06.12.2012 Views

th  - 1987 - 51st ENC Conference

th  - 1987 - 51st ENC Conference

th  - 1987 - 51st ENC Conference

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

28 <strong>th</strong> ���� - <strong>1987</strong> Asilomar<br />

Chair: Lynn Jelinski<br />

Local Arrangements: Lynne Batchelder<br />

A summary of <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>, presented as a “virtual interview:”<br />

Ted Becker: The 28 <strong>th</strong> in <strong>1987</strong> had some curious aspects. For<br />

example, why did <strong>th</strong>e technical program begin on Sunday night? In<br />

all <strong>th</strong>e previous years it had started on Monday morning.<br />

Lynn Jelinski: I was afraid you’d ask about <strong>th</strong>at. The early start<br />

was to fix a faux pas on my part. Somehow we neglected to invite<br />

Richard Ernst to speak until all of <strong>th</strong>e slots were full.<br />

Ted: Having him speak was a good idea; Richard went on to win<br />

<strong>th</strong>e Nobel Prize in Chemistry in 1991 for his pioneering work in high<br />

resolution NMR.<br />

Lynn: It turns out <strong>th</strong>at <strong>th</strong>ree future Nobel Prize winners attended <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>. Kurt Wü<strong>th</strong>rich<br />

would go on to win <strong>th</strong>e Nobel Prize in Chemistry in 2002 for his contributions for <strong>th</strong>e determination<br />

of <strong>th</strong>e 3D structure of biological macromolecules in solution, and Paul Lauterbur in Physiology or<br />

Medicine for his pioneering work on MRI. Active participation by all <strong>th</strong>ree future Nobel Prize<br />

winners underscores <strong>th</strong>e high profile and value of <strong>th</strong>e <strong>ENC</strong> as a vehicle for communicating new<br />

developments in NMR.<br />

Ted: What were some of <strong>th</strong>e firsts of <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>? Things <strong>th</strong>at an attendee might not have<br />

noticed?<br />

Lynn: It was <strong>th</strong>e first year <strong>th</strong>at <strong>th</strong>e <strong>ENC</strong> employed a professional conference organizer, wi<strong>th</strong><br />

somewhat mixed results. That was before Judi<strong>th</strong>, of course. We also introduced <strong>th</strong>e Monterey<br />

cypress logo, which I clipped from a California tourism magazine and Xeroxed onto <strong>th</strong>e cover of<br />

<strong>th</strong>e program. (Ed Stejskal hand-lettered <strong>th</strong>e cover in his famous calligraphy.) I’ve been worried<br />

ever since <strong>1987</strong> <strong>th</strong>at someone would nab me for copyright infringement. I’m delighted to see <strong>th</strong>at<br />

<strong>th</strong>e <strong>ENC</strong>’s logo today still retains <strong>th</strong>e spirit of our first logo.<br />

28 <strong>th</strong><br />

<strong>ENC</strong><br />

Ted: The symbolism is powerful as we celebrate <strong>th</strong>e 50 <strong>th</strong> <strong>ENC</strong>. As I recall, you wrote: “The<br />

Monterey cypress, an evergreen <strong>th</strong>at <strong>th</strong>rives on <strong>th</strong>e Monterey Peninsula, …, symbolizes a special


location where people in a never-dormant field return year after year to discuss <strong>th</strong>e newest<br />

developments in NMR.”<br />

Lynn: You can tell <strong>th</strong>at I was heavily influenced by <strong>th</strong>e Jiri Jonas, Herb Gutowsky monograph,<br />

NMR, an Evergreen.<br />

Ted: There must be some o<strong>th</strong>er interesting behind-<strong>th</strong>e-scenes vignettes you’d like to share about<br />

<strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>.<br />

Lynn: Let’s see – <strong>th</strong>ere were a couple of exciting <strong>th</strong>ings. The fire alarm went off during one of<br />

<strong>th</strong>e talks. Even <strong>th</strong>ough we guessed <strong>th</strong>at it was a false alarm, we couldn’t take a chance and<br />

evacuated anyway. Then <strong>th</strong>ere was <strong>th</strong>e quip I overhead <strong>th</strong>e first night after what turned out to be an<br />

unintentional (on my part) parade of women leading off <strong>th</strong>e <strong>ENC</strong>. It began wi<strong>th</strong> me welcoming<br />

everyone to <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>, Lynne Batchelder serving as <strong>th</strong>e all-important local arrangements<br />

coordinator, Linda Sweeting chairing <strong>th</strong>e first technical session, and Mary Baum running <strong>th</strong>e brief<br />

oral summaries of <strong>th</strong>e posters. I overheard someone say, “Oh, my goodness. What happened to <strong>th</strong>e<br />

men?”<br />

Ted: Those were changing times. What about <strong>th</strong>e historical context of <strong>th</strong>e conference?<br />

Lynn: It’s hard to believe <strong>th</strong>at <strong>1987</strong> was before widespread use of e-mail, and <strong>th</strong>at PowerPoint<br />

1.0 was introduced in April of <strong>th</strong>at year. But some <strong>th</strong>ings were prophetic for our current times. For<br />

example, one of <strong>th</strong>e sessions dealt wi<strong>th</strong> “NMR for <strong>th</strong>e Detection of Explosives,” and <strong>1987</strong> would be<br />

<strong>th</strong>e year of Black Monday, when <strong>th</strong>e Dow Jones Industrial Average dropped 22.6% of its value in<br />

one day.<br />

Ted: Do you have any parting comments as we celebrate <strong>th</strong>e 50 <strong>th</strong> <strong>ENC</strong>?<br />

Lynn: I am heartened to see <strong>th</strong>at <strong>th</strong>e <strong>ENC</strong> continues to attract really talented people driven to<br />

make new contributions to NMR. I can recall my first <strong>ENC</strong> (<strong>th</strong>e 19<strong>th</strong>, in Blacksburg, in 1978)<br />

where one of <strong>th</strong>e talks was entitled “2D or not 2D?” Hard to imagine, isn’t it? The preponderance<br />

of new people at <strong>th</strong>e 50 <strong>th</strong> <strong>ENC</strong> and <strong>th</strong>e strong history of past programs underlie <strong>th</strong>at fact <strong>th</strong>at NMR<br />

truly is an evergreen.


i<br />

28tb<br />

Expcr menz t<br />

NhAR<br />

Cortfcrcnc¢<br />

o ilomar, CA<br />

Pro, qrarn<br />

~4b.¢tract$<br />

Acte~


I<br />

Contributors to <strong>th</strong>e 28<strong>th</strong> <strong>ENC</strong><br />

The Organizing Committee is extremely grateful to <strong>th</strong>e following vendors for<br />

<strong>th</strong>eir financial support of <strong>th</strong>is <strong>ENC</strong>.<br />

Academic Press<br />

Aldrich Chemical Company<br />

Amplifier Research<br />

Bruker Instruments, Inc.<br />

Cambridge Isotopes, Inc.<br />

Doty Scientific, Inc.<br />

Eastern Analytical Symposium<br />

Electronic Navigation Industries, Inc. (ENI)<br />

General Electric Company, Medical Systems Group<br />

ICN Biochemicals<br />

ICON Services, Inc.<br />

JEOL (USA) Inc.<br />

John Wiley and Sons<br />

Marcel Decker Press<br />

Merck Sharpe and Dohme, Isotopes<br />

M-R Resources<br />

New ERA Enterprises<br />

New Me<strong>th</strong>ods Research<br />

N'MR Concepts<br />

NOVEX, Inc.<br />

Oxford Instruments Nor<strong>th</strong> America, Inc.<br />

Pergammon Press<br />

Phospho-Energetics, Inc.<br />

Programmed Test Sources (PTS)<br />

Scientific Information Services<br />

Sciteq Electronics, Inc.<br />

Siemens Medical Systems<br />

Spectral Data Services<br />

Strawberry Fields<br />

Tecmag, Inc.<br />

Trident Computer Corporation<br />

Varian Associates<br />

Wilmad Glass Company<br />

cover deaign by Ed Stejskai: The Monterey<br />

cypress, an evergreen <strong>th</strong>at <strong>th</strong>rives on <strong>th</strong>e<br />

Monterey Peninsula, against <strong>th</strong>e color of <strong>th</strong>e<br />

Pacific Ocean, symbolizes a special location<br />

where people in a never-dormant field return<br />

year after year to discuss <strong>th</strong>e newest<br />

developments in N-IVIR.


Program for <strong>th</strong>e 28<strong>th</strong> <strong>ENC</strong><br />

April 5-0, <strong>1987</strong><br />

Asilomar, California<br />

Chair: Lynn IV. Jelinski<br />

Local Arrwzgements Chair: Lynne S. Batchelder<br />

• Regular sessions will take place in Merrill Hall, wi<strong>th</strong> simultaneous video transmission to<br />

<strong>th</strong>e Chapel for overflow.<br />

• Posters should be set-up on Sunday afternoon in Firelight Forum and Kiln, and will remain<br />

up for <strong>th</strong>e entire conference. There will be two poster sessions, one on Monday afternoon,<br />

and <strong>th</strong>e o<strong>th</strong>er on Wednesday afternoon.<br />

• Breakfast will be served continuously from 7:00 -9:00 am. There will be two seatings for<br />

Lunch (12:00 n and 1:00 pm) and two seatings for Dinner (5:30 pm and 6:30 pm). The<br />

Banquet will be held on Wednesday evening at 7:00. Tickets may be purchased for $15.<br />

Sunday Afternoon<br />

3:00-6:00<br />

Sunday Evening<br />

7:30<br />

7:40<br />

8:30-0:30<br />

Lyre1 IV. Jelinski<br />

Linda Sweeting, Chair<br />

R. R. Ernst<br />

A. Schweiger<br />

R. Briischweiler<br />

C. Biihlmann<br />

J.-M. Fau<strong>th</strong><br />

C. Gemperle<br />

C. Griesinger<br />

R. Kreis<br />

Z. Mddi<br />

J. C. Madsen<br />

B. U. Meier<br />

S. Pfenninger<br />

C. Radloff<br />

C. Sch6nenberger<br />

O. W. Sorensen<br />

W. Studer<br />

A. Thomas<br />

Mary Baurn, Chair<br />

Jewl Baum<br />

C. M. Dobson<br />

C. Hanley<br />

P. A. Evans<br />

Registration; registration mixer in Viewpoint<br />

Welcoming Remarks<br />

Opening Session<br />

Time Domain Magnetic Resonance. An Appreciation<br />

of Current Trends in NMR and ESR<br />

POSTERS (Preview Of STellar PostERS)<br />

NMR Studies of a-Lactalbumin: Characterization of a<br />

Partially Unfolded State. Poster MKI


Monday Morning<br />

8:30 - 10:00<br />

10:00 - 10:30<br />

10:30 - 12:00<br />

Monday Afternoon<br />

James E. Roberts<br />

T. G. Neiss<br />

Ronald M. Jarret<br />

M. Saunders<br />

Oded Gonen<br />

P. Kuhns<br />

P. C. Hammel<br />

J. S. Waugh<br />

Karen K. Gleason<br />

M. A. Petrich<br />

J. A. Reimer<br />

Start Opella, Chair<br />

K. Wfi<strong>th</strong>rich<br />

C. M. Dobson<br />

A. M. Gronenborn<br />

G. M. Clore<br />

-- break --<br />

Mike Maddox, Chair<br />

Thomas L. James<br />

Brandan Borgias<br />

Ei-ichiro Suzuki<br />

Ning Zhou<br />

Anna Maria Biannuci<br />

Gerald Zon<br />

Neils Anderson<br />

Hugh L. Eaton<br />

Khe Nguyen<br />

Philip H. Bolton<br />

2:00 - 5:00 Mary Baum, Chair<br />

--wine and cheese--<br />

Increased Resolution for Proton NMR Spectra of Solid<br />

Materials. Poster MF33<br />

Di-xaC Labeling: A Means to Measure 12C-~aC Isotopic<br />

Equilibria in <strong>th</strong>e 2- Norbornyl Cation. Poster MF53<br />

NMR Spectroscopy Below I K. Poster MF3<br />

NMR Investigations of Atomic Microstructure in<br />

Amorphous Semiconductors. Poster MF23<br />

Protein NMR<br />

Determination of Protein Structures in Solution by<br />

NMR<br />

Protein Dynamics and Folding Studied by<br />

Magnetization Transfer NMR<br />

Determination of Three-Dimensional Structures of<br />

Proteins in Solution<br />

Determination of Molecular Conformation in Solution<br />

by 2-Dimensional NMR Spectroscopy.<br />

Structure and Dynamics Using Complete Relaxation<br />

Matrix Analysis of 2D NOE Spectra.<br />

Conformations of Molecules in <strong>th</strong>e Protein--Bound<br />

State<br />

NOE Studies<br />

Presenters of Poster Session M will be available for<br />

discussion in Firelight Forum and Kiln


Monday Evening<br />

7:30 - 9:00 A. N. Garroway, Chair<br />

Tuesday Morning<br />

8:30 - 10:00<br />

10:00 - 10:30<br />

10:30 - 12:00<br />

Ann T. Nicol<br />

Robert M. Pearson<br />

Lyn Ream<br />

Constantin Job<br />

IV. L. Rollwitz<br />

Armando De Los Santos<br />

George A. Matzkanin<br />

J. Derwin King<br />

Andy Byrd, Chair<br />

Jeffrey C. Hoch<br />

Ernest D. Laue<br />

G. Bodenhausen<br />

Peter Pfiindler<br />

Marjana Novic<br />

Hartmut Oschkinat<br />

Steve Wimperis<br />

Guy Jaccard<br />

Urs Eggenberger<br />

Dominique Limat<br />

-- break --<br />

Ad Bax, Chair<br />

David Cowburn<br />

William M. Westler<br />

John L. Markley<br />

NMR in Mobile Systems: Mobile Samples and Mobile<br />

Spectrometers<br />

The NIVIR Gyro: Application of NMR in a Slowly<br />

Rotating Frame<br />

Industrial Magnetic Resonance (IMR): A Magnetic<br />

Resonance Spectrometer Built as an Industrial Process<br />

Controller<br />

NMR for <strong>th</strong>e Detection of Explosives<br />

Current Applications of Computing in NMR<br />

Spectroscopy: Utilization of Mini- and Main-Frames<br />

for Data Analysis by Conventional and Non-<br />

conventional Approaches<br />

Why Is Software So Hard? A Contrary View of NMR<br />

Data Processing<br />

Selective Data Sampling: Application to 2D NMR<br />

Pattern Recognition in High-Resolution 2D NMR<br />

Spectra: A Closer Look at Cross-Peaks<br />

How to Sense Your Low Gammas<br />

Indirect Detection of lSN and x3C: Instrumental<br />

Considerations and Biochemical Applications<br />

Proton-Detected Heteronuclear One-and Two-<br />

Dimensional NMR Spectra of Biomolecules: Shift<br />

Correlation and Relaxation Measurements


C. Griesinger Novel Approaches to Three-Dimensional NIVlR<br />

Tuesday Afternoon -- free time --<br />

Tuesday Evening<br />

7:30 - 8:30<br />

8:30 - 9:30<br />

Wednesday Morning<br />

N. Zumbulyadis, Chair<br />

J. S. Waugh<br />

C-G. Tang<br />

Robert A. Wind<br />

Steven F. Dec<br />

Gary E. Maciel<br />

D. Suter<br />

Mary Baum, Chair<br />

Bernhard Bliimich<br />

C. Schmidt<br />

S. Kaufmann<br />

S. Wefing<br />

D. Theimer<br />

H. W. Spiess<br />

Ole W. Sorensen<br />

C. Griesinger<br />

C. Gemperle<br />

R. R. Ernst<br />

Peter A. Mirau<br />

Malcolm Levitt<br />

M. F. Roberts<br />

Charles L. Dumoulin<br />

S. P. Souza<br />

H. R. Hart, Jr.<br />

Gauss Meets Angstrom: Spatial and Spectral Spin<br />

Diffusion<br />

Spatial and Spectral Diffusion of Magnetization<br />

Suppression of Dipolar Broadening by Magic Angle<br />

Spinning<br />

Diffusion of Spin Order in Resolved Solid State NMR<br />

Spectra<br />

POSTERS<br />

2D Exchange NMR in Non-Spinning Powders. Poster<br />

WF54<br />

Symmetry and Antisymmetry in 2D NMR Spectra.<br />

Poster WKI4<br />

Quantitative Interpretation of a Single 2D NOE<br />

Spectrum. PosterWK12<br />

Solvent Suppression Wi<strong>th</strong>out Phase Distortion. Poster<br />

WK22<br />

NMR Flow Imaging. Poster WF64<br />

8:30 - 10:00 Ed Stejskal, Chair CPMAS, And Then Some


10:00 - 10:30<br />

10:30 - 12:00<br />

C. S. Yannoni<br />

H. Seidel<br />

R. D. Kendrick<br />

M. E. Galvin<br />

J. P. Yes#~owski<br />

H. Eckert<br />

A. Nayeem<br />

G. S. Harbison<br />

V.-D. Vogt<br />

C. Boeffel<br />

B. Bluemich<br />

H. W. Spiess<br />

R. G. Griffin<br />

A. C. Kolbert<br />

D. P. Raleigh<br />

M. H. Levitt<br />

-- break --<br />

L. S. Batchelder, Chair<br />

J. L. Ragle<br />

Ann M. Thayer<br />

Paul D. Ellis<br />

Paul D. Majors<br />

Thomas E. Raidy<br />

Paul S. Marchetti<br />

Alan Benesi<br />

Doug Morris<br />

Shelton Bank<br />

Richard Adams<br />

IF. S. Veemmz<br />

R. Janssen<br />

E. Tijink<br />

A. P. M. Kentgens<br />

Surface-Selective NMR by Dynamic Nuclear<br />

Polarization. Exploration at <strong>th</strong>e Polymer Interface.<br />

High-speed 1H MAS--NMR of Inorganic Solids and<br />

Paramagnetic Compounds<br />

The Determination of <strong>th</strong>e Structure of Partially-<br />

Oriented Solids Using 2D--Magic-Angle-Spinning<br />

NMR.<br />

Multiple Pulse Echo Trains in Rotating Solids<br />

Quadrupolar Interactions in <strong>th</strong>e Solid State.<br />

Field Cycling NMR at a Tool for NQR Spectroscopy<br />

of Weakly Quadrupole-Couoled Nuclei: Pyridine,<br />

Imidazole, and <strong>th</strong>e Nucleosides Adenosine, Guanosine<br />

and Inosine.<br />

Applications of Zero Field NMR to <strong>th</strong>e Study of Solids<br />

and Liquid Crystals<br />

Applications of Solid State NMR Me<strong>th</strong>ods to Problems<br />

of Interest to Surface Chemistry<br />

Quadrupole Nutation NMR, NQR in <strong>th</strong>e Rotating<br />

Frame


Wednesday Afternoon<br />

2:00 - 5:00 Mary Baum, Chair<br />

Wednesday Evening<br />

-- refreshments --<br />

6:00 Cocktail Hour<br />

7:00 Banquet<br />

Thursday Morning<br />

H. S. Gutowsky<br />

8:30 - 10:00 Robert Bryant, Chair<br />

D. I. Hoult<br />

G. Glover<br />

Peter R. Luyten<br />

Jan A. den Hollander<br />

10:00 - 10:30 --break --<br />

10:30 - 12:00 N. Szeverenyi, Chair<br />

Warren S. Warren<br />

D. P. Weitekamp<br />

David Andrew<br />

Presenters of Poster Session W will be available for<br />

discussion in Firelight Forum and Kiln<br />

Merrill Hall<br />

"... no sign of slackening"<br />

Spatially Resolved Spectroscopy<br />

An Overview of Spatially Resolved Spectroscopy<br />

Transient Gradient Effects<br />

Image Guided Localized NMR Spectroscopy at 1.5 T.<br />

Gizmos<br />

Pulse Shaping for Two-Dimensional and Multiple Pulse<br />

Spectroscopy<br />

Coherence Augmentation by Limiting <strong>th</strong>e Entropy in<br />

Catalytic Hydrogenation<br />

Active Shield Magnets for Magnetic Resonance<br />

Imaging


Sunday - PM<br />

TIME DOMAIN MAGNETIC RESONANCE<br />

AN APPRECIATION OF CURRENT TRENDS IN NMR AND ESR<br />

R.R. Ernst, A. Schweiger, R. BrUschweiler,<br />

C. BUhlmann, J.-M. Fau<strong>th</strong>, C. Gemperle,<br />

C. Griesinger, R. Kreis, Z. M~di, J.C. Madsen,<br />

B.U. Meier, S. Pfenninger, C. Radloff,<br />

C. Sch~nenberger, O.W. S~rensen, W, Stude~, A. Thomas<br />

Laboratorium fur Physikalische Chemie<br />

Eidgen~ssische Technische Hochschule<br />

8092 ZUrich, Switzerland<br />

A few introductory remarks are made in order to high-<br />

light <strong>th</strong>e importance of time domain experiments in magnetic<br />

resonance. A comparison of features of NMR and ESR relevant<br />

in <strong>th</strong>is context is given. In particular <strong>th</strong>e challenges, op-<br />

portunities and limitations of pulse ESR are discussed in<br />

view of <strong>th</strong>e nowadays well established pulse technology of<br />

NMR.<br />

A potpourrie of techniques recently developed at ETH is<br />

presented including ESR techniques such as electron spin echo<br />

spectroscopy wi<strong>th</strong> jumping field vectors, Mz-detection, hyper-<br />

fine-selective pulse ENDOR, and NMR techniques such as com-<br />

puter pattern recognition, 2D rotating frame experiments,<br />

selective 2D spectroscopy and rf pulse-excited zero field<br />

magnetic resonance.


Sunday - PM<br />

MKI - POSTERS<br />

STUDIES OF Q-LAC'I"ALB~IIN:<br />

(~A~ZATTON OF A PARTIALLY I~rP~LD~ STATE<br />

J. Baum; C.M. Dobson, C. Hanley<br />

Inorganic Chemistry Laboratory<br />

University of Oxford<br />

Oxford, ENGLAND<br />

P.A. Evans<br />

Middlesex Hospital Medical School<br />

London, ENGLAND<br />

To understand <strong>th</strong>e folding mechanism of proteins, it is<br />

important to characterize, at <strong>th</strong>e molecular level, <strong>th</strong>e<br />

structures of states "intermediate between <strong>th</strong>e folded and<br />

unfolded conformations. Incompletl¥ folded proteins tend to<br />

have very small IS chemical shift dispersions, <strong>th</strong>erefore<br />

me<strong>th</strong>ods have been developed to probe <strong>th</strong>ese intermediate states<br />

indirectly via <strong>th</strong>e well-resolved IH spectrum of <strong>th</strong>e native<br />

protein. Guinea-pig G-lactalbumin provides an especially<br />

favourable system for <strong>th</strong>e investigation of folding due to its<br />

sensitivity to solution conditions; wi<strong>th</strong>in certain ranges of pH<br />

and temperature <strong>th</strong>ere exists a stable partially unfolded<br />

intermediate which we can study by NMR. PH-jump hydrogen<br />

exchange experiments are being developed to assign indirectly,<br />

<strong>th</strong>rough <strong>th</strong>e native protein, <strong>th</strong>e labile protons of <strong>th</strong>e unfolded<br />

state, and magnetization transfer experiments are used to<br />

correlate <strong>th</strong>e resonances of <strong>th</strong>e unfolded protein wi<strong>th</strong> <strong>th</strong>ose of<br />

<strong>th</strong>e native protein. These and o<strong>th</strong>er experiments have allowed<br />

us to identify regions of localized structure at <strong>th</strong>e individual<br />

residue level in <strong>th</strong>e unfolded form of G-lactalbumin.


Sunday - PM<br />

MF33 - POSTERS<br />

INCREASED RESOLUTION FOR PROTON NMR SPECTRA OF SOLID MATERIALS<br />

Thomas G. Neiss and James E. Roberts<br />

Department of Chemistry #6<br />

Lehigh University<br />

Be<strong>th</strong>lehem, PA 18015<br />

Sophisticated multiple-pulse techniques must be used to<br />

obtain "high resolution" proton spectra of most solid<br />

materials, or a single broad peak is observed as a consequence<br />

of <strong>th</strong>e large homonuclear couplings of <strong>th</strong>e proton reservoir.<br />

When Magic Angle Sample Spinning (MASS) is included wi<strong>th</strong> <strong>th</strong>e<br />

multiple-pulse experiment, <strong>th</strong>e typical proton peak wid<strong>th</strong> is<br />

still between 1 and 2 ppm. When several isotropic chemical<br />

shifts are present, <strong>th</strong>e resulting spectrum is often not<br />

interpretable due to significant spectral overlap. Two more<br />

complicated experiments are available for increasing <strong>th</strong>e<br />

resolution obtained in proton NMR spectra of solid materials.<br />

Two-dimensional heteronuclear chemical shift correlation<br />

NMR has been applied to liquids to connect <strong>th</strong>e proton and<br />

carbon chemical shifts <strong>th</strong>rough J couplings. The J couplings<br />

in solids are usually not resolved. However, wi<strong>th</strong> appropriate<br />

implementation during MASS, <strong>th</strong>e 2-D experiment correlates <strong>th</strong>e<br />

proton and carbon chemical shifts, yielding better overall<br />

resolution in <strong>th</strong>e proton dimension, even <strong>th</strong>ough <strong>th</strong>e proton<br />

linewid<strong>th</strong>s are still 1 to 2 ppm.<br />

An alternative to <strong>th</strong>e full two dimensional technique<br />

utilizes selective coherence transfer to observe only specific<br />

spin systems in a one-dimensional experiment. The selective<br />

coherence transfer occurs <strong>th</strong>rough <strong>th</strong>e strong heteronuclear<br />

dipolar interaction between bonded spins, so some protons are<br />

not readily observed wi<strong>th</strong> <strong>th</strong>is technique. The gain in proton<br />

spectrum resolution is comparable to <strong>th</strong>at obtained wi<strong>th</strong><br />

two-dimensional chemical shift correlation, but data<br />

accumulation and processing takes less time. Al<strong>th</strong>ough several<br />

I-D selective experiments might be needed to fully<br />

characterize a molecule, it is still a viable approach in many<br />

situations.<br />

Acknowledgement is made to <strong>th</strong>e donors of <strong>th</strong>e Petroleum<br />

Research Fund for partial support of <strong>th</strong>is work. Supported by<br />

NSF-Solid State Chemistry program grant # DMR-8553275.<br />

Additional support <strong>th</strong>rough <strong>th</strong>e Presidential Young Investigator<br />

program was obtained from Cambridge Isotope Laboratories; Doty<br />

Scientific; General Electric Corporate Research and<br />

Development; General Electric NMR Instruments; IBM<br />

Instruments; Merck, Sharp and Dohme; and Monsanto Company.


Sunday - PM<br />

MF53 - POSTERS<br />

DI-13C-LABELING: A MEANS TO MEASURE 12C-13C<br />

ISOTOPIC EQUILIBRIA IN 2-NORBORNYL CATION.<br />

Ronald M. Jarret*, Department of Chemistry, College of <strong>th</strong>e<br />

Holy Cross, Worcester, MA 01610.<br />

Martin Saunders, Department of Chemistry, Yale University<br />

New Haven, CT 06511.<br />

2,3-Di-13C-norborn-2-yl chloride was prepared and '<br />

ionized (wi<strong>th</strong> SbF~) to 2-norbornyl cation. In solution<br />

at -65°C, rap~ r~arrangements occur which completely<br />

scramble <strong>th</strong>e C-labels. The proton-decoupled cmr<br />

rspectrum (62.7 MHz) contains <strong>th</strong>ree signals: C-4, C-I,2,6<br />

(averaged), and C-3,5,7 (averaged). The 13C-labels are<br />

<strong>th</strong>us equilibrated over nonrequivalent sites wi<strong>th</strong>in<br />

2-norbornyl cation. This IZC-13C equilibrium isotope<br />

effect alters <strong>th</strong>e proportion of di-13C-labeled isomers<br />

from statistical values. The non-statistical isotopic<br />

isomer population is manifested as an asymmetric<br />

multiplet for <strong>th</strong>e averaged C-3,5,7 peak in <strong>th</strong>e cmr<br />

spectrum. The relatively sharp lines of <strong>th</strong>e multiplet<br />

can be reproduced wi<strong>th</strong>in ± 0 . 1 ppm, wi<strong>th</strong> isotopic<br />

equilibrium constants of K-3,5,7 = 1.010 ± 0.005 and<br />

K-I,2,6 = 1.039 ± 0.005.<br />

7 4<br />

5 3<br />

6 CI(H)<br />

H(CI)


Sunday - PM<br />

MF3 - POSTERS<br />

NMR SPECTROSCOPY BELOW 1K<br />

Oded Gonen*, P. Kuhns, P. C. Hammel and J. S. Waugh<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

Cambridge, Massachusetts 02139<br />

L. Boltzmann tells us <strong>th</strong>at large (>104 ) gains in NMR sensitivity can be<br />

obl;ained by lowering <strong>th</strong>e temperature to -yhBo/k, a few millikelvin. We will<br />

present a selection of results obtained in pursuit of <strong>th</strong>is goal, to illustrate<br />

<strong>th</strong>e following points:<br />

>T1, previously expected to be astronomically large, is quite acceptably<br />

short in powdered samples immersed in liquid 3He.<br />

>Signals are indeed large: sometimes nearly a volt directly from <strong>th</strong>e<br />

probe. Monolayers of adsorbed species give strong spectra in a single shot.<br />

mometer.<br />

>The shape of <strong>th</strong>e spectrum provides a convenient self-calibrating <strong>th</strong>er-<br />

>The usual FT relation between <strong>th</strong>e FID and <strong>th</strong>e spectrum is modified at<br />

low temperatures.<br />

>Spin-spin relaxation is sometimes anomalously slow.


Sunday - PM<br />

MF23 - POSTERS<br />

NMR INVESTIGATIONS OF ATOMIC MICROSTRUCTURE<br />

IN AMORPHOUS SEMICONDUCTORS<br />

Q<br />

Karen K. Gleason , Mark A. Petrich, and Jeffrey A. Reimer,<br />

Department of Chemical Engineering, University of California,<br />

Berkeley, CA 94720-9989.<br />

The microstructure of amorphous semiconductors has important<br />

implications for <strong>th</strong>eir electronic properties. Nuclear magnetic<br />

resonance (NMR) can examine <strong>th</strong>e microstructure of <strong>th</strong>ese materials<br />

on an atomic scale. Previous NMR results have indicated <strong>th</strong>at <strong>th</strong>e<br />

hydrogen in <strong>th</strong>ese materials exists bo<strong>th</strong> as isolated hydrogen atoms<br />

and as clusters of hydrogen. Using Multiple Quantum NMR, a<br />

technique which is able to "count" <strong>th</strong>e number of hydrogen atoms in a<br />

cluster, we have studied <strong>th</strong>e effects of deposition temperature,<br />

dopant atoms, and annealing on <strong>th</strong>e clustering of hydrogen in<br />

amorphous silicon. Our results indicate <strong>th</strong>at electronic device<br />

quality amorphous silicon films contain small clusters of<br />

approximately six hydrogen atoms, while nondevice quality films<br />

contain larger hydrogen atom clusters. We have also extended <strong>th</strong>e<br />

multiple quantum NMR technique to study a series of amorphous<br />

silicon carbide alloys, systematically varied in carbon content. We<br />

have found <strong>th</strong>at small amounts of carbon decrease <strong>th</strong>e total hydrogen<br />

content of <strong>th</strong>e alloy, but increase hydrogen clustering. Carbon-13<br />

and silicon-29 magic-angle spinning NMR spectra, taken wi<strong>th</strong> and<br />

wi<strong>th</strong>out proton decoupling, allow us to probe local bonding<br />

configurations. These studies have shown <strong>th</strong>at bo<strong>th</strong> sp 2 and sp 3<br />

carbon bonding environments are important in <strong>th</strong>ese materials. It is<br />

especially interesting <strong>th</strong>at nearly all <strong>th</strong>e hydrogenated carbon are<br />

in <strong>th</strong>e sp 3 bonding configuration.<br />

By comparing our NMR results wi<strong>th</strong> data from o<strong>th</strong>er analytical<br />

techniques such as infrared and optical absorption spectroscopy,<br />

Ru<strong>th</strong>erford backscattering, and conductivity measurements, we hope<br />

to elucidate <strong>th</strong>e relationships between deposition chemistry, atomic<br />

microstructure, and optoelectronic properties of <strong>th</strong>is<br />

technologically important class of materials.<br />

Supported by NSF grant DMR-8304163.<br />

8


Monday - AM<br />

Determination of Protein Structures in Solution by NMR<br />

K. Wa<strong>th</strong>rich<br />

Institut fClr Molecularbiologie und Biophysik<br />

E.T.H.-H~nggerberg<br />

CH-8093 Z~'ich, Switzerland<br />

During <strong>th</strong>e period 1979-83 me<strong>th</strong>ods were introduced for efficient sequence-specific<br />

assignment of <strong>th</strong>e 1H NMR spectra of proteins and nucleic acids in solution. This now provides<br />

<strong>th</strong>e basis for determination of <strong>th</strong>e <strong>th</strong>ree dimensional structure of <strong>th</strong>ese biological macromolecules<br />

(K. Wg<strong>th</strong>rich, NMR of Proteins and Nucleic Acids, Wiley, New York, 1986). This me<strong>th</strong>od for<br />

structure determination will be surveyed, and novel approaches making use of isotope labeling and<br />

X-filtering techniques will be described.


Monday - AM<br />

Protein Dynamics and Foldlng Studied by Magnetization Transfer NMR<br />

Christopher M. Dobson<br />

Inorganic Chemistry Laboratory<br />

University of Oxford<br />

Sou<strong>th</strong> Parks Road<br />

Oxford OXI 3QR<br />

England<br />

NMR provides an experimental basis for investigating in<br />

considerable detall <strong>th</strong>e structures and dynamics of biological molecules<br />

in solutlon. As part of our studies of <strong>th</strong>e folding and unfolding of<br />

globular proteins, we have been explolting magnetization transfer<br />

processes in bo<strong>th</strong> one- and two-dlmenslonal NMR experiments.<br />

The procedures have been establlshed in studies of lysozyme, where<br />

accurate rate constants for bo<strong>th</strong><br />

determined by following <strong>th</strong>e time<br />

saturation transfer experlments I.<br />

effects in two-dlmensional NOESY<br />

folding and unfolding have been<br />

developments of one-dlmenslonal<br />

In addition, chemical exchange<br />

experiments have permitted <strong>th</strong>e<br />

correlation of resonances in folded and unfolded states, permitting<br />

assignment and interpretation of <strong>th</strong>e spectrum of <strong>th</strong>e unfolded state<br />

<strong>th</strong>rough <strong>th</strong>e extensive knowledge of <strong>th</strong>e spectrum of <strong>th</strong>e folded state 2.<br />

These techniques have been applied to <strong>th</strong>e study of a number of<br />

o<strong>th</strong>er proteins. In <strong>th</strong>e case of one of <strong>th</strong>ese, staphylococcal nuclease,<br />

two distinct conformations of <strong>th</strong>e folded form exist in equillbrium.<br />

One- and two-dimenslonal magnetization transfer experiments have<br />

demonstrated <strong>th</strong>e interconversion of <strong>th</strong>ese two states wi<strong>th</strong> each o<strong>th</strong>er and<br />

wi<strong>th</strong> two unfolded states 3. Fur<strong>th</strong>er, one dlmenslonal multlple saturation<br />

techniques have been used to explore <strong>th</strong>e kinetics of <strong>th</strong>e interconverslon<br />

of <strong>th</strong>e different states, and to explore <strong>th</strong>e re]atlve significance of<br />

different pa<strong>th</strong>ways of folding and unfolding. A structural basis for <strong>th</strong>e<br />

observed behaviour has been proposed and is supported by <strong>th</strong>e results of


slte-dlrected mutagenesls experlments 4. The experiments have <strong>th</strong>erefore<br />

permitted specific dynamical events in <strong>th</strong>e foldlng of a protein to be<br />

defined.<br />

I.<br />

2.<br />

3.<br />

4.<br />

C.M. Dobson and P.A. Evans, Biochemistry 2_~3, 4267 (1984)<br />

C.M. Dobson, P.A. Evans and K.L. Willlamson, FEBS Letters 168, 331<br />

(1984); C.M. Dobson, P.A. Evans, C. Redfleld and K.D. Topping, to<br />

be published.<br />

R.O. Fox, P.A. Evans and C.M. Dobson, Nature 320, 192 (1986)<br />

C.M. Dobson, P.A. Evans and R.0. Fox, to be publlshed.


