite de Sherbrooke<br />

Department Chimie<br />

Sherbrooke, Quebec, JIK 2Rl<br />

CANADA<br />

Telephone: 819 821-7823<br />

Joseph B. Lambert<br />

Dept. of Chemistry<br />

Nor<strong>th</strong>western University<br />

Evanston, IL 60208<br />

Telephone: 312 491-5437<br />

Lisa Lambert<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 97303<br />

Telephone: 415 493-4000<br />

David Lankin<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

James Lappegaard<br />

Chemagnetics Inc<br />

43 Lenape Trail<br />

Denville, NJ 07834<br />

Telephone: 201 627-8875<br />

Joseph Laughlin<br />

Bruker Instruments<br />

Mannin~ Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Frank Laukien<br />

Bruker Instruments<br />

Manning Park<br />

Billerica, MA 01821<br />

Telephone: 617 667-9580<br />

Paul C. Lauterbur<br />

University of Illinois<br />

1307 West Park Street<br />

Urbana, IL 61801<br />

Telephone: 217 244-0600


W. John Layton<br />

Univ of Kentucky<br />

Mag Res Ctr, 101 Stone Bldg<br />

Lexington, KY 40506-0053<br />

Telephone: 606 233-8993<br />

Juliette T. Lecomte<br />

Pennsylvania State University<br />

Chem Dept, 152 Davey Lab<br />

University Park, PA 16802<br />

Telephone: 814 863-1153<br />

Carolyn Lee<br />

MIT, Natl Magnet Lab<br />

Rm NW14-5119. 170 Albany St.<br />

Cambridge, MA 02139<br />

Telephone: 617 253-0484<br />

Chang J. Lee<br />

Princeton University<br />

Dept of Chemistry<br />

Princeton, NJ 08544<br />

Telephone: 609 987-2901<br />

Cheol E. Lee<br />

Univ of Pennsylvania<br />

230 S. 34<strong>th</strong> St.. Oept of Chem<br />

Philadelphia. PA 19104<br />

Telephone: 215 898-8732<br />

Hee Cheon Lee<br />

U. of Ill at Urbana-Champaign<br />

Box 23-1, 505 S. Ma<strong>th</strong>ews<br />

Urbana, IL 61801<br />

Telephone: 217 333-8328<br />

Jona<strong>th</strong>an P. Lee<br />

Harvard Medical School<br />

185 Pilgrim Road<br />

Boston, MA 02215<br />

Telephone: 617 732-9501<br />

Joseph H.C. Lee<br />

Sou<strong>th</strong>ern Illinois Univ<br />

Oept of Chem & Biochem<br />

Carbondale, IL 62901<br />

Telephone: 618 453-5721<br />

Suzannie C. Lee<br />

Proctor & Gamble Co.<br />

Miami Valley Labs, Box 398707<br />

Cincinnati, OH 45239-8707<br />

Telephone: 513 245-2551<br />

Yang-Chih Lee<br />

Thomas Jefferson University<br />

DeptlPa<strong>th</strong>, JAH Hall, Room 239<br />

Philadelphia. PA 19107<br />

Telephone: 215 928-7883<br />

Yu-Hwei Lee<br />

Univ Illinois<br />

Med Chem Dept. Rm 544, m/c781<br />

Chicago, IL 60680<br />

Telephone: 312 996-5278<br />

Mark Leifer<br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2600<br />

William C Lenhart<br />

Eastman Kodak Co.<br />

ATSD B339 Kodak Park<br />

Rochester, NY 14650<br />

Telephone: 716 722-3238<br />

Gregory Leo<br />

Monsanto Agricultural Co<br />

800 N. Lindbergh Blvd., U3E<br />

St. Louis, MO 63167<br />

Telephone: 314 694-5629<br />

Mary Frances Leopold<br />

Dept of Chemistry<br />

University of Utah<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-7351<br />

Charles L. Lerman<br />

ICI Americas<br />

Concord Pike & Murphy Road<br />

Wilmington, DE 19897<br />

Telephone: 302 575-2577<br />

Laura Lerner<br />

NIH<br />

Bldg 2 Pan B2-08, LCP,NIDDK<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-2704<br />

Ca<strong>th</strong>y Lester<br />

University of Rochester<br />

Chem Dept, Hutchinson Hall<br />

Rochester, NY 14642<br />

Telephone: 716 275-8268<br />

John R. Levine<br />

GE NMR Instrument<br />

255 Fourier Avenue<br />

Fremont, CA 94539<br />

Telephone: 415 683-4408<br />

George.C. Levy<br />

Chemlscry uept.<br />

Syracuse University<br />

Syracuse, NY 13210<br />

Telephone: 315 423-1021<br />

Barbara A. Lewis<br />

Univ of Wisconsin-Madison<br />

1101 University Avenue<br />

Madison, WI 53706<br />

Telephone: 608 262-1563<br />

Tom Lewis<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA'94303<br />

Telephone: 415 493-4000<br />

Robert L. Lichter<br />

Suny-Stony Brook<br />

2401 Lab Office Bldg<br />

Stony Brook, NY I1794-4433<br />

Telephone: 516 632-7035<br />

Fu-Mei Lin<br />

Calgon Corp<br />

PO Box 1346<br />

Pittsburgh, PA 15230<br />

Telephone: 412 777-8597<br />

Fu-Tyan Lin<br />

Univ of Pittsburgh<br />

1305 CB/Chem. Dept.<br />

Pittsburgh, PA 15260<br />

Telephone: 412 624-8403<br />

Andrew S. Lipton<br />

Syracuse University<br />

305 Bowne Hall-Oept of Chem<br />

Syracuse, NY 13244-1200<br />

Telephone: 315 423-1021<br />

Mark Lisicki<br />

Carnegie Mellon University<br />

4400 Fif<strong>th</strong> Avenue<br />

Pittsburgh, PA 15213<br />

Telephone: 412 268-3411


Jay J. Listinsky<br />

U of Rochester-Dept of Radlgy<br />

Box 648-601E'lmwood-Strong Mem<br />

Rochester, NY 14642<br />

Telephone: 716 235-5541<br />

Guoying Liu<br />

Univ of lllinois-Urbana<br />

Box 23 NL, 505 S. Ma<strong>th</strong>ews Ave.<br />

Urbana, IL 61801<br />

Telephone: 217 333-3897<br />

David Live<br />

Emory University<br />

Department of Chemistry<br />

Atlanta, GA 30322<br />

Telephone: 404 727-0867<br />

Carol Loeschorn<br />

ICN Biomed Inc-Stable Isotopes<br />

3300 Hyland Avenue<br />

Costa Mesa, CA 92626<br />

Telephone: 714 545-0113<br />

Timo<strong>th</strong>y M. Logan<br />

University of Chicago<br />

5735 S. Ellis Ave.<br />

Chicago, IL 60637<br />

Telephone: 312 702-3456<br />

Robert C Long Jr<br />

Emory Univ; Dept of Chem<br />

1515 Pierce Dr<br />

Atlanta, GA 30322<br />

Telephone: 404 727-6589<br />

Jan Lovy<br />

Kingston Technologies Inc<br />

2235-B Route 130<br />

Dayton, NJ 08810<br />

Telephone: 201 274-2288<br />

Linda A Luck<br />

Department of Chemistry<br />

University of Vermont<br />

Burlington, VT 05405<br />

Telephone: 802 656-3461<br />

Barbara A. Lyons<br />

Cornell University<br />

1112 E. State .<br />

I<strong>th</strong>aca, NY 14853<br />

Telephone: 607-255-4784<br />

Dr. Peter M. MacDonald<br />

Harvard Medical School<br />

185 Pilgrim Road<br />

Boston, MA 02214<br />

Telephone: 617 732-9501<br />

Prof Gary E. Maciel<br />

Colorado State University<br />

Department of Chemistry<br />

Ft. Collins, CO 80523<br />

Telephone: 303 491-6480<br />

James W. Mack<br />

Nat Inst of Heal<strong>th</strong><br />

Building 10 Room 12N238<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-7193<br />

Albert Macorski<br />

Stanford University<br />

Dept of Elect Eng, Durand Bldg<br />

Stanford, CA 94305<br />

Telephone: 415 723-2708<br />

Alexander Macur<br />

New Me<strong>th</strong>ods Research Inc<br />

719 East Genesee St.<br />

Syracuse, NY 13210<br />

Telephone: 315 424-0329<br />

Paul D. Majors<br />

Lovelace Medical Foundation<br />

2425 Ridgecrest Drive, S.E.<br />

Albuquerque, NM 87108<br />

Telephone: 505 262-7155<br />

J. An<strong>th</strong>ony Malikayil<br />

Dept. MBB, 333 Cedar St.<br />

Yale Univ.<br />

New Haven, CT 06510<br />

James J. Maloney<br />

ICI Americas Inc<br />

Concord Pike and Murphy Road<br />

Wilmington, DE 19897<br />

Telephone: 302 575-8545<br />

Suraj P Manrao<br />

Merck & Co., Isotopes<br />

PO Box 2000, R33-210<br />

Rahway, NJ 07065<br />

Telephone: 201 574-6980<br />

Kirk Marat<br />

University of Manitoba<br />

Department of Chemistry<br />

Winnipeg, Manitoba, R3T 2N2<br />

CANADA<br />

Telephone: 204 474-6259<br />

Paul S. Marchetti<br />

AKZO Chemicals, Inc.<br />

Livingstone Avenue<br />

Dobbs Ferry, NY 10522<br />

Telephone: 914 693-1200<br />

Joseph J Marcinko<br />

Case Western Reserve Univ<br />

Dept of Chemistry<br />

Cleveland, OH 44106<br />

Telephone: 216 368-2636<br />

Thomas H. Mareci<br />

University of Florida<br />

Dept of Radiology. Box J-374<br />

Gainesville, FL 32610<br />

Telephone: 904 395-0293<br />

Martin Marek<br />

Varian Associates<br />

611Hansen<br />

Palo Alto,<br />

~Y94303-0883<br />

Telephone: 415 493-4000<br />

Guenter G. Maresch<br />

IBM Almaden Research Center<br />

650 Harry Rd., K321802<br />

San Jose, CA 95120<br />

Telephone: 408 924-2916<br />

Dominique Marion<br />

MIDDK - Lab of Chem Physics<br />

Rockville Pike<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-2706<br />

John L. Markley<br />

Univ of Wisconsin-Madison<br />

Dept of Biochem-420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 263-9349<br />