Monday - AM<br />

Abstract" 28<strong>th</strong> <strong>ENC</strong>, Asilomar, April 5-9, <strong>1987</strong><br />

DETERMINATION OF THREE-DIMENSIONAL STRUCTURES OF PROTEINS IN<br />

SOLUTION<br />

A.M. Gronenborn and G.M. Clore<br />

Max-Planck Institut fur Biochemie, ~8033 Martinsried bei Munchen,<br />

F.R.G.<br />

The determination of 3D-structures of proteins in solution using<br />

NMR spectroscopy comprises <strong>th</strong>ree stages: (i) <strong>th</strong>e assignment of<br />

proton resonances by 2D-techniques to demonstrate <strong>th</strong>rough-bond and<br />

<strong>th</strong>rough-space connectivities; (ii) <strong>th</strong>e determination of a large<br />

number of short (< 5A) interproton distances using nuclear<br />

Overhauser effect (NOE) measurements; and (iii) <strong>th</strong>e determination<br />

of <strong>th</strong>e 3D-structure on <strong>th</strong>e basis of <strong>th</strong>ese distances. Our approach<br />

for step (iii) has involved <strong>th</strong>e use of restrained molecular<br />

dynamics. The principles of <strong>th</strong>e restrained dynamics approach will<br />

be illustrated for model calculations on crambin (1,2) and examples<br />

from <strong>th</strong>e set of 3D-structures in solution <strong>th</strong>at we have determined<br />

to date will be presented: puro<strong>th</strong>ionin (3), phoratoxin (4), hirudin<br />

(5), <strong>th</strong>e globular domain of histone H5 (6), grow<strong>th</strong> hormone<br />

releasing factor (7), secretin and potato carboxypeptidase<br />

inhibitor.<br />

References:<br />

I. Brunger, A.T., Clore, G.M., Gronenborn, A.M. & Karplus, M.<br />

(1986) Proc° Natl. Acad. Sci. U.S.A. 83, 3801-3805<br />

2 Clore, G.M. Brunger, A.T., Karplus, M. & Gronenborn, A.M. (1986)<br />

J. Mol. Biol. 191, 523-551<br />

3 Clore, G.M., Nilges, M., Sukumaran, D.K., Brunger, A.T.,<br />

Karplus, M. & Gronenborn, A.M. (1986) EMBO J. 5, 2729-2735<br />

4 Clore, G.M., Sukumaran, D.K., Nilges, M. & Gronenborn, A.M.<br />

(<strong>1987</strong>) Biochemistry in press<br />

5 Clore, G.M., Nilges, M., Sukumaran, D.K., Zarbock, J &<br />

Gronenborn, A.M. (<strong>1987</strong>) EMBO J. in press<br />

6 Zarbock, J, Clore, G.M. & Gronenborn, A.M. (1986) Proc. Natl.<br />

Acad. Sci. U.S.A. 83, 7628-7632<br />

7 Clore, G.M., Martin, S.R. & Gronenborn, A.M. (1986)<br />

J. Mol. Biol. 191, 553-561


Monday - AM<br />

STRUCTURE AND DYNAMICS USING COMPLETE RELAXATION MATRIX<br />

ANALYSIS OF 2D NOE SPECTRA<br />

Thomas L. James, Brandan Borgias, Ei-ichiro Suzuki, Ning Zhou, Anna Mafia Biannuci and<br />

Gerald Zon, Departments of Pharmaceutical Chemistry and Radiology, University of California,<br />

San Francisco, CA 94143<br />

Of all possible techniques, 2D NMR has <strong>th</strong>e greatest capability for structural charac-<br />

terization of moderate size molecules (_


Monday - AM<br />

CONFORMATIONS OF MOLECULES IN THE PROTEIN-BOUND STATE<br />

Niels H. Andersen*, Hugh L. Eaton and Khe Nguyen<br />

Department of Chemistry, University of Washington, Seattle, WA 98195<br />

The pure absorption phase 2D spin-exchange experiment (PS-NOESY) is<br />

ideally suited for measuring exchange-transferred NOEs (which reflect <strong>th</strong>e<br />

bound-state geometry) for small molecules in rapid exchange wi<strong>th</strong> a<br />

protein-ligand complex. The 2D data matrix holds wi<strong>th</strong>in it all possible<br />

control spectra and frequency-tailored streak correction me<strong>th</strong>ods (using<br />

sums and differences of columns and rows) can remove spin-diffusion<br />

"artifacts" associated wi<strong>th</strong> <strong>th</strong>e perturbation of frequency coincident<br />

protein resonances. We will show how bound-state cross-relaxation rates<br />

can be derived from 2D experiments <strong>th</strong>at require less <strong>th</strong>an <strong>th</strong>ree hours of<br />

data accumulation at 6-10mM_ ligand concentrations. The techniques will<br />

be illustrated wi<strong>th</strong> NAD/oxidoreductrase complexes and wi<strong>th</strong> tryptophan and<br />

prostaglandin Fp~ bound at <strong>th</strong>eir specific receptors sites on serum<br />

albumin. In <strong>th</strong>e case of L-tryptophan, a single bound-state conformation<br />

(which does not correspond to <strong>th</strong>e major conformer in free aqueous<br />

solution) has been determined. The conformation elucidation utilized<br />

NOE data at <strong>th</strong>e complete r_elaxation_matrix a__nalysis (CORMA) level ra<strong>th</strong>er<br />

<strong>th</strong>an making <strong>th</strong>e linear limit "isolated spin pair" assumption.<br />

Data reduction strategies suitable for 2D NOESY experiments acquired<br />

wi<strong>th</strong> severely truncated preparatory delays will be presented. The<br />

me<strong>th</strong>ods include multispin effects and provide an alternative to CORMA for<br />

initial estimated of relaxation and cross-relaxation rates. Computer<br />

simulations <strong>th</strong>at reveal <strong>th</strong>e "errors" associated wi<strong>th</strong> <strong>th</strong>e "isolated spin<br />

pair" and "two step cross-relaxation" approximations will be presented.


Monday - AM<br />

NOE STUDIES<br />

Philip H. Bolton<br />

Department of Chemistry<br />

Wesleyan University<br />

Middletown, CT 06457<br />

This talk will contain overviews of our progress in <strong>th</strong>ree projects which<br />

involve ei<strong>th</strong>er <strong>th</strong>e use of NOEs to determine conformational features of<br />

proteins, <strong>th</strong>e development of novel NOE experiments or <strong>th</strong>e analysis of <strong>th</strong>e<br />

data from NOE experiments.<br />

Staphylococcal nuclease and proteins formed by single site amino acid re-<br />

placement of residues at <strong>th</strong>e active site have been investigated by two-<br />

dimensional NOE spectroscopy. The use of residue specific labeling has been<br />

crucial to progress in <strong>th</strong>is area as it is <strong>th</strong>e only means available for<br />

unambiguous assignment of <strong>th</strong>e NOE cross-peaks of <strong>th</strong>e proteins which contain<br />

149 amino acids.<br />

Low field NMR is a procedure by which <strong>th</strong>e NOEs are generated in a very low<br />

field, typically 60 MHz, whereas <strong>th</strong>e equilibration and detection are at 400<br />

MHz. When <strong>th</strong>e NOE transfer occurs in such a low field <strong>th</strong>ere are no compli-<br />

cations due to multiple correlation times or spin diffusion and <strong>th</strong>e NOEs<br />

from macromolecules are as simple to interpret as <strong>th</strong>e high field NOEs of<br />

small molecules.<br />

Image analysis of two-dimensional data sets can exploit bo<strong>th</strong> <strong>th</strong>e global and<br />

local symmetry of <strong>th</strong>e signals to arrive at enhanced signal-to-noise as well<br />

as to determine which spin systems are present.


Notes


Monday - PM<br />

The NMR Gyro: An Application of NMR in a<br />

Slowly Rotating Frame<br />

Ann T. Nicol<br />

Litton Guidance and Control Systems<br />

5500 Canoga Avenue<br />

Woodland Hills, CA 91367<br />

The NMR gyro is a device which senses rotations <strong>th</strong>rough<br />

changes in frequency (or phase) of an NMR signal as a result of<br />

rotations relative to <strong>th</strong>e inertial precession of a nuclear<br />

magnetic moment. Mechanization of such a device requires <strong>th</strong>at<br />

<strong>th</strong>e entire NMR ',spectrometer" undergoes <strong>th</strong>e rotation and <strong>th</strong>at<br />

<strong>th</strong>is "spectrometer" be compact, occupying only a few cubic<br />

inches. This condition is realized in systems where a fairly<br />

high degree of nuclear polarization is achieved in very low<br />

fields (less <strong>th</strong>an I gauss). The approach uses isotopes of noble<br />

gases and <strong>th</strong>e nuclear polarization is achieved <strong>th</strong>rough a cross<br />

polarization wi<strong>th</strong> optically pumped alkalis. This presentation<br />

will discuss <strong>th</strong>e basic physical principles of <strong>th</strong>e NMR gyro and<br />

will present experimental results on <strong>th</strong>e processes and<br />

interactions governing nuclear polarization and relaxation in<br />

such systems.<br />

References<br />

I. A.T. Nicol, Phys. Rev. B 29, 2397 (1984).<br />

2. T.M. Kwon, J.G. Mark, and C.H. Volk, Phys. Rev A 24, 1894<br />

(1981).


Monday - PM<br />

Industrial Magnetic Resonance (IMR)<br />

A Magnetic Resonance Spectrometer built as an<br />

Industrial Process Controller<br />

Robert M. Pearson, Lyn Ream and Constantin Job<br />

IMR Division of Auburn International, Inc.<br />

4473 Willow Road, Suite IZ5<br />

Pleasanton, California 64566<br />

Industrial Magnetic Resonance (IMR), a new process control<br />

technique, is defined as magnetic resonance designed for in-<br />

plant use. An IMR spectrometer is an NMR spectrometer equipped<br />

wi<strong>th</strong> <strong>th</strong>e hardware, software and me<strong>th</strong>odology necessary to control<br />

a specific industrial process under actual plant conditions. In<br />

order to be successful, an IMR spectrometer must be able to<br />

operate in a plant for extended periods of time wi<strong>th</strong>out operator<br />

adjustment or intervention. It must also change its own sample<br />

and make measurements precise enough to control <strong>th</strong>e process<br />

stream.<br />

In <strong>th</strong>is talk, we will describe IMR spectrometers used in two<br />

different industrial applications. One being used to measure <strong>th</strong>e<br />

moisture content of aluminum oxide as it exits a rotary kiln. The<br />

o<strong>th</strong>er application controls <strong>th</strong>e addition of water to wheat prior<br />

to its being milled into flour. This process is known as wheat<br />

tempering and is an essential step in <strong>th</strong>e milling process. The<br />

spectrometer, which will be described, is light, portable and<br />

self-calibrating. The complete IMR spectrometer will be<br />

described, including <strong>th</strong>e sampling system, pneumatic control<br />

system and <strong>th</strong>e me<strong>th</strong>odology used.


Monday - PM<br />

NMR for <strong>th</strong>e Detection of Explosives<br />

William L. Rollwitz, Armando De Los Santos, George A. Matzkanin,<br />

and J. DerwinKing<br />

Sou<strong>th</strong>west Research Institute<br />

Division of Instrumentation and Space Research<br />

6220 Culebra Road<br />

San Antonio, TX 78213<br />

High energy explosives have hydrogen NMR characteristics which are unique<br />

and include very short values of T, and very long values of T,. These<br />

characteristics cause problems when NMR is used to detect <strong>th</strong>e presence of high<br />

energy explosives in baggage, letters, packages, and soils when <strong>th</strong>ese items or<br />

<strong>th</strong>e NMR detection head are moving rapidly. The level crossing technique<br />

(NMR/NQR) is used to reduce <strong>th</strong>e long T, values of <strong>th</strong>e explosives so <strong>th</strong>at <strong>th</strong>ey<br />

can be detected rapidly. By using <strong>th</strong>e hydrogen NMR signal, <strong>th</strong>e level-crossing<br />

technique and o<strong>th</strong>er discrimination me<strong>th</strong>ods it is possible to detect <strong>th</strong>e<br />

presence of almost all explosives hidden in baggage, letters, packages and<br />

soils using magnetic fields of less <strong>th</strong>an 0.I Tesla and to discriminate rapidly<br />

<strong>th</strong>e hydrogen NMR signal caused by <strong>th</strong>e explosives from <strong>th</strong>e hydrogen NMR signal<br />

from <strong>th</strong>e o<strong>th</strong>er hydrogen containing materials <strong>th</strong>at may be present in <strong>th</strong>e<br />

baggage, mail, packages and soils. It is even practical to consider portal-<br />

type NMR detection heads to detect <strong>th</strong>e presence of explosives hidden on or in<br />

people.


Tuesday - AM<br />

WHY IS SOFTWARE SO HARD?<br />

A CONTRARY VIEW OF NMR DATA PROCESSING<br />

Jeffrey C. Hoch<br />

Rowland Institute for Science<br />

100 Cambridge Parkway<br />

Cambridge, Massachusetts 02142<br />

New techniques for processing NMR data appear wi<strong>th</strong> increasing frequency.<br />

Notewor<strong>th</strong>y examples include non-FFT spectral estimates 1-4, symmetry filters s,<br />

and pattern recognition 6 . Despite <strong>th</strong>e fact <strong>th</strong>at <strong>th</strong>e operations required by <strong>th</strong>ese<br />

me<strong>th</strong>ods are often simple, <strong>th</strong>eir implementation on a spectrometer can be a difficult<br />

task. This stands in stark contrast to <strong>th</strong>e ease wi<strong>th</strong> which new pulse programs are<br />

implemented on modern spectrometers. Turn-key NMR software packages, available<br />

for general purpose computers, provide environments which are somewhat more<br />

hospitable toward <strong>th</strong>e implementation of new processing me<strong>th</strong>ods. Much of <strong>th</strong>is<br />

flexibility is simply due to <strong>th</strong>e software development tools found on general purpose<br />

computers, however.<br />

A software environment for NMR data processing designed explicitly for <strong>th</strong>e<br />

purpose of providing programming flexibility is described. The goal of <strong>th</strong>is software<br />

Is to make <strong>th</strong>e implementation of a new data processing program as straightfor-<br />

ward as <strong>th</strong>e implementation of a new pulse program. Design decisions have been<br />

made in favor of simplicity ra<strong>th</strong>er <strong>th</strong>an performance whenever <strong>th</strong>ose two goals are<br />

in conflict. A toolkit approach has been utilized, in which many small, independent<br />

programs perform simple operations on a common data structure. The implemen-<br />

tation of a procedure for performing symmetry recognition on 2D spectra provides<br />

an illustrative example.<br />

1. E. Laue, M. Mayger, J. Skilling, and J. Staunton J. Magn. Reson. 68, 14<br />

(1988).<br />

2. H. Barkhuijsen, J. DeBeer, W. Bovee, and D. Van Ormondt J. Magn. Reson.<br />

61, 46s (1985).<br />

3. J. Tang, C. Lin, M. Bowman, and J. Norris J. Magn. Reson. 62, 167 (1985).<br />

4. J. Tang and J. Norris J. Chem. Phys. 84, 5210 (1986).<br />

5. P. Bolton J. Magn. Reson. 70, 344 (1986).<br />

6. P. Pf/indler and G. Bodenhausen J. Magn. Reson. 70, 71 (1986).


Tuesday - AM<br />

SELECTIVE DATA SAMPLING: APPLICATION TO 2D NMR<br />

Ernest D. Laue, Department of Biochemistry, University of Cambridge,<br />

Tennis Court Road, Cambridge, CB2 I QW, U.K.<br />

Novel me<strong>th</strong>ods for selectively sampling NMR data, e.g. exponential<br />

sampling 1'2 will be discussed. Such me<strong>th</strong>ods are of particular interest<br />

in 2D NMR where, for reasons of sensitivity, data often have to be<br />

truncated in <strong>th</strong>e second dimension (tl). Selective sampling, in<br />

conjunction wi<strong>th</strong> me<strong>th</strong>ods such as maximum entropy for reconstructing spectra<br />

from incomplete time domain data, offers a way of obtaining better<br />

resolution in <strong>th</strong>e second dimension (Wl), for a given recording time. This<br />

gives an improvement on maximum entropy reconstructions from<br />

conventionally sampled (but truncated) data 5.<br />

In exponential sampling, data points are measured wi<strong>th</strong> exponentially<br />

decreasing frequency. When only selected time domain data points are<br />

recorded, <strong>th</strong>e data processing in effect bo<strong>th</strong> extrapolates beyond and<br />

interpolates between <strong>th</strong>e measured points. Exponential sampling is<br />

applicable to exponentially decaying data which is cosine modulated in t I.<br />

For different data, alternative sampling schemes would be possible.<br />

I.<br />

.<br />

.<br />

Such me<strong>th</strong>ods might also be of use in o<strong>th</strong>er areas, such as NMR imaging.<br />

J.C.J. Barna, E.D. Laue, M.R. Mayger, J. Skilling and S.J.P. Worrall,<br />

Biochem. Soc. Trans., 1986, 14, 1262.<br />

J.O.J. Barna, E.D. Laue, M.R. Mayger, J. Skilling and S.J.P. Worrall,<br />

J. MaKn. Reson. in press.<br />

E.D. Laue, M.R. Mayger, J. Skilling and J. Staunton, J.<br />

Reson., 1986, 68, 14.<br />

EDLmc ?<br />

12 January, 198'/


Tuesday - AM<br />

Pattern Recognition in High-Resolution 2D NMR Spectra :<br />

A Closer Look at Cross-Peaks.<br />

Peter Pf'~ndler, Marjana Novi~', Hartmut Oschkinat, Steve Wimperis,<br />

Guy Jaccard, Urs Eggenberger, Dominique Limat and Geoffrey Bodenhausen,<br />

Institut de chimie organique, Universit~ de Lausanne,<br />

Rue de la Barre 2, CH-IO05 Lausanne, Switzerland.<br />

In favourable systems, it is now possible to analyze 2D correlation spectra and<br />

2D double-quantum spectra entirely wi<strong>th</strong>out human intervention by means of<br />

pattern recognition procedures. The shifts and couplings can be identified<br />

regardless of <strong>th</strong>e number of protons in <strong>th</strong>e molecule, provided <strong>th</strong>e coupling<br />

topology is reasonably simple (current strategies are designed for systems<br />

where each proton has at most five coupling partners), and provided <strong>th</strong>e effects<br />

of strong coupling are not too pronounced. Algori<strong>th</strong>ms will be described which<br />

can handle multiplets in bo<strong>th</strong> COSY and double-quantum spectra wi<strong>th</strong> essentially<br />

<strong>th</strong>e same logic, despite of <strong>th</strong>e apparent lack of similarity. Complex multiplets<br />

can be identified and <strong>th</strong>e relevant splittings can be measured by checking for<br />

symmetry relationships.<br />

Structural information can be obtained from 2D exchange experiments wi<strong>th</strong> small<br />

flip angles, where one observes (in addition to COSY-like signals) a variety of<br />

peaks due to dipolar and o<strong>th</strong>er relaxation processes. The analysis of <strong>th</strong>ese<br />

signals allows one to determine <strong>th</strong>e W-matrix of transition probabilities.<br />

Recently, we have predicted and confirmed experimentally <strong>th</strong>at unusual COSY<br />

cross-peaks can arise between spins <strong>th</strong>at do not have a mutual scalar coupling.<br />

These are due to coherence transfer induced by correlated relaxation<br />

mechanisms. Such anomalous cross-peaks not only present a challenge for pattern<br />

recognition, but lead us to question some fundamental assumptions used in <strong>th</strong>e<br />

interpretation of COSY spectra.


Tuesday - AM<br />

INDIRECT DETECTION OF lSN and 13C:<br />

INSTRUMENTAL CONSIDERATIONS AND BIOCHEMICAL APPLICATIONS.<br />

David Cowburn<br />

The Rockefeller University,<br />

New York, New York, 10021<br />

Biochemical applications of NMR are usually limited by sensitivity of detection, and selectivity<br />

and resolution of signals from individual groups. Indirect detection, via protons, of hetronuclei like ~SN,<br />

t3C, and 113Cd permit gains of sensitivity of <strong>th</strong>e order of <strong>th</strong>e ratios ~'n/)'x to more <strong>th</strong>an <strong>th</strong>e power of 2,<br />

and selectivity and resolution are increased by <strong>th</strong>e usual advantages of two-dimensional NMR me<strong>th</strong>ods.<br />

For natural abundence samples, <strong>th</strong>ese experiments are especially demanding of instrumental precision<br />

and stability. Me<strong>th</strong>ods for evaluating and improving probe, radiofreqency, and numerical processing<br />

performance will be described. The various pulse sequences for indirect detection differ in <strong>th</strong>eir<br />

sensitivity to instrumental factors, and choice of sequence should be tailored to application.<br />

These me<strong>th</strong>ods have, however, some apparent disadvantages. Relatively long evolution and<br />

preparation times may permit excessive transverse relaxation, limiting f~ resolution. For natural<br />

abundence studies for lSN and ~3C, <strong>th</strong>ere is an apparent disadvantage compared to direct detection<br />

me<strong>th</strong>ods wi<strong>th</strong> proton decoupling. In indirect detection experiments, <strong>th</strong>e abundent protons' homonuclear<br />

couplings are superimposed on <strong>th</strong>e spectra, while in more conventional direct detection, <strong>th</strong>e signals are<br />

decoupled from protons, and show only low intensity homonuclear satellites. These and o<strong>th</strong>er apparent<br />

disadvantages can be alleviated in part by use of Linear Predictive Singular Value Decomposition<br />

0__,PSVD) analysis, and recombination of filtered roots(I).<br />

Supported by grants from NSF, and NIH.<br />

1. Schussheim, A. E., Cowbum, D. <strong>1987</strong> J. Magn. Res., in press.


Tuesday - AM<br />

Proton-Detected Reteronuclear One- and Two-Dimensional NMR Spectra of<br />

Biomolecules: Shift Correlation and Relaxation Measurements.<br />

William M. Westler and ~ohn L. Markley<br />

Department of Biochemistry<br />

College of Agricultural and Life Sciences<br />

University of Wisconsin-Madison<br />

420 Henry Mall<br />

Madison, Wisconsin 53?06, U.S.A.<br />

Indirect detection of a heteronucleus by scalar coupled protons is a<br />

powerful technique <strong>th</strong>at extends <strong>th</strong>e range of 13C and IsN NMR spectroscopy to<br />

include samples of limited quantity or solubility. Since <strong>th</strong>e relative<br />

sensitivity for detection of NMR active nuclei is proportional to <strong>th</strong>e cube of<br />

<strong>th</strong>e magnetogyric ratio, <strong>th</strong>e maximum sensitivity in a he teronucl ear correlation<br />

experiment can be obtained by detecting <strong>th</strong>e nucleus wi<strong>th</strong> <strong>th</strong>e larger<br />

magnetogyric ratio in <strong>th</strong>e coupled spin system. The sample requirement for<br />

proton-detected heteronuclear correlation spectroscopy is at least an order of<br />

magnitude lower <strong>th</strong>an <strong>th</strong>at for conventional heteronuclear experiments. We have<br />

collected one- and two-dimensional proton-detected heteronuclear NMR spectra of<br />

selectively and uniformly ISC and ISN labeled proteins [Anabaena 7120<br />

ferrodoxin (10,000 dalton); Staphylococcus aureus nuclease (17,000 dalton); and<br />

Anabaena 7120 flavodoxin (23,000 dalton)]. Two proteins have been studied at<br />

natural abundance [turkey ovomucoid <strong>th</strong>ird domain (6,000 dalton) and summer<br />

squash trypsin inhibitor (3,000 dalton)]. A promising experiment is one <strong>th</strong>at<br />

we call "HOTRAT u (_Hydrogen Observation of Transferred RAre _Tl'S). This me<strong>th</strong>od,<br />

which allows one to measure longitudinal relaxation times of rare nuclei in<br />

samples of limited quantity or solubility, is useful in light of <strong>th</strong>e current<br />

interest in <strong>th</strong>e dynamics of biomacromolecules.<br />

[This research was carried out at <strong>th</strong>e National Magnetic Resonance<br />

Facility at Madison (NMRFAM) and was supported by NIH grant RR 02301.]


Tuesday - AM<br />

NOVEL APPROACHES TO THREE-DIMENSIONAL NMR<br />

C. Griesinger, R. Br~schweiler, O.W. S~rensen<br />

and R.R. Ernst<br />

Laboratorium fur Physikalische Chemie<br />

Eidgen~ssische Technische Hochschule<br />

8092 Z~rich, Switzerland<br />

Extensions of NMR spectroscopy to <strong>th</strong>ree dimensions<br />

will be described. Useful 3D techniques can be<br />

obtained by combining building blocks of known 2D<br />

pulse techniques. In order to achieve tolerable<br />

sizes of data matrices and measuring times new<br />

approaches have been developed for <strong>th</strong>e extraction of<br />

restricted volumes of <strong>th</strong>e 3D spectrum.<br />

3D NMR presents considerable potential for NMR<br />

investigations of large biological macromolecules in<br />

solution where overlap of cross peaks is becoming a<br />

limiting factor.


Tuesday - PM<br />

Spatial and Spectral Diffusion of Magnetization<br />

J. S. Waugh* and C-G. Tang<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

I. The spatial diffusion of Zeeman energy in a rigid crystal ("spin<br />

diffusion") is <strong>th</strong>e simplest experimentally realizable example of a trans-<br />

port process and is <strong>th</strong>erefore of fundamental <strong>th</strong>eoretical interest. How-<br />

ever no "proper" experimental measurement has yet been made. We will out-<br />

line an approach <strong>th</strong>rough computational spin dynamics based on a classical<br />

model. Results will be presented for <strong>th</strong>e magnitude and anisotropy of<br />

diffusion in a cubic lattice (CaF2) and on a randomly diluted lattice,<br />

complementing and extending an alternative earlier approach by Lowe and<br />

Gade.<br />

2. Two separated resonances which overlap slightly because of dipolar<br />

broadening are expected to cross-relax to a common spin temperature: <strong>th</strong>e<br />

expected rate may be estimated from a Gaussian overlap integral. On <strong>th</strong>is<br />

basis <strong>th</strong>e two components of <strong>th</strong>e Pake doublet in gypsum are expected to<br />

communicate in timms of <strong>th</strong>e order of seconds. Experiments will be des-<br />

cribed which show <strong>th</strong>at <strong>th</strong>e actual rate is ~1000 times slower.


Tuesday - PM<br />

SUPPRESSION OF DIPOLAR BROADENING BY MAGIC ANGLE SPINNING<br />

Robert A. Wind, Steven F. Dec and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Fort Collins, CO 80523<br />

We have developed a Magic Angle Spinning system <strong>th</strong>at operates over a<br />

large range of rotor diameters and corresponding rotor velocities, <strong>th</strong>e<br />

latter reaching a maximum of 85% of <strong>th</strong>e velocity of sound wi<strong>th</strong> air as a<br />

driving gas, and a maximum of 105% of <strong>th</strong>e velocity of sound (in air)<br />

using a combination of He and air as driving gases. A spinning system<br />

wi<strong>th</strong> a 4.5-mm o.d. rotor, which can be rotated at a frequency of up to 23<br />

kHz, has been used to investigate <strong>th</strong>e line-narrowing possibilities of<br />

abundant-spin spectra in solids via MAS. Results will be shown of 1H and<br />

19F spectra of a variety of solid compounds wi<strong>th</strong> static linewid<strong>th</strong>s<br />

varying from 12 to 30 kHz. The residual linewid<strong>th</strong>s obtained as a func-<br />

tion of spinning speed will be discussed, and <strong>th</strong>e prospects of obtaining<br />

chemical shift information from <strong>th</strong>e narrowed spectra will be considered.<br />

Finally, results will be shown of 13C spectra obtained via cross polari-<br />

zation at high spinning speeds.


Tuesday - PM<br />

DIFFUSION OF SPIN ORDER IN RESOLVED SOLID STATE NMR SPECTRA<br />

D. Suter<br />

University of California, Berkeley<br />

Polarisation of individual spins in a solid is not a constant of motion,<br />

but gets dispersed over all coupled spins under <strong>th</strong>e influence of <strong>th</strong>e so<br />

called flip flop terms of <strong>th</strong>e dipole-dipole interaction. In large spin<br />

systems <strong>th</strong>e process of redistribution of spin order bears <strong>th</strong>e<br />

characteristics of a diffusion process and is <strong>th</strong>erefore called spin<br />

diffusion. The rate at which order is tranferred from one spin to<br />

ano<strong>th</strong>er depends on <strong>th</strong>e streng<strong>th</strong> of <strong>th</strong>eir dipole-dipole interaction and<br />

<strong>th</strong>erefore contains information about nuclear distances. O<strong>th</strong>er<br />

parameters influencing <strong>th</strong>e diffusion rate are differences of resonance<br />

frequencies and couplings to spins <strong>th</strong>at do not participate in <strong>th</strong>e<br />

exchange process. By measuring <strong>th</strong>e diffusion of different types of spin<br />

order, it is possible to distinguish between different diffusion<br />

mechanisms.<br />

Diffusion of Zeeman - Order Diffusion of Ouadrupolar Order<br />

Figure: Diffusion of Zeeman and quadrupolar order in a single crystal of<br />

deuterated malonic acid.<br />

Reference:<br />

D. Suter and R.R. Ernst, Physical Review B 32, 5608 (1985).


Tuesday - PM<br />

WF54 - POSTERS<br />

2D EXCHANGE NMR IN NON-SPINNING POWDERS<br />

C. Schmidt, S. Kaufmann, S. Wefing~ D. Theimer~<br />

B. Bl~mich" and H. W. Spiess~<br />

Max-Planck-Institut f~r Polymerforschung~<br />

Postfach 31489 D-6500 Mainz<br />

Information about molecular motions in isotropic<br />

solids is typically derived from lineshape analyses of<br />

wideline NMR spectra~ while in liquid samples 2D exchange<br />

NMR has become an accepted me<strong>th</strong>od. In 2D exchange spectra<br />

some of <strong>th</strong>e information hidden in <strong>th</strong>e lineshapes of 1D<br />

spectra is reencoded into frequency coordinates of<br />

exchange signals~ where it is accessible more accurately<br />

and in a model-independent fashion.<br />

We have studied deuteron and C-13 2D exchange NMR<br />

for <strong>th</strong>e characterization of molecular motions in powders<br />

and amorphous solid samples. The deuteron quadrupole<br />

coupling tensor is axially symmetric~ so <strong>th</strong>at particu-<br />

larly simple exchange signals result. Discrete jumps are<br />

characterized by elliptical exchange singularitiesp where<br />

<strong>th</strong>e excentricity of <strong>th</strong>e ellipse is a direct measure of<br />

<strong>th</strong>e jump angle. Diffusive motions result in homogeneous<br />

broadening wi<strong>th</strong>.characteristic 2D lineshapes discrimina-<br />

ting different stages of partial diffusion towards <strong>th</strong>e<br />

full diffusion limit. For short mixing times pure<br />

diffusion~ diffusion in connection wi<strong>th</strong> discrete jumps,<br />

and pure jump motions can be distinguished.<br />

The 2D exchange experiment can also be performed in<br />

C-13 NMR on selectively labelled compounds. The asymmetry<br />

of <strong>th</strong>e chemical shielding tensor~ however, leads to more<br />

complicated 2D exchange patterns. Experimental and <strong>th</strong>eo-<br />

retical data demonstrate <strong>th</strong>at <strong>th</strong>e wideline 2D exchange<br />

experiment produces a direct image of <strong>th</strong>e jump angle<br />

distribution.<br />

References:<br />

1) C. Schmidt, S. Wefing~ B. Bl~mich and H.~W. Spiess~<br />

Chem. Phys. Left. 130, 84 (198b).<br />

2) M. Linder, A. H~hener and R. R. Ernst~ J. Chem. Phys.<br />

73~ 4959 (1980).


Tuesday - PM<br />

WKI4 - POSTERS<br />

SYMMETRY AND ANTISYMMETRY IN 2D NMR SPECTRA<br />

O.W. S6rensen, C. Griesinger, C. Gemperle<br />

and R.R. Ernst<br />

Laboratorium f~r Physikalische Chemie<br />

EidgenSssische Technische Hochschule<br />

8092 Z~rich, Switzerland<br />

The conditions for obtaining 2D spectra symmetric or<br />

antisymmetric wi<strong>th</strong> respect to reflection about <strong>th</strong>e<br />

diagonal have been extended and generalized. They<br />

can be formulated ei<strong>th</strong>er in terms of <strong>th</strong>e structure<br />

of pulse sequences or in terms of <strong>th</strong>e coherence<br />

transfer pa<strong>th</strong>ways selected.<br />

Recent results indicate <strong>th</strong>at new experimental<br />

techniques producing antisymmetric or asymmetric 2D<br />

spectra can be of advantage in certain practical<br />

situations. For example, experiments leading to<br />

antisymmetric spectra often result in suppression of<br />

uninformative and disturbing diagonal peaks.


Tuesday - PM<br />

WKI2- POSTERS<br />

QUANTITATIVE INTERPRETATION OF A SINGLE 2D NOE SPECTRUM<br />

Peter A. Mirau<br />

AT&T Bell Laboratories<br />

Murray Hill, NJ 07974<br />

A new me<strong>th</strong>od is suggested for <strong>th</strong>e quantitative in-<br />

terpretation of 2D NOE data using selective relaxation rates<br />

and matrix techniques. This approach reduces <strong>th</strong>e experimen-<br />

tal time from one week to one day, gives proton-proton dis-<br />

tances wi<strong>th</strong> a precision of 10.1 A, and can be used to<br />

characterize <strong>th</strong>e internal dynamics. Wi<strong>th</strong> <strong>th</strong>is approach <strong>th</strong>e<br />

structural and dynamic properties of Gramicidin S were<br />

determined from a single 2D NOE spectrum wi<strong>th</strong> a mixing time<br />

of 0.2 s. The peak volumes in <strong>th</strong>e 2D experiment were scaled<br />

via <strong>th</strong>e measured selective relaxation of Phe NH and Orn<br />

protons and <strong>th</strong>e matrix of scaled peak volumes was solved to<br />

yield <strong>th</strong>e relaxation rate matrix. The distances measured by<br />

<strong>th</strong>is approach were indistinguishable (~0.1 A ) from <strong>th</strong>ose<br />

measured from 1D NOE experiments, <strong>th</strong>e buildup of cross peaks<br />

in <strong>th</strong>e 2D NOE experiments, and <strong>th</strong>e distances expected from<br />

<strong>th</strong>e crystal structure. The dynamics were determined from<br />

<strong>th</strong>e ratio of <strong>th</strong>e sum of all <strong>th</strong>e cross relaxation rates to<br />

<strong>th</strong>e rate of decay of <strong>th</strong>e diagonal peak which, for isotropic<br />

motion, depends only <strong>th</strong>e <strong>th</strong>e correlation time. This<br />

analysis showed a correlation time for <strong>th</strong>e NH and H ~ protons<br />

of 0.9~0.1 nsec; <strong>th</strong>e close correspondence between <strong>th</strong>e ob-<br />

served and expected values show <strong>th</strong>at <strong>th</strong>e peptide backbone is<br />

rigid in solution over <strong>th</strong>e time scale of molecular tumbling.<br />

Internal motions of make a significant contribution to <strong>th</strong>e<br />

relaxation of some side chain groups. The implications and<br />

limitations of <strong>th</strong>is approach and <strong>th</strong>e applications to DNA<br />

structure determination will be discussed.


Tuesday - PM<br />

WK22 - POSTERS<br />

SOLVENT SUPPRESSION WITHOUT PHASE DISTORTION<br />

Malcolm H. Levitt* and Mary F. Roberts<br />

M.I.T., NN14-5122, Cambridge, MA 02139<br />

Ve describe a new class of pulse sequences, NERO (Non-linear Excitation<br />

Rejecting 0n-Resonance), which allow wideband excitation of an<br />

spectrum except for a deep, flat section near <strong>th</strong>e carrier where <strong>th</strong>e<br />

response is zero. The novel feature of <strong>th</strong>e new sequences is <strong>th</strong>at phase<br />

distortion of excited resonances is negligible, in contrast to usual<br />

me<strong>th</strong>ods based on linear response. Ve will show numerical simulations<br />

and experimental results for <strong>th</strong>e following sequence, called NER0-1:<br />

D B N<br />

120°-~1-115°-T2-115 °-2~3-115"-~2-115 °-~1-120°-~ r<br />

where pulses 180 ° out of phase have an overbar, and delays ~k are given<br />

by<br />

~1 = 0" 139/(~exc/2n)<br />

~2 = O. 625/( ~exc/2 n)<br />

2~ 3 = 0.428/(~exc12n )<br />

~r = 0"222/(~exc/2n)<br />

Here (~exc/2n) is <strong>th</strong>e offset frequency (Hz) of <strong>th</strong>e center of <strong>th</strong>e<br />

excited spectral region. This class of pulse sequence is capable of<br />

providing solvent suppression almost free from undesirable phase<br />

distortions.


Tuesday - PM<br />

WF64 - POSTERS<br />

FLOW IMACINC<br />

C. L. Dumoulln*, S. P. Sou=a, H. R. Hart Jr.<br />

Ceneral Electric Research and Development Center<br />

P0 Box 8, Schenectady, New York 12301<br />

Many flow sensitive NMR procedures have been proposed and demonstrated.<br />

All of <strong>th</strong>ese me<strong>th</strong>ods rely on ei<strong>th</strong>er longitudinal magnetization or transverse<br />

magnetization for flow discrimination. Time-of-flight and spin washout are<br />

examples of flow sensitive techniques which make use of longitudinal magneti-<br />

zation. In <strong>th</strong>ese me<strong>th</strong>ods, <strong>th</strong>e longitudinal magnetization is changed in one<br />

location and monitored in ano<strong>th</strong>er downstream from <strong>th</strong>e first. Techniqdes which<br />

make use of transverse magnetization such as <strong>th</strong>e one described below typically<br />

monitor <strong>th</strong>e phase of spin magnetization and <strong>th</strong>us are not constrained by <strong>th</strong>e<br />

geometry of flow.<br />

The most significant problem in blood flow imaging in animals or humans<br />

is <strong>th</strong>e suppression of signals arising from non-moving spins. This is a par-<br />

ticularly severe problem because blood vessels are relatively small when com-<br />

pared to <strong>th</strong>e volume of <strong>th</strong>e surrounding tissue and blood flow is usually pulsa-<br />

tile ra<strong>th</strong>er <strong>th</strong>an constant. The rapid-scan, phase contrast technique presented<br />

here circumvents <strong>th</strong>ese problems and has proven very useful in obtaining non-<br />

invasive angiograms of heal<strong>th</strong>y and diseased patients.<br />

The flow-induced phase shift of a hi-polar gradient pulse is simply<br />

- ~VTA G<br />

where • is <strong>th</strong>e flow-induced phase shift, 7 is <strong>th</strong>e gryomagnetic ratio, V is <strong>th</strong>e<br />

component of spin velocity in <strong>th</strong>e direction of <strong>th</strong>e applied magnetic field gra-<br />

dient, T is <strong>th</strong>e time between <strong>th</strong>e centers of <strong>th</strong>e lobes of <strong>th</strong>e bipolar gradient<br />

and A G is <strong>th</strong>e area of <strong>th</strong>e first lobe in <strong>th</strong>e bi-polar pulse (<strong>th</strong>e area of <strong>th</strong>e<br />

second lobe is -AG). To selectively detect flow in an imaging or spectroscopy<br />

procedure one can simply acquire two sets of data under different conditions<br />

of V, T or A G. We have found <strong>th</strong>at <strong>th</strong>e inversion of <strong>th</strong>e bi-polar gradient<br />

pulse gives <strong>th</strong>e best results. Thus, two echoes are obtained, one wi<strong>th</strong><br />

- 7VTA G and <strong>th</strong>e o<strong>th</strong>er wi<strong>th</strong> ~ - 7VT(-Ac). Moving spins are selectively<br />

detected and stationary spins suppresse~ by taking <strong>th</strong>e difference of <strong>th</strong>e two<br />

echoes. Since <strong>th</strong>e flow sensitivity of such a procedure is only in <strong>th</strong>e direc-<br />

tion of <strong>th</strong>e applied field gradient, two flow images are obtained wi<strong>th</strong> or<strong>th</strong>ogo-<br />

hal flow sensitivities and combined to give <strong>th</strong>e total flow image. The inten-<br />

sity of each pixel in <strong>th</strong>e image is a quantitative measure of flow provided <strong>th</strong>e<br />

flow-induced phase shift, #, is less <strong>th</strong>an about I radian.<br />

Suppression of non-moving spins can be enhanced by a weak dephasing gra-<br />

dient applied in <strong>th</strong>e direction of <strong>th</strong>e image projection. Such a gradient<br />

dephases spin magnetization over <strong>th</strong>e large volume of non-moving spins and has<br />

little effect in <strong>th</strong>e relatively small vessels. Additional suppression can be<br />

obtained by acquiring data very quickly and wi<strong>th</strong> short pulse-to-pulse inter-<br />

vals. Rapid scanning saturates non-moving spins while spins which move into<br />

<strong>th</strong>e detection region are fully relaxed. Fast scanning also makes <strong>th</strong>e flow<br />

imaging procedure much less sensitive to patient motion since differences of<br />

data acquired in very short intervals are taken.


Wednesday - AM<br />

SURFACE-SELECTIVE NMR BY DYNAMIC NUCLEAR POLARIZATION<br />

EXPLORATION AT THE POLYMER INTERFACE<br />

H. Seidei, l" R. D. Kendrick and C. S. Yannoni<br />

IBM Almaden Research Center, San Jose, CA<br />

and<br />

M. E. Galvin<br />

AT&T Bell Laboratories, Murray Hill, NJ<br />

One of our primary motivations for initiating a program in solid state NMR of<br />

dynamically polarized nuclei is <strong>th</strong>e belief <strong>th</strong>at <strong>th</strong>is can be a useful new me<strong>th</strong>od for <strong>th</strong>e<br />

study of structure and dynamics of molecules at surfaces. To explore <strong>th</strong>is possibility,<br />

we have built a 60 MHz DNP-NMR spectrometer based on an electromagnet probe<br />

which uses a quasi-optical (Fabry-Perot) cavity to pump <strong>th</strong>e ESR at 40 GHz. l<br />

Al<strong>th</strong>ough DNP has traditionally been viewed as a means for obtaining high nuclear<br />

polarization, °" <strong>th</strong>e spatial selectivity of DNP will be emphasized here. We intend to use <strong>th</strong>is<br />

selectivity to preferentially polarize nuclei in molecules near <strong>th</strong>e surface of a material<br />

which contains unpaired electron spins. The selectivity arises from <strong>th</strong>e dependence of <strong>th</strong>e<br />

Overhauser enhancement on <strong>th</strong>e inverse six<strong>th</strong> power of <strong>th</strong>e electron-nuclear distance.<br />

Generally, since <strong>th</strong>e sample will be in <strong>th</strong>e bulk form commonly used in NMR<br />

experiments, <strong>th</strong>e surface will be internal i.e. interfacial regions between <strong>th</strong>e material of<br />

interest and <strong>th</strong>e material containing <strong>th</strong>e source of unpaired spins. As a demonstration<br />

of <strong>th</strong>e efficacy of <strong>th</strong>is approach, we will discuss results obtained in a composite of<br />

polyacetylene in polye<strong>th</strong>ylene. 3 This polymer composite provides not only a reasonable<br />

spin dynamical model for a molecule (polye<strong>th</strong>ylene) at <strong>th</strong>e surface of a "metal" particle<br />

(polyacetylene), 4 but also introduces <strong>th</strong>e possibility of using DNP-NMR as a tool for<br />

studying intimacy of mixing in polymer blends, one component of which contains<br />

unpaired spins. We have observed 1H as well as IH-decoupled carbon-13 spectra for <strong>th</strong>is<br />

material, wi<strong>th</strong> and wi<strong>th</strong>out DNP, using bo<strong>th</strong> <strong>th</strong>ermal and cross polarization. The results<br />

indicate <strong>th</strong>at selective NMR spectra of polye<strong>th</strong>ylene carbons in <strong>th</strong>e interfacial regions can<br />

be obtained.<br />

Since <strong>th</strong>e unpaired electron spins responsible for <strong>th</strong>e polarization are confined to very<br />

small island structures (


.<br />

.<br />

.<br />

4.<br />

-2-<br />

D. J. Singel, R. D. Kendrick and C. S. Yannoni, 26<strong>th</strong> ElqC, April 1985, Asilomar,<br />

California; R. D. Kendrick, H. Seidel, D. J. Singel and C. S. Yannoni (manuscript<br />

in preparation).<br />

We have recently achieved very large 13C polarization via <strong>th</strong>e Overhauser effect in<br />

a one-dimensional organic charge transfer conductor wi<strong>th</strong> a narrow ESR spectrum<br />

("30 milligauss wid<strong>th</strong>) which has permitted o~ervation of 1016 carbon-13 spins wi<strong>th</strong><br />

a single pulse at room temperature after a 1-second polarization period "High<br />

Resolution DNP-NMR and Knight Shift Suppression in a One Dimensional Charge<br />

Transfer Conductor"; R. D. Kendrick, H. Seidel, D. J. Singel, W St6cklein" and C.<br />

S. Yannoni, poster to be presented on Monday, April 6 at <strong>th</strong>e 28<strong>th</strong> <strong>ENC</strong>.<br />

M. E. Galvin and G. E. Wnek, Polymer 23, 795 (1982).<br />

In <strong>th</strong>e trans form present in <strong>th</strong>ese composites, polyacetylene is a semiconductor<br />

containing unpaired electron spins which exhibit-fast one-dimensional diffusion.<br />

This leads to an Overhauser enhancement of <strong>th</strong>e kind one might expect from a<br />

metal: M. Nechstein, F. Devreux and R. L. Greene, Phys. Rev. Lett, 44, 356 (1980);<br />

M. Manenschijn, M. Duijvestijn, J. Smidt, R. A. Wind, C. S. Yannoni and T. C.<br />

Clarke, Chem. Phys. Lett. 112, 99 (1984).<br />

5. M.E. Galvin, dissertation, Massachusetts Institute of Technology (1984).


Wednesday - AM<br />

~FIFTY-FOUR-FORTY OR FIGHTI" l<br />

High-speed IH MAS-NNtR of Inorganic Solids<br />

and Paramagnetic Compounds<br />

James P. Yesinowski," Hellmut Eckert, and Akbar Nayeem<br />

Division of Chemistry and Chemical Engineering<br />

California Institute of Technology<br />

Pasadena, CA 91125<br />

High-resolution IH 1V[AS-N1VIR spectra of solids have generally been obtained<br />

using multiple-pulse line-narrowing techniques (CRAMPS) or isotopic dilution wi<strong>th</strong><br />

deuterium to reduce <strong>th</strong>e strong homonuclear dipolar interactions. We will show exper-<br />

imental results from 1H MAS-NMR at 200 and 500 MHz indicating <strong>th</strong>at high speed<br />

spinning alone (at ca. 8 kHz) results in high-resolution spectra for many inorganic<br />

solids and minerals. Even in cases where <strong>th</strong>e homonuclear dipolar coupling greatly<br />

exceeds <strong>th</strong>e spinning speed, <strong>th</strong>e inhomogeneous character of <strong>th</strong>e interaction can result<br />

in sharp spectra wi<strong>th</strong> many spinning sidebands. Experimental considerations will be<br />

discussed, and examples of structural characterization in minerals, glasses, and cal-<br />

cified tissue such as bone and tee<strong>th</strong> will be given. The correlation of <strong>th</strong>e isotropic<br />

proton chemical shift wi<strong>th</strong> <strong>th</strong>e streng<strong>th</strong> of hydrogen-bonding will be discussed, and<br />

correlated wi<strong>th</strong> 2H NMR results.<br />

The MAS-NMR of paramagnetic compounds is ano<strong>th</strong>er area of interest. We will<br />

demonstrate <strong>th</strong>at high-resolution IH MAS-NMR spectra of paramagnetic transition-<br />

metal compounds can be obtained. As a consequence of <strong>th</strong>e electron-nuclear dipolar<br />

coupling such spectra exhibit intense spinning sidebands extending over tens or hun-<br />

dreds of kilohertz. We will discuss <strong>th</strong>e <strong>th</strong>eoretical treatment developed to account for<br />

<strong>th</strong>e spinning sideband intensities and <strong>th</strong>e peak shape, which includes <strong>th</strong>e effect of <strong>th</strong>e<br />

electron g-anisotropy.<br />

IThis bellicose slogan was <strong>th</strong>e rallying cry of supporters of James Polk in <strong>th</strong>e U.S. Presidential<br />

election of 1844. It referred to <strong>th</strong>e disputed nor<strong>th</strong>ern boundary of <strong>th</strong>e Oregon territory, which<br />

expansionist Americans wanted set at a latitude of 54040 ', wi<strong>th</strong>in 5' of <strong>th</strong>e magic angle. This slogan<br />

is <strong>th</strong>us still relevant for solid-state NMR spectroscopists in <strong>th</strong>eir daily fight for increased resolution.


Wednesday - AM<br />

THE DETERmiNATION OF THE STRUCTURE OF PARTIALLY-ORIENTED SOLIDS<br />

USING 2D-MAGIC-ANGLE-SPINNING N}~<br />

Gerard S. Harbison<br />

Department of Chemistry, SUNY Stony Brook, Stony Brook, NY 11794.<br />

V.-D. Vogt, C. Boeffel, B. Bluemich and H.W. Spiess<br />

Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-6500 Mainz, FRG.<br />

High-field magic-angle-spinning (MAS) spectra of oriented samples display<br />

variations in <strong>th</strong>e phases and intensities of <strong>th</strong>e MAS centerbands and sidebands,<br />

which depend on <strong>th</strong>e position of <strong>th</strong>e sample order axis about <strong>th</strong>e rotor axis at<br />

<strong>th</strong>e time <strong>th</strong>e precession of <strong>th</strong>e nuclear magnetization begins. This phenomenon<br />

may be observed by synchronizing <strong>th</strong>e spectral excitation wi<strong>th</strong> <strong>th</strong>e sample<br />

rotation (I), and we have shown (2) <strong>th</strong>at it may be made <strong>th</strong>e basis of a 2D-NMR<br />

experiment, in which <strong>th</strong>e first time dimension is <strong>th</strong>e (time-dependent) rotor<br />

position, and <strong>th</strong>e second is routine unrestricted acquisition. The 2D spectra<br />

<strong>th</strong>us obtained consist of MAS centerbands and sidebands in two dimensions,<br />

whose intensities depend on <strong>th</strong>e size of <strong>th</strong>e chemical shielding tensor, its<br />

orientation relative to <strong>th</strong>e sample order axis, and <strong>th</strong>e degree of disorder of<br />

<strong>th</strong>e sample about <strong>th</strong>at axis. Using a spherical harmonic expansion of <strong>th</strong>e<br />

shielding tensor orientation about two Euler angles in <strong>th</strong>e frame of reference<br />

of <strong>th</strong>e order axis (3), we can, wi<strong>th</strong>out recourse to model-building, determine<br />

<strong>th</strong>e complete orientational distribution function of <strong>th</strong>e residue in question<br />

relative to <strong>th</strong>e sample axis. Thus, for each distinct, resolvable resonance in<br />

a complex sample, we can determine <strong>th</strong>e preferred orientation of <strong>th</strong>at residue,<br />

and its statistical distribution about <strong>th</strong>at preferred orientation. Obviously,<br />

determining <strong>th</strong>ese quantities for a real sample, coupled wi<strong>th</strong> <strong>th</strong>e geometrical<br />

restrictions imposed by <strong>th</strong>e laws of chemistry, is tantamount to determining<br />

its structure on <strong>th</strong>e atomic scale.<br />

We have applied our experimental and <strong>th</strong>eoretical protocols to a number of<br />

oriented polymers, among <strong>th</strong>em polye<strong>th</strong>ylene tereph<strong>th</strong>alate (PET) and several<br />

liquid-crystalline polymers. We shall illustrate <strong>th</strong>eir use wi<strong>th</strong> a discussion<br />

of <strong>th</strong>e structure of <strong>th</strong>e crystalline and amorphous phases of PET, in which <strong>th</strong>e<br />

results obtained by our me<strong>th</strong>od are in close agreement wi<strong>th</strong> existing x-ray<br />

studies. We shall also consider <strong>th</strong>eir potential application to o<strong>th</strong>er systems.<br />

(1) M. blaricq & J.S. Waugh (1979) J. Chem. Phys. 70:3300<br />

(2) G.S. Harblson & H.W. Spiess (1986) Chem. Phys. Lett. 124:128<br />

(3) G.S. Harbison, V-D. Vogt & H.W. Spiess (<strong>1987</strong>) J. Chem. Phys., in press.


Wednesday - AM<br />

MULTIPLE PULSE ECHO TRAINS<br />

IN<br />

ROTATING SOLIDS<br />

A.C. KOLBERT, D.P RALEIGH, M.H. LEVITT, and R.G. GRIFFIN<br />

Francis Bitter National Magnet Laboratory<br />

and<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

Cambridge, MA 02139<br />

One of <strong>th</strong>e most useful and pedagogically important pulse<br />

NMR experiments is <strong>th</strong>e Hahn spin echo. Today <strong>th</strong>is experiment is<br />

employed extensively in NMR imaging and an understanding of <strong>th</strong>e<br />

basic principles of echo formation permits an understanding of a<br />

large variety of o<strong>th</strong>er phenomena in magnetic resonance. The<br />

importance of echoes has provided <strong>th</strong>e impetus for us to<br />

investigate <strong>th</strong>e effects of ~ pulses and K pulse trains in magic<br />

angle sample spinning experiments, particularily in <strong>th</strong>e slow<br />

spinning regime. We first review <strong>th</strong>e effects of a single and two<br />

pulses on rotational echo trains and <strong>th</strong>en discuss a number of<br />

interesting new effects. These include a new class of multiple<br />

pulse trains, <strong>th</strong>e effects of r.f. phase shifts on <strong>th</strong>e phases of<br />

<strong>th</strong>e echo train, and a combination of bo<strong>th</strong>. In addition, we will<br />

also describe a 2D version of one of <strong>th</strong>e experiments which may<br />

prove useful in measuring small shift anisotropies.


Wednesday - AM<br />

Field Cycling NMR as a Tool for NQ~RSpectroscopy of Weakly<br />

Quadrupole-Coupled Nuclei: Pyridine, Imidazole, and <strong>th</strong>e<br />

Nucleosides Adenosine, Guanosine and Inosine. J. L. Ragle,<br />

Department of Chemistry, University of Massachusetts,<br />

Amherst, MA 01003.<br />

NMR experiments which cycle wi<strong>th</strong> B ° or Brf have been used<br />

for over 3 decades for various purposes. In <strong>th</strong>e case of<br />

integer spin nuclei and in <strong>th</strong>e weak quadrupole coupling<br />

regime, very high resolution zero field spectra may be<br />

obtained in ei<strong>th</strong>er <strong>th</strong>e time or frequency domain by several<br />

of <strong>th</strong>ese techniques.<br />

This talk discusses use of <strong>th</strong>e simplest of <strong>th</strong>ese, adiabatic<br />

field cycling between high field and zero field, to measure<br />

NQR spectra in several sets of molecules: imidazole and<br />

imidazolium salts, and <strong>th</strong>ree nucleosides. Quadrupole<br />

coupling constants will be discussed in <strong>th</strong>e light of<br />

structures and MO calculations on <strong>th</strong>ese species.


Wednesday - AM<br />

APPLICATIONS OF ZERO FIELD NMR TO THE STUDY<br />

OF SOLIDS AND LIQUID CRYSTALS<br />

Ann M. Thayer*<br />

University of California, Berkeley<br />

Time domain zero field NMR me<strong>th</strong>ods provide a means of obtaining<br />

high resolution spectra of polycrystalline or amorphous materials.<br />

Recent experiments will be discussed which include <strong>th</strong>e observation of<br />

small motionally induced asymmetries in dipolar coupled systems. From<br />

such observations, one can obtain a measure of small amplitude libra-<br />

tional motions or <strong>th</strong>e onset of biaxiality in smectic liquid crystalline<br />

phases. In addition, experiments involving <strong>th</strong>e use of pulsed dc<br />

magnetic fields in zero field will also be presented. The behavior of<br />

a nuclear spin system can be coherently manipulated and probed in zero<br />

field wi<strong>th</strong> dc magnetic field pulses which are employed in a similar<br />

manner to radiofrequency pulses in high field NMR experiments. DC<br />

pulse sequences can be used as composite pulses for increased spatial<br />

homogeneity and for selectivity between isotopic species.<br />

*Present Address: AT&T Bell Laboratories<br />

Hurray Hill, New Jersey


Wednesday - AM<br />

Applications of Solid State NMR Me<strong>th</strong>ods to<br />

Problems of Interest to Surface Chemistry<br />

by<br />

Paul D. Ellis, Paul D. Majors, ~ Thomas E. Raidy, 2 Paul S. Marchetti,<br />

Alan Benesi, 3 Doug Morris and Shelton Bank, W and Richard Adams<br />

Department of Chemistry<br />

University of Sou<strong>th</strong> Carolina<br />

Columbia, Sou<strong>th</strong> Carolina 29208<br />

For <strong>th</strong>e past several mon<strong>th</strong>s our group has been interested in <strong>th</strong>e ap-<br />

plication of multinuclear solid state nmr me<strong>th</strong>ods to surface chemistry. These<br />

problems include studies of simple amines, via 2H and ~SN nmr s'6 on Y-alumina.<br />

The purpose of <strong>th</strong>ese studies is to probe <strong>th</strong>e number of acid sites on <strong>th</strong>e sur-<br />

face and to extract via indirect me<strong>th</strong>ods <strong>th</strong>e surface distribution of AI 3+<br />

atoms on Y-alumina. If <strong>th</strong>e experimental gods are willing we will also discuss<br />

our attempts at <strong>th</strong>e direct observation of <strong>th</strong>~ A1 s+ distribution via 2~AI nmr.<br />

Additional studies have involved 9SMo nmr of Molybdenum-Alumina Hydrodesul-<br />

furization catalysts. Our work is only beginning wi<strong>th</strong> <strong>th</strong>ese systems, but we<br />

will summarize our work to date. The work summarized here has been supported<br />

by <strong>th</strong>e NSF <strong>th</strong>rough CHE 86-11306.<br />

I. Current Address: Lovelace Medical Foundation, Research Division, 2425<br />

Ridgecrest Dr., SE, Albuquerque, NM 87108.<br />

2. Current Address: General Electric Co., NMR Instruments, Fremont, CA<br />

94539.<br />

3. Current Address: Department of Chemistry, Penn State University,<br />

University Park, PA 16802.<br />

4. On Sabbatical leave from SUNY, Albany.<br />

5. P.D. Majors, T.E. Raidy, and P.D. Ellis, J. Amer. Chem. Soc., 108, 8123<br />

{1986).<br />

6. P.D. Majors and P.D. Ellis, ibid, in press.


Wednesday - AM<br />

Quadrupole Nutation NMR. NQR in <strong>th</strong>e Rotating Frame<br />

W. S. Veeman, R. Janssen, E. Tijink, A. P. M. Kentgens<br />

Department of Molecular Spectroscopy, Faculty of Science<br />

University of Nijmegen, Toernooiveld, 6525 ED NIJMEGEN, The Ne<strong>th</strong>erlands<br />

The principle of nutation NMR for quadrupolar spins in solids<br />

will be outlined. Various applications of nutation NMR for 23Na in<br />

zeolites, aluminates and silicates will be shown, at room<br />

temperature and at higher and lower temperatures.<br />

The combination of rotary echoes wi<strong>th</strong> nutation NMR makes it<br />

possible to demonstrate <strong>th</strong>e existence of fast relaxation processes in<br />

<strong>th</strong>e rotating frame, related to dynamical processes in <strong>th</strong>e above<br />

mentioned materials.


Notes


Thursday - AM<br />

AN OVERVIEW OF SPATIALLY LOCALIZED SPECTROSCOPY<br />

by<br />

D.I. Houit<br />

Biomedical Engineering and Instrumentation Branch<br />

Division of Research Services<br />

Building 13, Room 3W13<br />

National institutes of Heal<strong>th</strong><br />

Be<strong>th</strong>esda, Maryland 20892<br />

Obtaining spectra from a localized region is a difficult task which is<br />

fur<strong>th</strong>er complicated by a number of practical problems which defy easy<br />

solution. The actual act of localization is accomplished wi<strong>th</strong> <strong>th</strong>e aid<br />

of gradients in <strong>th</strong>e B 0 and/or B 1 fields in concert wi<strong>th</strong> a variety<br />

of selective pulses and cycling schemes. However, as <strong>th</strong>e volume of<br />

interest may be small in comparison to <strong>th</strong>e volume which is capable of<br />

generating signal, suppression of <strong>th</strong>e latter must be excellent, leaving<br />

very little room for experimental imperfection. When one considers<br />

<strong>th</strong>at <strong>th</strong>e sample i5 often alive and may move, <strong>th</strong>at switched-field<br />

gradients may leave residual eddy currents which generate changing<br />

fields during data acquisition, <strong>th</strong>at shimming may be well-nigh<br />

impossible if <strong>th</strong>e volume is remote from <strong>th</strong>e origin of <strong>th</strong>e shim coil set<br />

and <strong>th</strong>at several transmitting and/or receiving coils may be needed, a<br />

headache of royal proportions is clearly made manifest. Thus <strong>th</strong>e talk<br />

will outline in more detail <strong>th</strong>e origins of <strong>th</strong>e- problems, and briefly<br />

summarize progress made in solving <strong>th</strong>em.


Thursday - AM<br />

Gradient Transient Effects in Large Bore MR Imaging Systems<br />

G. H. Glover<br />

Applied Science Laboratory<br />

General Electric Medical Systems<br />

P.O. Box 414, W875<br />

Milwaukee, WI 53201<br />

The measured temporal response of <strong>th</strong>e field excited by a whole body MR imaging gradient is<br />

found to differ from <strong>th</strong>e exciting current. The error field derives from eddy currents induced<br />

in <strong>th</strong>e magnet and cryostat, and from interactions wi<strong>th</strong> <strong>th</strong>e shim coil and <strong>th</strong>eir power supplies.<br />

The impulse response of <strong>th</strong>is spurious field in an Oxford one meter bore magnet can be<br />

approximated by_B(t,r) = Bo (t) + ~ (t) • 7, where Bo(t) is a spatially invariant transient<br />

component and G(t) is a linear gradient transient whose direction parallels <strong>th</strong>e exciting<br />

gradient. The field errors degrade performance and can induce artifacts in imaging sequences<br />

by causing poor selective excitation and by creating unintentional dephasing during<br />

evolutionary periods. The effect of spurious gradient transients on imaging sequences is<br />

examined and examples are given.<br />

An NMR technique for measuring B(t) is presented. The technique uses two small probes to<br />

sample <strong>th</strong>e field in two locations following application of a gradient pulse. Analysis of <strong>th</strong>e<br />

data shows <strong>th</strong>at Bo(t) and G-(t) can be adequately represented as a superposition of several<br />

exponential processes wi<strong>th</strong> time constants from a few msec. to several minutes.<br />

Correction techniques are presented for cancelling bo<strong>th</strong> G(t) and Bo(t). The former correction<br />

is effected by appropriately modifying <strong>th</strong>e gradient coil excitation current, while Bo<br />

compensation is obtained by actively driving <strong>th</strong>e Zo shim coil. Adjustment of <strong>th</strong>ese filters is<br />

facilitated by software which calculates <strong>th</strong>e required coefficients from <strong>th</strong>e measured B(t).<br />

Application of <strong>th</strong>ese techniques is found to provide reductions by factors of <strong>th</strong>e order of 50 in<br />

<strong>th</strong>e spurious response, which is deemed adequate for most present imaging and spectroscopy<br />

sequences.<br />

Finally, <strong>th</strong>e use of actively shielded gradient coils for large bore MR systems is discussed.<br />

Results indicate field reduction by factors of 10-20. When combined wi<strong>th</strong> compensation<br />

techniques, <strong>th</strong>ese coils <strong>th</strong>us yield essentially ideal performance.


Thursday - AM<br />

IMAGE GUIDED LOCALIZED NMR SPECTROSCOPY AT 1.5 T<br />

Peter R. Luyten and Jan A. den Hollander<br />

Philips Medical Systems, P.O. Box I0000, NL-5680 DA Best,<br />

The Ne<strong>th</strong>erlands<br />

We have explored localization techniques to obtain high<br />

resolution spectra of human tissues in situ on a 1.5 T whole body<br />

MR imager. These techniques use switched field gradients to<br />

define one or more volumes of interest from which NMR spectra can<br />

be obtained. By using gradients for volume selection <strong>th</strong>e exact<br />

coordinates of <strong>th</strong>e selected volumes can easily be determined from<br />

a standard NMR image.<br />

For optimal results different nuclei may require different<br />

pulse sequences, in order to meet <strong>th</strong>e typical NMR characteristics<br />

of each particular nucleus. To obtain localized IH spectra we<br />

use a technique in which magnetization in <strong>th</strong>e volume of interest<br />

is retained along <strong>th</strong>e z axis, wheras all signal outside <strong>th</strong>is<br />

volume is dephased in <strong>th</strong>e xy plane. The advantage of <strong>th</strong>is<br />

technique is <strong>th</strong>at it allows for localization in one single shot.<br />

This can be used for shimming <strong>th</strong>e volume of interest. When <strong>th</strong>is<br />

technique is combined wi<strong>th</strong> an appropriate phase cycling scheme a<br />

very good suppression of unwanted signal from outside <strong>th</strong>e volume<br />

of intererest is achieved. The disadvantage is <strong>th</strong>at <strong>th</strong>e<br />

technique relies on relatively long T2 values and small homo<br />

nuclear J couplings. Therefore, localized 31P spectra have been<br />

obtained by a different localization technique which avoids<br />

transversal magnetization during <strong>th</strong>e localization pulse sequence.<br />

In stead, selected volumes are obtained by using selective<br />

frequency modulated inversion pulses in combination wi<strong>th</strong> an<br />

appropriate add-subtract scheme.<br />

Bo<strong>th</strong> localization sequences can be easily combined wi<strong>th</strong><br />

established pulse sequences to measure relaxation rates or to<br />

perform water suppression and spin editing techniques. Some<br />

results <strong>th</strong>at were obtained wi<strong>th</strong> <strong>th</strong>ese techniques and <strong>th</strong>e<br />

technical difficulties <strong>th</strong>at may be encountered in <strong>th</strong>ese<br />

experiments will be discussed.


Thursday - AM<br />

PULSE SHAPING FOR TWO-DIMENSIONAL AND MULTIPLE<br />

PULSE SPECTROSCOPY<br />

Warren S. Warren<br />

Department of Chemistry, Princeton University, Princeton, NJ 08544<br />

Applications of shaped radiofrequency pulses to solvent<br />

suppression in COSY spectra, excitation of two separate resonance<br />

frequencies, and uniform spin-1 excitation will be presented. We will<br />

also experimentally demonstrate <strong>th</strong>e tradeoffs between symmetric<br />

amplitude modulation, asymmetric amplitude modulation, and<br />

simultaneous phase/amplitude modulation. Recent results of new<br />

analytical solutions to <strong>th</strong>e Bloch equations, derived for atomic laser<br />

spectroscopy, will also be experimentally tested.<br />

I will discuss <strong>th</strong>e tradeoffs between different approaches to<br />

computerized pulse shape optimization, and show <strong>th</strong>e importance of<br />

including spectral information to refine shapes. Examples from<br />

magnetic resonance imaging, high resolution NMR, and perhaps even<br />

(gasp) laser spectroscopy will be included.


Thursday - AM<br />

COHER<strong>ENC</strong>E AUGMENTATION BY LIMITING<br />

THE ENTROPY IN CATALYTIC HYDROGENATION<br />

Daniel P. Weitekamp<br />

Ar<strong>th</strong>ur Amos Noyes Laboratory of Chemical Physics<br />

California Institute of Technology 127-72<br />

Pasadena, CA 91125<br />

The small equilibrium population differences between nuclear spin<br />

energy levels at ambient temperatures restrict <strong>th</strong>e size of NMR signals to less<br />

<strong>th</strong>an 10 -4 of <strong>th</strong>eir <strong>th</strong>eoretical maxima. Such well-known me<strong>th</strong>ods of signal<br />

enhancement as <strong>th</strong>e Overhauser effect, ClDNP, and optical nuclear<br />

polarization create large nonequilibrium nuclear magnetizations by taking<br />

advantage of <strong>th</strong>e coupling to unpaired electron spins. This talk will present<br />

a fundamentally different approach to very large nonequilibrium<br />

polarizations, which may be viewed as a coupling of nuclear spins to<br />

rotational population differences <strong>th</strong>rough chemical reaction.<br />

A consequence of <strong>th</strong>e symmetrization postulate of quantum mechanics is<br />

<strong>th</strong>at in molecules wi<strong>th</strong> equivalent nuclei <strong>th</strong>ere is a strict correlation between<br />

nuclear spin state and rotational state. In molecular hydrogen <strong>th</strong>e even<br />

rotational states have <strong>th</strong>e singlet nuclear spin wavefunction (para-H2) and<br />

may be prepared as a low-entropy room-temperature chemical reagent.<br />

Symmetry-breaking molecular addition of para-H2 results in highly J-<br />

ordered spin states in <strong>th</strong>e product molecule, which upon rf irradiation give<br />

rise to extremely large NMR signals.<br />

The apparatus1 built to perform such reactions in <strong>th</strong>e spectrometer will<br />

be described. Experimental results at ambient temperatures show<br />

enhancements of at least several hundred relative to equilibrium signals for<br />

products and intermediates of homogeneous hydrogenation catalysis.<br />

These results will be compared wi<strong>th</strong> <strong>th</strong>e predictions of <strong>th</strong>e density operator<br />

<strong>th</strong>eory of <strong>th</strong>is phenomenon2 modified to include relaxation effects.<br />

1. C.R. Bowers and D. P. Weitekamp, in preparation.<br />

2. C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986).


Thursday - AM<br />

ACTIVE SHIELD MAGNETS<br />

FOR MAGNETIC RESONANCE IMAGING<br />

David E. Andrews, Ph.D<br />

OXFORD SUPERCONDUCTING TECHNOLOGY<br />

600 Milik Street<br />

Carteret, New Jersey 07008<br />

Clinical installations of magnetic resonance imaging and spectroscopy<br />

systems must contend wi<strong>th</strong> <strong>th</strong>e interaction of <strong>th</strong>e magnet wi<strong>th</strong> its environment.<br />

In particular, <strong>th</strong>e fringe field of <strong>th</strong>e magnet can restrict choices of<br />

acceptable sites or require cumbersome and expensive steel shielding. A new<br />

class of magnets, termed Active Shield magnets, solve <strong>th</strong>is problem. Active<br />

Shield magnets consist of a novel solenoidal coil configuration which includes<br />

counter running currents to cancel <strong>th</strong>e fringe field. Design principles,<br />

performance specifications and economic considerations will be discussed.