Brian J Marsden<br />

Natl Res Council of Canada<br />

100 Sussex Dr<br />

Ottawa, KIA OR6<br />

CANADA<br />

Telephone: 603 990-0837


Eric A'. Marshall<br />

U~ of Rochester-Dept of Biophy<br />

Rochester Medical Center<br />

Rochester, NY 14642<br />

Telephone: 716 275-8268<br />

Joel F. Martin "<br />

Dept. of Radiology/H-756<br />

UniV. of Calif.-San Diego<br />

San Diego, CA 92103<br />

Telephone: 619 543-2953<br />

G. D. Mateescu<br />

Chem Dept, 2074 Adelbert Rd<br />

Case Western Reserve Univ<br />

Clev@land, OH 44106-2699<br />

Telephone: 216 368-2589<br />

Shigeru Matsui<br />

Oept of Chemistr~<br />

Univ of Californla<br />

Berkeley, CA 94530<br />

Telephone: 415 642-2094<br />

Mark Mattingly<br />

Bruker Instruments<br />

Mannin~ Park<br />

Billerlca, HA 01821<br />

Telephone: 617 667-9580<br />

Anabela Maynard<br />

Univ. of Toronto<br />

80 St. George St.<br />

Toronto, M55 IAI<br />

CANADA<br />

Telephone: 416 978-5728<br />

CharlesoL~.Ma~ne<br />

Dept. Ot ~nemlstry BI03 HEB<br />

Univ of Utah<br />

Salt Lake City UT 84112<br />

Telephone: 801 581-7413<br />

Tony Mazzeo<br />

Syracuse University<br />

306 Bowne Hall<br />

Syracuse, NY 13244<br />

Telephone: 315 423-1021<br />

Gene Mazzola<br />

Food & Drug Administration<br />

200 C. Street, SW - (HFF-423)<br />

Washington, DC 20204<br />

Telephone: 202 245-1409<br />

James D. McCurry<br />

Department of Chemistry<br />

Lehigh University<br />

Be<strong>th</strong>lehem, PA 18015<br />

Telephone: 215.758-3480<br />

Paula L. McDaniel<br />

Box 35-I Dept. of Chemistry<br />

Univ. of Illinois<br />

Urbana, IL 61801<br />

Telephone: 217 333-3581<br />

Ann E. McDermott<br />

MIT, Francis Bitter Mag Lab<br />

170 Albany Street, NW14-5107<br />

Cambridge, MA 02139<br />

Telephone: 617 253-5586<br />

Douglas McFaddin<br />

CANMET - Ergy Mines & Resource<br />

555 Boo<strong>th</strong> Street<br />

Ottawa, Ontario, KIA OGI<br />

CANADA<br />

Telephone: 613 995-0296<br />

William McGranahan<br />

JEOL USA INC<br />

II Dearborn Rd<br />

Peabody, MA 01960<br />

Telephone: 617 535-5900<br />

Robert A. McKay<br />

Chem Dept, I Brookings Dr.<br />

Washington University<br />

St. Louis, MO 63130<br />

Telephone: 313 889-6617<br />

Michael S. McKinnon<br />

DuPont Canada<br />

Research Center PO Box 5000<br />

Kingston, Ont., K7L 5A5<br />

CANADA<br />

Telephone: 613 544-6400<br />

Ian J. McLennan<br />

John Hopkins Medical School<br />

Dept. of Radiology<br />

Baltimore, MD 21205<br />

Telephone: 301 955-7491<br />

Ronald McNamara<br />

Dept. of Chem., 231S 34<strong>th</strong> St<br />

Univ. of Pennsylvania<br />

Philadelphia, PA 19104-6323<br />

Telephone: 215 898-4886<br />

Michael D. Meadows<br />

Dow Chemical<br />

Bldg B-1219<br />

Freeport, TX 77546<br />

Telephone: 409 238-1644<br />

James H Medley<br />

Bristol-Myers Co.<br />

PO Box 4755<br />

Syracuse, NY 13221-4755<br />

Telephone: 315 432-2410<br />

Elizabe<strong>th</strong> MeW<br />

FSIS<br />

308-D Lansdale Ave.<br />

Millbrae, CA 94030<br />

James D. Meinhart<br />

Chem. Dept., 5735 S. Ellis Ave<br />

Univ of Chicago<br />

Chicago, IL 60637<br />

Telephone: 312 702-3456<br />

Michael T Melchior<br />

Exxon Research<br />

Clinton Township, Route 22 E<br />

Annandale, NJ 08801<br />

Telephone: 201 730-2114<br />

Ronald A. Merrill<br />

Sun Refining & Marketing Co<br />

PO Box 1135<br />

Marcus Hook, PA 19063<br />

Telephone: 215-447-1743<br />

David V. Mesaros<br />

DuPont Co.<br />

Experimental Station<br />

Wilmington, DE 19898<br />

Telephone: 302 695-7398<br />

Kenne<strong>th</strong> R. Metz<br />

New England Deaconess Hospital<br />

185 Pilgrim Road<br />

Boston, MA 02215<br />

Telephone: 617 732-8460<br />

Frank Michaels<br />

Eastman Kodak<br />

66 Eastman Avenue<br />

Rochester, NY 14650<br />

Telephone: 716 722-140g


Dale Mierke<br />

Univ of Calif, San Diego<br />

Chemistry Dept B-OI4<br />

San Diego, CA 92093<br />

Telephone: 619 534-2594<br />

John M. Millar<br />

Yale University<br />

Dept of Chem, P. O. Box 6666<br />

New Haven, CT 06511<br />

Telephone: 203 432-3933<br />

Joel B Miller<br />

Naval Research Lab<br />

Code 6120<br />

Washington, DC 20375-5000<br />

Telephone: 202 767-2337<br />

• Bill Millman<br />

Univ of Wisconsin-Milwaukee<br />

Dept of Chem, P. O. Box 413<br />

Milwaukee, WI 53201<br />

Telephone: 414 229-5310<br />

Virginia Miner<br />

Dow Chemical Co<br />

1897 Building<br />

Midland, MI 48674<br />

Telephone: 517 636-5321<br />

Jan Mintorovitch<br />

University of New Mexico<br />

Department of Chemistry<br />

Albuquerque, NM 87131<br />

Telephone: 505 277-2060<br />

Prasanna K. Mishra<br />

Carnegie Mellon University<br />

4400 Fif<strong>th</strong> Avenue<br />

Pittsburgh, PA 15213<br />

Telephone: 412 268-3161<br />

Gaetano Montelione<br />

University of Michigan<br />

2200 Bonisteel Boulevard<br />

Ann Arbor, MI 48109<br />

Telephone: 313 936-3851<br />

Ed Mooberry<br />

Univ of Wisconsin-Madison<br />

Dept of Biochem-420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 263-9493<br />

Sandra Mooibrock<br />

Bruker Instruments<br />

Mannin 9 Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

J. Robert Mooney<br />

B.,P. America<br />

4440 Warrensville Center Road<br />

Cleveland, OH 44128<br />

Telephone: 216 581-5824<br />

Kim Moore<br />

Bruker Instruments<br />

Mannin 9 Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

C. Morat<br />

Carleton University<br />

Department of Chemistry<br />

Ottawa, Ontario, KIS 5B6<br />

CANADA<br />

Telephone: 613 564-6623<br />

Fred Morin<br />

1349 Larose Ave.<br />

Ottawa, Ont., KIZ 7X4<br />

CANADA<br />

Telephone: 613 729-5865<br />

Doug Morris<br />

Dept of Chemistry<br />

Univ of S Carolina<br />

Columbia, SC 29208<br />

Telephone: 803 777-7399<br />

Mark R. Mowery<br />

Central Michigan Univ/MMI<br />

1910 West St. Andrews Road<br />

Midland, MI 48640<br />

Telephone: 517 832-5555<br />

Foad Mozaxeni<br />

Akzo Chemle America<br />

8401W. 47<strong>th</strong> St.<br />

McCook, IL 60525<br />

Telephone: 312 442-7100<br />

Karl T. Mueller<br />

Univ of California at Berkeley<br />

Chemistry Department<br />

Berkeley, CA 94720<br />

Telephone: 415 486-4875<br />

Luciano Mueller<br />

Smi<strong>th</strong> Kline & French Labs<br />

Post Office Box 1539<br />

King of Prussia, PA 19406-0939<br />

Telephone: 215 270-6658<br />

Detlev Muller<br />

Bruker Instruments<br />

Manning Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Michael Munowitz<br />

Amoco Research Center<br />

P.O. Box 400<br />

Naperville, IL 60566<br />

Telephone: 312 961-7844<br />

Sandra Murawski<br />

Procter & Gamble<br />

11520 Reed Hartman Highway<br />

Cincinnati, OH 45241<br />

Telephone: 513 530-3749<br />

Michael Murphy<br />

Chemistry Department<br />

University of Pennsylvania<br />

Philadelphia. PA 19104<br />

Telephone: 215-898-8732<br />

Paul Murphy<br />

IBM ISTG HPA<br />

B/630 Z/E70 D/12W<br />

Hopewell Junction, HY 12151<br />

Telephone: 914 892-2237<br />

Joseph Murphy-Boesch<br />

Fox Chase Cancer Ctr<br />

AOH/NMR Lab; 7701Burholme Ave<br />

Philadelphia. PA 19118<br />

Telephone: 215 728-3156<br />

Martin S Mutter<br />

Janssen Res Foundation<br />

McKean & Welsh<br />

Spring House. PA 19477-0776<br />

Telephone: 215 628-5538<br />

Barbara L. Myers-Acosta<br />

Lockheed Missiles & Space Co.<br />

Post Office Box 3504<br />

Sunnyvale, CA 94088-3504<br />

Telephone: 408 756-3234


Kuniaki Nakagama<br />

JEOL Biometrology Lab<br />

Nakagami Akishima<br />

Tokyo 196,<br />

JAPAN<br />

Vitas Narutis<br />

Nalco Chemicals<br />

One Nalco Center<br />

Naperville, IL 60566<br />

Telephone: 321 961-9500<br />

Gil Navon<br />

NIH<br />

Bldg. 10, Room BID-138<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-8139<br />

Thomas G. Neiss<br />

Dept. of Chem. Mudd Bldg. #6<br />

Lehigh Universit<br />

Be<strong>th</strong>lehem, PA 18~15<br />

Telephone: 215 758-3480<br />

Janis T. Nelson<br />

Syntex Research<br />

3401Hillview Ave., R6-002<br />

Palo Alto, CA 94304<br />

Telephone: 415 855-5649<br />

Sarah J. Nelson<br />

Fox Chase Cancer Center<br />

7701Burholme Avenue<br />

Philadelphia. PA 19111<br />

Telephone: 215 728-3561<br />

Gregory Neme<strong>th</strong><br />

Nor<strong>th</strong>western Univ Chem Oept<br />

2145 Sheridan Road<br />

Evanston, IL 60201<br />

Telephone: 312 491-7080<br />

Richard D. Newmark<br />

Lawrence Berkeley Lab-U of Cal<br />

MS 55-121, 1 Cyclotron Road<br />

Berkeley, CA 94720<br />

Telephone: 415 486-4433<br />

Feng Ni<br />

Cornell University<br />

Dept of Chem, 164 Baker Lab<br />

I<strong>th</strong>aca, NY 14853<br />

Telephone: 607 255-4737<br />

Linda K. Nicholson<br />

Florida State University<br />

Institute of Molecular Biophys<br />

Tallahassee, FL 32306-3006<br />

Telephone: 904 644-3254<br />

Niels Chr. Nielsen<br />

Dept of Chem<br />

Univ of Aarhus<br />

DK-800O Aarhus,<br />

DENMARK<br />

Telephone: 456 124633<br />

Walter P. Niemczura<br />

Univ of Hawaii-Dept of Chem<br />

2545 The Mall<br />

Honolulu, HI 96822<br />

Telephone: 808 948-7503<br />

N.R. Nirmala<br />

University of Michigan<br />

Biophy Res Div-2200 Bonisteel<br />

Ann Arbor, MI 48109<br />

Telephone: 313 936-3852<br />

Robin A Nissan<br />

Naval Weapons Center<br />

Code 3851Michelson Lab<br />

China Lake, CA 93555<br />

Telephone: 619 939-1620<br />

Christopher Nor<strong>th</strong><br />

FL St U-Inst. Molecular Biophy<br />

1636 Jackson Bluff, #147<br />

Tallahassee, FL 32304<br />

Telephone: 904 644-3254<br />

Maureen P. O'Brien<br />

Yale University<br />

Dept of Chem. 225 Prospect St.<br />

New Haven, CT 06511<br />

Telephone: 203 432-3937<br />

Daniel J. O'Donnell<br />

Phillips Petroleum Company<br />

148 PL-PRC<br />

Bartlesville, OK 74004<br />

Telephone: 918 661-9776<br />

John F. O'Gara<br />

General Motors Res Labs<br />

30500 Mound Road, Oept 22<br />

Warren, MI 48090<br />

Telephone: 313 986-0833<br />

Mark O'Neil-Johnson<br />

Bruker Instruments<br />

Manning Park<br />

Billerica, MA 01821<br />

Telephone: 617 667-9580<br />

Byung Ha Oh<br />

Univ of Wisconsin-Madison<br />

Dept of Biochem-420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 262-4687<br />

Alan Olson<br />

GE NMR Instruments<br />

3164 Ludlow Rd.<br />

Shaker Heights, OH 44120-2860<br />

Telephone: 216 991-7480<br />

Diana Omecinsky<br />

Parke Davis<br />

2800 Plymou<strong>th</strong> Rd<br />

Ann Arbor, MI 48105<br />

Telephone: 313 996-7408<br />

Stanley J. Opella<br />

Dept. of Chemistry<br />

University of Pennsylvania<br />

Philadelphia. PA 19104<br />

Telephone: 215 898-6459<br />

Anita M. Orendt<br />

University of Utah<br />

Chemistry Dept, Box 69<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-6116<br />

C. E. Osborne<br />

Tennessee Eastman Co<br />

Kingsport, TN 37662<br />

Telephone: 615 229-3413<br />

Gottfried Otting<br />

Inst fur Molec BiD und Biophys<br />

ETH-Honggerberg<br />

8093 Zurich,<br />

SWITZERLAND<br />

Telephone: 01 3772469<br />

Jim Otvos<br />

Univ of Wisconsin-Milwaukee<br />

Department of Chemistry<br />

Milwaukee, WI 53201<br />

Telephone: 414 229-5220


Jeanne C Owens<br />

Chemistry Dept., '.18-085<br />

Mass Inst of Technology<br />

Cambridge, MA 02139<br />

Telephone: 617 253-0873<br />

An<strong>th</strong>ony Parker<br />

Libbey Owens Ford Company<br />

1701 East Broadway<br />

Toledo, OH 43605<br />

Telephone: 419 247-4258<br />

Victor Parziale<br />

Dynachem Corp.<br />

2631Michelle Dr<br />

Tustin, CA 92680<br />

Telephone: 714 730-4395<br />

Peter J Paterson<br />

JEOL USA INC<br />

11 Dearborn Rd<br />

Peabody, MA 01960<br />

Telephone: 617 535-5900<br />

Steven L. Patt<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 424-5696<br />