Poster Session<br />

M<br />

2:00- 5:00<br />

Mondayj April 6j <strong>1987</strong>


o<br />

u<br />

i.Z<br />

o<br />

Kiln - Poster Session Layout<br />

WK8<br />

Flynn<br />

MK7<br />

Fesik<br />

WK6<br />

Fesik<br />

MK5<br />

Davis<br />

WK4<br />

Brown<br />

MK3<br />

Borgias<br />

WK2<br />

Bogusky<br />

MK1<br />

Baum<br />

MK9<br />

Takegoshi<br />

WKIO<br />

McLennan<br />

MK11<br />

Poulsen<br />

WK12<br />

Mlrau<br />

MK13<br />

Holak<br />

WK14<br />

Seranaen<br />

MK15<br />

Rooney<br />

WK16<br />

Hiyama<br />

Chalkboard<br />

WK24<br />

Surer<br />

MK23<br />

Sklenkar<br />

WK22<br />

Levlttl<br />

MK21<br />

WK,?.O<br />

Ziessow<br />

MK19<br />

Yu<br />

WK18<br />

Narula<br />

MK17<br />

Wang<br />

MK25<br />

Ackerman<br />

WK26<br />

Barker<br />

MK27<br />

Nelson<br />

WK28<br />

Brown<br />

MK29<br />

Darba<br />

WK30<br />

Grahn<br />

MK31<br />

Hoch<br />

WK32<br />

Johnson<br />

WK40 MK41<br />

Warren Bowers<br />

MK39 WK42<br />

Ohuchi Bodenhausen<br />

WK38 MK43<br />

Mao Boyd<br />

MK37 WK44<br />

Bermel Coxon<br />

WK36 MK45<br />

Tang Jue<br />

MK35 WK46<br />

Stephens Meyerhoff<br />

wK~ MK4Z<br />

Picart Pearson<br />

MK33 WK48<br />

Craig Rance


Firelight Forum - Poster Session Layout<br />

WF10<br />

Chu<br />

MF9<br />

Williamson<br />

WF8<br />

Pines<br />

MF7<br />

Eckert<br />

WF6<br />

Kay<br />

MF5<br />

Pekar<br />

WF4<br />

Lamb<br />

M_E_3_<br />

Gonen<br />

WF2<br />

LaMar<br />

MF1<br />

Allen<br />

MF11<br />

Be.shah<br />

WF12<br />

Bork<br />

MF13<br />

Bryant<br />

WF14<br />

Bryant<br />

MF15<br />

Carduner<br />

WF16<br />

Duncan<br />

MF 17<br />

Earl<br />

WF18<br />

Dec<br />

MF19<br />

Jiang<br />

WF20<br />

Jakobsen<br />

WF30<br />

Nissan<br />

MF29<br />

Merrill<br />

WF28<br />

Wind<br />

MF27<br />

Quinting<br />

WF26<br />

Limbach<br />

MF25<br />

Hill<br />

WF24<br />

Campbell<br />

MF23<br />

Gleason<br />

WF22<br />

Hartzell<br />

MF21<br />

Garbow<br />

MF31<br />

Oldfield<br />

WF32.<br />

Opella<br />

MF33<br />

Roberts<br />

WF34<br />

Simonsen<br />

MF35<br />

Stebbins<br />

WF36<br />

Vander-<br />

Hart<br />

MF37<br />

Williams<br />

WF38<br />

Lock<br />

MF39<br />

St6cklein<br />

WF40<br />

Jarvie<br />

Chalkboard I<br />

MF51<br />

Kopelevich<br />

MF49,~ WF52<br />

Ronemus Maple<br />

WF% =~<br />

Muir Jarret<br />

MF47[I WF54<br />

Nicholson IE]lOmlch<br />

WF46 N MF55<br />

Beshah Johnston<br />

MF45, H WF56<br />

Brandes Mattingly<br />

WF44 H MF'57<br />

Santini Bendall<br />

MF43H WF58<br />

Johnson Black-<br />

ledge<br />

w%<br />

Hornak Briggs<br />

MF41 I"1 WF60<br />

Behlingll Thoma<br />

Kormos Lowe<br />

MF0'IIW<br />

Keller He<strong>th</strong>erington<br />

James Mateescu<br />

Schmalo Karczmar<br />

brock<br />

Geoffrion Matsui<br />

MF6511WF76<br />

Garwood Metz<br />

v_E_~ I MF"<br />

Dumoulin Miller<br />

MF~IWF~8<br />

Dixon Saarinen<br />

WF62 H MF79<br />

Cockman Warren<br />

MF'IlIWF<br />

Brown, Szeverenyi<br />

Women's Rm Men's Rrn<br />

(J<br />

03<br />

P<br />

LL<br />

0<br />

o


MF01<br />

MF03<br />

MF05<br />

MF07<br />

MF09<br />

MFll<br />

MF13<br />

MF15<br />

MF17<br />

MF19<br />

MF21<br />

MF23<br />

MF25<br />

MF27<br />

MF29<br />

Presenter<br />

Allen, L.<br />

Gonen, O.<br />

Pekar, J.<br />

Eckert, H.<br />

Williamson, K. L.<br />

Beshah, K.<br />

Bryant, R. G.<br />

Carduner, K. R.<br />

Earl, W. L.<br />

Jiang, Y. J.<br />

Garbow, J. R.<br />

Poster Session<br />

Monday, April 6, <strong>1987</strong><br />

Title<br />

How NMR Studies of Supercritical Fluids<br />

NMR Spectroscopy Below 1K<br />

Multiple-Quantum Spectroscopy of Biological Sodium<br />

51V NMR: A New Probe of Metal Ion Binding in<br />

Metalloproteins<br />

NMR of Xenon Absorbed in Solid Polymers: A Probe<br />

of <strong>th</strong>e Amorphous State<br />

Tellurium- 125 and Cadmium-111 NMR Study of<br />

Bonding Properties of Cd(1.x)Zn(x)Te<br />

Semiconductors<br />

43Ca NMR In <strong>th</strong>e Solid State<br />

Phosphorus Poisoning of <strong>th</strong>e Auto Emissions Catalytic<br />

Converter Studied by 31p NMR<br />

A Double Quantum Filter for Rotating Solids and<br />

Some Observations on Labelling in Solids<br />

An Efficient Stator/Rotor Assembly for Magic Angle<br />

Spinning NMR<br />

Solid-State 13C and 15N NMR Studies of Crosslinking<br />

in Bacterial Cell Walls<br />

Gleason, K.K. NMR Investigations of Atomic Microstructure<br />

in Amorphous Semiconductors<br />

Hill, L. E.<br />

Quinting, G.<br />

Merrill, R. A.<br />

Cesium-133 Solid State NMR of Alkalides and<br />

Eleclrides<br />

Multinuclear Solid-State NMR Studies of Derivatized<br />

Silica Gels<br />

Magic Angle Spinning of Matrix Isolated Reactive<br />

Intermediates<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


MF31<br />

MF33<br />

MF35<br />

MF37<br />

MF39<br />

MF41<br />

MF43<br />

MF45<br />

MF47<br />

MF49<br />

MF51<br />

MF53<br />

MF55<br />

MF57<br />

Presenter<br />

Oldfield, E.<br />

Roberts, J. E.<br />

Stebbins, J. F.<br />

Williams, E. H.<br />

Sttcldein, W.<br />

Behling, R. W.<br />

Johnson, K.M.<br />

Brandes, R.<br />

Nicholson, L. K.<br />

Ronemus, A. D.<br />

Kopelevich, M.<br />

Jarret, R. M.<br />

Johnston, E. R.<br />

Bendall,. M. R.<br />

Title<br />

Second Observation of IH MASS NMR of Lipids and<br />

Membranes; and 170 Cross Polarization of<br />

Inorganic Solids<br />

Increased Resolution for Proton NMR<br />

Spectra of Solid Materials<br />

Relaxation Mechanisms and Effects of Motion in<br />

NaAISi308 Liquid and Glass: A High Temperature<br />

NMR Study<br />

A Unique Me<strong>th</strong>od for <strong>th</strong>e Quantitative Determination of<br />

Mixed Liquid and Solid Phases Using Solid-State<br />

NMR Techniques<br />

High Resolution DNP-NMR and Knight Shift<br />

Suppression in a One-Dimensional Charge<br />

Transfer Conductor<br />

Acetylcholine Receptor-Agonist Binding. Results<br />

from Selective Relaxation NMR Experiments<br />

Design and Use of a Pulse Shaper for High Resolution<br />

NMR<br />

The Use of D20 as a Molecular Probe in Determining<br />

DNA Solid State Packing<br />

Solid State NMR Studies of IsotopicaUy Labeled<br />

Gamicidin A in an Oriented Lipid Bilayer<br />

Solid State 2H NMR Studies of Biphenyl in <strong>th</strong>e 13-<br />

cyclodextrin Cla<strong>th</strong>rate Complex<br />

Ultra-High Resolution in IH Spectra at 500 MHz:<br />

Chlorine Isotope Effects<br />

Di-13C Labeling: A Means to Measure 12C-<br />

13C Isotopic Equilibria in <strong>th</strong>e 2-Norbornyl<br />

Cation<br />

Dynamic Parameters from Nonselectively Generated<br />

1D Exchange Speclra<br />

Calibrated Decoupling of Tightly-Coupled Concentric<br />

Surface Coils for In Vivo NMR<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


1MF59<br />

MF61<br />

MF63<br />

MF65<br />

MF67<br />

MF69<br />

MF71<br />

MF73<br />

MF75<br />

MF77<br />

MF79<br />

MK01<br />

MK03<br />

MK05<br />

MK07<br />

MK09<br />

MKll<br />

presenter<br />

Briggs, R. W.<br />

Brown, T. R.<br />

Dixon, T.<br />

Garwood, M.<br />

Schmalbrock, P.<br />

Keller, P. J.<br />

Lowe, I. J.<br />

Mateescu, G. D.<br />

Matsui, S.<br />

Miller, J. B.<br />

Warren, W. S.<br />

Title<br />

The Cone Coil - An RF Gradient Coil for Spatial<br />

Encoding Along <strong>th</strong>e B 0 Axis in Rotating Frame<br />

Imaging Experiments<br />

An Imaging Me<strong>th</strong>od of Shimming for Spectroscopy<br />

Non-Invasive Spin Labeling of Blood by Adiabatic<br />

Fast Passage<br />

NMR Imaging wi<strong>th</strong> Extremely Inhomogeneous B 1<br />

Fields<br />

Magnetic Resonance Imaging wi<strong>th</strong> Phase-Modulated<br />

Stored Waveforms<br />

Double Quantum Filtered NMR Imaging: Progress<br />

Toward Metabolite Specific Images<br />

A Design of Homogeneous Self-Shielding Gradient<br />

Coils<br />

Oxygen- 17 Magnetic Resonance Imaging (OMR.I)<br />

NMR Imaging Using Circular Signals in <strong>th</strong>e Spatial<br />

Frequency Domain<br />

NMR Imaging of Solids wi<strong>th</strong> a Surface Coil<br />

Imaging and In Vivo Spectroscopic Applications of<br />

Computer Optimized Pulse Sequences<br />

Baum, J. NMR Studies of ct-Lactalbumin: Char-<br />

acterization of a Partially Unfolded State<br />

Borgias, B. A.<br />

Davis, D. G.<br />

Fesik, S. W.<br />

Takegoshi, K.<br />

Poulsen, F. M.<br />

Oligonucleotide Structure Ref'mement Based on<br />

Quantitative 2DNOE Spectra<br />

Internuclear Distances and Correlation Times from<br />

Transverse and Longitudinal Cross-Relaxation<br />

Rates<br />

Improvements of <strong>th</strong>e 2-D Transferred NOE Experiment<br />

and Application in <strong>th</strong>e Conformational Analysis of<br />

Inhibitors Bound to CMP-KDO Syn<strong>th</strong>etase<br />

A 2D-Exchange Separated Local Field (EXSLF)<br />

Experiment<br />

The Structure of <strong>th</strong>e Subtilisin Inhibitor 2 from Barley<br />

Determined by 1H NMR Spectroscopy, Distance<br />

Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


MK13<br />

MK15<br />

MK17<br />

MK19<br />

MK21<br />

MK23<br />

MK25<br />

MK27<br />

MK29<br />

MK31<br />

MK33<br />

MK35<br />

MK37<br />

MK39<br />

MK41<br />

Presenter<br />

Holak, T. A.<br />

Rooney, W. D.<br />

Wang, C.<br />

Yu, C.<br />

Zuiderweg, E. R. P.<br />

Sklenkar, V.<br />

Ackerman, J. L.<br />

Nelson, S. J.<br />

Darba, P.<br />

Hoch, J. C.<br />

Craig, E. C.<br />

Stephens, R. L.<br />

Bermel, W.<br />

Ohuchi, M.<br />

Bowers, C. R.<br />

Title<br />

Geometry Calculations and Restrained Molecular<br />

Dynamics<br />

2-D NMR - Pseudoenergy Approach to <strong>th</strong>e Three-<br />

Dimensional Structure of Acyl Carrier Protein<br />

23Na MR-Invisibility in Living Systems: 2D<br />

Multiple Quantum NMR and Nutation Dimension<br />

Effects<br />

Structures of DNA Oligomers Determined by 2D NMR<br />

and Distance Geometry Techniques<br />

Sequential Individual IH NMR Resonance<br />

Assignments of Cardiotoxin HI from Formosan<br />

Cobra Venom<br />

Aspects of Protein Structure Determinations wi<strong>th</strong> NMR<br />

Water Suppression Techniques for <strong>th</strong>e Generation of<br />

Pure Phase Two-Dimensional NMR Spectra<br />

Optimization of Quantitative Performance of Spectral<br />

Analysis by Minimal Sampling<br />

Quantitation of 1-D Spectra wi<strong>th</strong> Low Signal to Noise<br />

Ratio<br />

ANALYS2D - Graphics Software for Processing and<br />

Analysis of 2D NMR Data<br />

Symmetry Recognition Applied to Two Dimensional<br />

1H NMR Spectra of Peptides and Proteins<br />

DISPA-Based Rapid Automated Phasing of FT-NMR<br />

Spectra<br />

Networking and Automation in <strong>th</strong>e High-Volume<br />

Laboratory<br />

Improvement of Inverse Correlation Experiments by<br />

Shaped Pulses<br />

A Partial Excitation Me<strong>th</strong>od in Two-Dimensional<br />

Nuclear Magnetic Resonance Spectroscopy Using<br />

a Tailored Pulse Having a Sinc Function Shape<br />

Parahydrogen and Syn<strong>th</strong>esis Allows Dramatically<br />

Enhanced Nuclear Alignment<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


0.* Presenter<br />

MK43 Boyd, J.<br />

MK45 Jue, T.<br />

MK47 Pearson, G. A.<br />

Mechanisms of Coherence Transfer in Liquids:<br />

Antiphase and Inphase Transfer<br />

Simultaneously Observing <strong>th</strong>e Homonuclcar and<br />

Hctcronuclear Edited Signals wi<strong>th</strong>out an X<br />

Nucleus Dccouplcr<br />

An Improved Chortle Pulse Sequence<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


MFI<br />

FLOW NMR STUDIES OF SUPERCRITICAL FLUIDS<br />

by<br />

L. Allen*, T. Glass, and H.C. Dorn<br />

Department of Chemistry<br />

Virginia Polytechnic Institute<br />

And State University<br />

B1acksburg, Virginia 24061<br />

PH (703) g61-5953<br />

Supercrltlcal (SC) fluids (e.g, CO 2) have become increasing important in<br />

chromatographic separations. The physical characteristics of <strong>th</strong>ese dense<br />

gases (e.g., hlgh density and low viscosity) a11ow studies of different<br />

dynamic flow patterns. That is, It is readily possible to vary pressure,<br />

temperature, and flow rates for SC fluids, <strong>th</strong>ereby, allowing studies of flow<br />

patterns ranging from laminar to turbulent flow. In addition, previous<br />

studies in our laboratory I allow accurate ma<strong>th</strong>ematical modeling of a given<br />

flow pattern provtded <strong>th</strong>at spin lattice relaxation (T1) data is known. To<br />

<strong>th</strong>is end, we have also developed techniques for conveniently measuring (T1'2)<br />

tn flowing liquids.<br />

It should also be noted <strong>th</strong>at supercritical fluids are potentially useful<br />

for studying quadrupolar nuclei (e.g., 14N and 170) and significant<br />

enhancements in resolution are feasible. That Is, <strong>th</strong>e lower viscosities of SC<br />

fluids (and corresponding change in correlation times, FC) reduce <strong>th</strong>e<br />

efficiency of quadrupolar relaxation as recently reported 2.<br />

In <strong>th</strong>is presentation, we wlll report 200 MHz IHNMR data (including T 1<br />

relaxation times) for several compounds in flowing supercritical liquids.<br />

Also various SC flow patterns will be presented and compared wi<strong>th</strong> normal<br />

liquid results.<br />

1. James F. Haw, Ph.D. Thesis, Virginia Tech, (1982).<br />

2. Robert, J.M.; Evtlta, R.F.J. Am. Chem. Soc. (1984), 107,<br />

3733.


MF3- POSTERS<br />

NMR SPECTROSCOPY BELOW 1K<br />

Oded Gonen*, P. Kuhns, P. C. Hammel and J. S. Waugh<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

Cambridge, Massachusetts 02139<br />

L. Boltzmann tells us <strong>th</strong>at large (>104 ) gains in NMR sensitivity can be<br />

obtained by lowering <strong>th</strong>e temperature to ~YbBo/k, a few millikelvin. We will<br />

present a selection of results obtained in pursuit of <strong>th</strong>is goal, to illustrate<br />

<strong>th</strong>e following points:<br />

>T1, previously expected to be astronomically large, is quite acceptably<br />

short in powdered samples immersed in liquid 3He.<br />

>Signals are indeed large: sometimes nearly a volt directly from <strong>th</strong>e<br />

probe. Monolayers of adsorbed species give strong spectra in a single shot.<br />

mometer.<br />

>The shape of <strong>th</strong>e spectrum provides a convenient self-calibrating <strong>th</strong>er-<br />

>The usual FT relation between <strong>th</strong>e FID and <strong>th</strong>e spectrum is modified at<br />

low temperatures.<br />

>Spin-spin relaxation is sometimes anomalously slow.


MF5<br />

]dULTIPI, E-QUANT1JN SPECTROSCOPY OF BIOLOGICAL SODIUM<br />

James pelutr" tad John S. Leigh. Jr.<br />

Department of" Biochemistry and Biophysics<br />

University of Pennsylvania<br />

Philadelphia, Pennsylvania 19104-6089<br />

In many systems of biological interest, <strong>th</strong>e transverse relaxation of sodium-23 is<br />

<strong>th</strong>e sum of (at least) two expontatiab. Biexponential relaxation occurs when<br />

interactions between <strong>th</strong>e nuclear electric qusdrupole moment and fluctuating electric<br />

field gradients at sodium binding sites cause <strong>th</strong>e "outer" (m - i3/2 ~ m -~1/2)<br />

trtasitions of <strong>th</strong>e spin-3/2 sodium-23 nucleus to relax fester <strong>th</strong>an <strong>th</strong>e "central"<br />

( m--1/2 +. re-I/2) transition. Ve have demonstrated <strong>th</strong>at biexponentially-relszed<br />

sodium can be pessased <strong>th</strong>rough a state of deuble-qutatum coherence by • double-<br />

qutatum filter (1). The filter places <strong>th</strong>e two relaxation components in antiphsse, tad<br />

yields • signal proportional to <strong>th</strong>e difference between <strong>th</strong>e two components at <strong>th</strong>e end of<br />

<strong>th</strong>e filter preparation time.<br />

For on-resontace biexponen<strong>th</strong>dly-relaxed sodium in an isotropic environment.<br />

<strong>th</strong>e detected signals for single 90" pulses tad <strong>th</strong>e phase-cycled INADEQUATE double-<br />

quantum filter ( 90" -T/2 - 180" - X/2 - qO" - 8 - 90" - acquire) are. respectively:<br />

s(t)me-pus.e" MO (1/5) (3 exp(-t/T~) ,2 exp(-t/T2.)) Ill<br />

s(t)liltm,ed - M 0 (3/20) (ezp(-~/T2f) - exp(-~/T28)) exp(-SdqS)<br />

• (exp(-t/T2f) - exp(-t/Tas)) 12]<br />

Here T2f is <strong>th</strong>e "fast" T 2 of <strong>th</strong>e "outer" transitions. Tax is <strong>th</strong>e "siov" T 2 of <strong>th</strong>e "central"<br />

transition. Sdq is <strong>th</strong>e transverse relaxation rue of rtak-two deuble-qutatum coherence.<br />

ud ld 0 is <strong>th</strong>e equilibrium longitudinal sns41netization.<br />

Because <strong>th</strong>e coherence-trtasi'er experiment is sensitive to differences, ra<strong>th</strong>er<br />

<strong>th</strong>an sums, of <strong>th</strong>e biexpenential decay, it allows more accurate measurement of<br />

relaxation rates, Indeed. by varying <strong>th</strong>e Utter preparation time. <strong>th</strong>e relaxation rate of<br />

<strong>th</strong>e "outer" transitions can be indirectly measured (1) even if <strong>th</strong>eir decay is fsuter <strong>th</strong>an<br />

<strong>th</strong>e spectrometer deadtimeT<br />

Multiple-qutatum ~ may alloy non-invMive discrimination among pools of<br />

sodium in different physiological compartments. In • laboratory cell suspension, where<br />

only <strong>th</strong>e intrsceUuhtr sodium relaxed biexponentislly, we have recently demonstrated<br />

selective detection of intrscelluiar sodium wi<strong>th</strong> • double-qutatum filter (2). In more<br />

complex biologics, systems, <strong>th</strong>e technique of two-dimensional multiple-qutatum<br />

spectroscopy promises to aid in elucidating bo<strong>th</strong> <strong>th</strong>e distribution of sodium among<br />

dilTerent physiological compartments, and <strong>th</strong>e nature of <strong>th</strong>e spin Hamiltenian in each.<br />

by highlighting any static qusdrupoiar splittings or dynamic frequency shifts (3).<br />

Finally, application to o<strong>th</strong>er biologically important spin-3/2 nuclei is possible.<br />

1. j. pek~ and J. S. Leigh. Jr.. J. ~n. Rosen. 69.'582 (1986).<br />

2. J. pekar. P. F. Rtash.v. and J. S. Leigh, Jr., J. ~n. Rosen., In Press. <strong>1987</strong>.<br />

3. G. Jscard. S. Wimperis, tad G. Bodenhausen, J. Chem. Phys. 85.~2S2 (1986).


MF7<br />

slV NMR: A NEW PROBE OF METAL ION BINDING<br />

IN METALLOPROTEINS<br />

Alison Butler~ Michael Danz|tz~ and Hel]mut Eckert*<br />

Department o[ Chemistry, University o[ CalJ[ornia at Santa Barbara and Division o[<br />

Chem~try and ChemJca/EnE/neering, Ca~/ornia/nstitute o[ TechnoloEy<br />

High detection sensitivity due to a large magnetic moment, high natural abun-<br />

dance (99.76 ~) and rapid quadrupolar relaxation in solution render 5iV one of <strong>th</strong>e<br />

most favorable nuclei for NIVIR studies. In addition, <strong>th</strong>e 51V NMR chemical shifts are<br />

extremely sensitive to changes in <strong>th</strong>e nature and <strong>th</strong>e symmetry of <strong>th</strong>e ligand coor-<br />

dination, <strong>th</strong>ereby providing an excellent diagnostic tool for detailed investigations of<br />

vanadium(V) bonding environments. However, in spite of <strong>th</strong>ese advantageous features<br />

and <strong>th</strong>e fact <strong>th</strong>at vanadium is widely recognized as a biologically important element,<br />

no 51V NMR data relating to vanadium bound to proteins have been published in<br />

<strong>th</strong>e literature. In <strong>th</strong>is poster, we report <strong>th</strong>e first 5]V NMR study of a V(V)-protein<br />

complex: V(V) 2-human transferrin.<br />

The 11.7T 51V NMR spectrum of a solution containing 2 equivalents of vanadate<br />

per protein is characterized by two partly resolved resonances at -529.5 and -531.5<br />

ppm (vs. VOCI3) wi<strong>th</strong> a total linewid<strong>th</strong> of 420 Hz. Linewid<strong>th</strong>s and chemical shifts are<br />

independent of concentration (range 10 -4 to 10-3M), pH (5-9), nature of <strong>th</strong>e buffer<br />

solution, and <strong>th</strong>e presence of excess free vanadate. On <strong>th</strong>is basis we assign <strong>th</strong>ese reso-<br />

nances to protein-bound vanadium which is present in two chemically distinct binding<br />

sites and which is in <strong>th</strong>e limit of slow metal ion exchange on <strong>th</strong>e NMR timescale (2.5,<br />

10 -4 s). Absolute intensity measurements indicate <strong>th</strong>at <strong>th</strong>e protein-bound vanadium<br />

is in <strong>th</strong>e slow-motion limit (wrc >> I), and <strong>th</strong>at only <strong>th</strong>e central (1/2 --* -1/2) tran-<br />

sition is observed. In consonance wi<strong>th</strong> <strong>th</strong>is interpretation, measurements at different<br />

magnetic field streng<strong>th</strong>s reveal <strong>th</strong>e presence of second-order frequency shifts. Several<br />

examples of <strong>th</strong>e use of 51V NMR to monitor chemical modifications at <strong>th</strong>e binding<br />

site of V(V)2-human transferrin are discussed.


MF9<br />

NMR OF XENON ABSORBED IN SOLID POLYMERS<br />

A PROBE OF THE AMORPHOUS STATE<br />

Thomas R. Stengle<br />

Dept. of Chemistry, Univ. of Massachusetts, Amherst, MA 01003<br />

Kenne<strong>th</strong> L. Williamson*<br />

Dept. of Chemistry, Mount Holyoke College, So. Hadley, MA 01075<br />

Gaseous xenon is readily taken up into <strong>th</strong>e amorphous regions of<br />

solid polymers. In <strong>th</strong>is state <strong>th</strong>e 12eXe spectrum can be easily<br />

obtained. In earlier work we have shown <strong>th</strong>at <strong>th</strong>e 120Xe resonance<br />

is exceptionally sensitive to <strong>th</strong>e nature of its surroundings,<br />

and <strong>th</strong>at it can be used to probe <strong>th</strong>e structure of liquids and<br />

lipid bilayers.1 Here we report on its application to <strong>th</strong>e<br />

amorphous regions of solid polymers. When contained wi<strong>th</strong>in low<br />

density polye<strong>th</strong>ylene, <strong>th</strong>e chemical shift of xenon is ca. 200<br />

ppm downfield from <strong>th</strong>e pure gas. The NMR lines are broad, and<br />

<strong>th</strong>eir shape is especially sensitive to <strong>th</strong>e surrounding<br />

structure. In particular, <strong>th</strong>e glass transition of polye<strong>th</strong>yl-<br />

me<strong>th</strong>acrylate is clearly observed by its effect on bo<strong>th</strong> chemical<br />

shift and lineshape of <strong>th</strong>e xenon signal. The application of<br />

xenon NMR to several polymers will be discussed.<br />

IK. W. Miller, N.V. Reo, A. J. M. Schoot Uiterkamp, D. P.<br />

Stengle, T. R. Stengle and K. L. Wlliamson, Proc. Natl. Acad.<br />

Sci. USA, 78, 4946 (1981).


MF11<br />

TELLURI~-I~5 AND CADMIUM-Ill NMR STUDY OF BONDING PROPERTIES<br />

OF Cd(l-x)Zn(x)Te SEMICONDUCTORS<br />

K. Beshah, D. Zamir, P. Beola, P. A. Wolff, R. G. Griffin<br />

G<br />

Francis Bitter National Magnet Laboratory<br />

Massachusetts Institute of Technology<br />

Cambridge. MA 02139<br />

The ternary alloy Cd(1-x)Zn(x)Te has a zinc blend structure<br />

whose properties are dependent on <strong>th</strong>e relative composition x.<br />

Even<strong>th</strong>ough elaborate <strong>th</strong>eoretical calculations have been done on<br />

<strong>th</strong>ese materials,experimental verifications are scarce. Recently<br />

EXAFS has been used to verify <strong>th</strong>e bimodal distribution of bond<br />

leng<strong>th</strong>s in similar alloys. X-Ray diffraction teohnlque averages<br />

over many unit cells which makes it difficult to probe looallzed<br />

properties.<br />

We have applied solid state NMR techniques to determine<br />

first, second, and <strong>th</strong>ird nearest neighbors effect on tellurium<br />

and o~Imium nuclei from analysis of chemical shifts and linewid<strong>th</strong>s<br />

of <strong>th</strong>e NMR spectra for various compositions, x. From <strong>th</strong>ese results<br />

we were able to draw conclusions about charge transfer between<br />

various atoms,<strong>th</strong>e relation between change in bond leng<strong>th</strong> and<br />

chemical shift as a function of x. and existence of clustering.<br />

The later was determined by comparing intensities of experimental<br />

data to <strong>th</strong>eoretically calculated spectra assuming random<br />

distribution.


MF13<br />

4=Ca NMR In The Solid State<br />

S. D. Kennedy, S. Swanson, S. Ganapa<strong>th</strong>y, R. G. Bryant<br />

Department of Biophysics, University of Rocheste~<br />

Rochester, New York 14642<br />

Calcium ion like o<strong>th</strong>er group IIA metals has a significant<br />

nuclear electric quadrupole moment <strong>th</strong>at limits <strong>th</strong>e resolution<br />

possible in solution phase NMR. The poor resolution becomes<br />

Norse when <strong>th</strong>e ion interacts wi<strong>th</strong> large ligands such as<br />

proteins which provide a large increase in <strong>th</strong>e correlation<br />

time for <strong>th</strong>e line broadening interactions. The dynamical<br />

broadening may be defeated in <strong>th</strong>e solid, but o<strong>th</strong>er broadening<br />

interactions remain <strong>th</strong>at may be defeated by application of<br />

<strong>th</strong>e appropriate rf fields. The price is signal to noise~<br />

since in such odd integral spin spectra narrowed by strong<br />

proton decoupling and rapid sample rotation at <strong>th</strong>e magic<br />

angle, <strong>th</strong>e central transition is observed, but usually not<br />

<strong>th</strong>e o<strong>th</strong>ers. The signal to noise may be improved<br />

significantly by exploiting magnetization transfer from <strong>th</strong>e<br />

protons. Since <strong>th</strong>e ratio of <strong>th</strong>e magnetogyric ratios is<br />

14.86, <strong>th</strong>e ma>:imum gain is significant. We have observed CP-<br />

MASS spectra of 4=Ca and found <strong>th</strong>at not only is <strong>th</strong>e<br />

e~:periment possible, but <strong>th</strong>e spectra obtained hold promise<br />

for excellent resolution among different calcium sites. This<br />

poster presents representative CP-MASS calcium spectra, and<br />

<strong>th</strong>e conditions required to obtain <strong>th</strong>em. Since <strong>th</strong>e contact<br />

times required for maximum signal are long, and <strong>th</strong>e effective<br />

gain in <strong>th</strong>e signal streng<strong>th</strong> for <strong>th</strong>e rare spin may be severely<br />

limited by <strong>th</strong>e decay of <strong>th</strong>e proton magnetization in <strong>th</strong>e<br />

rotating frame.


MF15<br />

PHOSPHORUS POISONING OF THE AUTO EMISSIONS<br />

CATALYTIC CONVERTER STUDIED BY 3xp NMR<br />

K. R. Carduner* and R. O. Carter III<br />

Research Staff, Ford Motor Company, Dearborn, Michigan 48121<br />

ABSTRACT<br />

Magic Angle Spinning 31p NNR spectroscopy is an informative<br />

technique for <strong>th</strong>e identification of solid state phosphates. The<br />

technique is applied to study <strong>th</strong>e extent and chemistry of<br />

phosphorus poisoning of <strong>th</strong>e <strong>th</strong>ree-way catalytic converter (TWC)<br />

used to control auto emissions. Al<strong>th</strong>ough it is well-known <strong>th</strong>at<br />

<strong>th</strong>e source of phosphous is zinc dialklydi<strong>th</strong>iophosphate (ZDPT) oil<br />

additive, <strong>th</strong>e chemistry of catalysts deactivation is only<br />

incompletely understood and, as reveiled by <strong>th</strong>e NMR, apparently<br />

quite complex. NNR of bo<strong>th</strong> used and fresh catalysts indicates<br />

<strong>th</strong>at phosphorus is extraneous to <strong>th</strong>e fresh catalyst and associated<br />

wi<strong>th</strong> <strong>th</strong>e reduced catalytic activity of <strong>th</strong>e aged converter. At<br />

least <strong>th</strong>ree different types of phosphorus compounds are observed<br />

and identified by <strong>th</strong>e parameters of <strong>th</strong>e isotropic chemical shift<br />

and chemical shift anisotropy as derived from <strong>th</strong>e envelope of<br />

spinning sidebands. An overview of isotropic chemical shifts and<br />

chemical shift anisotropies of condensed phosphates is also<br />

presented.<br />

daytime phone 313-337-5454


MFI7<br />

A DOUBLE QUANTUM FILTER FOR ROTATING SOLIDS<br />

AND SOME OBSERVATIONS ON LABELLING IN SOLIDS<br />

William L. Earl" and Beat H. Meier t<br />

Los Alamos National Laboratory<br />

Mail Stop C345<br />

Los Alamos, New Mexico 87545<br />

For several years we have been investigating <strong>th</strong>e use of 13C labelling in solid samples.<br />

In our studies of multiple quantum coherence in solids, it occurred to us <strong>th</strong>at it would<br />

be interesting to use a solid state equivalent of <strong>th</strong>e INADEQUATE experiment to trace<br />

carbon connectivities. The difficulty wi<strong>th</strong> <strong>th</strong>is experiment is <strong>th</strong>at <strong>th</strong>e dipole coupling,<br />

used to generate <strong>th</strong>e double quantum coherence, changes sign upon sample rotation. Last<br />

year we demonstrated a pulse sequence which will generate and detect multiple quantum<br />

coherences in <strong>th</strong>e proton NMR of adamantane wi<strong>th</strong> MAS. The logical extension of <strong>th</strong>at<br />

experiment is a double quantum filter for 13C NMR of a rotating solid.<br />

We will demonstrate <strong>th</strong>e pulse sequence for such a double quantum filter. Since such a<br />

filter selects for resonances wi<strong>th</strong> a homonuchar dipole coupling, we run into <strong>th</strong>e problem<br />

of commutation of <strong>th</strong>e dipole coupling tensor wi<strong>th</strong> <strong>th</strong>e chemical shift tensor, a problem<br />

<strong>th</strong>at has been addressed by Maricq and Waugh 1. We will show several 13C spectra which<br />

demonstrate distortions in <strong>th</strong>e NMR spectrum as a function of <strong>th</strong>e extent of overlap of <strong>th</strong>e<br />

shift tensors of <strong>th</strong>e dipolar coupled resonances.<br />

1. M.M. Maricq and J.S. Waugh, J. Chem. Phys. 70, 3300 (1979).<br />

t Present Address: Laboratorium ffr Physikalische Chemie, ETH-Zentrum, 8092 Zfirich,<br />

Switzerland.


MFI9<br />

AN EFFICIENT STATOR/ROTOR ASSEMBLY<br />

FOR MAGIC ANGLE SPINNING I~R<br />

by<br />

Yt Jtn Jtang .1, Warner R. Woolfenden 1, Donald W. Alderman 1,<br />

Charles L. Rayne 1, Rona]d J. Pugmire 2, and David M. Grant 1<br />

(1) Department of Chemistry<br />

(2) Department of Fuels Engineering<br />

University of Utah<br />

Salt Lake City, Utah ~I12<br />

ABSTRACT<br />

A newlydesigned stator assembly for cylindrical spinners used in<br />

magic angle spinning nuclear magnetic resonance experiments is<br />

described. Separate driving and bearing gas chambers allow variable<br />

and stable spinning speeds and <strong>th</strong>ts design permits easy starting and<br />

stopping of <strong>th</strong>e rotor. Isolation of <strong>th</strong>e chambers is achieved wi<strong>th</strong> <strong>th</strong>e<br />

application of pressure screws ra<strong>th</strong>er <strong>th</strong>an o-rings or glue lines to<br />

avoid leakage at htgh gas pressures. The overall dimensions are opti-<br />

mal to facilitate easy assembly. Some significant modifications have<br />

been made to an earlter spinner design. These improvements gtve<br />

better efficiency and concentricity of <strong>th</strong>e spinner. Applications are<br />

illustrated wi<strong>th</strong> carbon-13 CP/MAS spectra carried out at different<br />

rotor spinning rates.


MF21<br />

SOLID-STATE 13C AND 15N NMR STUDIES OF CROSSLINKING IN<br />

BACTERIAL CELL WALLS<br />

Joel R. Garbow*<br />

Life Sciences NMR Center<br />

Monsanto Company<br />

St. Louis, 140 63198.<br />

Jacob Schaefer<br />

Department of Chemistry<br />

Washington University<br />

St. Louis, 140 63130.<br />

The cell walls of many Gram-positive bacteria are composed of glycan<br />

backbones wi<strong>th</strong> attached short peptide stems. Crosslinks can form<br />

between amino acids on adjacent peptide stems, contributing to <strong>th</strong>e<br />

structural integrity of <strong>th</strong>e cell wall; We are using cross-polarization<br />

magic-angle spinning 13C and 15N NMR to measure <strong>th</strong>e extent and mobility<br />

of peptidoglycan crosslinks in <strong>th</strong>e cell wall of <strong>th</strong>e bacterium Aerococcus<br />

viridans. In lyophillzed samples, we use double cross-polarization<br />

NMR,a technique which detects quantitatively 13C-15N chemical bonds,<br />

to observe directly <strong>th</strong>e crosslink. Motions of <strong>th</strong>e protein backbone<br />

and of <strong>th</strong>e crosslink site in bo<strong>th</strong> lyophilized and wet-cell samples<br />

are measured <strong>th</strong>rough measurements of NH dipolar and 15N chemical-shift<br />

tensors.<br />

The partial collapse of dipolar and chemical-shift tensors for peptide<br />

NH and for <strong>th</strong>e amide NH at cell-wall crossllnk sites, of intact lyophi-<br />

lized A. vlrldans cells, indicate NH-vector root-mean-square angular<br />

fluctuations of 23 °. This result is consistent wi<strong>th</strong> <strong>th</strong>e local mobility<br />

calculated in typical psec-regime computer simulations of protein<br />

dynamics in <strong>th</strong>e solid state. The experimental root-mean-square angular<br />

fluctuations for bo<strong>th</strong> types of NH vectors increase to 37 ° for viable<br />

wet cells at I0 ° C. The similarity in mobilities for bo<strong>th</strong> general<br />

protein and cell-wall peptidoglycan suggests <strong>th</strong>at <strong>th</strong>e additional motion<br />

in wet cells does not involve independent local motions of individual<br />

cell components.


MF23 - POSTERS<br />

NMR INVESTIGATIONS OF ATOMIC MICROSTRUCTURE<br />

IN AMORPHOUS SEMICONDUCTORS<br />

Q<br />

Karen K. Gleason , Mark A. Petrich, and Jeffrey A. Reimer,<br />

.Department of Chemical Engineering, University of California,<br />

Berkeley, CA 94720-9989.<br />

The microstructure of amorphous semiconductors has important<br />

implications for <strong>th</strong>eir electronic properties. Nuclear magnetic<br />

resonance (NMR) can examine <strong>th</strong>e microstructure of <strong>th</strong>ese materials<br />

on an atomic scale. Previous NMR results have indicated <strong>th</strong>at <strong>th</strong>e<br />

hydrogen in <strong>th</strong>ese materials exists bo<strong>th</strong> as isolated hydrogen atoms<br />

and as clusters of hydrogen. Using Multiple Quantum NMR, a<br />

technique which is able to "count" <strong>th</strong>e number of hydrogen atoms in a<br />

cluster, we have studied <strong>th</strong>e effects of deposition temperature,<br />

dopant atoms, and annealing on <strong>th</strong>e clustering of hydrogen in<br />

amorphous silicon. Our results indicate <strong>th</strong>at electronic device<br />

quality amorphous silicon films contain small clusters of<br />

approximately six hydrogen atoms, while nondevice quality films<br />

contain larger hydrogen atom clusters. We have also extended <strong>th</strong>e<br />

multiple quantum NMR technique to study a series of amorphous<br />

silicon carbide alloys, systematically varied in carbon content. We<br />

have found <strong>th</strong>at small amounts of carbon decrease <strong>th</strong>e total hydrogen<br />

content of <strong>th</strong>e alloy, but increase hydrogen clustering. Carbon-13<br />

and silicon-29 magic-angle spinning NMR spectra, taken wi<strong>th</strong> and<br />

wi<strong>th</strong>out proton decoupling, allow us to probe local bonding<br />

configurations. These studies have shown <strong>th</strong>at bo<strong>th</strong> sp 2 and sp 3<br />

carbon bonding environments are important in <strong>th</strong>ese materials. It is<br />

especially interesting <strong>th</strong>at nearly all <strong>th</strong>e hydrogenated carbon are<br />

in <strong>th</strong>e sp 3 bonding configuration.<br />

By comparing our NMR results wi<strong>th</strong> data from o<strong>th</strong>er analytical<br />

techniques such as infrared and optical absorption spectroscopy,<br />

Ru<strong>th</strong>erford backscattering, and conductivity measurements, we hope<br />

to elucidate <strong>th</strong>e relationships between deposition chemistry, atomic<br />

microstructure, and optoelectronic properties of <strong>th</strong>is<br />

technologically important class of materials.<br />

Supported by NSF grant DMR-8304163.


MF23<br />

CESIUM-133 SOLID STATE NMR OF ALKALIDES AND ELECTRIDES<br />

Lauren E. Hill," Steven B. Dawes and James L. Dye, Department of<br />

Chemistry, Michigan State University, East Lansing, HI 48824<br />

Alkalldes and electrldes are crystalline salts In which metal<br />

cations are complexed wi<strong>th</strong> cyclic polye<strong>th</strong>ers or polyamines and <strong>th</strong>e<br />

resultant anions are ei<strong>th</strong>er alkali metal anions or trapped electrons.<br />

Solid state NMR spectroscopy has been extremely useful as a means of<br />

Identlfying a particular compound and as a probe of <strong>th</strong>e types of<br />

interactions between an ion and its environment. For example, NMR<br />

data in combination wi<strong>th</strong> structural data on Cs (18C6)2.e" may be used<br />

to better understand <strong>th</strong>e nature of <strong>th</strong>e trapped electron. The<br />

temperature dependence gives <strong>th</strong>e contact density of <strong>th</strong>e cesium<br />

nucleus. A s~udy of <strong>th</strong>e mixed alkalide-electride salt<br />

Cs (18C6)^.Na e. revealed spectra which consisted of five lines, two<br />

of which are ~ue To Cs (.8C6) 2 In <strong>th</strong>e pure sodide (-61 ppm) and in <strong>th</strong>e<br />

pure electrlde (+73 ppm). The o<strong>th</strong>er <strong>th</strong>ree peaks are evenly spaced<br />

between <strong>th</strong>~ electrlde peak a~d sodlde posltions. Since <strong>th</strong>e structures<br />

of bo<strong>th</strong> Cs (18C6)~-e and Cs (18C6)2.Na are known, a superlattice<br />

which includes ~raered substitution of sodium anions into anionic<br />

sites in <strong>th</strong>e Cs (18C6)p.e- lattice has been postulated$ Ano<strong>th</strong>er<br />

example of <strong>th</strong>e utility-of NMR me<strong>th</strong>ods is <strong>th</strong>e ceside CS C222.Cs- in<br />

which <strong>th</strong>e NMR spectrum consists of two peaks_whlch have been assigned<br />

to an inclusive and exclusive cation. No Cs peak has been observed.<br />

The system probably contains a mixture of crystallltes, one type<br />

having inclusive complexed cations, <strong>th</strong>e o<strong>th</strong>er exclusive complexed<br />

cations. The absence of a Cs signal can be rationalized from <strong>th</strong>e<br />

structure of <strong>th</strong>ls ceside. These are some examples of how NMR<br />

spectroscopy in conjunction wi<strong>th</strong> x-ray crystallography can be used to<br />

investigate <strong>th</strong>e nature of <strong>th</strong>ese compounds.


MF27<br />

MULTINUCLEAR SOLID-STATE NMR STUDIES OF DERIVATIZED SILICA GELS<br />

Robert Zeigler, Greg Quinting, Charle~ E. Bronnimann<br />

and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Ft. Collins, CO 80523<br />

Solid-state NMR has been demonstrated to be an extremely powerful<br />

technique for probing <strong>th</strong>e structure and dynamics of molecules bound to a<br />

solid surface (1,2). IH, 15N, 29Si and 13C CP/MAS spectra will be pre-<br />

sented for silica gels derivatized wi<strong>th</strong> APTS (aminopropyltrie<strong>th</strong>oxysi-<br />

lane). 13C, 15N, IH (CRAMPS) spectra provide evidence regarding <strong>th</strong>e<br />

nature of <strong>th</strong>e interaction between <strong>th</strong>e amine group of APTS-derivatized<br />

silica gels and <strong>th</strong>e silica gel surface.<br />

13C and 29Si NMR techniques have been used to explore <strong>th</strong>e conforma-<br />

tions and dynamics of dime<strong>th</strong>yloctadecylchlorosilane(C18)-modified silica<br />

gel. The effects of bo<strong>th</strong> C18 surface concentration and <strong>th</strong>e presence of<br />

solvents on <strong>th</strong>e C18 chain dynamics have been explored using TCH and<br />

dipolar dephasing experiments.<br />

IH CRAMPS, 29Si and 13C NMR are being used to study <strong>th</strong>e nature<br />

of <strong>th</strong>e silica surface and silica silylation. Several different species<br />

of protons have been observed on <strong>th</strong>e silica surface and a variety of<br />

instrumental and chemical techniques are being used to characterize <strong>th</strong>e<br />

silica surface.<br />

References<br />

1. Solid State NMR Studies of Aminopropyltrie<strong>th</strong>oxysilane Modified Silica;<br />

G.S. Caravajal, D.E. Leyden, G.E. Maciel, p. 283 in Silanes, Surfaces,<br />

and Interfaces Symposium, D.E. Leyden (ed.) Gordon and Breach Science<br />

Publ. (1986).<br />

2. NMR Studies of cl~-Derivatized Silica Systems; G.E. Maciel, R.C.<br />

Zeigler, R.K. TaTt, p. 413 in Silanes, Surfaces, and Interfaces<br />

Symposium, D.E. Leyden (ed.) Gordon and Breach Science Publ. (1986).


MF29<br />

MAGIC ANGLE SPINNING OF MATRIX ISOLATED REACTIVE INTERMEDIATES<br />

Kurt W. Zilm, Ronald A. Merrill , Marc M. Greenburg, and Jerome A. Berson<br />

Department of Chemistry, Yale University, P.O. Box 66~6<br />

New Haven, Corm 06511<br />

Isolation in inert gas matrices or rigid glasses is widely<br />

"recognized as an invaluable tool for direct spectroscopic investigation<br />

of reactive intermediates. CP/MAS NMR has proven to be a most powerful<br />

technique for studying <strong>th</strong>e structure of amorphous and polycrysta~llne<br />

solids. However, until now combining MAS technology wi<strong>th</strong> matrix<br />

isolation techniques for <strong>th</strong>e study of ground state slnglet reactive<br />

intermediates by NMR has proven to be problematic.<br />

We have developed a CP/MAS probe deslgn which allows rapid transfer<br />

and subsequent magic angle spinning of sealed 5 mm NMR tubes while<br />

maintaining <strong>th</strong>e samples temperature at 77 K. The MAS turbine design is<br />

similar to <strong>th</strong>at reported by Gay in 1984, except <strong>th</strong>at <strong>th</strong>e sample tube<br />

extends 3 cm below <strong>th</strong>e turbine. The maximum spinning rate obtained wi<strong>th</strong><br />

our current implementation of <strong>th</strong>is design is 3 kHz. The spinning is very<br />

stable and remarkably forgiving of imbalances in <strong>th</strong>e tube, bo<strong>th</strong> at <strong>th</strong>e<br />

sample end and at <strong>th</strong>e seal. The unique aspect of <strong>th</strong>is probe design is<br />

<strong>th</strong>e use of separate gas supplies for cooling and spinning <strong>th</strong>e sample.<br />

Unlike previous low temperature MAS designs, <strong>th</strong>is MAS probe allows rapid<br />

transfer of samples prepared outside <strong>th</strong>e probe into <strong>th</strong>e precooled probe<br />

wi<strong>th</strong>out warming <strong>th</strong>e sample or exposing it to <strong>th</strong>e atmosphere. Wi<strong>th</strong> a<br />

probe of <strong>th</strong>is design one can employ typical photochemical or pyrolytic<br />

gas phase deposition techniques for preparing intermediates. Virtually<br />

any ground state slnglet species which can be prepared and is long lived<br />

at 77 K, can now be investigated by CP/MAS NMR.<br />

Using <strong>th</strong>is probe design we have observed <strong>th</strong>e first C-13 CP/HAS NHR<br />

spectrum of a matrix isolated reactive intermediate. The species is <strong>th</strong>e<br />

singlet biradical 3,4-dlme<strong>th</strong>ylenefuran which gives a single resonance at<br />

100ppm relative to TMS for <strong>th</strong>e me<strong>th</strong>ylene carbons. The biradical, which<br />

is deep purple, was prepared by photolysis of <strong>th</strong>e corresponding C-13<br />

labeled(98% at bo<strong>th</strong> me<strong>th</strong>ylene carbons) azo precursor at 77 K in a 2-MTHF<br />

glass. After photolysis <strong>th</strong>e decrease in <strong>th</strong>e intensity of <strong>th</strong>e precursor<br />

peak at 58ppm agrees well wi<strong>th</strong> intensity of <strong>th</strong>e new resonance at 100ppm.<br />

Conclusive assignment of <strong>th</strong>is llne to <strong>th</strong>e biradical can be made on <strong>th</strong>e<br />

basis of <strong>th</strong>is observation, photobleachlng, and chemical trapping<br />

experiments. The presence of <strong>th</strong>e NMIR signal demonstrates directly and<br />

unambiguously <strong>th</strong>e singlet nature of <strong>th</strong>e biradical. Applications to o<strong>th</strong>er<br />

reactive species will also be presented.


MF31<br />

SECOND OBSERVATION OF IH MASS NMR OF LIPIDS AND MEMBRANES;<br />

AND 170 CROSS POLARIZATION OF INORGANIC SOLIDS<br />

by<br />

Eric O1dfleld,* John Bowers, Jeff Forbes ,. Cyn<strong>th</strong>la Husted,<br />

Thomas H. Walter and Xi Shan<br />

University of llllnois at Urbana-Champalgn, 505 Sou<strong>th</strong> Ma<strong>th</strong>ews Avenue,<br />

Urbana, Illlnols 61801, USA<br />

We have obtained very high resolution solid-state IH MASS NMR<br />

spectra of unsonicated liquid crystalline lipid bilayers, and selected<br />

biological membranes (e.g. rod outer sesments). Resolution is as good<br />

as wi<strong>th</strong> sonlcated, single bllayer vesicles. T1s , linewid<strong>th</strong>s, order<br />

parameters and 2D experiments wlll be presented. A typical 2D (NOESY)<br />

experiment on DMPC(I, 2-dimyrlstoyl-sn-glycero-B-phosphocholine) is shown<br />

below, on <strong>th</strong>e left:<br />

• • 4' "q<br />

"'° ~ °<br />

]p, ,. ~,o<br />

~:',. •<br />

| 4 | | 1<br />

PPM FROM TM$<br />

Drug binding and o<strong>th</strong>er studies, will also be outlined.<br />

--I<br />

~mzo<br />

We have also investigated 170 cross polarization in a variety of<br />

inorganic solids. The type of resolution of overlapping second-order<br />

quadrupolar broadened powder patterns achievable in complex inorganic<br />

solids is illustrated by <strong>th</strong>e static and CP results on talc shown above,<br />

on <strong>th</strong>e right.<br />

-an<br />

m


MF33 - POSTERS<br />

INCREASED RESOLUTION FOR PROTON NMR SPECTRA OF SOLID MATERIALS<br />

Thomas G. Neiss and James E. Roberts<br />

Department of Chemistry #6<br />

Lehigh University<br />

Be<strong>th</strong>lehem, PA 18015<br />

Sophisticated multiple-pulse techniques must be used to<br />

obtain "high resolution" proton spectra of most solid<br />

materials, or a single broad peak is observed as a consequence<br />

of <strong>th</strong>e large homonuclear couplings of <strong>th</strong>e proton reservoir.<br />

When Magic Angle Sample Spinning (MASS) is included wi<strong>th</strong> <strong>th</strong>e<br />

multiple-pulse experiment, <strong>th</strong>e typical proton peak wid<strong>th</strong> is<br />

still between 1 and 2 ppm. When several isotropic chemical<br />

shifts are present, <strong>th</strong>e resulting spectrum is often not<br />

interpretable due to significant spectral overlap. Two more<br />

complicated experiments are available for increasing <strong>th</strong>e<br />

resolution obtained in proton NMR spectra of solid materials.<br />

Two-dimensional heteronuclear chemical shift correlation<br />

NMR has been applied to liquids to connect <strong>th</strong>e proton and<br />

carbon chemical shifts <strong>th</strong>rough J couplings. The J couplings<br />

in solids are usually not resolved. However, wi<strong>th</strong> appropriate<br />

implementation during MASS, <strong>th</strong>e 2-D experiment correlates <strong>th</strong>e<br />

proton and carbon chemical shifts, yielding better overall<br />

resolution in <strong>th</strong>e proton dimension, even <strong>th</strong>ough <strong>th</strong>e proton<br />

linewid<strong>th</strong>s are still 1 to 2 ppm.<br />

An alternative to <strong>th</strong>e full two dimensional technique<br />

utilizes selective coherence transfer to observe only specific<br />

spin systems in a one-dimensional experiment. The selective<br />

coherence transfer occurs <strong>th</strong>rough <strong>th</strong>e strong heteronuclear<br />

dipolar interaction between bonded spins, so some protons are<br />

not readily observed wi<strong>th</strong> <strong>th</strong>is technique. The gain in proton<br />

spectrum resolution is comparable to <strong>th</strong>at obtained wi<strong>th</strong><br />

two-dimensional chemical shift correlation, but data<br />

accumulation and processing takes less time. Al<strong>th</strong>ough several<br />

1-D selective experiments might be needed to fully<br />

characterize a molecule, it is still a viable approach in many<br />

situations.<br />

Acknowledgement is made to <strong>th</strong>e donors of <strong>th</strong>e Petroleum<br />

Research Fund for partial support of <strong>th</strong>is work. Supported by<br />

NSF-Solid State Chemistry program grant # DMR-8553275.<br />

Additional support <strong>th</strong>rough <strong>th</strong>e Presidential Young Investigator<br />

program was obtained from Cambridge Isotope Laboratories; Dory<br />

Scientific; General Electric Corporate Research and<br />

Development; General Electric NMR Instruments; IBM<br />

Instruments; Merck, Sharp and Dohme; and Monsanto Company.


MF35<br />

RELAXATION MECHANISMS AND EFFECTS OF MOTION IN NaAISi30 s<br />

LIQUID AND GLASS: A HIGH TEMPERATURE NMR STUDY.<br />

S.-B. Liu, A. Pines (Dept. of Chemistry, University of California,<br />

Berkeley, CA 94720)<br />

*J. F. Stebbins (Dept. of Geology, Stanford University, Stanford, CA 94305)<br />

The dynamics of atomic or "molecular" motion in molten silicates are poorly known<br />

"but are of central importance in <strong>th</strong>e understanding of bo<strong>th</strong> <strong>th</strong>e <strong>th</strong>ermodynamic and tran-<br />

sport properties of <strong>th</strong>ese complex materials. Despite severe technical problems, l~%,I~R<br />

spectroscopy on <strong>th</strong>e liquids <strong>th</strong>emselves is potentially a very powerful and perhaps unique<br />

tool for studying <strong>th</strong>ese dynamics. NMR lineshape mad relaxation time studies of 23Na<br />

and ~Si at temperatures as high as 1200°C have begun to reveal <strong>th</strong>e details of <strong>th</strong>is mo-<br />

tion, and in particular <strong>th</strong>e local dynamical cause of <strong>th</strong>e macroscopic glass transition.<br />

For NaA1Si30 s (corresponding to <strong>th</strong>e mineral albite), all 23Na T 1 data from 600 to<br />

1200°C are above <strong>th</strong>e minimum, indicating <strong>th</strong>e relative high mobility of <strong>th</strong>is "network<br />

modifying" cation. The dominant spin-lattice relaxation mechanism is found to be qua-<br />

drupolar interaction which arises from <strong>th</strong>e sodium ion diffusion. The activation energy is<br />

71-1-3 k J/tool, in close agreement wi<strong>th</strong> <strong>th</strong>e results of electrical conductivity and Na tracer<br />

diffusion data. The correlation time of <strong>th</strong>e Na motion is estimated to be about 8.5x10-11s<br />

at 1100°C. Relatively minor anomalies in T 1 and T 2 for 23Na are seen at <strong>th</strong>e bulk glass<br />

transition temperature, indicating <strong>th</strong>at above T s, some Na motion is correlated wi<strong>th</strong><br />

structural motion of <strong>th</strong>e silicate framework.<br />

In contrast, all T 1 data for 2gSi in <strong>th</strong>e same temperature range are below <strong>th</strong>e<br />

minimum, because of <strong>th</strong>e relative immobility of <strong>th</strong>is "network former". Most<br />

significantly, dramatic changes in <strong>th</strong>e ~Si T 1 slope, and in <strong>th</strong>e relaxation mechanism,<br />

occur at <strong>th</strong>e bulk glass transition temperature, indicating a ra<strong>th</strong>er abrupt increase in <strong>th</strong>e<br />

extent of structural motion at <strong>th</strong>e same point where abrupt changes in <strong>th</strong>ermodynamic<br />

properties occur. Bo<strong>th</strong> dipole-dipole interactions and <strong>th</strong>e chemical shift anisotropy<br />

known from crystals and glasses contribute to <strong>th</strong>e 2QSi spin-lattice relaxation above <strong>th</strong>e<br />

glass transition, but are insufficient to completely account for <strong>th</strong>e observed T 1 values.<br />

Relaxation may <strong>th</strong>erefore involve short lived distortions of <strong>th</strong>e structure which cause<br />

temporary excursions in chemical shift several times greater <strong>th</strong>an <strong>th</strong>ose which can be<br />

quenched into <strong>th</strong>e glass.


MF37<br />

A Unique Me<strong>th</strong>od for <strong>th</strong>e Quantitative Determination of Mixed Liquid<br />

and Solid Phases Using Solid-State NMR Techniques<br />

Evan H. Williams<br />

Varian Associates, 611 Hansen Way, Palo Alto, California 94303<br />

Many apparently solid materials axe, in fact, mixtures of bo<strong>th</strong> solid and liquid<br />

phase components. It is not easy to investigate <strong>th</strong>e morphology of such systems,<br />

particularly in a non-invasivc way. NMR provides such a means for bo<strong>th</strong> solid and<br />

liquid phases, but suffers from a lack of a readily acccssiblc, absolute quantitation.<br />

An NMR technique has been developed <strong>th</strong>at overcomes <strong>th</strong>is problem, allowing<br />

simultaneous observation of bo<strong>th</strong> phases in a manner <strong>th</strong>at allows quantitation. Among<br />

o<strong>th</strong>er possibilities, use of spectral editing allows <strong>th</strong>e separation of <strong>th</strong>e two phases into<br />

separate subspectra. Such subspectra allow <strong>th</strong>e observation of adsorption in <strong>th</strong>e<br />

presence of excess material in a quantitative way. Ano<strong>th</strong>er use of <strong>th</strong>e technique has<br />

been found in <strong>th</strong>e investigation of <strong>th</strong>e kinetics of curing of network polymers 1.<br />

A detailed description of <strong>th</strong>e me<strong>th</strong>odology and its application to a number of<br />

representative systems will be presented.<br />

1p.E.M. Allen, etal, Eur. Polym. J., 22. 549, (1986).


MF39<br />

HIGH RESOLUTION DNP-NMR AND KNIGHT SHIFt SUPPRESSION IN A<br />

ONE DIMENSIONAL CHARGE TRANSFER CONDUCTOR<br />

R. D. Kendrick, H. Seidel? a, D. A. Singel, TM<br />

W. StOcklein, lc* and C. S. Yannoni<br />

IBM Almaden Research Center, San Jose, CA<br />

Over <strong>th</strong>e last few years, a wide variety of magnetic resonance experiments have been<br />

performed on a new class of charge transfer complexes which exhibit high one-dimensional<br />

conductivity (~100 (~2 cm)'l). 2 Since <strong>th</strong>e linewid<strong>th</strong> of <strong>th</strong>e ESR due to <strong>th</strong>e conducting spins<br />

is extremely narrow (~10 milligauss at 9 GHz), proton Overhauser enhancements as high<br />

as 525 have been achieved in <strong>th</strong>is material. 2a<br />

We report here a 13C NMR study of <strong>th</strong>e fluoran<strong>th</strong>enyl (FA) radical cation salt (FA):PF 6.<br />

Using a 60 MHz DNP spectrometer based on a Fabry-.Perot cavity? we have been able to<br />

observe signals from as few as 1016 carbon-13 nuclei in a single scan at room temperature.<br />

The Knight shift of <strong>th</strong>e 13C spins 2c depends on <strong>th</strong>e difference in population between<br />

electron Zeeman levels: <strong>th</strong>us, by saturating <strong>th</strong>e ESR line, we have been able to suppress <strong>th</strong>e<br />

Knight shift. A study of <strong>th</strong>e power dependence of <strong>th</strong>is suppression permits correlation of<br />

<strong>th</strong>e Knight and chemical shifts.<br />

The ramifications of a variety of o<strong>th</strong>er interactions such as <strong>th</strong>e shift of <strong>th</strong>e ESR line due<br />

to saturation wi<strong>th</strong> microwaves (Overhauser shift 2a) or to <strong>th</strong>e proton and fluorine<br />

decoupling fields (Bloch-Siegert shift) will be discussed.<br />

_ --'4-<br />

m -- 2<br />

(FA) 2PF 6<br />

PF 6"<br />

1. Current address: (a) Physics Department, Stuttgart University; b) Chemistry<br />

Department, Harvard University; (c) Physics Department, Bayreu<strong>th</strong> University.<br />

2. (a) W. St0cklein and G. Derminger, Mol. Cryst. Liq. Cryst. 136, 335 (1986) and<br />

references <strong>th</strong>erein; (b) H. Brunner, K. H. Hausser, H. J. Keller and D. Schweitzer,<br />

Solid State Comm. 51,107 (1984); (c) M. Mehring, M. Helmle, D. KOngeter, G. G.<br />

Maresch and S. Demu<strong>th</strong>, Proc. of <strong>th</strong>e Intl. Conf. on Syn<strong>th</strong>etic Metals, ICSM86, Kyoto,<br />

Japan, 1986 (to be published in Syn<strong>th</strong>etic Metals).<br />

3. R.D. Kendrick, H. Seidel, D. A. Singel and C. S. Yannoni (to be published).


MF41<br />

ACETYLCHOLINE RECEPTOR --AGONIST BINDING.<br />

RESULTS FROM SELECTIVE RELAXATION NMR EXPERIMENTS.<br />

Ronald W. Behling °, Tetsuo Yarnane, Gil Navon t,<br />

Michael J. Samrnon, and Lynn W. Jelinski<br />

AT~T Bell Laboratories Murray Hill, New Jersey 07974<br />

t Tel-Aviv University, Israel<br />

Selective proton NMR relaxation mea-~urements were used wi<strong>th</strong> nicotine<br />

titrations to obtain relative binding constants for nicotine, acetylcholine,<br />

muscarine, and carbamylcholine binding to purified acetylcholine receptors from<br />

Torpedo californica. The results show (1) <strong>th</strong>at <strong>th</strong>e binding constants are in <strong>th</strong>e<br />

order acetylcholine > nicotine > carbamyl choline > muscarine; (2) <strong>th</strong>at<br />

selective and non-selective NMR measurements provide a rapid and direct<br />

me<strong>th</strong>od for monitoring bo<strong>th</strong> <strong>th</strong>e specific and non-specific binding of agonists to<br />

<strong>th</strong>ese receptors; (3) <strong>th</strong>at a-bungarotoxin can be used to distinguish between<br />

specific and non-specific binding to <strong>th</strong>e receptor; (4) <strong>th</strong>at <strong>th</strong>e receptor-substrate<br />

interaction produces a large change in <strong>th</strong>e selective relaxation time of <strong>th</strong>e<br />

agonists even at concentrations 100x greater <strong>th</strong>an <strong>th</strong>at of <strong>th</strong>e receptor. This<br />

latter observation means <strong>th</strong>at <strong>th</strong>ese measurements provide a rapid way to<br />

measure drug binding when only small amounts of receptor are available, and<br />

<strong>th</strong>at <strong>th</strong>ey may be useful for determining <strong>th</strong>e conformation of <strong>th</strong>e small ligand in<br />

its bound state.


MF43<br />

DESIGN AND USE OF A PULSE SHAPER FOR HIGH RESOLUTION NMR.<br />

Kermit M. Johnson* and Klaas Hallenga<br />

Michigan State University, Department of Chemistry<br />

East Lansing, MI 48824<br />

Al<strong>th</strong>ough <strong>th</strong>e use of tailored excitation in high resolution NMR has<br />

been suggested on several occasions, <strong>th</strong>e me<strong>th</strong>od has been used only<br />

sporadically due to <strong>th</strong>e poor performance of existing circuitry.<br />

The solution of <strong>th</strong>e Bloch equations for perfect frequency<br />

selective inversion by Hoult et al (I) and <strong>th</strong>e possibility of computer<br />

designed highly selective excitation makes it desirable to have pulse<br />

shaping capability routinely available.<br />

We have implemented a flexible pulse shaping circuit on our<br />

spectrometer (Bruker WM-250 wi<strong>th</strong> Aspect 2000) which will deliver<br />

amplitude and phase modulated pulses. The device uses two IK x 12 bit<br />

buffers feeding two identical 12 bit D/A converters. The rate at<br />

which <strong>th</strong>e waveform is read out of <strong>th</strong>e buffers is controlled by a<br />

variable frequency clock.<br />

The outputs of <strong>th</strong>e DAC's control separately <strong>th</strong>e amplitudes of<br />

quadrature radio-frequency signals which are recombined to form a<br />

shaped pulse which may <strong>th</strong>us vary in bo<strong>th</strong> amplitude and phase.<br />

Additionally, <strong>th</strong>is circuit could be easily modified to perform phase<br />

shifting of <strong>th</strong>e rf pulse after <strong>th</strong>e me<strong>th</strong>od of Sears (2). The device is<br />

easily loadable under computer control wi<strong>th</strong> any desired waveform.<br />

Finally, no spectrometer hardware or software modifications were<br />

required to use <strong>th</strong>e pulse shaper.<br />

Details of <strong>th</strong>e circuitry, test results, and some applications to<br />

ID and 2D NMR experiments will be demonstrated.<br />

(I) M. S. Silver, R. I. Joseph and D. I. Hoult, J. Magn. Res. 59, 347<br />

(198~).<br />

(2) R. E. J. Sears, Rev. Sci. Instrum. 55, 1716 (1984).<br />

a


MF45<br />

THE USE OF D=O AS A MOLECULAR PROBE<br />

IN DETERMINING DNA SOLID STATE PACKING<br />

Rolf Brandes,* David R. Kearns, and Allan Rupprecht7<br />

Department of Chemistry, University of California-San Diego,<br />

La JoUa, CA 92093, rArrhenius Laboratory of Physical<br />

Chemistry, University of Stockholm, Stockholm, Sweden<br />

We have used high resolution =H NMR of DzO to monitor <strong>th</strong>e packing of<br />

hydrated DNA molecules in solids prepared from solution by <strong>th</strong>ree different<br />

me<strong>th</strong>ods: lyophilization, alow evaporation of <strong>th</strong>e water, and wetspinning in alcohol<br />

which produces uniaxially oriented DNA. The two latter me<strong>th</strong>ods resulted in <strong>th</strong>in<br />

films of DNA, which were also broken up to obtain macroscopically isotropic sam-<br />

pies. These five samples all showed different spectral shapes wi<strong>th</strong> different spin-<br />

spin relaxation times Tz,.<br />

Wi<strong>th</strong> lyophilized DNA, <strong>th</strong>e spectral shape can most reasonably be interpreted<br />

in terms of isotropic packing. The evaporation me<strong>th</strong>od produces spectra which are<br />

consistent wi<strong>th</strong> a spontaneous cholesteric ordering of <strong>th</strong>e DNA. The order is<br />

macroscopic, wi<strong>th</strong> <strong>th</strong>e pitch axis perpendicular to <strong>th</strong>e plane onto which <strong>th</strong>e DNA<br />

dried. Even when macroscopic order is not obtained, spin-spin relaxation experi-<br />

ments can be used to determine if <strong>th</strong>e sample consists of local domains wi<strong>th</strong><br />

cholesteric or uniaxial ordering of DNA molecules. For <strong>th</strong>e case of <strong>th</strong>e uniaxially<br />

oriented DNA prepared by wetspinning, a 2-dimensional technique is used to<br />

separate <strong>th</strong>e contributions to <strong>th</strong>e linewid<strong>th</strong> arising from DNA static disorder, mag-<br />

netic inJaomogeneities, and spin-spin relaxation. This separation enables an upper<br />

estimate of <strong>th</strong>e fiber disorder if a Gaussian distribution of <strong>th</strong>e helix axes is<br />

assumed wi<strong>th</strong> a standard deviation of ,,-12 " ^<br />

IBD-NMR spectrum of uniazially oriented DNA.


MF47<br />

SOLID STATE NMR STUDIES OF ISOTOPICALLY LABELED GAMICIDIN A<br />

IN AN ORIENTED LIPID BILAYER<br />

L.K. Nicholson*, F. Moll III, P.V. Ix)Grasso, C.A. Guy, T.A. Cross<br />

Department of Chemistry<br />

and<br />

Institute of Molecular Biophysics<br />

Florida State University, Tallahassee, FI. 32306-3006<br />

2H and ISN isotopic labels have been incorporated into <strong>th</strong>e linear<br />

polypeptide, Gramicidin A by a variety of techniques including bio-<br />

syn<strong>th</strong>esis, chemical peptide syn<strong>th</strong>esis and exchange. The labeled<br />

Gramicidins have been incorporated into lipid bilayers where a dimer<br />

of <strong>th</strong>e polypeptide forms a monovalent cation selective channel across <strong>th</strong>e<br />

syn<strong>th</strong>etic membrane. Some of <strong>th</strong>e samples have been oriented such <strong>th</strong>at<br />

<strong>th</strong>e channel axis is parallel wi<strong>th</strong> <strong>th</strong>e magnetic field. The samples have<br />

been characterized by circular dichroism, differential scanning<br />

calorimetry and NMR.<br />

Solid state NMR experiments are being used to elucidate an atomic<br />

resolution image of bo<strong>th</strong> <strong>th</strong>e dynamics and structure of <strong>th</strong>e channel.<br />

Interpretation of <strong>th</strong>e high resolution spectra of oriented samples has<br />

provided bond orientations wi<strong>th</strong> respect to <strong>th</strong>e channel axis. Analysis<br />

of powder patterns has provided data for <strong>th</strong>e large amplitude motions<br />

of <strong>th</strong>e polypeptide backbone.


MF49<br />

Solid State 2H NMR Studies of Biphenyl in <strong>th</strong>e l~-Cyclodextrin Cla<strong>th</strong>rate Complex<br />

Alan D. Ronemus*, Robert L. Void and Regitze R. Void<br />

Depamnent of Chemistry B-O14, University of California at San Diego, La JoUa, CA 92093<br />

Cyclodexu'ins are cyclic oligosaccharides comprised of D-glucose units connected by alpha-l,4-<br />

glycoside linkages, forming a hydrophobic cavity which readily binds a variety of guest molecules to<br />

make inclusion eomplexesJ The nature of guest motion in such complexes is of interest because<br />

cyclodextrins have been utilized as enzyme models and as stabilizing agents for pharmaceuticals,<br />

pesticides, flavors, and essences. Biphenyl should form a channel cla<strong>th</strong>rate wi<strong>th</strong> I]-cyclodextrin, which is<br />

of particular interest as <strong>th</strong>e guest motion may resemble processes in <strong>th</strong>e core region of <strong>th</strong>ermotropic<br />

liquid crystals. Previous studies of <strong>th</strong>e dynamics of guests in cyclodextrin cla<strong>th</strong>rates in solution have used<br />

EPR spin probes, 2 and high resolution l~'oton and lSC NMR? '4 while in <strong>th</strong>e solid state lSC CP-MAS 5 and<br />

static 2I-I NMR 6 have been employed.<br />

Solid state static 2H NMR is particularly well suited to <strong>th</strong>e study of motional dynamics as powder<br />

lineshapes are sensitive to motional processes wi<strong>th</strong> rates in <strong>th</strong>e range of 103-107 s "-1. Fur<strong>th</strong>er, <strong>th</strong>e<br />

quadrupolar interaction dominates to <strong>th</strong>e extent <strong>th</strong>at o<strong>th</strong>er interactions generally may be neglected, while<br />

being small enough as to be experimentally and <strong>th</strong>eoretically tractable.<br />

In order to obtain undistorted lineshapes it is necessary to use <strong>th</strong>e quadrupolar echo sequence. 7 A<br />

program has been developed to simulate spectra from quadrupolar echoes, including <strong>th</strong>e effects of<br />

exchange during <strong>th</strong>e delays and prises for several independent motional processes and finite pulse leng<strong>th</strong>,<br />

allowing <strong>th</strong>e determination of motional parameters for appropriate models, s<br />

Solid state 2I-I NMR powder spectra of 4,4"-d2-biphenyl and biphenyl-dl0 in ~-cyclodexlrin have<br />

been obtained over <strong>th</strong>e temperature range from 103 to 303 K at several echo delay times. The lineshape<br />

is strongly dependent on temperature over <strong>th</strong>e range measured, approaching <strong>th</strong>e fast motion limit at 303<br />

K and <strong>th</strong>e rigid limit at 103 K. The stx~tra may be interpreted in terms of two independent motional<br />

processes: libration of <strong>th</strong>e long axis of <strong>th</strong>e molecule over a restricted range of angles, and hopping of <strong>th</strong>e<br />

rings in <strong>th</strong>e four well internal torsional potential wi<strong>th</strong> two different barrier heights. 9 Rotation about <strong>th</strong>e<br />

long axis appears to be severely hindered as it occurs at rates no greater <strong>th</strong>an 100 s -~ at 303 K. The<br />

libration was modeled as all-site jumps on uniform geodesics wi<strong>th</strong> various grid spacings to approximate<br />

motion in a cone of half-angle 27.5 degrees. It was found <strong>th</strong>at a minimum of nineteen sites was required<br />

to reproduce <strong>th</strong>e experimental lineshapes for <strong>th</strong>e para-deuterated complex, wi<strong>th</strong> rates ranging from 1 ×<br />

103 s -~ at 103 K to 4 x 106 s -~ at 303 K. The internal hop was modeled as a four site nearest neighbor<br />

jumping process wi<strong>th</strong> different rates to each neighbor. The inter-ring torsion angle of 39 degrees agrees<br />

wi<strong>th</strong> <strong>th</strong>e angle determined in <strong>th</strong>e vapor phase 1° and in solution? l and wi<strong>th</strong> <strong>th</strong>eoretical calculations? At<br />

303 K <strong>th</strong>e fast rate was 4 x 107 s -1 while <strong>th</strong>e slow rate was 4 x l0 s s -l. Fur<strong>th</strong>er simulations are in<br />

progress to define <strong>th</strong>e motional parameters across <strong>th</strong>e entire range of temperatures studied. Single-crystal<br />

rotation spectra of biphenyl-d~0~-cyclodextrin have been produced which indicate <strong>th</strong>at <strong>th</strong>e structure is of<br />

<strong>th</strong>e "screw-channel" type.<br />

1. J. Szejtli, "Cyclodextrins and Their Inclusion Complexes," Akademiai Kaido, Budapest, 1982.<br />

2. K. Flohr, R. M. Patton and E. T. Kaiser, J. Am. Chem. Soc. 97, 1209 (1975).<br />

3. J. P. Behr and J. M. Lehn, J. Am. Chem. Soc. 98, 1743 (1976).<br />

4. R. J. Bergeron and M. A. Channing, J. Am. Chem. Soc. 101, 2511 (1979).<br />

5. H. Ueda and T. Nagai, Chem. Pharm. Bull. 29, 2710 (1981).<br />

6. L. D. Hall and T. K. Lira, J. Am. Chem. Soc. 106, 1858 (1984).<br />

7. J. H. Davis, K. R. Jeffrey, M. Bloom, M. I. Valic and T. P. Higgs, Chem. Phys. Len. 42, 390 (1976).<br />

8. M. Greenfield, A. Ronemus, R. L. Void, R. R. Void, P. Ellis and T. Raidy, J. Magn. Reson., 70 (1986).<br />

9. G. Haefelinger and C Regelmann, J. Comput. Chem. 6, 368 (1985).<br />

10. O. Bastiansen and S. Samdal, J. Mol. Struct. 128, 115 (1985).<br />

11. M. Barret and D. Steele, J. Mol. Struct. 11, 105 (1972).


!<br />

1.7<br />

MF51<br />

ULTRA-HIGH RESOLUTION IN IH SPECTRA AT $00 MHZ:<br />

CHLORINE ISOTOPE EFFECTS<br />

Frank A. L. Anet and Max Kopelevich*<br />

Department of Chemistry and Biochemistry<br />

University of California, Los Angeles<br />

Los Angeles, CA 90024<br />

We have observed chlorine isotope effects on <strong>th</strong>e IH nuclear shielding in chloroform<br />

and me<strong>th</strong>ylene chloride. These effects are on <strong>th</strong>e order of 0.2 ppb and are readily detectable<br />

at high fields (11.4"13 provided some care is taken in sample preparation and in optimizing<br />

field homogenuity. Application of Lorentzian-Gaussian resolution enhancement allows<br />

baseline separation of <strong>th</strong>e resonance lines wi<strong>th</strong> areas corresponding to statistical weights of<br />

<strong>th</strong>e various C135/C137 isotopic combinations, as shown below. This appears to be <strong>th</strong>e first<br />

example of chlorine isotope effects on IH shifts.<br />

We are currently undertaking studies of isotope effects in o<strong>th</strong>er halogenated<br />

me<strong>th</strong>anes, exploring <strong>th</strong>e solvent dependence of <strong>th</strong>ese effects, as well as looking into different<br />

means of obtaining ultra-high resolution spectra.<br />

' '5 ' ' ' ' '0 ' , , i<br />

HERTZ<br />

500 MHz IH{D} spectrum of 2% CHDCI 2 in CD2CI 2. Ratios of <strong>th</strong>e areas are approximately<br />

9:6:1.