Sam Patz<br />

Brigham & Women's Hospital<br />

75 Francis Street<br />

Boston, MA 02115<br />

Telephone: 6177325500x1444<br />

John Paxton<br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2600<br />

Dan I. Pazara<br />

Case Western Reserve Univ<br />

Chem Dept, University Circle<br />

Cleveland, OH 44106<br />

Telephone: 216 368-5917<br />

Gerald A. Pearson<br />

Univ of Iowa<br />

Chem Dept<br />

Iowa City, IA 52242<br />

Telephone: 319 335-1332<br />

John G. Pearson<br />

Univ of California at Berkeley<br />

Department of Chemistry<br />

Berkeley, CA 94720<br />

Telephone: 415 642-2094<br />

Thomas G. Perkins<br />

GE NMR Instruments<br />

255 Fourier Avenue<br />

Fremont, CA 94539<br />

Telephone: 415 683-4383<br />

Marion Perpick-Dumont<br />

Univ of Toronto, Dept of Chem<br />

6 Ashmount Cresent<br />

Weston, Ontario, MgR IC7<br />

CANADA<br />

Telephone: 416 978-5728<br />

Richard Perry<br />

MSD Isotopes<br />

PO Box 899; Pte-Claire<br />

Dorval, Quebec, H9R 4P7<br />

CANADA<br />

Telephone: 514 695-7920<br />

Mat<strong>th</strong>ew Petersheim<br />

Seton Hall University<br />

Chem Dept, Sou<strong>th</strong> Orange Avenue<br />

Sou<strong>th</strong> Orange, NJ 07079<br />

Telephone: 201 761-9029<br />

Peter A Petillo<br />

Oept of Chem; Univ of WI<br />

II01Univ Ave<br />

Madison, WI 53706<br />

Telephone: 608 273-0238<br />

Michael Petrel<br />

Arco Chemical Company<br />

3801 West Chester Pike<br />

Newtown, PA 19073<br />

Telephone: 215 359-2038<br />

Andrew M. Petros<br />

Smi<strong>th</strong> Kline & French Labs<br />

P. O. Box 1539, Mail Code L940<br />

King of Prussia, PA 19406-0939<br />

Telephone: 215 270-5230<br />

Stephen B. Philson<br />

Univ of Minnesota<br />

207 Pleasant Street SE<br />

Minneapolis, MN 55455<br />

Telephone: 612 625-8374<br />

Francis Picart<br />

The Rockefeller University<br />

128 Peterson Street<br />

Brentwood, NY 11717<br />

Telephone: 212 570-8269<br />

Charles F. Pictroski<br />

Exxon Research & Engineering<br />

Clinton Twnshp, Rte 22 East<br />

Annandale, NJ 08801<br />

Telephone: 201 730-2158<br />

Phil Pitner<br />

Boehringer Ingelheim<br />

90 E. Ridge<br />

Ridgefield, CT 06877<br />

Telephone: 203 798-5182<br />

Steven Pitzenberger<br />

Merck & Co.<br />

WP 26-100<br />

West Point, PA 19486<br />

Telephone: 215 661-7609<br />

Dan Plant<br />

GE NMR Instruments<br />

255 Fourier Ave<br />

Fremont, CA 94539<br />

Telephone: 415<br />

Nick Plavac<br />

Chem. Dept., 80 St George St<br />

University of Toronto<br />

Toronto, Ont., M5S IAI<br />

CANADA<br />

Telephone: 416 978-5728 -<br />

Emily Pleau<br />

Industrial Labs B. 339<br />

Eastman Kodak Company<br />

Rochester, NY 14650<br />

Mark D Poliks<br />

Washington Univ; Dept of Chem<br />

Box 1134<br />

St Louis, MO 63130<br />

Telephone: 314 889-5780<br />

C D Poon<br />

University of Oklahoma<br />

Dept of Chemistry<br />

Norman, OK 73019<br />

Telephone: 405 325-3092


P~<br />

/<br />

Michael A Porubcan<br />

Squibb Inst for Medical Res<br />

PO Box 4000<br />

Princeton, NJ 08543<br />

Telephone: 609 921-4991<br />

James H. Prestegard<br />

Yale University<br />

Chemistry Department, Box 6666<br />

New Haven, CT 06511<br />

Telephone: 203 432-5162<br />

Dr Caroline Preston<br />

Pacific Forestry Centre<br />

506 West Burnside Road<br />

Victoria, Brit Colum, VSZ IM5<br />

CANADA<br />

Telephone: 604 388-0720<br />

Elton Price<br />

Howard University<br />

525 College Street, N.W.<br />

Washington, DC 20059<br />

Telephone: 202 636-6913<br />

Dr. K. O. Prins<br />

U of Amsterdam, Van der Waals<br />

VALCKENIERSTR. 67<br />

Amsterdam, I018XE<br />

THE NETHERLANDS<br />

Telephone: 020 525-6336<br />

Mohindar S. Puar<br />

Schering Corp<br />

60 Orange Street<br />

Bloomfield, NJ 07003<br />

Telephone: 201 429-3990<br />

Dr. Ronald J Pugmire<br />

University of Utah<br />

210 Park Building<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-7236<br />

David E Purdy<br />

Siemens Medical Systems<br />

R&D 186 Wood Ave Sou<strong>th</strong><br />

Iselin, NJ 08830<br />

Telephone: 201 632-2894<br />

Enrico O. Purisima<br />

Biotech Rs Inst, NRC<br />

6100 Royalmount Ave<br />

Montreal, Que., H4P 2R2<br />

CANADA<br />

Telephone: 514-496-6343<br />

Gregory Quinting<br />

Sherwin-Williams Company<br />

10909 Sou<strong>th</strong> Cottage Grove Road<br />

Chicago, IL 60628<br />

Telephone: 312 821-2167<br />

Dallas L. Rabenstein<br />

University of California<br />

Department of Chemistry<br />

Riverside, CA 92521<br />

Telephone: 714 787-3585<br />

Tom Raidy<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA.94539<br />

Telephone: 415-683-4341<br />

S. Sunder Rajan<br />

Georgetown University Hospital<br />

Dept/Rad-3800 Reservoir Road<br />

Washington, DC 20007<br />

Telephone: 202 784-2885<br />

Dr Vasan<strong>th</strong>an Rajanayagam<br />

Albert Einstein College of Med<br />

U 921, 1300 Morris Park Avenue<br />

Bronx, NY 10461<br />

Telephone: 212 430-2186<br />

Daniel P Raleigh<br />

MIT/Room NW 14-5107<br />

77 Mass. Ave.<br />

Cambridge, MA 02139<br />

Telephone: 617 253-5586<br />

Pree<strong>th</strong>a Ram<br />

Yale University<br />

Chem Dept-225 Prospect Street<br />

New Haven, CT 06511<br />

Telephone: 203 432-3992<br />

K. V. Ramana<strong>th</strong>an<br />

University of Pennsylvania<br />

Department of Chemistry<br />

Philadelphia, PA 19104<br />

Telephone: 215 898-4886<br />

S. Ramaprasad<br />

3000 July Street, No. I08<br />

Baton Rouge, LA 70808<br />

Stephen J. Rapposelli<br />

Wilmad Glass Co, Inc.<br />

Rte. 40 & Oak Rd.<br />

Buena, NJ 08310<br />

Telephone: 609 697-3000<br />

Mary Rastall<br />

Fiberglass Canada<br />

Technlcal Ctr, Box 3049<br />

Sarnia, Ontario, N7T 7X4<br />

CANADA<br />

Telephone: 519 336-5670<br />

C.I. Ratcliffe<br />

Natl Research Coun. of Canada<br />

Ottawa, Ontario, KIA OR6<br />

CANADA<br />

Telephone: 613 993:2011<br />

Alan Ra<strong>th</strong><br />

Spectroscopy Imaging Systems<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Telephone: 415 659-2619<br />

Betty Ra<strong>th</strong>er<br />

Pennwalt Corp.<br />

900 First Street<br />

King of Prussia, PA 19406<br />

Telephone: 215 337-6614<br />

Bruce David Ray<br />

IUPUI Physics Dept<br />

PO Box 647<br />

Indianapolis, IN 46223<br />

Telephone: 317 264-6914<br />

G. Joseph Ray<br />

Amoco Corp.<br />

Amoco Res. Ctr., PO Box 400<br />

Naperville, IL 60566<br />

Telephone: 312 420-5217<br />

David B. Reader<br />

Cambridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, MA 01801<br />

Telephone: 617 938-0067<br />

Robert A. Reamer<br />

Merck & Co.<br />

PO Box 2000, Bldg 801-210<br />

Rahway, NJ 07065-0900<br />

Telephone: 201 574-5391


Gade S. Reddy<br />

DuPont Experimental Station<br />

E328/161A<br />

Wilmington, DE 19898<br />

Telephone: 302 695-3116<br />

Richard D. Redfearn<br />

DuPont<br />

FPD Research, 2571Fite Rd<br />

Memphis, Tn 38127<br />

Telephone: 901 353-7100<br />

Dr. Peter D. Regan<br />

Shell Research Ltd.<br />

Sittingbourne Research Centre<br />

Sittingbourne, Kent,<br />

MEg 8AG U.K.<br />

Telephone: 795-412-377<br />

Cindy M Reidsema<br />

IBM Corp; Dept T43/B1dg 257-2A<br />

1701 Nor<strong>th</strong> Street<br />

Endicott, NY 13790<br />

Telephone: 607 757-1432<br />

Michael D. Reily<br />

Univ of Wisconsin - Madison<br />

Dept of Chem - 420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 262-4687<br />

Nicholas V. Reo<br />

Wright St Univ, Cox Institute<br />

3525 Sou<strong>th</strong>ern Boulevard<br />

Kettering, OH 45429<br />

Telephone: 513 299-7204<br />

Linda Reven<br />

University of Illinois<br />

1004 West Stoughton, Apt. 4<br />

Urbana, IL 61801<br />

Telephone: 217-333-8328<br />

William F. Reynolds<br />

Univ of Toronto<br />

Dept of Chemistry<br />

Toronto, Ont., M5S IAI<br />

CANADA<br />

Telephone: 416 978-3563<br />

John Rieger<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Erro11S Riewerts<br />