MF53 - POSTERS<br />

DI-13C-LABELING: A MEANS TO MEASURE 12C-13C<br />

ISOTOPIC EQUILIBRIA IN 2-NORBORNYL CATION.<br />

Ronald M. Jarret*, Department of Chemistry, College of <strong>th</strong>e<br />

Holy Cross, Worcester, MA 01610.<br />

Martin Saunders, Department of Chemistry, Yale University,<br />

New Haven, CT 06511.<br />

2,3-Di-13C-norborn-2-yl chloride was prepared and<br />

ionized (wi<strong>th</strong> SbF 5) to 2-norbornyl cation. In solution<br />

at -65°C, rapid rearrangements occur which completely<br />

scramble <strong>th</strong>e 13C-labels. The proton-decoupled cmr<br />

spectrum (62.7 MHz) contains <strong>th</strong>ree signals: C-4, C-I,2,6<br />

(averaged), and C-3,5,7 (averaged). The 13C-labels are<br />

<strong>th</strong>us equilibrated over non-equivalent sites wi<strong>th</strong>in<br />

2-norbornyl cation. This 12C-13C equilibrium isotope<br />

effect alters <strong>th</strong>e proportion of di-13C-labeled isomers<br />

from statistical values. The non-statistical isotopic<br />

isomer population is manifested as an asymmetric<br />

multiplet for <strong>th</strong>e averaged C-3,5,7 peak in <strong>th</strong>e cmr<br />

spectrum. The relatively sharp lines of <strong>th</strong>e multiplet<br />

can be reproduced wi<strong>th</strong>in ± 0.i ppm, wi<strong>th</strong> isotopic<br />

equilibrium constants of K-3,5,7 = 1.010 t 0.005 and<br />

K-I,2,6 = 1.039 t 0.005.<br />

71<br />

6<br />

4 8<br />

CI(H)<br />

H(CI)


MF55<br />

DYNAMIC PARAMETERS FROM NONSELECTIVELY GENERATED ID EXCHANGE SPECTRA<br />

Charles G. Wade, Mark O'Neil-Johnson, and Eric R. Johnston<br />

IBM Instruments, Inc.<br />

40 Airport Parkway<br />

San Jose, California 95110<br />

We propose an experimentally and computationally simple me<strong>th</strong>od<br />

for <strong>th</strong>e direct measurement of <strong>th</strong>e elements of <strong>th</strong>e relaxation matrix<br />

R which characterize dynamics in spin systems. The usual 2D exchange<br />

pulse sequence (90 ° ) - t I - (90 ° ) - t m - (90o ) - t2(obs) is used,<br />

wi<strong>th</strong> appropriate phase cycling for <strong>th</strong>e cancellation of single quantum<br />

and higher-order coherence during t m. For a system of N spins we<br />

record spectra wi<strong>th</strong> and wi<strong>th</strong>out mixing for N arbitrarily chosen values<br />

of t I. This affords N 2 measureable intensities from which <strong>th</strong>e N 2<br />

elements of e -~tm can be generated and from which R itself can <strong>th</strong>en<br />

be calculated wi<strong>th</strong> a back-transformation me<strong>th</strong>od.<br />

The utility of <strong>th</strong>e me<strong>th</strong>od lies in <strong>th</strong>e ease and speed wi<strong>th</strong> which<br />

<strong>th</strong>e experimental data are generated. Only nonselective transmitter<br />

pulses are required so <strong>th</strong>e me<strong>th</strong>od is easier to implement <strong>th</strong>an o<strong>th</strong>er<br />

schemes which employ DANTE or decoupler inversion pulses to perturb<br />

<strong>th</strong>e spin system prior to mixing. Time-consuming 2D data acquisition<br />

and processing are similarly avoided. The me<strong>th</strong>od will be illustrated<br />

wi<strong>th</strong> applications to multisite and scalar-coupled spin systems.


MF57<br />

CALIBRATED DECOUPLING OF TIGHTLY-COUPLED CONCENTRIC SURFACE<br />

COILS FOR IN VIVO NMR<br />

M. Robin Bendall<br />

Experimental work carried out at Varian Fremont Operations, CA,<br />

whilst on leave from Griffi<strong>th</strong> University, Na<strong>th</strong>an, Qld., Australia<br />

A considerable research effort has been expended on localization<br />

me<strong>th</strong>ods for in vivo spectroscopy <strong>th</strong>at depend on using rf coils<br />

such as surface coils which provide inhomogeneous rf fields. The<br />

most complete means of signal localization utilize rf pulses (eg<br />

dep<strong>th</strong> pulses) from two coils and <strong>th</strong>is general technique requires<br />

an active me<strong>th</strong>od for detuning each coil during <strong>th</strong>e rf pulses<br />

from <strong>th</strong>e o<strong>th</strong>er coil.<br />

Recently we described <strong>th</strong>e successful implementation of an active<br />

detuning scheme which depends on <strong>th</strong>e use of I/4 cables to block<br />

rf current in a coil (I). Here we will provide fur<strong>th</strong>er experi-<br />

mental details of <strong>th</strong>is me<strong>th</strong>od and compare it experimentally to<br />

<strong>th</strong>ree o<strong>th</strong>er me<strong>th</strong>ods of active detuning.<br />

A new finding of particular importance is <strong>th</strong>e discovery <strong>th</strong>at not<br />

only can we completely detune a transmitter coil so <strong>th</strong>at it has<br />

no effect on <strong>th</strong>e rf field of a neighbouring coil, but by offsett-<br />

ing <strong>th</strong>e detuning of <strong>th</strong>e coil, a calibrated fraction of <strong>th</strong>e rf<br />

field of <strong>th</strong>e detuned coil can be added to or subtracted from <strong>th</strong>e<br />

rf field of <strong>th</strong>e neighbouring coil. This principle is general and<br />

should be applicable to any active detuning me<strong>th</strong>od which relies<br />

on <strong>th</strong>e introduction of a second circuit resonance at <strong>th</strong>e frequen-<br />

cy of interest, as for <strong>th</strong>e four schemes tested. This principle<br />

allows <strong>th</strong>e shape of <strong>th</strong>e rf field of one coil to be modified in a<br />

calibrated fashion by <strong>th</strong>e second coil. The use of two transmitter<br />

coils for signal localization depends on <strong>th</strong>e two coils having<br />

markedly different rf fields, and <strong>th</strong>is difference can obviously<br />

be increased by subtraction of a fraction of <strong>th</strong>e rf field of one<br />

coil from <strong>th</strong>e second. Experimental details of <strong>th</strong>is general me<strong>th</strong>od<br />

for controlling <strong>th</strong>e shape of <strong>th</strong>e two inhomogeneous fields<br />

provided by two tightly-coupled rf coils will also be given.<br />

(1) M.R. Bendall, D. Foxall, B.G. Nichols and J.R. Schmidt,<br />

J. Magn. Reson. 7__0,181 (1986).


MF59<br />

THE CONE COIL - AN RF GRADIENT COIL FOR SPATIAL <strong>ENC</strong>ODING ALONG<br />

THE B 0 AXIS IN ROTATING FRAME IMAGING EXPERIMENTS<br />

John P. Boehmer and Richard W. Briggs*<br />

Departments of Radiology and Biological Chemistry<br />

M. S. Hershey Medical Center, Pennsylvania State University<br />

Hershey, Pennsylvania 17033<br />

The rotating frame zeugmatography experiment (1) is a useful alternative<br />

to NMR imaging using static field gradients, especially for chemical<br />

shift imaging or for species wi<strong>th</strong> short transverse relaxation times.<br />

However, application of <strong>th</strong>e me<strong>th</strong>od and its modifications (2-4) has been<br />

limited to one-dimensional imaging. Hoult has proposed a way to achieve<br />

2D imaging by combining RF and static field gradients (1). His group has<br />

reported an algori<strong>th</strong>m for rapid reconstruction of a 2D rotating frame<br />

image (5), and Haase has described an or<strong>th</strong>ogonal coil system by which 2D<br />

rotating frame imaging (RFI) can be done (6). The first 2D rotating<br />

frame image was shown a year ago (7).<br />

Bo<strong>th</strong> ID and 2D RFI me<strong>th</strong>ods have been able to localize NMR signals<br />

only in spatial directions perpendicular to <strong>th</strong>e static field B o. This is<br />

because RF coils designed to date create gradients in RF intensity<br />

parallel to <strong>th</strong>e flux lines of <strong>th</strong>e B 1 field, and spin nutation is effected<br />

only for or<strong>th</strong>ogonal components of B o and B I flux lines.<br />

An RF coil in which <strong>th</strong>e gradient in RF field intensity is or<strong>th</strong>ogonal<br />

to <strong>th</strong>e flux lines of B 1 would permit RFI to be done along <strong>th</strong>e B o field<br />

direction, and make possible full 3D imaging wi<strong>th</strong> RF gradients alone.<br />

One design which achieves <strong>th</strong>e desired or<strong>th</strong>ogonality of <strong>th</strong>e B 1<br />

gradient and B 1 flux lines is a Helmholtz coil tapered such <strong>th</strong>at <strong>th</strong>e<br />

diameter at one end is greater <strong>th</strong>an <strong>th</strong>e diameter at <strong>th</strong>e opposite end.<br />

Sample at <strong>th</strong>e smaller end <strong>th</strong>us experiences a greater RF field intensity<br />

<strong>th</strong>an at <strong>th</strong>e larger end. Birdcage coils modified analogously also produce<br />

<strong>th</strong>e desired or<strong>th</strong>ogonality. These cone-shaped coils make full 3D RFI<br />

feasible, wi<strong>th</strong> <strong>th</strong>e attendant rotating frame advantages of retention of<br />

chemical shift information and effectively instantaneous gradient<br />

switching.<br />

I. D.I. Hoult, J. Magn. Reson. 33, 183-197 (1979).<br />

2. K.R. Metz and R.W. Briggs, J. Ma_~g~_n. Reson. 64, 172-176 (1985).<br />

3. M. Garwood, T. Schleich, B.~Ross, ~]~]--~a~on, and W.D. Winters,<br />

J. Magn. Reson. 65, 239-251 (1985).<br />

4. I~. ~o~-T]-. S~leich, M.R. Bendall, and D.T. Pegg, J__s. Magn.<br />

Reson. 65, 510-515 (1985).<br />

5. ~C~n, D.I. Hoult, and V.J. Sank, Magn. Reson. Med. i, 354-360<br />

(1984).<br />

6. A. Haase, Poster 72, 3rd Ann. Mtg. of <strong>th</strong>e Society of Magnetic<br />

Resonance in Medicine, New York, New York, August 13-17, 1984.<br />

7. J.P. Boehmer, K.R. Metz, and R.W. Briggs, Poster A18, 27<strong>th</strong> <strong>ENC</strong>,<br />

Baltimore, Maryland, April 13-17, 1986.


MF61<br />

AN IMAGING NETHOD OF SHIMMING FOR SPECTROSCOPY<br />

Truman R. Brown* • Kark S • Cohen ÷ and William J Thoma<br />

Fox,Chase Cancer Center. Philadelphia. PA 19111<br />

Siemens Nedical Systems. Aston. PA 19014<br />

The acquisition of NMR spectra from human subjects wi<strong>th</strong> adequate frequency<br />

resolution in a NMR imaging magnet requires <strong>th</strong>e magnetic field be<br />

significantly more homogeneous <strong>th</strong>an during an imaging experiment. In <strong>th</strong>e<br />

normal solution to <strong>th</strong>is problem, shimming on <strong>th</strong>e signal produced by a surface<br />

coil• <strong>th</strong>e resultant FID is weighted toward <strong>th</strong>e regions clos~ to <strong>th</strong>e surface<br />

coil which are often not <strong>th</strong>e regions of interest. It seems sensible to make<br />

use of <strong>th</strong>e imaging capabilities of <strong>th</strong>e system to determine and shape <strong>th</strong>e field<br />

distribution in <strong>th</strong>e region of interest.<br />

This can be accomplished by employing a pulse sequence before a normal<br />

imaging experiment which ~enera~es an image dependent on <strong>th</strong>e homogeneity of<br />

<strong>th</strong>e magnetic field. A 90v-r-90 v sequence in place of <strong>th</strong>e initial 90 pulse of<br />

a normal spin-echo imaging sequence generates an image in which <strong>th</strong>e phase<br />

variation across <strong>th</strong>e sample due to <strong>th</strong>e magnetic field is cony%ted into<br />

intensity variations. A 4B ° rf phase shift between <strong>th</strong>e two 90 pulses allows<br />

<strong>th</strong>e sign of <strong>th</strong>e change in <strong>th</strong>e field to be determined.<br />

A value of • greater I/vAH where AB is <strong>th</strong>e overall field inhomogeneity<br />

will result in an image wi<strong>th</strong> m~Itipl~ bards of constant intensity<br />

corresponding to a difference of 360 in phase. A shorter ~ will result in a<br />

single-valued conversion between intensity and phase which allows <strong>th</strong>e image to<br />

be directly converted into a field map.<br />

Thus, it should be possible to adjust <strong>th</strong>e homogeneity of a 1 M bore magnet<br />

for spectroscopy based on data generated in <strong>th</strong>e imaging mode. The technique<br />

should also prove useful, particularly after automation, to shim a volume<br />

selected region when <strong>th</strong>e selection procedures do not allow direct shimming.


MF63<br />

NON-INVASIVE SPIN LABELING OF BLOOD BY ADIABATIC FAST PASSAGE<br />

Thomas Dixon ~, Leila N. Du ~, and Mokhtar Gado ~<br />

~Emory University, Department of Radiology, Atlanta,<br />

Georgia<br />

~Washington University, Department of Physics, St.<br />

Louis, Missouri<br />

~Mallinkrodt Institute of Radiology, Washington<br />

University, St. Louis, Missouri<br />

Excellent images of arteries can be made usinm X-rays, if<br />

contrast is provided by injecting iodine compounds <strong>th</strong>rough<br />

ca<strong>th</strong>eters into <strong>th</strong>e arteries. Unfortunately, <strong>th</strong>ese injections<br />

make <strong>th</strong>e procedure more time consuming, expensive, painful and<br />

dangerous <strong>th</strong>an an NMR exam.<br />

While NMR has long produced excellent images of brains and<br />

even beating heartS, its use on rapidly flowing blood is in its<br />

infancy. Our approach has been to modify <strong>th</strong>e pulse sequence to<br />

resist <strong>th</strong>e problems of motion and to trigger our pulses during a<br />

phase of <strong>th</strong>e heartbeat when <strong>th</strong>e blood is still.<br />

Stationary blood can be distinguished from o<strong>th</strong>er stationary<br />

tissues if it has been labeled by spin inversion before <strong>th</strong>e image<br />

is produced. Our approach is to use an adiabatic fast passage in<br />

which nei<strong>th</strong>er <strong>th</strong>e frequency nor <strong>th</strong>e magnetic field are swept.<br />

Instead, natural motion of arterial blood in an applied field<br />

gradient causes <strong>th</strong>e Larmor frequency of <strong>th</strong>e blood to sweep past<br />

<strong>th</strong>e transmitter frequency. Stationary tissue is <strong>th</strong>us not<br />

affected. Images of blood only are produced by subtracting an<br />

image wi<strong>th</strong> fast passage from one wi<strong>th</strong>out, just as subtraction is<br />

used in <strong>th</strong>e conventional X-ray images to eliminate interfering<br />

bone shadows.<br />

Images of <strong>th</strong>e neck will be presented and<br />

o<strong>th</strong>er problems will be discussed.<br />

dynamic range and


MF65<br />

NMR IMAGING WITH EXTREMELY INHOMOGENEOUS B1 FIELDS<br />

M.Garwood', K. UgurbU, Gray Freshwater Biological Institute,<br />

UniverMty of Minnesota, Navarre, MN 55392.<br />

M.R. Bendall, School of Science, Griff<strong>th</strong> University,<br />

Na<strong>th</strong>an Queensland 4111, Australia.<br />

D.L. Foxall, A.R. Ra<strong>th</strong>, Varian Fremont Operations, 1120 Auburn Rd,<br />

Fremont, CA 94538.<br />

A critical requirement in many NMR experiments is <strong>th</strong>e ability to induce<br />

rotations of <strong>th</strong>e magnetization vectors uniformly over <strong>th</strong>e entire sample. This<br />

requirement is especially severe in NMH imaging and localized spectroscopy. Con-<br />

sequently, intense efforts are invested in designing RF coils <strong>th</strong>at generate uniform<br />

B 1 fields. An alternative approach to eliminating problems related to B 1 inhomo-<br />

geneities is to generate pulses <strong>th</strong>at are highly insensitive to B 1 variation. Two such<br />

pulses <strong>th</strong>at create transverse magnetization and carry out spin inversion have been<br />

described [1,2]. These pulses, however, cannot execute a plane rotation wi<strong>th</strong> a well<br />

defined phase. A pulse <strong>th</strong>at provides a 180 ° plane rotation is needed for experi-<br />

ments <strong>th</strong>at require refocusing. We have recently introduced amplitude and<br />

frequency/phase modulated pulses derived from <strong>th</strong>e adiabatic passage principle<br />

<strong>th</strong>at can achieve 90 ° and 180 ° plane rotations [3,4,5]. When optimized, uniform<br />

90 ° and 180 ° rotations can be obtained over a 50 to 100 fold variation in B 1 field<br />

streng<strong>th</strong> wi<strong>th</strong> <strong>th</strong>ese new pulses. This insensitivity to B 1 permits <strong>th</strong>e execution of<br />

experiments <strong>th</strong>at require uniform RF fields, such as NMR imaging, wi<strong>th</strong> coils <strong>th</strong>at<br />

generate inhomogeneous fields such as <strong>th</strong>e simple surface coil. We have success-<br />

fully made NM~ images wi<strong>th</strong> <strong>th</strong>ese new adiabatic pulses using a surface coil for<br />

bo<strong>th</strong> transmission and reception. The results to be presented include; a series of<br />

images wi<strong>th</strong> slice planes selected ei<strong>th</strong>er parallel or perpendicular to <strong>th</strong>e plane of <strong>th</strong>e<br />

coil and <strong>th</strong>e design of <strong>th</strong>e pulse sequence used for <strong>th</strong>is work.<br />

REFER<strong>ENC</strong>ES:<br />

[1] M.S. Silver, R.I. Joseph & D.I. Hoult (1984) J.Mag.Reson. 59,347.<br />

[2] M.R. Bendall & D.T. Pegg (1986) J.Mag.Reson. 67,376.<br />

[3] K. Ugurbil, M. Garwood & M.R. Bendall (<strong>1987</strong>) J.Mag.Reson (In press).<br />

[4] M.R. Bendall, M. Garwood, K. Ugurbil & D.T. Pegg (1986) (Submitted).<br />

{5] K. Ugurbil & M. Garwood (<strong>1987</strong>) (Submitted).


MF67<br />

MAGNETIC RESONANCE IMAGING WITH PHASE-MODULATED STORED WAVEFORMS<br />

Petra Schmalbrock, *,a Annjia T. Hsu, b<br />

William W. Hunter, Jr. a and Alan G. Marshall, b,c<br />

Dept. of Radiology, a (Dept. of Chemistry, b Dept. of BiochemistryC),<br />

The Ohio State University, Magnetic Resonance Imaging Facility,<br />

1630 Upham Drive, Columbus, OH 43210<br />

Slice location in magnetic resonance imaging is typically achieved<br />

by irradiation wi<strong>th</strong> narrow-bandwid<strong>th</strong> rf pulses in combination wi<strong>th</strong><br />

magnetic field gradients. However, <strong>th</strong>eoretically optimal waveforms<br />

require a large time-domain dynamic range and can perform poorly<br />

experimentally--e.g., impreci se slice definition and T 2 errors in<br />

spin-echo imaging experiments.<br />

Our recently demonstrated Stored W_aveform Inverse F_ourier T_ransform<br />

(SWIFT) technique I can generate any desired spectral profile while<br />

minimizing <strong>th</strong>e dynamic range of its time-domain representation. In <strong>th</strong>is<br />

poster, we report images in which slice selection was achieved wi<strong>th</strong><br />

SWIFT-generated waveforms on a GE 1.5 Tesla Signa ® whole-body imaging<br />

system. Time-domain waveforms were generated by quadratic phase<br />

modulation of a specified discrete excitation magnitude spectrum.<br />

followed by inverse discrete Fourier transformation and apodization to<br />

give a stored time-domain waveform <strong>th</strong>at could <strong>th</strong>en be clocked out via<br />

real-time digital-to-analog conversion to <strong>th</strong>e rf transmitter. SWIFT<br />

waveforms for slice selection will be compared to <strong>th</strong>e usual sin(x)/x<br />

slice-selective pulse and to recent computer simulations by Kunz. 2<br />

[This work was supported by N.S.F. CHE-8218998, General Electric<br />

Company, and The Ohio State University.]<br />

1. Hsu, A. T.; Hunter, W. W.. Jr.; Marshall, A. G.; Schmalbrock, P.; J.<br />

Magn. Reson. (<strong>1987</strong>), in press.<br />

2. Kunz, D.; Magn. Reson. Med._3, 377 (1986).


MF69<br />

28<strong>th</strong> <strong>ENC</strong> Poster Abstract<br />

DOUBLE QUANTUM FILTERED NMR IMAGING,<br />

PROGRESS TOWARD METABOLITE SPECIFIC IMAGES<br />

Paul J. Kellerea, Petra Schmalbrockb,and Charles Dumoulin c<br />

a) Barrow Neurological Institute, 350 W. Thomas Rd.<br />

Phoenix, AZ 85013 (602)285-3179<br />

b) Dept. of Radiolo~, Ohio State University, 1630 Upham Dr.<br />

Columbus, OH 43210<br />

c) General Electric Research and Development Center, PO Box 8<br />

Schenectady, NY 12301<br />

We are currently exploring proton double quantum<br />

filtration me<strong>th</strong>ods as <strong>th</strong>e basis for production of metabolize<br />

specific images using a clinical 1.5 Tesla MR imaging system<br />

equipped wi<strong>th</strong> a 1 meter bore solenoid. Lactic acid is an<br />

attractive target metabolite since it is formed in high<br />

concentration in ischemic tissues and its 1H-NMR pattern<br />

approaches a first order A3X system at 1.5 T. Double quantum<br />

filtration is accomplished-by <strong>th</strong>e RF sequence, 90O-TJ-180 o-<br />

TJ-9OO-TV-90 ° where TJ=I/8J and TV is <strong>th</strong>e double quantum<br />

evolution time. Double quantum selection is done by bo<strong>th</strong> RF<br />

phase cycling and by pulsed magnetic field gradients. One<br />

field gradient pulse is given during TV and a second pulse of<br />

twice She amplitude is given immediately after <strong>th</strong>e last RF<br />

pulse. ~ This sequence of RF and gradient pulses is followed<br />

by a slice selective 180 ° pulse and <strong>th</strong>e usual spin-warp phase<br />

and frequency image encoding.<br />

The suppression of water, as well as o<strong>th</strong>er non-J-coupled<br />

signals is accomplished by, a) RF phase cycling, b) gradient<br />

induced dephasing, and c) <strong>th</strong>e temporal separation of <strong>th</strong>e<br />

coherence transfer echoes arising from double and single<br />

quantum coherence during TV. Substantial suppression of<br />

lipid me<strong>th</strong>ylene signals is obtained due to <strong>th</strong>e use of 1/8J<br />

for TJ which leads to inefficient double quantum excitation<br />

of second order systems.<br />

Work <strong>th</strong>us far has been conducted using a phantom<br />

consisting of <strong>th</strong>ree bottles containing water, cooking oil and<br />

aqueous sodium lactate, respectively. Images showing only<br />

i M lactate have been obtained using a 128 x 256 image matrix<br />

and two excitations (8 min. acquisition time). Current<br />

efforts are aimed at fur<strong>th</strong>er suppression of unwanted signals<br />

arising from double quantum coherence and programing to<br />

permit smaller image matrices.<br />

1) A.Bax, P.G.de Jong~ A.F.Mehlkopf, J.Smidt, J.Phys.Lett.,<br />

6_2.567 ( 198o ).


MF71<br />

A DESIGN OF HOMOGENEOUS SELF-SHIELDING GRADIENT COILS<br />

I. J. Lowe<br />

Physics Department, University of Pittsburgh, Pittsburgh, PA<br />

15260 and Department of Biological Sciences, Carnegie Mellon<br />

University, Pittsburgh, PA 15213<br />

Magnetic field gradients are of fundamental importance in NMR<br />

imaging and volume localization techniques. For apparatuses<br />

wi<strong>th</strong> cylindrical symmetry, <strong>th</strong>ese gradients are usually<br />

generated by discrete coils wound on cylindrical formers (of<br />

radius R). These coils are usually designed using spherical<br />

harmonic or Taylor expansions of magnetic fields due to<br />

current distributions (I). The gradients are usually<br />

satisfactorily linear over a spherical volume of less <strong>th</strong>an<br />

0.5 R. Fur<strong>th</strong>er, <strong>th</strong>ese gradients are normally time dependent<br />

and <strong>th</strong>e fringing magnetic fields generate eddy currents in<br />

<strong>th</strong>e surrounding metal surfaces <strong>th</strong>at can produce undesirable<br />

magnetic field inhomogeneities and time dependences.<br />

We have developed a calculational technique based upon<br />

Maxwell's Equations along wi<strong>th</strong> conditions of rotational and<br />

translational symmetries to find <strong>th</strong>e behavior of <strong>th</strong>e desired<br />

magnetic field over all of space. From <strong>th</strong>ese fields, <strong>th</strong>e<br />

necessary current density distributions on <strong>th</strong>e surface of a<br />

cylinder of radius R I are derived for x, y, and z gradients.<br />

These gradients are perfectly homogeneous inside <strong>th</strong>e cylinder<br />

for <strong>th</strong>e described current distribution and a long enough<br />

cylinder.<br />

It has been suggested (2-5) <strong>th</strong>at a dynamically driven shield<br />

can be designed to cancel <strong>th</strong>e fringing field outside of a<br />

second cylinder of radius R 2 (R 2 > RI). We fur<strong>th</strong>er describe<br />

<strong>th</strong>e current distribution on <strong>th</strong>e surface of <strong>th</strong>is second<br />

cylinder <strong>th</strong>at perfectly shields <strong>th</strong>e fringing field of <strong>th</strong>e<br />

first cylinder.<br />

I. F. Romeo and D. I. Hoult, Hag. Res. in Med. ~, &4<br />

(1985).<br />

2. p. Mansfield and B. Chapman, J. Phys. E. Sci. Instr.<br />

I__99, 540 (1986).<br />

3. B. Chapman and P. Mansfield, J. Phys. D. Appl. Phys. I__99,<br />

L129, (1986).<br />

4. P. Mansfield and B. Chapman, J. Magn. Reson. 66, 573<br />

(1986).<br />

5. R. Turner and R. M. Bowley, J. Phys. E. Sci. Instr. I__99,<br />

876 (1986).


MF73<br />

OXYGEN-17 MAGNETIC RESONANCE IMAGING (OMRI)<br />

G. D. Mateescu and Terri Dular<br />

Department of Chemistry, Case Western Reserve University<br />

Cleveland, Ohio 44106<br />

In spite of <strong>th</strong>e primordial importance of oxygen in llfe processes and in<br />

many fields of chemistry, imaging wi<strong>th</strong> oxygen-17 has not yet been attempted.<br />

This is due to <strong>th</strong>e fact <strong>th</strong>at O-17 has generally been considered impractical for<br />

MRI, owing to its "unfavorable" properties: very low natural abundance, low<br />

natural sensitivity, and considerable quadrupolar broadening.<br />

We report <strong>th</strong>e first 170 imaging experiments and present evidence <strong>th</strong>at <strong>th</strong>e<br />

above mentioned "drawbacks" can be turned into advantages. In <strong>th</strong>e absence of<br />

specialized equipment, our approach was es-<br />

sentially <strong>th</strong>e same as in Lauterbur's histo-<br />

rical endeavor. The results shown in Figure<br />

1 are selfexplanatory . Fur<strong>th</strong>er experi-<br />

ments demonstrated <strong>th</strong>e feasibility of OMRI<br />

wi<strong>th</strong> plants, animal blood, brain, kidney,<br />

heart, muscle, fat, eggs, as well as non-<br />

biological matter. Contrasts from drastic<br />

to very subtle can be obtained in TI, T2,<br />

density, and flow measurements. A dramatic<br />

"Reverse Gradient Imaging" was obtained<br />

wi<strong>th</strong> signals from water in extreme (bound &<br />

DOG BLOOD (b)<br />

Natural a b u n ~<br />

lATER<br />

Natural abundance<br />

! t I<br />

i i i<br />

i i<br />

• I I<br />

g~<br />

Z-gradient<br />

0.2 G/cm<br />

free) states. Combining IH and 170 imaging Figure I. O*yge,-17 Magnetlc Resonance Imaging.<br />

(a) Two NH,q tubes (5mm OD) containing distilled<br />

water, placed in a 16mm tube containing CDC1].<br />

proves to be useful. 170 is a better repre- (b) Two NMR tubes containing dog blood. 1200 90 °<br />

pulses at O.l s intervals per trace. Varian XL-<br />

200 at 27.12 ~z. We expect a >80 times better<br />

sentative of <strong>th</strong>e H20 molecule. Its relaxa- resolution wi<strong>th</strong> <strong>th</strong>e 20G/cm mlcrolmager co be in-<br />

stalled In February <strong>1987</strong> on our Bruker MSL-&O0<br />

tlon depends essentially on intramolecular (local protein, nucleic acid,<br />

lipid, sugar) electric field gradients; also, 170 relaxation is mainly affected<br />

by <strong>th</strong>e exchange of <strong>th</strong>e entire water molecule and, to a lesser extent, by proton<br />

or deuteron exchange. Parallel imaging of o<strong>th</strong>er nuclei will also be presented.<br />

(a)


MF75<br />

NMR IMAGING USING CIRCULAR SIGNALS IN THE SPATIAL FREQU<strong>ENC</strong>Y DOMAIN S<br />

S. Matsul, K. Seklhara, and H. Kohno<br />

Central Research Laboratory, Hitachi, Ltd.<br />

P.O. Box 2, Kokubunji, Tokyo 185, Japan<br />

We demonstrate experlmentally a new type of me<strong>th</strong>od of imaging, in<br />

which siena1 measurements are taken during rotation of a field gradient.<br />

Detailed aspects of <strong>th</strong>e me<strong>th</strong>od will be discussed in connection wi<strong>th</strong><br />

unusual properties of <strong>th</strong>e observed slgnal.<br />

Generally, <strong>th</strong>e slgnal measured during <strong>th</strong>e gradient rotation traces<br />

a circle in <strong>th</strong>e spatlal frequency domain (so-called k space). I) Al<strong>th</strong>ough<br />

<strong>th</strong>e clrcular signal contains some information for imaging, it does not<br />

provide useful data <strong>th</strong>at can be systematlcally and efficiently process-<br />

ed to yield a spin image. This is because <strong>th</strong>e circle is not symmetric<br />

about <strong>th</strong>e origin of <strong>th</strong>e k space. However, if <strong>th</strong>e center of <strong>th</strong>e clrcle<br />

is approprlately shifted to <strong>th</strong>e k origin, useful data can be obtained.<br />

The resultant signal directly provides symmetric circular phase infor-<br />

mation. The shift can be achieved by applying, amon E many ways, a sta-<br />

tionary fleld gradient prior to <strong>th</strong>e rotation. The properties of such<br />

a circular signal are completely different from <strong>th</strong>ose of a usual FID<br />

slgnal. The unusual properties can be understood by expressing <strong>th</strong>e<br />

clrcular signal in terms of Bessel functions of <strong>th</strong>e first kind.<br />

The radius of <strong>th</strong>e circle is given by 7G/WG, where Y is <strong>th</strong>e gyromag-<br />

netic ratio, G denotes <strong>th</strong>e gradient amplitude, and ~G is <strong>th</strong>e angular<br />

frequency of <strong>th</strong>e gradient rotation. Therefore, takin E measurements<br />

after changing ei<strong>th</strong>er <strong>th</strong>e gradient amplitude or <strong>th</strong>e angular frequency<br />

permits a concentric set of clrcular signals wi<strong>th</strong> different radii to<br />

be obtained. The signal set can be converted to a spin image by suit-<br />

able data processing involving Fourier transformations along <strong>th</strong>e radii<br />

and back projections.<br />

Reference<br />

I) S. Ljunggren, J. Magn. Reson. 54, 338 (1983).<br />

§ Published in part: S. Matsui and H. Kohno, J. Magn. Reson. 70, 157<br />

(1986).


MF77<br />

NMR IMAGING OF SOLIDS<br />

WITH A SURFACE COIL<br />

J. B. Miller* and A. N. Garroway<br />

Chemistry Division, Code 6120<br />

Naval Research Laboratory<br />

Washington, DC 20375-5000<br />

A number of NMR techniques have already been<br />

demonstrated to be useful for imaging solids. These<br />

techniques are limited to small samples because<br />

traditional coil geometries require large amounts of<br />

power to generate <strong>th</strong>e B 1 fields required for solid state<br />

imaging. The use of surface coils can somewhat<br />

circumvent <strong>th</strong>is problem.<br />

Several imaging strategies are possible using<br />

surface coils, including rotating frame imaging and<br />

"dep<strong>th</strong>" sensitive excitation. Because of line broadening<br />

in solids, resolution in <strong>th</strong>e rotating frame experiment is<br />

a problem. Multiple pulse line-narrowing has been used<br />

for imaging solids; by virtue of its sensitivity to pulse<br />

amplitude/duration it is a form of dep<strong>th</strong> sensitive<br />

excitation. Multiple pulse line-narrowing generally<br />

requires large B 1 fields <strong>th</strong>us limiting its use to regions<br />

very close to <strong>th</strong>e surface coil.<br />

We will present several examples of surface coil<br />

imaging of solids employing multiple pulse line-<br />

narrowing. We will discuss <strong>th</strong>e dependence of line-<br />

narrowing efficiency and dep<strong>th</strong> sensitivity upon <strong>th</strong>e<br />

multiple pulse technique. We also introduce <strong>th</strong>e "magic<br />

angle nutation" sequence which is less sensitive to <strong>th</strong>e<br />

magnitude of <strong>th</strong>e B 1 field <strong>th</strong>an traditional line-narrowing<br />

sequences.


MF79<br />

IMAGING AND IN WVO SPECTROSCOPIC APPLICATIONS<br />

OF COMPUTER OPTIMIZED PULSE SEQU<strong>ENC</strong>ES<br />

Francisco Loaiza and Warren S. Warren*<br />

Department of Chemistry, Princeton University, Princeton, NJ 08544<br />

Michael Silver<br />

Siemens Medical Systems, 186 Wood Ave. Sou<strong>th</strong>, Iselin, NJ<br />

Computer optimization of entire pulse sequences, as opposed to<br />

individual pulses, generates substantial improvements in slice profiles<br />

for T2-weighted spin density images and o<strong>th</strong>er applications.<br />

Sensitivities to spin density or relaxation gradients are included in <strong>th</strong>e<br />

optimization. We discuss <strong>th</strong>e tradeoffs between different approaches to<br />

computerized pulse shape optimization, and present results of clinical<br />

trials which show peak power reductions and dramatically reduced<br />

distortions for multislice imaging.<br />

This work is supported by <strong>th</strong>e National Institute of Heal<strong>th</strong>, <strong>th</strong>e<br />

New Jersey Commission on Science and Technology, and Siemens<br />

Medical Systems.<br />

1. F. Loaiza, M. Levitt, M. McCoy, M. Silver and W. S. Warren, J. Chem.<br />

Phys. (submitted)<br />

2. F. Loaiza, K. T. Lim, M. Silver and W. S. Warren, J. Mag. Res. Med.<br />

(submitted)


MKI - POSTERS<br />

NNR STUDIES OF G-LACTALBU~IIN:<br />

MCTERIZATION OF A PARTIALLY UNFOLDED STATE<br />

J. Baum, C.M. Dobson, C. Hanley<br />

Inorganic Chemistry Laboratory<br />

University of Oxford<br />

Oxford, ENGLAND<br />

P.A. Evans<br />

Middlesex Hospital Medical School<br />

London, ENGLAND<br />

To understand <strong>th</strong>e folding mechanism of proteins, it is<br />

important to characterize, at <strong>th</strong>e molecular level, <strong>th</strong>e<br />

structures of states intermediate between <strong>th</strong>e folded and<br />

unfolded conformations. Incompletly folded proteins tend to<br />

have very small IH chemical shift dispersions, <strong>th</strong>erefore<br />

me<strong>th</strong>ods have been developed to probe <strong>th</strong>ese intermediate states<br />

indirectly via <strong>th</strong>e well-resolved IH spectrum of <strong>th</strong>e native<br />

protein. Guinea-pig ~-lactalbumin provides an especially<br />

favourable system for <strong>th</strong>e investigation of folding due to its<br />

sensitivity to solution conditions; wi<strong>th</strong>in certain ranges of pH<br />

and temperature <strong>th</strong>ere exists a stable partially unfolded<br />

intermediate which we can study by NMR. PH-jump hydrogen<br />

exchange experiments are being developed to assign indirectly,<br />

<strong>th</strong>rough <strong>th</strong>e native protein, <strong>th</strong>e labile protons of <strong>th</strong>e unfolded<br />

state, and magnetization transfer experiments are used to<br />

correlate <strong>th</strong>e resonances of <strong>th</strong>e unfolded protein wi<strong>th</strong> <strong>th</strong>ose of<br />

<strong>th</strong>e native protein. These and o<strong>th</strong>er experiments have allowed<br />

us to identify regions of localized structure at <strong>th</strong>e individual<br />

residue level in <strong>th</strong>e unfolded form of ~-lactalbumin.