Sou<strong>th</strong>west Research Institute<br />

P.O. Box 28510<br />

San Antonio, TX 78284<br />

Telephone: 512 522-2735<br />

Peter Rinaldi<br />

Dept. of Chemistry<br />

The University of Akron<br />

Akron, OH 44325<br />

Telephone: 216 375-5184<br />

James M. Riordan<br />

Sou<strong>th</strong>ern Research Institute<br />

2000 9<strong>th</strong> Ave So, PO Box 55305<br />

Birmingham, AL 35255-5305<br />

Telephone: 205 581-2450<br />

William M Ritchey<br />

Department of Chemistry<br />

Case Western Reserve Univ.<br />

Cleveland, OH 44106<br />

Telephone: 216 368-3668<br />

Jan Robert<br />

Lehigh Uni • Dept of Chem<br />

Mudd Bldg<br />

Be<strong>th</strong>lehem, PA 18015<br />

Telephone: 215 758-3480<br />

James E. Roberts<br />

Lehigh University<br />

Chem. Dept./Bldg. 6<br />

Be<strong>th</strong>lehem, PA 18015<br />

Telephone: 215 758-4841<br />

Pamela Roberts<br />

Eastman Kodak Co<br />

66 Eastman Ave<br />

Rochester, NY 14650<br />

Telephone: 706 477-5175<br />

Valerie Robinson<br />

Syntex Inc<br />

2100 Synte× Ct<br />

Mississauga, Ont., LSN 3X4<br />

CANADA<br />

Telephone: 416 821-4000<br />

Thomas S. Robison<br />

3M Company, Riker Laboratories<br />

3M Center, Bldg. 270-4S-02<br />

St. Paul, MN 55144<br />

Telephone: 612 733-0702<br />

Ronald K. Rodebaugh<br />

Ciba Geigy Corp.<br />

444 Saw Mil| River Rd.<br />

Ardsley, NY 10502-2699<br />

Telephone: 914 478-3131<br />

Charles Rodger<br />

Bruker Spectrospin Canada<br />

555 Steeles Ave. East<br />

Milton, Ontario, LgT IY6<br />

CANADA<br />

Telephone: 416 876-4641<br />

Peter B. Roemer<br />

GE Corp Res & Development Ctr<br />

Post Office Box 8<br />

Schenectady, NY 12301<br />

Telephone: 518 387-5886<br />

Alan Ronemus<br />

Union Carbide Corporation<br />

Post Office Box 8361<br />

Sou<strong>th</strong> Charleston, WV 25303<br />

Telephone: 304 747-3651<br />

Mark S. Roos<br />

U of Cal-Lawrence Berkeley Lab<br />

MS 55-121, 1 Cyclotron Road<br />

Berkeley, CA 94720<br />

Telephone: 415 486-4063<br />

Richard Rosanske<br />

Florida State Univ.<br />

Chemistry Dept.<br />

Tallahassee, FL 32306-3006<br />

Telephone: 904 644-5586<br />

Scott A Ross<br />

Calif Inst of Technology<br />

Mail Code 127-72 Caltech<br />

Pasadena, CA 91125<br />

Telephone: 818 356-6553<br />

David Ruben<br />

MIT, National Magnet Lab<br />

170 Albany Street<br />

Cambridge, MA 02139<br />

Telephone: 617 253-5598<br />

Dr. G. S. Rule<br />

Stanford University<br />

Dept of Chem<br />

Stanford, CA 94305<br />

Telephone: 415 723-4576


~L<br />

Anne F. Russell<br />

Procter & Gamble, MV Labs<br />

PO Box 398707<br />

Cincinnati, OH 45239-8707<br />

Telephone: 513 245-2613<br />

Venceslav Rutar<br />

Iowa State University<br />

Chem Oept, 85H Gilman Hall<br />

Ames, IA 50011<br />

Telephone: 515 294-5958<br />

Dr. Aaron C. Rutenberg<br />

Martin Marietta Energy Systems<br />

Bldg 9995, Y-12 Plant<br />

Oak Ridge, TN 37831<br />

Telephone: 615 574-241i<br />

Robert Rycyna<br />

Yale University<br />

Chemistry Department, Box 6666<br />

New Haven, CT 06511<br />

Telephone: 203 432-5208<br />

Timo<strong>th</strong>y Saarinen<br />

Cornell University<br />

Box 294 Baker Lab, Dept/Chem<br />

I<strong>th</strong>aca, NY 14853-1301<br />

Telephone: 607 255-4980<br />

Ronald Sager<br />

Quantum Design<br />

11578 Sorrento Valley Rd Ste30<br />

San Diego, CA 92121<br />

Telephone: 619 481-4400<br />

Andre Saint-Jean<br />

Universite de Sherbrooke<br />

Blvd Universite<br />

Sherbrooke, Quebec, JIK 2Rl<br />

CANADA<br />

Telephone: 819 821-3099<br />

Felix Salines<br />

Univ of Texas Medical Branch<br />

200 University Blvd, Suite 601<br />

Galveston, TX 77550<br />

Telephone: 409 761-2360<br />

Ago Samoson<br />

University of California<br />

Department of Chemistry<br />

Berkeley, CA 94720<br />

Telephone: 415 642-1220<br />

Bryan C. Sanctuary<br />

McGill University<br />

Dept of Chem-801Sherbrooke<br />

Montreal, Que., H3A 2K6<br />

CANADA<br />

Telephone: 514 398-6930<br />

Jeremy K.M. Sanders<br />

Chemical Lab, Lensfield Rd<br />

University of Cambridge<br />

Cambridge, CB2 IEW<br />

UNITED KINGDOM<br />

John P. Sanders<br />

Physics Dept.<br />

San Diego State Univ.<br />

San Diego, CA 92182<br />

Telephone: 619 265-4326<br />

Dennis Sandoz<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Everett R Santee Jr.<br />

Univ of Akron<br />

302 E Buchtel<br />

Akron, OH 44325<br />

Telephone: 216 375-7537<br />

Robert E. Santini<br />

Purdue University<br />

Department of Chemistry #92<br />

West Lafayette. IN 47906<br />

Telephone: 317 494-5230<br />

K.P. Sara<strong>th</strong>y<br />

Auburn University<br />

Dept of Chemistry<br />

Auburn, AL 36849-5312<br />

Telephone: 205 826-2291<br />

, W<br />

Maziar Sardashti<br />

Emory University<br />

412 Woodruff Memorial Building<br />

Atlanta, GA 30329<br />

Telephone: 404 727-5894<br />

Susanta K. Sarkar<br />

Smi<strong>th</strong> Kline & French Labs<br />

L-940, Post Office Box 1539<br />

King of Prussia, PA 19406-0939<br />

Telephone: 215 270-6652<br />

Bruce M. Sass<br />

Univ of Pennsylvania<br />

231 So. 34<strong>th</strong> St.<br />

Philadelphia, PA 19104<br />

Telephone: 215-898-5421<br />

Shiro Satoh<br />

Varian<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

John K. Saunders<br />

National Res Council of Canada<br />

Div of Biological Sciences<br />

Ottawa, Ontario, KIA OR6<br />

CANADA<br />

Telephone: 613 990-0889<br />

Francoise Sauriol<br />

McGill University<br />

Chem Dept, 801Sherbrooke St.<br />

Montreal, Quebec, H3A 2K6<br />

CANADA<br />

Telephone: 514 392-5792<br />

Brian Sayer<br />

Dept of Chemistry, ANB 383<br />

McMaster Universlty<br />

Hamilton, ONT, L8P 2B4<br />

CANADA<br />

Telephone: 416 525-9140<br />

Jacob Schaefer<br />

Washington University<br />

Department of Chemistry<br />

St. Louis, MO 63130<br />

Telephone: 314 889-6844<br />

Ellory Schempp<br />

Auburn International<br />

P.O. Box 2008<br />

Danvers, HA 01923<br />

Telephone: 617 777-2460<br />

Bob Schiksnis<br />

Univ of Pennsylvania<br />

Dept of Chem<br />

Philadelphia. PA 19104<br />

Telephone: 215 898-4886<br />

Claudia Schmidt<br />

Univ of California<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Telephone: 415 642-2094


Charles Schramm<br />

Catalytica Assoc. Inc.<br />

430 Ferguson Drive. Bldg 3<br />

Mountain View, CA 94043<br />

Telephone: 415 960-3000<br />

Suzanne E. 'Schramm<br />

MRDC<br />

P 0 Box 1025<br />

Princeton, NJ 08540<br />

Telephone: 609 737-5625<br />

Jay F. Schulz<br />

Henkel Res. Corp.<br />

233o Circadian Way<br />

Santa Rosa, CA 95407<br />

Telephone: 717 575-7155<br />

Arnold L. Schwartz<br />

Varian Associates<br />

611 Nansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

Herbert M. Schwartz<br />

Rensselaer Polytechnic Inst<br />

Chemistry Dept<br />

Troy, NY 12181<br />

Telephone: 518 276-6779<br />

Joachim Seeli~<br />

Biocenter, Unlv of Basel<br />

Klingelbeigstr 70<br />

CH-4056 Basel,<br />

SWITZERLAND<br />

Mark R. Seger<br />

Air Products & Chemicals<br />

Box 538<br />

Allentown, PA 18195<br />

Telephone: 215 481-8310<br />

Talluri Sekhar<br />

Cornell University<br />

Box 390, Baker Laboratory<br />

I<strong>th</strong>aca, NY 14853<br />

Telephone: 607 255-4787<br />

Barry S. Selinsky<br />

Nat. Inst. Env. Heal<strong>th</strong> Sci.<br />

MD 5-01PO Box 12233<br />

Research Triangle Pa, NC 27709<br />

Telephone: 919 541-3373<br />

A. J. Shaka"<br />

University of California<br />

Chemistry Department<br />

Berkeley, CA 94708-1345<br />

Telephone: 415-642-2094<br />

Xi Shan<br />

University of Illinois<br />

505 S. Ma<strong>th</strong>ews Ave., Box 4-I<br />

Urbana, IL 61801<br />

Telephone: 217-333-8328.<br />

Michael Shapiro<br />

Sandoz Research Institute<br />

NMR Facilities, Rte. 10<br />

East Hanover, NJ 07936<br />

Telephone: 201 503-7858<br />

Robert L. Sheldon<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 424-5424<br />

Donald R. Shepherd<br />

~681ifier Research<br />

School House Rd.<br />

Souderton, PA 18964-9990<br />

Telephone: 215 723-8181<br />

Barbara Sherriff<br />

Geology Dept., 1280 Main ST.W<br />

McMaster University<br />

Hamilton, Ont., L8S 3M1<br />

CANADA<br />

Telephone: 6416 525-9140<br />

Mark Sherwood<br />

University of Utah<br />

Dept of Chem, Henry Eyring Bld<br />

Salt Lake City, UT 84112<br />

Telephone: 801 581-6116<br />

Yang Taur Shieh<br />

Dept. of Chemistry<br />

Case Western Reserve Univ.<br />

Cleveland, OH 44106<br />

Ata Shirazi<br />

Univ of California<br />

Chemistry Dept<br />

Santa Barbara, CA 93106<br />

Telephone: 805 961-2938<br />

William M. Shirley<br />

Chemistry Dept<br />

Wichita State Univ<br />

Wichita, KS 67208<br />

Telephone: 316 689-3120<br />

Ki-Joon Shon<br />

Univ of Pennsylvania<br />

3601Powelton Avenue, #B-tO<br />

Philadelphia. PA 19104<br />

Telephone: 215 898-4886<br />

James N. Shoolery<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

Ben Shoulders<br />

University of Texas<br />

Department of Chemistry<br />

Austin, TX 78712<br />

Telephone: 512 471--3835<br />

Rajesh B Shukla<br />

Carnegie-Mellon Univ.<br />

4400 Fif<strong>th</strong> Ave./Box 87<br />

Pittsburgh, PA 15213<br />

Telephone: 412 268-3411<br />

Dikoma C. Shungu<br />

Univ of FL School of Medicine<br />

Dept/Radiology, JHMHC Box J374<br />

Gainesville, FL 32610<br />

Telephone: 904 392-3087<br />

Steve Silber<br />

Chemistry Department<br />

Texas A & M University<br />

College Station, TX 77843<br />

Telephone: 409 845-1745<br />

Robin F. Silverman<br />

CIBA-GEIGY Corp.<br />

556 Morris Ave., Research 134<br />

Summit, NJ 07901<br />

Telephone: 201 277-5714<br />

James A. Simms<br />

MIT<br />

Chemistry 18-085<br />

Cambridge, MA 02139


Maureen Simonds<br />

Mount Holyoke College<br />

Chem Dept<br />

Sou<strong>th</strong> Hadley, MA 01075<br />

Telephone: 413 538-2349<br />

Elena Simplaceanu<br />

Carnegie Mellon University<br />

4400 Fif<strong>th</strong> Avenue<br />

Pittsburgh, PA 15213<br />

Telephone: 412 268-6337<br />

Virgil Simplaceanu<br />

Carnegie Mellon University<br />

4400 Fif<strong>th</strong> Avenue.<br />

Pittsburgh, PA 15213<br />

Telephone: 412 268-3396<br />

Larry Sims<br />

Univ of Houston<br />

4800 Calhoun. Dept of Chem<br />

Houston, TX 77064<br />

Telephone: ****<br />

Dean Sindorf<br />

Chemagnetics<br />

208 Commerce Drive<br />

Fort Collins, CO 80524<br />

Telephone: 303 484-0428<br />

Steven W. Sinton<br />

Lockheed 0/9350 B/204<br />

3251 Hanover Street<br />

Palo Alto, CA 94304-1191<br />

Telephone: 415 424-2532<br />

Robert Skarjune<br />

3M Company<br />

Bldg. 201-BS-OS/3M Center<br />

St. Paul, MN 55144<br />

Telephone: 612 736-9373<br />

Tore'Skjetne<br />

MR-SENTERET, SINTEF<br />

N-7034 Trondheim,<br />

NORWAY<br />

Telephone: 477 597706<br />

Cyn<strong>th</strong>ia M Skoglund<br />

John Hopkins Dniv Sch of Med<br />

725 N Wolfe Street<br />

Baltimore, MD 21205<br />

Telephone: 301 955-3651<br />

Charles P S1ichter<br />

Univ of Illinois; Urbana-Champ<br />

1110 W. Green Street •<br />

Urbana-Champaign. IL 61801<br />

Telephone: 217 333-3834<br />

George Slomp<br />

The Opjohn Co<br />

301 Henrietta Street<br />

Kalamazoo, MI 49008<br />

Telephone: 616 385-7431<br />

Steve H. Smallcombe<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Karen Ann Smi<strong>th</strong><br />

Colgate-Palmolive Co<br />

909 River Road<br />

Piscataway, NJ 08854<br />

Telephone: 201 878-7995<br />

Martin A.R. Smi<strong>th</strong><br />

Bruker Spectrospin Canada<br />

555 Steeles Ave. E.<br />

Milton, Ont., L9T IY6<br />

CANADA<br />

Telephone: 416 876-4641<br />

Rebecca L. Smi<strong>th</strong><br />

Rohm & Haas Co. Analytical Res<br />

727 Norristown Rd.<br />

Spring House. PA 19477<br />

Telephone: 215 641-2142<br />

Stanford L. Smi<strong>th</strong><br />

Univ of Kentucky<br />

Mag Res Ctr, 101 Slone Bldg<br />

Lexington, KY 40506-0053<br />

Telephone: 606 233-8993<br />

Steven 0 Smi<strong>th</strong><br />

NWI4-SIO7/MIT<br />

Natl Mag Lab/17O Albany St.<br />

Cambridge, MA 02139<br />

Telephone: 617 253-5586<br />

Vane G. Smi<strong>th</strong><br />

ICl Americas<br />

Concord Pike & Murphy Road<br />

Wilmington, DE 19897<br />

Telephone: 302 575-8394<br />

Walter Smi<strong>th</strong><br />

Baxter Heal<strong>th</strong>care Corp.<br />

6301 Lincoln Ave.<br />

Morton Grove, IL 60053<br />

Telephone: 312 965-4700<br />

Richard Snook<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 4}5 493-4000<br />

N. Soffe<br />

University of Oxford<br />

Biochemistry/Sou<strong>th</strong> Parks Road<br />

Oxford, OX1 3QU<br />

ENGLAND<br />

Telephone: 44 865 275335<br />

Pascale Sole<br />

Chemistry Dept.<br />

Syracuse University<br />

Syracuse, NY 13210<br />

Telephone: 315 423-1021<br />

Mark S. Solum<br />

Univ of Utah<br />

210 Park Building<br />

Salt Lake City, OT 84112<br />

Telephone: 801 581-7351<br />

Sheng-Kwei Song<br />

Washlngton University<br />

Box 1134, I Brookings<br />

St Louis, MO 63130<br />

Telephone: 314 889-6583<br />

Christopher Sotak<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Telephone: 415 683-4393<br />

Steven W Sparks<br />

National Institutes of Heal<strong>th</strong><br />

Bldg 30/Rm I06/NIDR<br />

Be<strong>th</strong>esda, MD 20205<br />

Telephone: 301 496-5750<br />

J. B. Spitzmesser<br />

Dory Scientific<br />

600 C1emson Road<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497


Richard F. Sprecher<br />

U.S. Dept of Energy-PETC<br />

Post Office Box 10940<br />

Pittsburgh, PA 15236<br />

Telephone: 412 892-5810<br />

Dr. Puliyer Srinivasan<br />

DuPont-NEN Products<br />

549 Albany St.<br />

Boston, MA 02118<br />

Telephone: 617 350-9404<br />

Ka<strong>th</strong>y Staudenmayer<br />

Eastman Kodak<br />

66 Eastman Avenue<br />

Rochester, NY 14650<br />

Telephone: 716 477-4132<br />

Edward M. Steele<br />

A E Staley Mfg Co<br />

2200 E Eldorado<br />

Decatur, IL 62525<br />

Telephone: 217 421-2141<br />

Paul C. Stein<br />

Los Alamos Nat Lab<br />

LANL, MS C345<br />

Los Alamos, NM 87545<br />

Telephone: 505 667-0906<br />

Edward O. Stejskal<br />

Dept. of Chemlstry, Box 8204<br />

Nor<strong>th</strong> Caroline State Univ<br />

Raleigh, NC 27695-8204<br />

Telephone: 919 737-2998<br />

Thomas R. Stengle<br />

University of Massachusetts<br />

Department of Chemistry<br />

Amherst, MA 01003<br />

Telephone: 413 545-2583<br />

Richard Stephens<br />

Abbott Laboratories<br />

D-418, AP9<br />

Abbott Park, IL 60064<br />

Telephone: 312 937-2086<br />

Phoebe Stewart<br />

Univ. of Pennsylvania<br />

Chemistry Dept.<br />

Philadelphia. PA 19104-6323<br />

Telephone: 215 898-3077<br />

Robert Stewart<br />

Amoco Production Co.<br />

4502 E 41st St PO Box 3385<br />

Tulsa, OK 74105<br />

Telephone: 918 660-4079<br />

Brian J. Stockman<br />

Univ of Wisconsin - Madison<br />

Dept of Biochem-420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 262-4687<br />

Biing-Min Su<br />

AKZO Chem~e America<br />

Livingstone Ave.<br />

Dobbs Ferry, NY 10522<br />

Telephone: 914 693-1200<br />

Glenn-R. Sullivan<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Telephone: 415 683-4412<br />