MK3<br />

OLIGONUCLEOTIDE STRUC'I13RE ~ BASED ON QUANTITATIVE 2DNOE SPECTRA<br />

Brandan A. Borgias* and 'rnomas L. James<br />

Department of Pharmaceutical Chemistry<br />

Unive~ty of California, San Francisco, CA 94143<br />

The use of 2DNOE (two-dimensional nuclear Overhauser effect) spectroscopy in <strong>th</strong>e muc-<br />

characterization of biomolecules has generally been qualitative or semi-quantitative.<br />

Observed cross-peaks me presumed to be a consequence of <strong>th</strong>e close proximity (< 5 ~,) for <strong>th</strong>e<br />

associated protons. Distances are estimated based on <strong>th</strong>e relative intensifies and buildup of cross-<br />

peaks according to an approximate relationship between <strong>th</strong>e intensifies and <strong>th</strong>e proton-proton dis-<br />

tances. Distances obtained in <strong>th</strong>is manner have proven useful as constraints in structural determi-<br />

nations by distance geometry ! and molecular dynamics 2 calculations.<br />

The exact relationship between <strong>th</strong>e inter-proton distances and <strong>th</strong>e intensities is given by <strong>th</strong>e<br />

exponential function:<br />

aCt=a) = exp(-RCm) ;<br />

where R is <strong>th</strong>e relaxation matrix. The off-diagonal elements of <strong>th</strong>e relaxation matrix are propor-<br />

tional to I/rij6 •<br />

Rij - 0.l,yi2 7j 21~[6J(o~ i + ~j) - J((0 i - ¢~j)] / rij6.<br />

Thus, for short mixing times (Zm---~), <strong>th</strong>e inter-proton d i ~ can be estimated from <strong>th</strong>e cross-<br />

peak intensities. At longer mixing limes <strong>th</strong>is approximation breaks down due to spin diffusion.<br />

However, it is wi<strong>th</strong> mixing times of intermediate duration where one begins to observe a reason-<br />

able number of cross-peaks wi<strong>th</strong> acceptable signal/noise.<br />

In contrast to <strong>th</strong>e approximate approach, exact intensities can be calculated for a given<br />

<strong>th</strong>ree-dimensional array of pmtom after diagonalizing <strong>th</strong>e relaxation matrix:<br />

= exp(- ;<br />

where ;L is <strong>th</strong>e diagonal eigenvalue matrix and ~ is <strong>th</strong>e associated matrix of eigenveaors? We<br />

have incorporated <strong>th</strong>is exact calculation of intensifies into a least-squares program which refines<br />

oligonucleotide structure. In <strong>th</strong>e course of <strong>th</strong>is work we have investigated <strong>th</strong>e consequences of<br />

errors in <strong>th</strong>e data on <strong>th</strong>e refinement process. The major conclusions to be drawn are <strong>th</strong>e foUowing.<br />

(1) ConsWaints are necessary. Refinement of <strong>th</strong>e proton "smmure" in 3-space, wi<strong>th</strong>out con-<br />

straints due to <strong>th</strong>e molecular skeleton, is unsuccessful. In our approach each nucleotide<br />

is defined by ten parameters: 3 translational coordinates and 3 Euler angles for <strong>th</strong>e whole<br />

nucleotide, 2 internal torsion angles (<strong>th</strong>e glycosidic and C4'--C5' bonds) and <strong>th</strong>e sugar<br />

pucker phase and amplitude. The phosphodiester linkages are not included.<br />

(2) Errors in diagonal peak intensifies (easily approaching 50% in <strong>th</strong>e case of overlap) utterly<br />

destroy <strong>th</strong>e refinement if <strong>th</strong>ey are included in calculation of <strong>th</strong>e residuals. However, if<br />

<strong>th</strong>e diagonals are ignored completely, <strong>th</strong>e refinement is successful.<br />

(3) The correlation times can be successfully refined.<br />

References<br />

(1) Kline, A. D.; Braun, W.; Wfi<strong>th</strong>rich, K. J. Mol. Biol. (1986) 189, 377-382.<br />

(2) Clore, G. M.; Gronenbom, A. M.; Brfinger, A. T.; Karplus, M. J. Mol. Biol. (1985) 186,435-455.<br />

(3) Keepers, J. W., James, T. I.. J. Magn. Reson. (1984) $7, 404-426.


MK5<br />

Abstract: 28<strong>th</strong> <strong>ENC</strong>, Asilomar, CA. April 5- 9, <strong>1987</strong><br />

INTERNUCLEAR DISTANCES AND CORRELATION TIMES FROM TRANSVERSE AND<br />

LONGITUDINAL CROSS-RELAXATION RATES<br />

Donald G. Davis, NIEHS, PO Box 12233, Research Triangle Park, NC 27709<br />

A novel me<strong>th</strong>od for determining correlation times and proton-<br />

proton distances for molecules in solution is demonstrated. These<br />

experiments may be done at a single field streng<strong>th</strong> and require no<br />

priori assumptions about fixed internuclear distances or <strong>th</strong>e cor-<br />

relation functions for different pairs of spins in <strong>th</strong>e molecule.<br />

The success of <strong>th</strong>e me<strong>th</strong>od is based on <strong>th</strong>e fact <strong>th</strong>at <strong>th</strong>e longitudinal<br />

(~111) and transverse ((~'~) cross-relaxation rates have different<br />

dependencies on ~c such <strong>th</strong>at in <strong>th</strong>e range Ilog~dR~l, <strong>th</strong>e ratio of<br />

(~lltO ~goes from 1.0 to -0.5. Accurate measurements of ~require<br />

<strong>th</strong>at careful attention be given to offset corrections and to mini-<br />

mizing Hartmann- Hahn cross-polarization(I). Experimental details and<br />

data analysis for <strong>th</strong>e determination of internuclear distances and<br />

correlation times of <strong>th</strong>e cyclic peptide Gramicidin-S in DHSO-d 6 will<br />

be shown.<br />

References: A. Bax and D. G. Davis, J. Hagn. Reson. 6~, 207-213,(1985).


MK7<br />

IMPROVEMENTS OF THE 2D TRANSFERRED NOE EXPERIMENT AND APPLICATION IN THE<br />

CONFORMATIONAL ANALYSIS OF INHIBITORS BOUND TO CMP-KDO SYNTHETASE<br />

Stephen W. Fesik* , Edward T • Olejniczak • and William E • Kohlbrenner •<br />

Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064.<br />

Transferred nuclear Overhauser effects (TRNOE) provide a useful means of<br />

determining <strong>th</strong>e conformation of enzyme-bound ligands. However, in <strong>th</strong>e 2D<br />

version of <strong>th</strong>e experiment certain precautions must be taken to alleviate some<br />

of <strong>th</strong>e problems associated wi<strong>th</strong> <strong>th</strong>e experiment• One of <strong>th</strong>e problems is <strong>th</strong>e<br />

presence of large protein signals which, in many cases, obscures <strong>th</strong>e<br />

resonances of <strong>th</strong>e ligand. In order to suppress <strong>th</strong>ese unwanted signals, we<br />

have taken advantage of <strong>th</strong>e shorter spin-spin relaxation times (T 2) of <strong>th</strong>e<br />

protein signals compared to <strong>th</strong>e averaged signals of <strong>th</strong>e ligand. This was<br />

accomplished by inserting a Carr-Purcell-Meiboo m-Gill pulse sequence before<br />

<strong>th</strong>e evolution time (t 1) of <strong>th</strong>e conventional 2D NOE experiment, markedly<br />

improving <strong>th</strong>e quality of <strong>th</strong>e spectra. Ano<strong>th</strong>er problem, <strong>th</strong>e presence of large<br />

zero quantum peaks, were eliminated by standard means, maintaining a constant<br />

1<br />

mixing time.<br />

The modified 2D TRNOE experiment described above was applied in <strong>th</strong>e study<br />

of <strong>th</strong>e bound conformations of CMP-KDO syn<strong>th</strong>etase inhibitors. These studies<br />

were aimed at providing conformational information towards <strong>th</strong>e design of more<br />

potent inhibitors of lipopolysaccharide biosyn<strong>th</strong>esis and <strong>th</strong>e development of a<br />

new class of antibiotics• Based on 2D TRNOE experiments using several<br />

inhibitors, it was found <strong>th</strong>at <strong>th</strong>eir bound conformations depended on <strong>th</strong>e<br />

hydrophobicity of <strong>th</strong>eir side chains. The bound conformations were used to<br />

propose <strong>th</strong>e location of a hydrophobic and hydrophilic binding site.<br />

1. S. Macura, K. Wu<strong>th</strong>rich, and R.R. Ernst, J.Magn. Reson., 4__7_7, 351 (1982).


MK9<br />

A 2D-EXCHANGE SEPARATED LOCAL FIELD (EXSLF) EXPERIMENT<br />

K. Takegoshi* and C.A. McDowell, Department of C~emistry,<br />

University of British Columbia, 2036 Main Mall, Vancouver, British<br />

Columbia, Canada, V6T I¥6.<br />

Rate constants for <strong>th</strong>e flip-flop spin exchange process<br />

between a IN spin coupled wi<strong>th</strong> a '~C spin and <strong>th</strong>e surrounding 'H<br />

spins were determined in <strong>th</strong>e absence perturbing rf fields, and also<br />

under <strong>th</strong>e influence of bo<strong>th</strong> 'H and '*C rf fields. To determine <strong>th</strong>e<br />

flip-flop rate in <strong>th</strong>e absence of <strong>th</strong>e rf fields, we developed a new<br />

technique, <strong>th</strong>e Exchange Separated Local Field (EXSLF) experiment.<br />

The EXSLF experiment was applied to <strong>th</strong>e CH group in a single crystal<br />

of dimedone, for two different orientations relative to <strong>th</strong>e static<br />

magnetic field. The inverse of <strong>th</strong>e flip-flop exchange rates<br />

determined by <strong>th</strong>e EXSLF experiments are 276 and 391 ~s for <strong>th</strong>e<br />

orientations Bo//b and Bo//C*, respectively.<br />

The flip-flop exchange motion under <strong>th</strong>e influence of bo<strong>th</strong> 'H<br />

and '~C rf fields was also studied by examining <strong>th</strong>e transient<br />

oscillation phenomena occuring during a spin-locking<br />

cross-polarization experiment. The values obtained for <strong>th</strong>e inverse<br />

of <strong>th</strong>e rate constants for <strong>th</strong>e flip-flop exchange motion were 450 and<br />

540 ,s for Bo//b and Bo//C*, respectively. The observed slow<br />

flip-flop rate shows <strong>th</strong>at <strong>th</strong>e IH-'3C coupled spin system in a single<br />

crystal of dimedone is isolated from <strong>th</strong>e surrounding 'H spins.


MKI1<br />

THE STRUCTURE OF THE SUBTILISIN INHIBITOR 2 FROM BARLEY DETERMINED<br />

BY IH-NMR SPECTROSCOPY, DISTANCE GEOMETRY CALCULATIONS AND<br />

RESTRAINED MOLECULAR DYNAMICS.<br />

e<br />

Flemming M. Poulsen i) Mogens KJ~r l) and Marius Clore 2)<br />

i) Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10,<br />

DK-2500 Copenhagen Valby, Denmark<br />

2} Max-Planck-Institut f~r Biochemie, D-8033 Martinsried bei M~nchen,<br />

Federal Republic of Germany<br />

The barley subtilisin inhibitor is a protein of 83 residues, homologous<br />

to leech eglin c. The structure of <strong>th</strong>e C-terminal part of <strong>th</strong>e protein<br />

consisting of 65 residues has been studied using 2D-NMR techniques. The<br />

secondary structure has been determined, and consists of <strong>th</strong>ree short<br />

stretches of antiparrallel ~-sheet one long stretch of parallel ~-sheet<br />

fur<strong>th</strong>ermore one helix of 12-13 residues and a long loop.<br />

On <strong>th</strong>e basis of approximately 300 assigned NOE's <strong>th</strong>e structure has<br />

been calculated using distance geometry calculations. Subsequently<br />

restrained molecular dynamics was used to refine <strong>th</strong>e structure.<br />

The structure obtained from NMR data agree's well wi<strong>th</strong> <strong>th</strong>e structure<br />

of <strong>th</strong>e inhibitor determined by X-ray crystallography of <strong>th</strong>e subtilisin-<br />

inhibitor complex.


MKI3<br />

2D NMR - PSEUDOENERGY APPROACH TO THE THREE-DIMENSIONAL<br />

STRUCTURE OF ACYL CARRIER PROTEIN<br />

T. A. Holak* and J. H. Prestegard*<br />

Department of Chemistry, Yale University<br />

New Haven, CT 06511<br />

A me<strong>th</strong>od for protein structure determination from two<br />

dimensional NMR cross-relaxation data is explored using a 77<br />

amino acid protein, acyl carrier protein. The me<strong>th</strong>od is based on<br />

an energy minimization wi<strong>th</strong> a molecular mechanics program (AMBER)<br />

and incorporates NMR distance constraints in <strong>th</strong>e form of a<br />

pseudoenergy term <strong>th</strong>at accurately reflects <strong>th</strong>e distance dependent<br />

precision of NMR cross-relaxatlon data. When used in an<br />

indiscriminant fashion, <strong>th</strong>e me<strong>th</strong>od has a tendency to produce<br />

structures representing local energy minima near starting<br />

structures, ra<strong>th</strong>er <strong>th</strong>an structures representing a global energy<br />

minimum. However, stepwise inclusion of energy terms, beginning<br />

wi<strong>th</strong> a function heavily weighted by backbone distance<br />

constraints, appears to simplify <strong>th</strong>e potential energy surface to<br />

a point where convergence to a common backbone structure from a<br />

variety of starting structures is possible.


MKI5<br />

NA-23 NMR-INVISIBILITY IN LIVING SYSTEMS:<br />

2D MULTIPLE QUANTUM NMR AND NUTATION DIMENSION EFFECTS<br />

S<br />

William D. Rooney , Thomas M. Barbara and<br />

Charles S. Springer, Jr.<br />

Department of Chemistry, State University of New York,<br />

Stony Brook, New York 11794-3400<br />

The Na + ion is ubiquitous in nature in bo<strong>th</strong> extent and<br />

amount. Its major, stable, isotope, 23Na (I00%), is magnetic<br />

and gives a strong NMR signal. However, It is well-known<br />

<strong>th</strong>at, for living systems, a portion of <strong>th</strong>is signal is not<br />

observed when high resolution acquisition conditions are<br />

employed. There is general agreement <strong>th</strong>at <strong>th</strong>is is due to <strong>th</strong>e<br />

effects of microscopic electric field gradients on <strong>th</strong>is<br />

quadrupolar (I = 3/2) nucleus. There are two mechanistic<br />

extremes: a homogeneous interaction in which fluctuations of<br />

<strong>th</strong>ese gradients average <strong>th</strong>e frequencies of <strong>th</strong>e satellite<br />

transitions (~i/2 to ~3/2) to <strong>th</strong>e same value but drastically<br />

shorten <strong>th</strong>eir T2 relaxation times, and an inhomogeneous<br />

interaction in which <strong>th</strong>ese frequencies are widely dispersed<br />

because of variations in <strong>th</strong>e orientation of <strong>th</strong>ese gradients<br />

in <strong>th</strong>e magnetic field. We have undertaken to discriminate<br />

<strong>th</strong>ese extremes wi<strong>th</strong> two kinds of multiple pulse 2D NMR<br />

experiments. In one, <strong>th</strong>e projection of <strong>th</strong>e 2D spectrum onto<br />

<strong>th</strong>e v, axis displays <strong>th</strong>e forbidden double quantum NMR<br />

spectrum. In <strong>th</strong>e o<strong>th</strong>er, <strong>th</strong>e projection onto <strong>th</strong>e wl<br />

axis displays <strong>th</strong>e effective nutatlon (Rabi) frequency of <strong>th</strong>e<br />

central transition (I/2 to -I/2). We have prepared mode]<br />

systems, mostly consisting of long chain alkyl sulfate<br />

esters, which exhibit each of <strong>th</strong>e four possible types of<br />

23Na NMR spectrum: oriented (lyotropic) liquid<br />

crystalline (same as single crystalline), unoriented liquid<br />

crystalline ("powder pattern"), homogeneously relaxed, and<br />

extreme-narrowed. The second and <strong>th</strong>ird represent <strong>th</strong>e two<br />

mechanistic extremes for NMR-invisibility possible in nature.<br />

Our two kinds of 2D NMR experiments easily discriminate <strong>th</strong>e<br />

second and <strong>th</strong>ird spectral types in <strong>th</strong>e ~2 dimension.<br />

Bo<strong>th</strong> experiments share <strong>th</strong>e property of taking advantage of<br />

<strong>th</strong>e strong, sharp, central transition. In recent studies, we<br />

have conducted <strong>th</strong>ese experiments on living systems.<br />

Supported in part from NIH GM 32125 and NSF PCM 84-08339.


MK17<br />

STRUCTURES OF DNA OLIGOMERS DETERMINED<br />

BY 2D NMR AND DISTANCE GEOMETRY TECHNIQUES.<br />

C~uan Wang* and Ar<strong>th</strong>ur Pardi<br />

Department of Chemistry<br />

Rutgers, The State University of New Jersey<br />

New Brunswick, NJ 08903<br />

The double stranded decamers d(~AATC'~) and d(GCGCGTGACG) have been<br />

investigated by 2D NMR. Three-dimensional smlcmres of <strong>th</strong>ese molecules were generated by<br />

distance geometry techniques using proton-proton internuclear distances derived from NOESY<br />

spectra. Proton resonance assignments were made for all nonexchangeable aromatic and C1'-C3'<br />

sugar protons, most exchangeable imino and cytosine amino protons, and many C4' and C5' sugar<br />

protons in <strong>th</strong>ese molecules. In bo<strong>th</strong> decamers more <strong>th</strong>an 40 inter-base pair and 50 intra-base pair<br />

proton-proton distances were calculated fi'om build-up rates derived from NOESY spectra at multiple<br />

mixing times. This distance information was <strong>th</strong>en used as input for a distance geometry program to<br />

generate <strong>th</strong>ree-dimensional structures of <strong>th</strong>e oligomers in solution. Correlations between base<br />

sequence and local variations in <strong>th</strong>e DNA smJctme will be discussed.


MKI9<br />

SEQUENTIAL INDIVIDUAL 1H NMR RESONANCES ASSIGNMENTS<br />

OF CARDIOTOXIN III FROM FORMOSAN COBRA VENOM<br />

(NaSa naja atra)<br />

• +<br />

C. Yu and T. H. Hseu<br />

Department of Chemistry, National Tsing Hua University,<br />

Hsinchu, Taiwan*<br />

Department of Life Science, National Tsing Hua<br />

University, Hsinchu, Taiwan +<br />

Cardiotoxin III is one of <strong>th</strong>e membrane active proteins<br />

from Formosan cobra (Naja naja atra). It is a small basic<br />

single polypeptide consisting of 60 amino acid residues<br />

cross-linked by four disulfide bonds. The most characte-<br />

rized biological activity of cardiotoxins is <strong>th</strong>e in vitro<br />

hemolysis of ery<strong>th</strong>ocytes. None<strong>th</strong>eless, details about <strong>th</strong>e<br />

mechanism of cardiotoxin hemolysis remain inconclusive.<br />

Knowledge of <strong>th</strong>e molecular conformation of cardiotoxins<br />

might be informative wi<strong>th</strong> regard to <strong>th</strong>is common feature of<br />

functional properties of all toxins in <strong>th</strong>is class. The<br />

assignments of IH NMR resonances is <strong>th</strong>e first first step to<br />

probe <strong>th</strong>e structure-functional relationship of carditoxin.<br />

The result of sequential assignment of IH NMR spectrum<br />

for cardiotoxin III from naja naja atra is presented. The<br />

assignments are based entirly on <strong>th</strong>e amino acid sequence and<br />

2D NMR experiment on 400 MHz. The measurements were done in<br />

bo<strong>th</strong> H20 and D20. Phase-sensitive and double quantum filter-<br />

ing 2D techniques combined wi<strong>th</strong> solvent elimination routine<br />

proved to be useful, particularly <strong>th</strong>ose cross peaks closed to<br />

diagnol area (e.g. phe-13 and phe-25). The pH tetration<br />

curves were consistent wi<strong>th</strong> <strong>th</strong>e aromatic resonances assigments<br />

of cardiotoxin III by 2D experiments.


MK21<br />

ASPECTS OF PROTEIN STRUCTURE DETERMINATIONS WITH NMR<br />

ERIK R,P, ZUIDERWEG*o DAVID G, NETTESHEIM AND<br />

EDWARD T, OLEJNICZAK<br />

NMR RESEARCH. ABBOTT LABORATORIES, ABBOTT PARK. ILLINOIS<br />

60064<br />

1H 2D NMR AND COMPUTER METHODS TO OBTAIN THE DATA NECESSARY<br />

FOR THE DETERMINATION OF THE 3D STRUCTURE OF PEPTIDES AND<br />

PROTEINS WILL BE DISCUSSED AND EXEMPLIFIED WITH RESULTS<br />

OBTAINED ON RECOMBINANT CSA, A 75 AMINO ACID PROTEIN. ToPics<br />

TOUCHED UPON WILL INCLUDE PHASE COHERENT DECOUPLING FOR<br />

SOLVENT SuPPREsSION, ZZ SPECTROSCOPY FOR COMPLETE<br />

"FINGERPRINTS", PRESATURATIONLESS HOHAHA SPECTROSCOPY OF<br />

PEPTIDES IN H20 SOLUTION AND PHASE SENSITIVE COCONOSY FOR<br />

AMIDE PROTON EXCHANGE STUDIES, SPECTRAL BASELINE DISTORTIONS<br />

AND COMPUTER BASED CORRECTION METHODS WILL BE DISCUSSED.<br />

STRATEGIES FOR NOE IDENTIFICATION IN CROWDED SPECTRA, SUCH AS<br />

THE UTILIZATION OF SPIN DIFFUSION, WILL BE ILLUSTRATED. THE<br />

USE OF THE DISMAN DISTANCE GEOMETRY PROGRAM BY W. BRAUN AND<br />

N. Go FOR THE 3D STRUCTURE DETERMINATION OF THIS PROTEIN WILL<br />

BE DESCRIBED AS WELL AS METHODOLOGY TO REFINE THE STRUCTURES<br />

OBTAINED.


MK23<br />

MATER SUPPRESSION TECHNIQUES FOR THE GENERATION OF PURE PHASE<br />

TWO-DIMENSIONALNMR SPECTRA<br />

Vladlmlr Sklenar* and Ad Bax*<br />

Laboratory of Chemical Physics, Natlonal Institute of Diabetes<br />

Digestive and Kidney Diseases, National Institutes of Heal<strong>th</strong><br />

Be<strong>th</strong>esda,MD.20892<br />

A number of different approaches has been proposed for suppression of<br />

<strong>th</strong>e intense H20 resonance in 2D NMR spectra of biological compounds. Most<br />

commonly one employs presaturatlon of <strong>th</strong>e H~O resonance using a low power<br />

irradiation prior to <strong>th</strong>e observation pulse. The main disadvantage of <strong>th</strong>is<br />

me<strong>th</strong>od is <strong>th</strong>at resonances of exchangeable protons may also be saturated.<br />

Selective excitation using pulse sequences which have a null at <strong>th</strong>e water<br />

resonance avoids <strong>th</strong>is problem. A large variety of different excitation<br />

schemes has been designed in recent years. However, all but <strong>th</strong>e slmplest<br />

90x-T-90_x sequence yield spectra <strong>th</strong>at require a large linear phase<br />

correction. The baseline roll <strong>th</strong>at result from such a phase correction can<br />

lead to intense artifacts in phase sensitive 2D NMR spectra.<br />

A new approach is described for water suppression in one- and<br />

two-dlmensional NMRwhlch generates pure absorptive spectra <strong>th</strong>at are free<br />

of baseline dlstorslons. This me<strong>th</strong>od involves <strong>th</strong>e use of a 90x-~-90_x<br />

hard pulse as a read pulse followed by a 90~-k~-90.~ refocusing pulse<br />

which is phase cycled for obtaining <strong>th</strong>e highest possible water<br />

suppression. Incorporation into several of <strong>th</strong>e most popular 2D NHR<br />

experiments (NOESY, HOHAHA, ROESY, HMQC and COSY) is discussed in detail.<br />

Examples of <strong>th</strong>is approach for selective water suppression are demonstrated<br />

by recording <strong>th</strong>e 2D spectra of <strong>th</strong>e decapeptide LH-RH and <strong>th</strong>e Dickerson<br />

dodecamer in 90% H20.


MK25<br />

OPTIMIZATION OF QUANTITATIVE PERFORMANCE OF<br />

SPECTRAL ANALYSIS BY MINIMAL SAMPLING<br />

Jerome L. Ackerman* and Vikram Janakiraman-<br />

Department of Radiology, NNR Facility,<br />

Massachusetts General Hospital, Boston, MA 02114<br />

Minimal sampling is a non-Fourier me<strong>th</strong>od of spectral<br />

analysis in vhich <strong>th</strong>e complex amplitudes of prespecified basis<br />

signals are extracted by an algebraic solution. The basis<br />

signals may be simple sine and cosine raves as in <strong>th</strong>e discrete<br />

Fourier transform. Alternatively, <strong>th</strong>ey may be oscillations wi<strong>th</strong><br />

finite decay rate, or <strong>th</strong>ey may be <strong>th</strong>e FID's corresponding to<br />

arbitrary lineshapes or subspectra. The utility of <strong>th</strong>is form of<br />

spectral analysis lies in <strong>th</strong>e principle <strong>th</strong>at for each unknown<br />

amplitude, only one sample of <strong>th</strong>e signal need be obtained. This<br />

can greatly reduce <strong>th</strong>e time of <strong>th</strong>e data acquisition process and<br />

size of <strong>th</strong>e data set in multidimensional acquisitions.<br />

For example, in <strong>th</strong>e collection of a COSY tvo-dimensional<br />

data set from a compound vi<strong>th</strong> tventy spectral lines in <strong>th</strong>e normal<br />

one-dimensional spectrum, <strong>th</strong>ere are exactly tventy possible<br />

frequencies in each of <strong>th</strong>e dimensions of <strong>th</strong>e two-dimensional<br />

spectrum (ignoring <strong>th</strong>e possible appearance of multi-quantum<br />

artifacts). It is <strong>th</strong>erefore possible, using minimal sampling, to<br />

collect <strong>th</strong>e two-dlmensional data set vl<strong>th</strong> only twenty samples in<br />

<strong>th</strong>e first time dimension. (One could also collect only twenty<br />

samples of each FID, ra<strong>th</strong>er <strong>th</strong>an <strong>th</strong>e usual 512 or so, but <strong>th</strong>at<br />

would not offer any significant savings in total acquisition<br />

time.)<br />

The drastic reduction in <strong>th</strong>e total number of data values<br />

acquired would suggest <strong>th</strong>at <strong>th</strong>e algori<strong>th</strong>m would suffer from very<br />

poor signal-to-noise performance. Sovever, <strong>th</strong>e actual<br />

performance is significantly better <strong>th</strong>an one might at first<br />

suspect. Most importantly, we have found a specific procedure<br />

for optimizing <strong>th</strong>e data collection process by maximizing <strong>th</strong>e<br />

noise immunity of <strong>th</strong>e matrix transformation which actually<br />

accomplishes <strong>th</strong>e spectral analysis.<br />

We will present an algori<strong>th</strong>m for optimizing <strong>th</strong>e<br />

quantitative performance of minimal sampling, and illustrate <strong>th</strong>e<br />

results of <strong>th</strong>is process for simulated and actual data.<br />

"Permanent address: University of Pennsylvania,<br />

Philadelphia, PA 19104


MK27<br />

QUANTITATIUN OF 1-D SPECTRA WITH LOW SIGNAL TO NOISE RATIO<br />

Sarah J. Nelson* and Truman R.,Bro~<br />

Fox Chase Cancer Center, Philadelphia, PA 1911!<br />

A new me<strong>th</strong>od of analysing 1-V spectra wi<strong>th</strong> low signal to noise ratio has<br />

been developed. In contrast to o<strong>th</strong>er techniques of noise suppression such as<br />

<strong>th</strong>e mtched filter and maximum entropy me<strong>th</strong>od, <strong>th</strong>is provides an automatic<br />

quantitation of <strong>th</strong>e spectrum. The output of <strong>th</strong>e computer algori<strong>th</strong>m which<br />

implements <strong>th</strong>e new me<strong>th</strong>od comprises estimates of (i) a slowly varying<br />

background component, (ii) <strong>th</strong>e variance of random noise, (iii) peak positions,<br />

peak heights, peak areas and (iv) <strong>th</strong>e predicted accuracy of <strong>th</strong>e peak parameter<br />

estimates. The performance of <strong>th</strong>e me<strong>th</strong>od has been investigated using a variety<br />

of simulated spectra wi<strong>th</strong> different types of background and a range of<br />

different peak heights and line wid<strong>th</strong>s. A comparison of <strong>th</strong>e filtered spectra<br />

wi<strong>th</strong> <strong>th</strong>ose obtained using <strong>th</strong>e matched filte~ and maximum entropy me<strong>th</strong>od<br />

demonstrated <strong>th</strong>e advantages of being able to directly estimate <strong>th</strong>e variable<br />

background and to use bo<strong>th</strong> peak height and peak wid<strong>th</strong> in distinguishing peaks<br />

from random noise. The me<strong>th</strong>od has also been applied to a variety of different<br />

experimental data and shows distinct advantages over <strong>th</strong>e conventional<br />

filtering techniques.


MK29<br />

ANALYS2D -GRAPHICS SOFTWARE FOR PROCESSING<br />

AND ANALYSIS OF 2D NMR DATA<br />

P. Darba* and L.R. Brown #<br />

Department of Biochemistry, University of Wisconsin-Madison,<br />

420 Benry Mall, Madison, WI-53706, U.S.A.<br />

and<br />

#Research School of Chemistry, The Australian National<br />

University, Canberra, A.C.T. 2601, Australia.<br />

ANALYS2D and its front-end package PROC2D are software packages used<br />

to process and analyze 2D NHR data on VAX and microVAX computers.<br />

Developed in FORTRAN77 and Tektronix PLOTIO GKS, it can be transported to<br />

o<strong>th</strong>er host computers wi<strong>th</strong> very little modification. PROC2D does <strong>th</strong>e<br />

number crunching part of <strong>th</strong>e operations such as 1D and 2D FFT, phase<br />

corrections, baseline corrections and display list generation. ANALYS2D<br />

provides for interactive analysis of 2D data including spin picking and<br />

bookkeepping of spin system data bases.<br />

PROC2D contains interactive routines for setting up 2D processing. It<br />

can be used in bo<strong>th</strong> interactive and batch processing modes. It is usable<br />

wi<strong>th</strong> bo<strong>th</strong> BRUKER and VARIAN data types and allows user defined 2D<br />

transform types like TPPI, States-Haberkorn-Ruben, absolute value and<br />

non-quadrature in e 1. It also includes auxillary programs <strong>th</strong>at feature<br />

linear combination procedures for efficient generation of multiple<br />

quantum and multiple quantum filtered 2D NMR spectra.<br />

ANALYS2D has been mainly designed to replace <strong>th</strong>e conventional me<strong>th</strong>od<br />

of analysis of 2D data using wall paper size plots, wi<strong>th</strong> <strong>th</strong>e concept of<br />

interactive analysis of 2D spectra on a high resolution graphics<br />

workstation. It has menu driven architecture and features display of 2D<br />

contours, selective expansions of different regions, creation of spin<br />

system data bases, cursor based auto/manual spin picking, comparison of<br />

spin system connectivities between different data sets, comparison of<br />

experimental spin multiplet patterns wi<strong>th</strong> <strong>th</strong>eoretical patterns and<br />

pattern library generation.


MK31<br />

SYMMETRY RECOGNITION APPLIED TO TWO DLMENSIOI~AL<br />

IH INMR SPECTRA OF PEPTIDES AND PROTEINS<br />

Jeffrey C. Hoch I", Flemming M. Poulson 2,<br />

Shen Hengyi 2, Mogens Kjaer 2, and Svend Ludvigsen 2<br />

I Rowland Institute for Science<br />

100 Cambridge Parkway<br />

Cambridge, Massachusetts 02142<br />

2Chemistry Department<br />

Carlsberg Laboratory<br />

Gamle Carlsbergvej 10<br />

Valby, DENMARK DK-2500<br />

A hierarchical procedure which automatically locates features in two dimen-<br />

sional NMR spectra based on <strong>th</strong>eir symmetry properties is described. The pro-<br />

cedure makes use of projection operators derived from group <strong>th</strong>eory. Results of<br />

<strong>th</strong>e procedure applied to COSY data for <strong>th</strong>e peptide hormone LHRH and barley<br />

subtilisin inhibitor protein are presented.


MK33<br />

DISPA-BASED RAPID AUTOMATED PHASING OF FT-NMR SPECTRA<br />

Edward C. Craig*, a and Alan G. Marshalla,b<br />

Department of Chemistrya<br />

(Department of Biochemistryb)<br />

The Ohio State University<br />

120 West 18<strong>th</strong> Avenue<br />

Columbus, OH 43210<br />

For a Lorentzian spectral peak, a plot of dispersion-vs.-absorption<br />

(DISPA) gives a circle, whose center is rotated about <strong>th</strong>e origin by <strong>th</strong>e<br />

angle~>(see Figure). In <strong>th</strong>is poster, we will show <strong>th</strong>at a rapid and<br />

convenient me<strong>th</strong>od for locating <strong>th</strong>e center of <strong>th</strong>e DISPA circle (and <strong>th</strong>ence<br />

<strong>th</strong>e phase misadjustment for <strong>th</strong>at peak) is to locate <strong>th</strong>e intersection of<br />

<strong>th</strong>e perpendicular bisectors of two or more chords of <strong>th</strong>e DISPA circle.<br />

Once <strong>th</strong>e phase at <strong>th</strong>e center of each of two or more peaks has been<br />

established, a linear (or quadratic) fit to a plot of~vs, frequency<br />

provides a smoo<strong>th</strong> phase-correction function for all o<strong>th</strong>er spectral peaks.<br />

Automated phasing of carbon-13 FT-NMR spectra will be demonstrated.<br />

Imaginary<br />

/<br />

Real<br />

!<br />

Frequency<br />

[This work was supported by <strong>th</strong>e National Science Foundation<br />

(CHE-8218998) and The Ohio State University.]<br />

I. Marshall, A.G. (1982) "Dispersion versus Absorption (DISPA): Hilbert<br />

Transforms in Spectral Line Shape Analysis," in Fourier, Hadamard r<br />

and Hilbert Transforms in Chemistry, ed. A.G. Ma'rshall (P|enum,<br />

N.Y.), pp. 99-123.


MK35<br />

NETVORKING AND AUTOMATION IN THE HIGH-VOLUME LABORATORY<br />

by<br />

Stephen G. Spanton, Richard L. Stephens* and David ~Jhittern<br />

Department of Analytical Research, Abbott Laboratories<br />

Nor<strong>th</strong> Chicago, Illinois 60064<br />

The linking of an NMR spectrometer equipped wi<strong>th</strong> an automatic sample<br />

changer to an external computer network has resulted in an extremely<br />

efficient system for <strong>th</strong>e acquisition, processing and archiving of NMR<br />

spectra. Spectra of a large number of samples are acquired and saved on<br />

<strong>th</strong>e ~ spectrometer using <strong>th</strong>e sample changer. The external computer <strong>th</strong>en<br />

fetches <strong>th</strong>e raw data and (1) assigns each spectrum a reference number, (2)<br />

decodes and enters various information into an archival data base, and (3)<br />

saves <strong>th</strong>e ray data on magnetic tape. Routine one-dimensional 1H spectra<br />

are <strong>th</strong>en Fourier transformed, phased, referenced, scaled, integrated and<br />

plotted by <strong>th</strong>e external computer operating in batch mode. In addition,<br />

software has been developed at Abbott to alloy <strong>th</strong>e interactive processing<br />

and plotting of one-dimensional spectra by chemists (and spectroscopists)<br />

using <strong>th</strong>e computer network and graphics terminals located in <strong>th</strong>eir ovn<br />

laboratories.