Mark J Sullivan<br />

Hercules Research Center<br />

Wilmington, DE 19894<br />

Telephone: 302 995-3269<br />

Richard H. Sullivan<br />

Jackson State University<br />

PO Box 17636<br />

Jackson, MS 39217<br />

Telephone: 601 968-2171<br />

Susan C.J. Sumner<br />

NIH LC/NHLBI<br />

9000 Rockville Pike<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-2350<br />

Boqin Sun<br />

Univ of California at Berkeley<br />

Department of Chemistry<br />

Berkeley, CA 94720<br />

Telephone: 415 642-2094<br />

Robert Svihla<br />

Wilmad Glass Co.<br />

Route 40 & Oak Rd.<br />

Buena, NJ 08310<br />

Telephone: 609 697-3000<br />

Alistair G. Swanson<br />

Pfizer Central Research<br />

Ramsgate Road<br />

Sandwich, Kent, CT13 9NJ<br />

ENGLAND<br />

Telephone: 0304 616672<br />

Scott D. Swanson<br />

Univ of Mich-Dept of Radiology<br />

Kresge Ill, R 3307<br />

Ann Arbor, MI 48109-0553<br />

Telephone: 313 936-3121<br />

Lydia Swenton<br />

G. D. Searle Co.<br />

4901Searle Pkwy<br />

Skokie, IL 60077<br />

Telephone: 312 982-7758<br />

Linda L. Szafraniec<br />

Chem. Res. and Dev. Center<br />

SMCCR-RSC-P<br />

Aberdeen Proving Grd, MD 21010-5423<br />

Telephone: 301 671-3863<br />

Nikolaus M. Szeverenyi<br />

SUNY Heal<strong>th</strong> Science Center<br />

708 Irving Avenue<br />

Syracuse, NY 13210<br />

Telephone: 315 473-8470<br />

Lali<strong>th</strong> Talagala<br />

Pittsburgh NMR Institute<br />

3260 Fif<strong>th</strong> Avenue<br />

Pittsburgh, PA 15213<br />

Telephone: 412 647-6674<br />

Jau Tang<br />

Argonne National Laboratory<br />

9700 S. Lass Ave.<br />

Argonne, IL 60439<br />

Telephone: 312 972-3539<br />

Lim Tang-Kuan<br />

FDA<br />

8800 Rockville Pike<br />

Be<strong>th</strong>esda, MD 20814<br />

Telephone: 301 496-2542<br />

Christian Tanzer<br />

Bruker Instruments<br />

Manning Park<br />

Billerica, MA 01821<br />

Telephone: 617 663-7406


Dr. June Taylor<br />

Fox Chase Cancer Center<br />

7701Burholme Avenue<br />

Philadelphia, PA 19111<br />

Telephone: 215 728-3120<br />

Richard B. Taylor<br />

Dow Corning Corporation<br />

Mail Stop C41D01<br />

Midland, MI 48686-0994<br />

Telephone: 517 496-5594<br />

Robert E. Taylor<br />

Bruker Instruments<br />

Manning Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

~ iuke Teng<br />

lorida State University<br />

Box 251, Dept of Chemistry<br />

Tallahassee, FL 32304<br />

Telephone: 904 644-3254<br />

Takehiko Terao<br />

Univ of California<br />

Dept of Chem<br />

Berkeley, CA 94720<br />

Telephone: 415 642-2094<br />

Mike Tesic<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

V. Thanabal<br />

Univ of Mich-Biophy Res Div<br />

2200 Bonisteel Boulevard<br />

Ann Arbor, MI 48109<br />

Telephone: 313 936-3850<br />

John D. Thoburn<br />

Univ California, San Diego<br />

Dept of Chem, UCSD, D-O06<br />

LaJolla, CA 92093<br />

Telephone: 619 534-3173<br />

William J Thoma<br />

University of Iowa<br />

Dept of Radiology<br />

Iowa City, IA 52242<br />

Ar<strong>th</strong>ur R. Thompson<br />

Argonne Nat'l Laboratory<br />

Chemistry E169<br />

Argonne, IL 60439<br />

Telephone: 312 972-7325<br />

David S. Thomson<br />

Yale University<br />

225 Prospect Street<br />

New Haven, CT 06511<br />

Telephone: 203 432-3992<br />

Kim Thresh<br />

MSD Isotopes<br />

PO Box 899, Pte-C1aire<br />

Dorval; Quebec, HgR 4P7<br />

CANADA<br />

Telephone: 514 695-7920<br />

Hye Kyung Timken<br />

Mobil R&D<br />

Billingsport Road<br />

Paulsboro, NJ 08066<br />

Telephone: 609 423-1040<br />

Charles Tirendi<br />

4M)8 Res Inst/UCSD Med Ctr<br />

W. Dickinson St.<br />

San Diego, CA 92103<br />

Telephone: 619 543-6414<br />

Dr. S. B. Tjan<br />

Unilever Research Laboratorium<br />

Post Office Box 114<br />

3130 AC Ulaardingen,<br />

THE NETHERLANDS<br />

Telephone: 010 460-6933<br />

David R. Torgeson<br />

Iowa State University<br />

Ames Laboratory<br />

Ames, IA 50010<br />

Telephone: 505 294-6353<br />

Daniel D Traficante<br />

Dept of Chemistry<br />

Univ of Rhode Island<br />

Kingston, RI 02881<br />

Telephone: 401 792-5097<br />

Malaine Trecoske<br />

Univ of California at Berkeley<br />

Dept of Chem, Latimer Hall<br />

Berkeley, CA 94720<br />

Telephone: 415 642-2094<br />

Luc Tremblay<br />

Universite de Sherbrooke<br />

2500 Boul. Universite<br />

Sherbrooke, Quebec, J1K 2R1<br />

CANADA<br />

Telephone: 8198217000-3099<br />

Rolf Tschudin<br />

DHHS/NIH<br />

Bldg. 2, I~. B2-02<br />

Be<strong>th</strong>esda, MD 20892<br />

Telephone: 301 496-2692<br />

Candy Tsiao<br />

VA Polytech Inst & State Univ<br />

Chem Dept, VPI & SU<br />

Blacksburg, VA 24061<br />

Telephone: 703 961-5599<br />

Anne H. Turner<br />

Howard Univ, Dept. of Chem<br />

525 College St. NW<br />

Washington, DC 20059<br />

Telephone: 202 636-6908<br />

Pierre Tutunjian<br />

Shell Dev. Co.<br />

P.O. Box 1380<br />

Houston, TX 77251<br />

Telephone: 713 493-7343<br />

Robert Tycko<br />

AT&T Bell Laboratories<br />

Room 1B217, 600 Mountain Ave.<br />

Murray Hill, NJ 07974<br />

Telephone: 201 582-7569<br />

Na<strong>th</strong>an R. Tzodikov<br />

GE NMR Instruments<br />

255 Fourier Avenue<br />

Fremont, CA 94539<br />

Telephone: 415 683-4367<br />

Susan E Uhlendorf<br />

Parke Davis<br />

2800 Plymou<strong>th</strong> Rd<br />

Ann Arbor, MI 48105<br />

Telephone: 313 996-7408<br />

Eldon L. Ulrich<br />

Univ of Wisconsin-Madison<br />

Dept of Biochem-420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 263-9498


Steve Unger<br />

U. C. Davis<br />

NMR Facility MS-1A<br />

Davis, CA 95616<br />

Telephone: 916 752-7677<br />

Ka<strong>th</strong>leen Valentine<br />

Princeton University<br />

Frick Chem Lab. Washington Rd.<br />

Princeton, NJ 08544<br />

Telephone: 609 452-3928<br />

Herman Van Halbeek<br />

Complex Carbohydrate Ctr<br />

Univ. of GA/PO Box 5677<br />

A<strong>th</strong>ens, GA 30613<br />

Telephone: 404 546-3312<br />

Craig L. VanAntwerp<br />

GE NMR Inst<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Telephone: 415 683-4382<br />

David Vander Velde<br />

Univ of Kansas<br />

Dept of Medicinal Chemistry<br />

Lawrence, KS 66045<br />

Telephone: 913 864-4187<br />

David VanderHart<br />

National Bureau of Standards<br />

Rm. A2Og/Bldg. 224. Div. 440<br />

Gai<strong>th</strong>ersburg. MD 20899<br />

Telephone: 301 975-6754<br />

Peter C M Vanzijl<br />

Natl Inst of Heal<strong>th</strong><br />

Bldg 10; Rm 6N105<br />

Be<strong>th</strong>esda, MD 20205<br />

Telephone: 301 480-8096<br />

Joseph Vaughn<br />

Rockefeller University<br />

1230 York Ave.<br />

New York, NY 10021<br />

Telephone: 212 570-7566<br />

David M Vea<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

W.S. Veeman<br />

Lab of Physical Chemsitry<br />

Univ of Nymegen, Toernooiveld<br />

Nymegen, 6525 ED<br />

THE NETHERLANDS<br />

Telephone: 80-613109<br />

Alexander J. Vega<br />

DuPont Experimental Station<br />

E356<br />

Wilmington, DE 19898<br />

Telephone: 302 695-2404<br />

Vincent Venturella<br />

Anaquest/BOC Group<br />

100 Mountain Ave.<br />

Murray Hill, NJ 07974<br />

Telephone: 201 771-6392<br />

M. Phan Viet<br />

Chem. Dept. PO Box 6128 Stn A<br />

University of Montreal<br />

Montreal, Que., H3C 3J7<br />

CANADA<br />

Telephone: 514 343-5857<br />

Fritz Vossman<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Charles G. Wade<br />

IBM Almaden Research K94/801<br />

650 Harry Road<br />

San Jose, CA 95120-6099<br />

Telephone: 408 927-1650<br />

Gerhard Wagner<br />

Univ of Mich, Inst Sci & Tech<br />

2200 Bonisteel Blvd.<br />

Ann Arbor, MI 48109<br />

Telephone: 313 936-3858<br />

John Walter<br />

National Research Council<br />

1411 Oxford St, Atlantic Res<br />

Halifax, N.S., B3H 3ZI<br />

CANADA<br />

Telephone: 902 426-6458<br />

Tom Walter<br />

Millipore. Waters Chrom Div<br />

34 Maple St<br />

Milford, MA 01757<br />

Telephone: 617 478-2000<br />

Dehua Wang<br />

Wuhan Institute of Physics<br />

Academic Sinica, Wuhan-Box 241<br />

Wuhan, Hubei, 430071<br />

P.R. OF CHINA<br />

Telephone: 812541-204<br />

Hsin Wang<br />

Eastman Kodak Co.<br />

Bldg 82/FLI, Kodak Res. Labs<br />

Rochester, NY 14650<br />

Telephone: 716 722-4284<br />

Jin-shan Wanq<br />

Doty Scientific, Inc.<br />

600 Clemson Road<br />

Columbia, SC 29223<br />

Telephone: 803 788-6497<br />

Jin-shan Wang<br />

Virginia Tech<br />

Department of Chemistry<br />

Blacksburg, VA 24061<br />

Telephone: 703 961-4990<br />

JinFeng Wang<br />

Univ of Wisconsin-Madison<br />

Dept of Biochem-420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 262-1754<br />

Paul C. Wang<br />

Georgetown Dniv, Dept of Rdlgy<br />

3800 Reservoir Road, NW<br />

Washington, DC 20007<br />

Telephone: 202 784-3415<br />

Shui-mei Wang<br />

GAF Co.<br />

1361Alps Rd.<br />

Wayne, NJ 07470<br />

Telephone: 201 628-3216<br />

Sophia Wang<br />

Syracuse University<br />

304 Bowne Hall<br />

Syracuse, NY 13244-1200<br />

Telephone: 315 423-1021<br />

Yuying Wang<br />

Syracuse University<br />

108 Bowne Hall<br />

Syracuse, NY 13244<br />

Telephone: 315 423-1021


f--~<br />

William W. Warren<br />

AT&T Bell Laboratories<br />

Room 10147<br />

Murray Hill, NJ 07974<br />

Telephone: 201 582-2162<br />

Roderick E Wasylishen<br />

Dalhousie Univ<br />

Dept of Chem<br />

Halifax, Nova Scotia, B3H 4J3<br />

CANADA<br />

Telephone: 902 424-2564<br />

Andrew Waterhouse<br />

Tulane University<br />

Department of Chemistry<br />

New Orleans, LA 70118<br />

Telephone: 504 865-5573<br />

John S. Waugh<br />

Dept. of Chemistry<br />

MIT<br />

Cambridge, MA 02139<br />

Telephone: 617 253-1901<br />

F David Wayne<br />

Shell Res; Thorton Res Center<br />

PO Box I<br />

Chester, CHI 3SH<br />

Telephone: 051 373-5665<br />

Andrew Webb<br />

Univ of Cambridge, RTC Centre<br />

Med Chem, Level 4<br />

Cambridge CB2 20Q,<br />

ENGLAND<br />

Gretchen Webb<br />

Yale Univ-Sterling Chem Labs<br />

225 Prospect Street<br />

New Haven, CT 06511<br />

Telephone: 203 432-3933<br />

ion Webb<br />

M-R Resources Inc<br />

38 Parker Street<br />

Gardner, MA 01440<br />

Telephone: 617 632-7000<br />

Suzanne L. Wehrii<br />

Univ of Wisconsin-Milwaukee<br />

Chem Dept-Post Office Box 413<br />

Milwaukee, WI 53201<br />

Telephone: 414 229-5896<br />

W Th Wenckebach<br />

Kamerlingh Onnes Lab<br />

PO Box 9506<br />

2300 RA Leiden,<br />

HOLLAND<br />

Telephone: 071 275570<br />

Ulrike Werner<br />

Univ of Calif, Berkeley<br />

Dept of Chem<br />

Berkeley, CA 94720<br />

Telephone: 415 642-2094<br />

William M. Westler<br />

Univ of Wisconsin-Madison<br />

Dept of Biochem-420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 263-9599<br />

Roger Wheatley<br />

Phospho Ener~etics Inc<br />

2 Raymond Drlve<br />

Havertown, PA 19083<br />

Telephone: 215 789-7474<br />

Earl B. Whipple<br />

Pfizer Inc.<br />

Central Research Labs<br />

Groton, CT 06340<br />

Telephone: 203 441-4914<br />

Carol F. Wichmann<br />

Merck & Co.<br />

R80Y-345, PO Box 2000<br />

Rahway, NJ 07065<br />

Telephone: 201 574-7616<br />

David J. Wilbur<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 424-6689<br />

Carl Wild<br />

VA Polytech Inst & State Univ<br />

Chem Dept, VPI & SU<br />

Blacksburg, VA 24061<br />

Telephone: 703 961-5599<br />

Joyce Wilde<br />

IBM<br />

East Fishkill Facility; Rt 52<br />

Nopewell Junction, NY 12533<br />

Telephone: 914 894-6602<br />

M. Robert Willcott<br />

NMR Imaging, Inc<br />

2501-C Central Pkwy, Ste. C-17<br />

Houston, TX 77092<br />

Telephone: 713 680-8841<br />

Elizabe<strong>th</strong> A. Williams<br />

General Electric Corp R&D<br />

I River Rd.<br />

Scotia, NY 12302<br />

Telephone: 518 387-7856<br />

Evan Williams<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

Michelle Williams<br />

Rohm & Haas<br />

PO Box 219<br />

Bristol, PA 19007<br />

Telephone: 215 785-8171<br />

Philip G. Williams<br />

Lawrence Berkeley Lab<br />

MS 75-123, I Cyclotron Rd.<br />

Berkeley, CA 94720<br />

Telephone: 415 486-7336<br />

Kenne<strong>th</strong> L. Williamson<br />

Mount Holyoke College<br />

Chem Dept<br />

Sou<strong>th</strong> Hadley, MA 01075<br />

Telephone: 413 538-2349<br />

G. Edwin Wilson<br />

The Univ. of Akron<br />

Chemistry Dept.<br />

Akron, OH 44325<br />

Telephone: 216 375-7372<br />

Robert A. Wind<br />

Colorado State University<br />

Dept of Chemistry<br />

Fort Collins, CO 80523<br />

Telephone: 303 491-4894<br />

Roland Winter<br />

Univ of lllinois-Urbana<br />

505 S Ma<strong>th</strong>ews, Box 34<br />

Urbana, IL 61801<br />

Telephone: 217 333-9056


Toni Wir<strong>th</strong>lin<br />

Varian Associates<br />

611Hansen ~Y94303<br />

Palo Alto,<br />

Telephone: 415 493-4000<br />

William M Jr Wittbold<br />

Analogic Corp, Centennial Dr<br />

Centennial Industrial Park<br />

Peabody, MA 01961<br />

Telephone: 617 246-0300<br />

Donald E. Woessner<br />

Mobil R&D, Dallas Res Lab<br />

13777 Midway Road<br />

Dallas, TX 75244<br />

Telephone: 214 851-8166<br />

Roger A. Wolfe<br />

Occidental Chemical Corp<br />

2801 Long Road<br />

Grand Island. NY 14072<br />

Telephone: 716 773-8551<br />

Gerd Wolff<br />

Bruker Medical Instruments<br />

Mannin 9 Park<br />

Billerlca, MA 01821<br />

Telephone: 617 667-9580<br />

Alan Wolfson<br />

Bruker Instruments<br />

Mannin~ Park<br />

Billerlca, MA 01821<br />

Telephone: 617-667-9580<br />

Kurt Wollenberg<br />

Lubrizol Corporation<br />

29400 Lakeland Boulevard<br />

Wickliffe, OH 44092<br />

Telephone: 2169434200X2026<br />

Sam T. S. Wong<br />

U of Cal-Lawrence Berkeley Lab<br />

MS 55-121, Cyclotron Road<br />

Berkeley, C~ 94720<br />

Telephone: 415 486-6114<br />

Kyu Whan Woo<br />

University of Illinois<br />

Urbana, IL 61801<br />

Telephone: 217 244-4248<br />

Bruce Woods<br />

PQ Corporation<br />

280 Cedar Grove Road<br />

Lafayette Hill. PA 19444<br />

Telephone: 215 941-2071<br />

Gang Wu<br />

York University<br />

Dept of Chem. 4700 Keele St.<br />

Nor<strong>th</strong> York, Ontario, M3J IP3<br />

CANADA<br />

Telephone: 416 736-2100<br />

Ping Pin Yang<br />

PITMAN-MOORE, Inc.-IMC<br />

PO Box 207<br />

Terre Haute, IN 47808<br />

Telephone: 812 230-0121<br />

Constantino Yannoni<br />

IBM Almaden Research Center<br />

650 Harry Road<br />

San Jose, CA 95120<br />

Telephone: 408 927-2450<br />

Dr. Phillip Yeagle<br />

State U of NY at Buffalo<br />

Biochem Dept 102 Cary Hall<br />

Buffalo, NY 14214<br />

Telephone: 716 831-2700<br />

James Yesinowski<br />

Calif Inst of Tech<br />

MC 164-30<br />

Pasadena, CA 91125<br />

Telephone: 818 356-6241<br />

Hong N. Yeung<br />

Univ of Mich Nosp-Dpt of Radlg<br />

Kresge III, R3307<br />

Ann Arbor, MI 48109-0553<br />

Telephone: 313 747-0846<br />

Gregory Young<br />

Wright State University<br />

3525 Sou<strong>th</strong>ern Boulevard<br />

Kettering, OH 45429<br />

Telephone: 513 299-7204<br />

Gregory Yvars<br />

Case Western Reserve Univ<br />

Millis Science Ctr<br />

Cleveland, OH 44106<br />

Telephone: 216 368-5917<br />

Michael G Zagorski<br />

Biochem. Dept, 630 W 168<strong>th</strong> St.<br />

Columbia University<br />

New York, NY 10032<br />

Telephone: 212 305-5280<br />

Michael Zehfus<br />

Univ of Wisconsin-Madison<br />

420 Henry Mall<br />

Madison, WI 53706<br />

Telephone: 608 263-9498<br />

Andrew S. Zektzer<br />

Abbott Laboratories<br />

D-418<br />

Abbott Park, IL 60064<br />

Telephone: 312 937-2083<br />

Toby Zens<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Telephone: 415 493-4000<br />

Melodee Zentner<br />

Morton Thiokil, Inc.<br />

1275 Lake Ave.<br />

Woodstock, IL 60098<br />

Telephone: 815 338-1800<br />

Kurt W. Zilm<br />

Yale University<br />

Dept of Chem-225 Prospect St.<br />

New Haven, CT 06511<br />

Telephone: 203-432-3956<br />

Nicholas Zumbulyadis<br />

Eastman Kodak Co.<br />

Corp Res Labs, Bldg 82 Rm C204<br />

Rochester, NY 14650<br />

Telephone: 716 722-1409<br />

Maruta Zvagulis<br />

University of Auckland<br />

Auckland,<br />

NEW ZEALAND<br />

Telephone: 217 333-2535

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!