MK37<br />

IMPROVEMENT OF INVERSE CORRELATION EXPERIMENTS BY SHAPED PULSES<br />

W. Bermel* a), C. Griesinger* b) , S. Steuernagel c),<br />

K. Wagner c), H. Kessler c).<br />

a) Bruker Analytische Messtechnik GmbH, Silberstreifen,<br />

D-7512 Rheinstetten 4, West Germany<br />

b) Laboratorium fur physikalische Chemie, ETH-Zentrum,<br />

CH-8Og2 ZUrich, Switzerland<br />

c) Institut fur organische Chemie, J. W. Goe<strong>th</strong>e Universit~t,<br />

Niederurseler Hang, D-6000 Frankfurt/M, West Germany<br />

Correlation experiments via heteronuclear long range couplings provide<br />

useful information for <strong>th</strong>e assignment of resonances and about connec-<br />

tivities of substructures in oligopeptides and o<strong>th</strong>er classes of organic<br />

and bioorganic compounds.<br />

The corresponding inverse experiment, which has a better signal to noise<br />

ratio <strong>th</strong>an conventional techniques, has been introduced recently 1). For<br />

<strong>th</strong>e application to peptides mainly <strong>th</strong>e carbonyl carbons which cover a<br />

small range of chemical shifts in F 1 are of interest, whereas <strong>th</strong>e whole<br />

proton spectrum is required in F 2.<br />

The selection of a small frequency window in <strong>th</strong>e F 1 dimension is <strong>th</strong>ere-<br />

fore a prerequisite to obtain sufficient digitization wi<strong>th</strong> a reasonable<br />

amount of tl-values. This can be done wi<strong>th</strong> semiselective pulses. We used<br />

Gaussian shaped pulses for <strong>th</strong>is kind of semiselective 2D experiments.<br />

The reduction of <strong>th</strong>e F 1 frequency range of more <strong>th</strong>an 10 kHz to a few<br />

hundred Hz results in a considerable resolution gain. The sensitivity is<br />

also improved due to good digitization.<br />

Modifications of <strong>th</strong>e basic sequence will be discussed, which allow to<br />

adjust <strong>th</strong>e experiment to one's needs: ei<strong>th</strong>er to obtain a maximum number<br />

of correlation peaks or to derive qualitative information about <strong>th</strong>e size<br />

of heteronuclear coupling constants.<br />

1) L. MUller, J. Am. Chem. Soc 101, 4481 (1979);<br />

A. Bax, R. H. Griffey and B. L. Hawkins, J. Magn. Reson. 55,<br />

301 (1983)


MK39<br />

A Partial Excitation Me<strong>th</strong>od in Two-dimensional Nuclear Mag-<br />

netic Resonance Spectroscopy Using a Tailored Pulse Having<br />

a Sinc Function Shape<br />

Muneki Ohuchl, Kazuo Furlhata~ and Haruo Seto~<br />

JEOL Co., Nakagami, Akishima, Tokyo, ~lnstitute of Applied<br />

Microbiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan<br />

Two-dimensional (2D) NMR spectroscopy has a disadvantage<br />

<strong>th</strong>at cross-peak patterns can not be analyzed in detail due<br />

to <strong>th</strong>e low digital resolution caused by <strong>th</strong>e limited capacity<br />

of data memory and by <strong>th</strong>e limited measurement time. This<br />

shortcoming can be eliminated by measuring a narrow spectral<br />

region using partial excitation pulses. A slnc function<br />

pulse can excite signals wi<strong>th</strong>in a narrow frequency range,<br />

while <strong>th</strong>e side lobes produced from a rectangular pulse ex-<br />

cite undesirable neighbor signals outside <strong>th</strong>e range.<br />

We have developed <strong>th</strong>e partial excitation me<strong>th</strong>od in 2D NMR<br />

spectroscopy[l] by using a tailored pulse produced from a<br />

sinc function type pulse, and <strong>th</strong>e digital resolution of 2D<br />

NMR spectra has been enhanced several times by using <strong>th</strong>is<br />

me<strong>th</strong>od. Increased digital resolution allows recognition of<br />

cross-peak patterns and coupling constants can be determined<br />

from <strong>th</strong>eir patterns.<br />

In <strong>th</strong>is paper, application of <strong>th</strong>is me<strong>th</strong>od to COSY and<br />

HMBC[2](Heteronuclear Multiple Bond Connectivity) will be<br />

reported.<br />

I) M.Ohuchi et.al., J.Magn.Reson. in press.<br />

M.Ohuchl et.al., 25<strong>th</strong> NMR <strong>Conference</strong> Tokyo (1986)<br />

2) A.Bax et.al., J.Am.Chem. Soc., I08 2093 (1986)


MK41<br />

PARAHYDROGEN AND SYNTHESIS ALLOWS<br />

DRAMATICALLY ENHANCED NUCLEAR ALIGNMENT<br />

C. Russell Bowers* and Daniel P. Weitekamp<br />

Ar<strong>th</strong>ur Amos Noyes Laboratory of Chemical Physics<br />

California Institute of Technology 127-72<br />

Pasadena, CA91125<br />

Molecular hydrogen is known to come in two forms, para-H2 and<br />

or<strong>th</strong>o-H2, which differ from one ano<strong>th</strong>er in <strong>th</strong>eir nuclear spin states. A<br />

consequence of <strong>th</strong>e symmetrization postulate of quantum mechanics is <strong>th</strong>at<br />

<strong>th</strong>ese two forms are associated only wi<strong>th</strong> specific states of molecular rotation.<br />

In particular, <strong>th</strong>e lowest energy rotational state has <strong>th</strong>e para nuclear spin<br />

state, (1/2)t(]a~ >-ilia > ), so <strong>th</strong>at low-temperature equilibration prepares <strong>th</strong>e<br />

protons predominantly in <strong>th</strong>is non-magnetic state. This para-H2 may be<br />

used even as a room temperature reagent, since conversion to <strong>th</strong>e or<strong>th</strong>o form<br />

is slow in <strong>th</strong>e absence of a catal' y st.<br />

This poster presents <strong>th</strong>e ~irst experimental demonstration of <strong>th</strong>e recent<br />

prediction1 <strong>th</strong>at <strong>th</strong>e nuclear spin order ofpara-H2 can be converted by<br />

chemical reaction into large v nonequilibrium NMR signals. The reaction<br />

studied is <strong>th</strong>e molecular addition of H2 to acrylonitrile to form propionitrile.<br />

The reaction is performed in deuterochloroform solution in a standard NMR<br />

tube at room temperature and pressure wi<strong>th</strong> <strong>th</strong>e aid of Wilkinson's catalyst,<br />

tris (triphenylphosphine) rhodium(I) chloride. The hydrogenation is initiated<br />

by bubbling H2 gas <strong>th</strong>rough <strong>th</strong>e solution containing acrylonitrile and catalyst.<br />

If <strong>th</strong>e gas has been enriched inpara-H2 by previous exposure to a<br />

paramagnetic catalyst in liquidnitrogen, a n/4 pulse elicits an f.i.d, whose<br />

Fourier transform shows antiphase multiplets at '<strong>th</strong>e expected propionitrile<br />

frequencies as shown in)artn par~ ~a) of <strong>th</strong>e figure. The amplitude of <strong>th</strong>ese lines is at<br />

least two orders of magnitude greater <strong>th</strong>an would result from <strong>th</strong>e equilibrium<br />

magnetization of <strong>th</strong>e product formed. This is evidenced by <strong>th</strong>e absence of<br />

observable product signal in part b), obtained after a delay of several times T1,<br />

even <strong>th</strong>ough <strong>th</strong>e product is chemically stable.<br />

(o)<br />

(b)<br />

f i ~ |<br />

I I I<br />

6 3 0<br />

~ ) C.R. Bowers and D. P. Weitekamp, "rhe Transformation of<br />

ppm<br />

ymmetrization Order to Nuclear Spin Magnetization By Chemical<br />

Reaction and NMR", Phys.Rev.Lett. 53, 2645 (1986).


MK43<br />

MjECHANIStCSOFCOHEREHCETRANSFER IN LIQUIDS:<br />

=ANTIPHASEmARD "IMPBASE" TRANSFER<br />

Renzo Bazzo, Jona<strong>th</strong>an Boyd, Nick $offe<br />

Department of Biochemistry, University of Oxford<br />

Oxford, ENGLAND<br />

Many NNR experiments, bo<strong>th</strong> 1 and 2 dimensional, rely on a<br />

common mechanism of coherence transfer, between weak]y coupled<br />

nut]el, which is referred to as <strong>th</strong>e "antiphase" mechanism.<br />

Free evolution can be described as a continuous exchange<br />

between inphase and anciphase terms; whereas pu]ses (usual]y<br />

assumed to be non-selective) cause coherence transfer of<br />

antiphase terms or give rise to multiple quantum coherences. A<br />

simple geometrical model will be presented which is useful to<br />

represent <strong>th</strong>e above processes.<br />

Cross polarization experiments, introduced for liquids by<br />

Braunschweiler and Ernst and fur<strong>th</strong>er developed by 8ax and Davis<br />

can give rise to "inphase" or net coherence transfer. We shall<br />

present an analysis of <strong>th</strong>e coherence transfer mechanism<br />

involved in <strong>th</strong>is class of experiments.<br />

The cross polarization experiment will be compared wi<strong>th</strong><br />

o<strong>th</strong>er two-dimensional correlation techniques which rely<br />

completely upon <strong>th</strong>e antiphase mechanism. The two mechanisms of<br />

coherence transfer will be contrasted.


MK45<br />

SIMULTANEOUSLY OBSERVING THE HOMONUCLEAR<br />

AND HETERONUCLEAR EDITED SIGNALS WITHOUT<br />

AN X NUCLEUS DECOUPLER<br />

T. Jue<br />

Dept. of Mol. Biophysics and Biochemistry<br />

Yale University<br />

New Haven, CT 06511<br />

The promise of sensitivity enhancement has spurred research<br />

efforts to edit <strong>th</strong>e *H NMR spectrum. For in vivo studies, <strong>th</strong>e<br />

metabolic pa<strong>th</strong>ways have been followed wi<strong>th</strong> ,3C precursors, but<br />

can be followed wi<strong>th</strong> enhanced sensitivy wi<strong>th</strong> |*sc}-*H editing<br />

strategies. In particular, <strong>th</strong>e one dimensional techniques based<br />

on J modulation behavior have yielded successful results in<br />

brain, liver, and muscle experiments. However, <strong>th</strong>ese extant<br />

me<strong>th</strong>ods yield only <strong>th</strong>e edited *3C-*H signals upon subtraction of<br />

<strong>th</strong>e alternate, modulated spin-echo experiments, but do not<br />

necessarily give edited *2C-*H signals upon addition -- only <strong>th</strong>e<br />

overall *2C-*H resonances which are often encumbered wi<strong>th</strong> <strong>th</strong>e<br />

endogenous background lipid signals.<br />

But in vivo studies require bo<strong>th</strong> <strong>th</strong>e *2C-*H and *3C-*H<br />

signals to probe <strong>th</strong>e important question of specific activity,<br />

which is posed by <strong>th</strong>e various sources of a metabolic pool.<br />

Consequently, we have devised a simple scheme to simultaneously<br />

obtain bo<strong>th</strong> <strong>th</strong>e homonuclear and heteronuclear edited signals<br />

wi<strong>th</strong>out a *sc decoupler. Pivotal metabolites are amenable to<br />

such a winnowing scheme.


MK47<br />

AN IMPROVED CHORTLE PULSE SEQU<strong>ENC</strong>E<br />

GERALD A. PEARSON<br />

CHEMISTRY DEPARTMENT, UNIVERSITY OF IOWA<br />

IOWA CITY, IOWA 52242<br />

We have developed s pulse sequence which substantially<br />

improves <strong>th</strong>e accuracy and resolution of <strong>th</strong>e CHORTLE (I)<br />

experiment. (Carbon-Hydrogen correlations from One-<br />

dimensional polaRization-Transfer spectra by LEast-squares<br />

analysis) One can now adjust tCH, <strong>th</strong>e net evolution time<br />

for dcm prior to polarization transfer, independently o£<br />

tM,max, <strong>th</strong>e maximum net evolution time for proton chemical<br />

shift, 6H. Using tN,max m 10 msec, CHORTLE now routinely<br />

measures 6H wi<strong>th</strong> an error ~(~H) ~ I HZ, and resolves non-<br />

equivalent geminal me<strong>th</strong>ylene protons whose chemical shifts<br />

differ by only 30 Hz. Exploratory CHORTLE experiments wi<strong>th</strong><br />

longer tH,max have achieved ¢(6H) ~ 0.2 Hz in favorable<br />

cases, and it should be possible to achieve ~(6H) s 0.02 Hz<br />

in special cases, wi<strong>th</strong> a IH spectrum wid<strong>th</strong> ~ 5000 Hzl<br />

In its orlElnal form, <strong>th</strong>e CHORTLE experiment typically<br />

yielded ~(6H) ~ 3 Hz, end frequently could not resolve non-<br />

equivalent gemlnal protons whose chemical shifts differ by<br />

less <strong>th</strong>an about 70 Hz. This was because tM.max = tCH, and<br />

tcH is restricted to values which optimize <strong>th</strong>e polarization-<br />

transfer efficiency. Wi<strong>th</strong> tcH ~ I/2JcH, tH,max was only 3.2<br />

meec. Tzeng(2) pointed out <strong>th</strong>at it is possible to<br />

circumvent <strong>th</strong>is limitation by setting tcH = 3/2JcH, 5/2dcs,<br />

etc., in exactly <strong>th</strong>e same way <strong>th</strong>at Reynolds and o<strong>th</strong>ers TM<br />

re-parameterized <strong>th</strong>e COLOC c4) sequence. Unfortunately,<br />

increasing tcs has <strong>th</strong>ree disadvantages. First of all,<br />

errors arising from unwanted long-range polarization<br />

transfer remain approximately constant, ra<strong>th</strong>er <strong>th</strong>an<br />

decreasing wi<strong>th</strong> increasinE tH,ma,. Secondly, <strong>th</strong>e desired<br />

polarization-transfer efficiency becomes more sensitive to<br />

<strong>th</strong>e value of Jcs; since Jcs can vary from 118 Hz to 220 Hz<br />

or more in some samples, <strong>th</strong>is will inevitably lead to loss<br />

of sensitivity for some signals. Finally, only certain<br />

values of ts,max are possible (ca. 10 msec, 16.5, 23, ...)<br />

wi<strong>th</strong> <strong>th</strong>is approach. The new pulse sequence permits one to<br />

choose ts,max to be a truly optimum compromise between<br />

desired accuracy and <strong>th</strong>e sensitivity losses caused by IH<br />

relaxation and IH multiplet dephasing arising from IH-IH<br />

coupling.<br />

1. G.A.F~Ju~SON, J.~oN.RZSON. 6,4, 48T (1~).<br />

2. C.S.TzENo, UNIV. (:~ C~U-IF. AT RI~ERSI2* I~IVATI[ CC]I,~I~.ATION.<br />

3. W.F.REYNOLDS, D.W.HUOMES, M.I~A,'XOK-I~, AND R.G.EN~xOUEZm<br />

J.I'IAoN.RZ~w~N. 64, 304 (1985).<br />

4. H.I~S~.~R, C.CW~IESI~R, J . ~ ( ~ , AND H.R.I-~I,<br />

J.MA(Nw. REIwmw. 6"/', 331 (1~34).


Poster Session<br />

W<br />

2:00- 5:00<br />

Wednesdayj April 8j <strong>1987</strong>


o<br />

°~<br />

tO.<br />

o<br />

.9,o<br />

Kiln - Poster Session Layout<br />

WK8 r]<br />

Flynn ~<br />

Mg7<br />

Fesik II<br />

WK6<br />

Fesik<br />

MK5<br />

Davis<br />

WK4<br />

Brown<br />

MK3<br />

Borgias<br />

WK2<br />

Bogusky<br />

MK1<br />

Baum<br />

Chalkboard<br />

MK9 WK2 MK25 WK44 MK41<br />

Takegoshi Sute Ackerman Warrer Bowers<br />

WK10 MK2:, WK26 MK3. ¢ WK42<br />

McLennan $klenka Barker Ohuch Bodenhausen<br />

MK11 WK2: MK27 WK3E MK43<br />

Poulsen Levltl Nelson Mac Boyd<br />

WK12 MK21 WK28 MK37 WK44<br />

Mlrau Zuiderw~ Brown Bermel Coxon<br />

MK13 WK2¢ MK29 WK36 MK45<br />

Holak Ziessow Darba Tang Jue<br />

WK14 MK19 WK30 MK35 WK46<br />

Snrensen Yu Grahn Stephens Meyerhoff<br />

MK15 WK18 MK31 WK34 MK47<br />

Rooney Narula Hoch Picart Pearson<br />

WK16 MK 17 WK32 MK33 WK48<br />

Hiyama Wang Johnson Craig F:lance


Firelight Forum - Poster Session Layout<br />

WF10<br />

Chu<br />

MF9<br />

Williamson<br />

WF8<br />

Pines<br />

MF7<br />

Eckert<br />

WF6<br />

Kay<br />

MF5<br />

Pekar<br />

WF4<br />

Lamb<br />

MF3<br />

Gonen<br />

WF2<br />

LaMar<br />

MF1<br />

Allen<br />

MF11<br />

Beshah<br />

WF12<br />

Bork<br />

MF13<br />

Bryant<br />

WF14<br />

Bryant<br />

MF15<br />

Carduner<br />

WF16<br />

Duncan<br />

MF17<br />

Ead<br />

WF18<br />

Dec<br />

MF19<br />

Jiang -<br />

WF20<br />

Jakobsen<br />

WF30<br />

Nissan<br />

MF29<br />

Merrill<br />

WF28<br />

Wind<br />

MF27<br />

Quinting<br />

WF26<br />

Limbach<br />

MF25<br />

Hill<br />

WF24<br />

Campbell<br />

MF23<br />

qleason<br />

WF22<br />

Hartzell<br />

MF21<br />

Garbow<br />

MF31<br />

Oldfield<br />

WF32<br />

Opella<br />

MF33<br />

Roberts<br />

WF34<br />

Simonsen<br />

MF35<br />

Stebbins<br />

WF36<br />

Vander-<br />

Hart<br />

MF37<br />

Williams<br />

WF38<br />

Lock<br />

MF39<br />

StOcklein<br />

WF40<br />

Jarvie<br />

Chalkboard I<br />

Tsang Kopelevich<br />

MF49H WF52<br />

Ronemus Maple<br />

WF,~ MFS3<br />

Muir'] Jarrel<br />

MF47HWF54<br />

Nicholson ~lOmlch<br />

MF55<br />

Johnston<br />

MF45, H WF56<br />

Brandes Mattingly<br />

WF=I] "~<br />

Santini Bendall<br />

MF43, n WF58<br />

Johnson Black-<br />

ledge<br />

MF59<br />

Briggs<br />

MF41 ~ WF60<br />

Behling Thoma<br />

Kormos Lowe<br />

Keller MF~911W~2 He<strong>th</strong>erington<br />

WF6811MF73<br />

amesi i Mateescu<br />

MF°'IIW '<br />

Schmal- Karczmar<br />

brock<br />

WF6611MFTS<br />

offrionl I Matsui<br />

MF~IIW~'<br />

Garwood Metz<br />

V-EUtlM~<br />

Dumoulin Miller<br />

MF~IIWF~B<br />

Dixon Saarinen<br />

WF62 H MF79<br />

Cockman Warren<br />

MF"IIWF~O<br />

Brown Szeverenyi<br />

Women's Rm Men's Rm<br />

~)<br />

(J<br />

03<br />

.m<br />

LI.<br />

E3<br />

o


WF02<br />

WF04<br />

WF06<br />

WF08<br />

WF10<br />

WF12<br />

WF14<br />

WF16<br />

WF18<br />

WF20<br />

WF22<br />

WF24<br />

WF26<br />

WF28<br />

Presenter<br />

LaMar, G. N.<br />

Lamb, D. M.<br />

Kay, L. E.<br />

Pines, A.<br />

Chu, S. C.-K.<br />

Bork, V.<br />

Bryant, R.G.<br />

Duncan, T. M.<br />

Dec, S. F.<br />

Jakobsen, H. J.<br />

Hartzell, C. J.<br />

Campbell, G. C.<br />

Limbach, H.-H.<br />

Wind, R. A.<br />

Poster Session<br />

Wednesday, April 8, <strong>1987</strong><br />

Title<br />

Utility of Nuclear Overhauser Experiments in <strong>th</strong>e<br />

Study of Heme Proteins<br />

Fixed Field Gradient NMR Diffusion Measurements<br />

Using Bessel Function Fits to <strong>th</strong>e Spin-Echo Signal<br />

Motional Properties from Forbidden Peak Intensities in<br />

Double Quantum Spectra of Macromolecules<br />

Multiple Quantum and 129Xe NMR Studies of <strong>th</strong>e<br />

Distribution of Molecules in a Zeolite<br />

Bulk Magnetic Susceptibility Effects in 23Na NMR<br />

Spectra of Compartmentalized Samples Containing<br />

Na ÷ and Shift Reagents<br />

Determination of Enzyme-Steroid Binding Sites by<br />

CPMAS 13C NMR and Selective Excitation<br />

The Use of Multiple Echo Acquisition and Stimulated<br />

Echos to Detect Slow Motion<br />

Characterization of Transition Metal Silicides wi<strong>th</strong> 29Si<br />

NMR Spectroscopy<br />

High-Speed MAS 19F NMR of Fluorocarbon<br />

Polymers<br />

Design of an Efficient Probe for High Field<br />

Multinuclear CP/MAS NMR of Solids<br />

Orientation of <strong>th</strong>e 15N Chemical Shift Tensor in a<br />

Polycrystalline Dipeptide<br />

VT CP/MAS NMR of Antiferromagnetic Metal<br />

Complexes<br />

Temperaturevariable Solid Solution CPMAS NMR<br />

Studies of Dyes in Glassy Polymers<br />

Dynamic Nuclear Polarization in Organic Conductors<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WF30<br />

WF32<br />

WF34<br />

WF36<br />

WF38<br />

WF40<br />

WF42<br />

WF44<br />

WF46<br />

WF48<br />

WF50<br />

WF52<br />

WF54<br />

WF56<br />

WF58<br />

WF60<br />

WF62<br />

WF64<br />

Presenter<br />

Nissan, R. A.<br />

Opella, S.<br />

Simonsen, D. M.<br />

Vander Hart, D. L.<br />

Lock, H.<br />

Jarvie, T. P.<br />

Hornak, J. P.<br />

Santini, R.<br />

Beshah, K.<br />

Muira, H.<br />

Tsang, P.<br />

Maple, S. R.<br />

Bliimich, B.<br />

Mattingly, M.<br />

Blackledge, M. J.<br />

Thoma, W. J.<br />

Cockman, M. D.<br />

Dumoulin, C. L.<br />

Title<br />

Solid State 31p MAS NMR as a Tool for Studying 3-<br />

Dimensional Solids: The Chalcopyrites ZnSiP2,<br />

ZnSnP2, ZnGeP 2 and Related Materials<br />

Solid State NMR of Proteins<br />

13C MAS NMR Studies of Various Supported Metal<br />

Catalysts<br />

A Proton MAS NMR Me<strong>th</strong>od for Determining Intimate<br />

Mixing in Polymer Blends<br />

29Si Dynamic Nuclear Polarization Studies of<br />

Dehydrogenated Amorphous Silicon<br />

Nonaxially Symmetric Dipolar Couplings in Solids and<br />

Liquid Crystals<br />

Errors in Mapping RF Magnetic Fields<br />

Proton Detected 31 p_ 1H HETCOR of DN A Frag men ts<br />

Deuterium NMR Study of Me<strong>th</strong>yl Group Dynamics in<br />

L-Alanine<br />

Segmental Dynamics in Nylon 66 by Deuterium NMR<br />

Solid State NMR Dynamics Studies of Duplex RNA<br />

Analysis of Complex Mixtures by Ultrahigh<br />

Resolution NMR<br />

2D Exchange NMR in Non-Spinning Powders<br />

Localized Proton Density, Relaxation Times and Self<br />

Diffusion Coefficient Measurements in Single Cells<br />

by NMR Microscopy<br />

Spatial Localisation of 31p NMR Spectroscopy using<br />

Phase Modulated Rotating Frame Imaging<br />

Sensitivity of Surface Coils to Deep Lying Volumes<br />

Convolution Chemical Shift Imaging<br />

NMR Flow Imaging<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WF66<br />

WF68<br />

WF70<br />

WF72<br />

WF74<br />

WF76<br />

WF78<br />

WF80<br />

WK02<br />

WK04<br />

WK06<br />

WK08<br />

WK10<br />

WK12<br />

WK14<br />

WK16<br />

Presenter<br />

Geoffrion, Y.<br />

James, T. L.<br />

Kormos, D. W.<br />

He<strong>th</strong>erington, H. P.<br />

Karczmar, G. S.<br />

Metz, K. R.<br />

Saarinen, T. R.<br />

Szeverenyi, N. M.<br />

Bogusky, M.<br />

Brown, S. C.<br />

Fesik, S. W.<br />

Flynn, P. F.<br />

McLennan, I. J.<br />

Mirau, P. A.<br />

SOrensen, O. W.<br />

Hiyama, Y.<br />

Title<br />

Immobilized Ferrite Particles: Selective Spoiling of a<br />

Homogeneous B 0 Field and Its Application to<br />

Surface Coil Spectroscopy<br />

The SWIFT Me<strong>th</strong>od for In Vivo Localized<br />

Spectroscopy<br />

Natural Abundance Carbon- 13 NMR Imaging in<br />

Biological Systems<br />

The Description and Elimination of Subtraction<br />

Artefacts in 1H Editing Schemes: A Phase Cycling<br />

Scheme to Eliminate Absorptive and Dispersive<br />

Errors<br />

Tailored Excitation in <strong>th</strong>e Rotating Frame<br />

Rapid Rotating-Frame Imaging<br />

A Novel Me<strong>th</strong>od for Diffusion and Flow<br />

Measurements: Imaging of Transient<br />

Magnetization Gratings<br />

Multiple Quantum Filtering: Uses in Imaging and<br />

Imaging Related Experiments<br />

15N NMR of Macromolecules: Applications to <strong>th</strong>e<br />

Study of Proteins in Solution<br />

P. E. COSY, Double Quantum Filtered Relay<br />

Spectroscopy and More<br />

Isotope-Filtered Proton NMR Experiments for<br />

Simplifying Complex Spectra<br />

Isotropic Mixing in DNA<br />

1H, 13C and 15N NMR Studies of Metal Complexes of<br />

Bleomycin<br />

Quantitative Interpretation of a Single 2D<br />

NOE Spectrum<br />

Symmetry and Antisymmetry in 2D NMR<br />

Spectra<br />

Multinuclear Solid State NMR Studies of Internal<br />

Molecular Dynamics in Fibrous and Crystalline<br />

Proteins<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WK18<br />

WK20<br />

WK22<br />

WK24<br />

WK26<br />

WK28<br />

WK30<br />

WK32<br />

WK34<br />

WK36<br />

WK38<br />

WK40<br />

WK42<br />

WK44<br />

WK46<br />

Presenter<br />

Narula, S. S.<br />

Ziessow, D.<br />

Levitt, M. H.<br />

Suter, D.<br />

Barker, P. B.<br />

Brown, L. R.<br />

Grahn, H.<br />

Johnson, B. A.<br />

Picart, F.<br />

Tang, J.<br />

Mao, J.<br />

Warren, W. S.<br />

Bodenhausen, G.<br />

Coxon, B.<br />

Meyerhoff, D. J.<br />

Title<br />

2D NMR Me<strong>th</strong>ods for Spin System Identification in<br />

Large Proteins<br />

Recent Progress in Multidimensional Stochastic NMR<br />

Spectroscopy<br />

Solvent Suppression Wi<strong>th</strong>out Phase<br />

Distortion<br />

Broadband Heteronuclear Decoupling in <strong>th</strong>e Presence<br />

of Homonuclear Interactions<br />

Line Shapes in One-Dimensional Chemical Shift<br />

Imaging<br />

Selection of Coherence Transfer Pa<strong>th</strong>ways by Fourier<br />

Analysis: How to Improve <strong>th</strong>e Efficiency of 2D<br />

NMR Spectroscopy<br />

Pattern Recognition in 2D NMR. A Multivariate<br />

Statistical Approach wi<strong>th</strong> Logic Programming<br />

Chemical Exchange in Metal Clusters. Analysis wi<strong>th</strong><br />

2D Linear Prediction and Direct Analysis of <strong>th</strong>e<br />

Rate Matrix<br />

Deconvolution of High Resolution Two-Dimensional<br />

NMR Signals by Digital Signal Processing wi<strong>th</strong><br />

Linear Predictive Singular Value Decomposition<br />

Linear Prediction Z-Transform (LPZ) Spectral<br />

Analysis wi<strong>th</strong> Enhanced Resolution and Sensitivity<br />

Experimental Study of <strong>th</strong>e Optimized Selective RF<br />

Pulses<br />

Pulse Shaping for Solvent Suppression and Selective<br />

Excitation in Two-Dimensional and Multiple Pulse<br />

NMR Spectroscopy<br />

Relaxation-Allowed Coherence Transfer Between<br />

Spins Which Possess No Mutual Scalar Coupling<br />

Two-Dimensional POMMIE 13C NMR Spectrum<br />

Editing<br />

Multiple-Acquisition Two-Dimensional Homonuclear<br />

Shift Correlation Spectroscopy<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WK48<br />

Presenter<br />

Rance, M.<br />

Title<br />

Improved Techniques for <strong>th</strong>e Acquisition of TOCSY<br />

and CAMEL,SPIN Spectra and Computer<br />

Simulations of <strong>th</strong>e TOCSY Experiment<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WF2<br />

LrIII~ITY OF NUC].FAR OVERHAUSER EXPERIMENTS IN THE S'IXJDY OF<br />

]-IEME PROTEINS<br />

V. Thanabal, W. S. Smi<strong>th</strong>, M. J. Chatfield, S. D. Emerson,<br />

J. L. McGourty, J. Hauksson, D. H. Peyton, J. T. J. Lecomte,<br />

K.-B. Lee, and G. N. La Mar*<br />

Dept. of Chemistry, University of California, Davis, CA 95616<br />

The paramagnetic center of heme proteins also contributes<br />

significantly to relaxation such <strong>th</strong>at it becomes very difficult to<br />

saturate resonances which arise from protons near <strong>th</strong>e iron wi<strong>th</strong>out<br />

significantly perturbing <strong>th</strong>e rest of <strong>th</strong>e spectrum via off-resonance<br />

effects. In addition, <strong>th</strong>e systems have high molecular weights,<br />

leading to <strong>th</strong>e usual spin-diffusion effects.<br />

We have developed me<strong>th</strong>ods of using <strong>th</strong>e nuclear Overhauser<br />

effect in paramagnetic hemoproteins in <strong>th</strong>e light of <strong>th</strong>e problems<br />

mentioned above. Included in <strong>th</strong>is study are numerical solutions of<br />

<strong>th</strong>e Bloch equations evaluating <strong>th</strong>e off-resonance effects expected<br />

when using high saturating power on a system of fast-relaxing<br />

protons. Fur<strong>th</strong>er, we provide examples of uses we have found for<br />

nuclear Overhauser effect studies in paramagnetic heine proteins<br />

wi<strong>th</strong> molecular weights ranging up to greater <strong>th</strong>an 75,000.


WF4<br />

FIXED FIELD GRADIENT NMR DIFFUSION MEASUREMENTS USING<br />

BESSEL FUNCTION FITS TO THE SPIN-ECHO SIGNAL<br />

D. M. Lamb*, P. J. Grandinettl, and J. Jonas<br />

Department of Chemistry<br />

School of Chemical Sciences<br />

University of Illinois<br />

Urbana, Illinois 61801<br />

A new technique for diffusion measurement by NMR using a fixed fleld<br />

gradient is described. The me<strong>th</strong>od makes use of a Bessel function fit<br />

analysis to <strong>th</strong>e spin-echo signal in order to determine bo<strong>th</strong> <strong>th</strong>e applied<br />

gradient and <strong>th</strong>e diffusion coefficient simultaneously. Results of tests<br />

of <strong>th</strong>e me<strong>th</strong>od using water and benzene are presented, and <strong>th</strong>e utility of<br />

<strong>th</strong>e technique is demonstrated wi<strong>th</strong> a report of preliminary results for a<br />

determination of <strong>th</strong>e diffusion of naph<strong>th</strong>alene dissolved in compressed,<br />

supercritical carbon dioxide.


WF6<br />

MOTIONAL PROPERTIES FROM FORBIDDEN PEAK INTENSITIES IN DOUBLE<br />

QUANTUM SPECTRA OF MACROMOLECULES.<br />

Lewis E. Kay*, T.A. Holak, and J.H. Prestegard<br />

Department of Chemistry, Yale University, New Haven CT., 06511<br />

Typical n quantum filtered one and two dimensional spectra<br />

consist of peaks associated only wi<strong>th</strong> spins having Kesolved<br />

scalar couplings to at least (n-l) equivalent or nonequivalent<br />

spins. Consider, for example, a me<strong>th</strong>yl group connected to a<br />

tertiary carbon forming an A 3 spin system. On <strong>th</strong>e basis of a<br />

simple <strong>th</strong>eoretical formalism for multl-pulse experiments all<br />

peaks stemming from <strong>th</strong>e single resonance associated wi<strong>th</strong> <strong>th</strong>is<br />

system should be removed by a multiple quantum filter. Multiple<br />

quantum peaks associated wi<strong>th</strong> degenerate spin systems of <strong>th</strong>is<br />

type do, however, appear in spectra of macromolecules. 1"3 Despite<br />

<strong>th</strong>e potential pitfalls associated wi<strong>th</strong> interpretation of <strong>th</strong>ese<br />

additional resonances, <strong>th</strong>eir appearance, when properly<br />

understood, can provide useful information concerning <strong>th</strong>e<br />

dynamics of <strong>th</strong>e spin system involved and ultimately <strong>th</strong>e<br />

structural properties of <strong>th</strong>e parent molecule. This is due to <strong>th</strong>e<br />

fact <strong>th</strong>at <strong>th</strong>e appearance of such forbidden peaks is a direct<br />

consequence of cross correlation effects between spins.<br />

We will present an investigation of <strong>th</strong>e motional properties<br />

of an X 3 spin system found in mlcelles of deoxycholate using<br />

forbidden peak intensities from a one dimensional analogue of <strong>th</strong>e<br />

double quantum 2D experiment. Applications to <strong>th</strong>e AX 3 spin<br />

systems of alanine residues in proteins will also be discussed<br />

wi<strong>th</strong> an emphasis on how an understanding of me<strong>th</strong>yl group dynamics<br />

can aid in interpretation of NOE cross peak intensities involving<br />

<strong>th</strong>ese groups.<br />

I. Muller, N; Bodenhausen, GI Wu<strong>th</strong>rich, K: Ernst, R.R.<br />

J. Magn Reson. 1985, 65, 531.<br />

2. Muller, N; Ernst, R.R; Wu<strong>th</strong>rich, K. J. Am. Chem. Soc. 1986,<br />

108, 6482.<br />

3. Rance, M; Wright, P.E; Chem. Phys. Letters 1986, 124, 572.


WF8<br />

MULTIPLE ~ANTUH AND 129XE NMR STUDIES OF THE DISTRIBUTION OF MOLECULES<br />

IN A ZEOLITE •<br />

R. Ryoo, S.-B. Liu, L. C. de Menorval, and A. Pines<br />

University of California, Berkeley<br />

Proton multlple-quantum (MQ) NMR measurements and analyses of 129Xe<br />

NMR spectra were used to probe <strong>th</strong>e spatial distrlbutlon of simple<br />

molecules adsorbed in molecular sleves. The behavior of homogeneously<br />

chemlsorbed hexame<strong>th</strong>ylbenzene (HMB) In <strong>th</strong>e supercages of Na-Y zeolite is<br />

demonstrated. Distinct chemlcal shift llnes were observed from 129Xe<br />

NMR spectra of adsorbed xenon on Na-Y zeolite samples wi<strong>th</strong> different wt%<br />

of ehemisorbed HMB molecules. In <strong>th</strong>e absence of HMB chemisorbed in <strong>th</strong>e<br />

sample, a single llne at - 90 ppm due to xenon (300 Tort) In zeolite<br />

supercages Is obtained. When, on <strong>th</strong>e average, each zeolite supercage is<br />

occupied by one HMB molecule, a single line occurs at different chemical<br />

shift values (- 120 ppm). In <strong>th</strong>e intermediate case, when only a portion<br />

of <strong>th</strong>e supercages are occupied by <strong>th</strong>e HMB molecule, bo<strong>th</strong> llnes are<br />

present corresponding to <strong>th</strong>e two cases above.<br />

The clusterlng of HMB molecules In zeollte supercages has been<br />

confirmed by proton MQ NMR measurements. For samples below - 12 wig HMB<br />

In Na-Y zeolite, HQ NMR data glve conslstant results indicating <strong>th</strong>at<br />

only up to one HMB molecule per zeolite supercage can occur. Thls Js In<br />

accord wl<strong>th</strong> <strong>th</strong>e observations from 129Xe spectra.<br />

These techniques have proven to be useful in <strong>th</strong>e first step toward<br />

understanding <strong>th</strong>e behavior of molecules under restricted dimension.<br />

*R. Ryoo, S.-B. L1u, L.C. de Henorva], J. Fralssard and A. Pines. to be<br />

publlshed.


WFIO<br />

BULK MAGNETIC SUSCEPTIBILITY EFFECTS IN NA-23 NMR SPECTRA OF<br />

COMPARTMENTALIZED SAMPLES CONTAINING NA + AND SHIFT REAGENTS<br />

S<br />

Simon C-K. Chu , James A. Balschi, & Charles S. Springer, Jr.<br />

Department of Chemistry, State University of New York,<br />

Stony Brook, New York 11794-3400<br />

Since <strong>th</strong>e Z3Na NMR signal is by far <strong>th</strong>e second strongest<br />

arising from tissue samples in pulsed experiments,<br />

developments in 23Na NMR of living systems are occurring very<br />

rapidly. 23Na MRI has become <strong>th</strong>e second most common (e.g.,<br />

Magn. Res. Med., 3, 296, 1986). Because of <strong>th</strong>e isochronicJty<br />

of Z3Na resonances from different compartments, we and<br />

several o<strong>th</strong>er groups introduced paramagnetic shift reagents<br />

(SRs) for use wi<strong>th</strong> Z3Na (and o<strong>th</strong>er cationic resonances)<br />

in 1981-82, and we reported <strong>th</strong>e nature of <strong>th</strong>e spectra arising<br />

from SR-perfused tissue in 1985 (BiophFs. J., 48, 159, 1985).<br />

The first report of 23Na spectra from a living animal<br />

infused wl<strong>th</strong> a SR has recently appeared (J. Magn. Res., 69,<br />

523, 1986).<br />

Different SRs cause hyperfine shifts of <strong>th</strong>e Z3Na NMR<br />

signal of different magnitudes and different signs. The<br />

former is because of differing equilibrium quotients and<br />

limiting shifts (dipolar) in <strong>th</strong>e different SR-Na ÷ binding<br />

equilibria. The latter is because of differing geometric<br />

relationships between <strong>th</strong>e Na ÷ binding site(s) and <strong>th</strong>e<br />

axes of <strong>th</strong>e magnetic susceptibility tensor of <strong>th</strong>e SR<br />

molecular anion.<br />

Since, in living systems, <strong>th</strong>e distribution of <strong>th</strong>e SR<br />

will be restricted to certain tissue compartments (e.g.,<br />

vascular only, interstitial only, vascular and interstitial),<br />

bulk magnetic susceptibility (BMS) effects will be manifest<br />

in <strong>th</strong>e 23Na NMR spectrum. Bo<strong>th</strong> <strong>th</strong>e magnitude and <strong>th</strong>e<br />

sign of <strong>th</strong>e BMS shift depend on <strong>th</strong>e shape of <strong>th</strong>e compartment<br />

and its orientation wi<strong>th</strong> respect to <strong>th</strong>e static magnetic field<br />

(B0). We have conducted a <strong>th</strong>orough comparison of <strong>th</strong>e<br />

relative sizes of <strong>th</strong>e BMS and hyperfine shifts induced by<br />

<strong>th</strong>ree different SRs in cylindrical compartments (simulating<br />

ei<strong>th</strong>er blood vessels or interstitial spaces) oriented ei<strong>th</strong>er<br />

parallel or perpendicular to <strong>th</strong>e B0 field direction.<br />

For <strong>th</strong>e SRs chosen, bo<strong>th</strong> <strong>th</strong>e magnitude and <strong>th</strong>e sign of <strong>th</strong>e<br />

hyperfine shift also vary. Thus, <strong>th</strong>e ratio of <strong>th</strong>e BMS<br />

contribution to <strong>th</strong>e hyperfine contribution varies over a very<br />

wide range (-0.92 to 0.75, in <strong>th</strong>e samples chosen). These<br />

contributions are, of course, algebraically additive in any<br />

given spectrum. The local inhomogeneJties produced outside a<br />

cylindrical vessel running perpendicular to B0 also<br />

cause interesting inhomogeneous broadening patterns in <strong>th</strong>e<br />

resonances of nuclei restricted to <strong>th</strong>e space outside <strong>th</strong>e<br />

vessel when <strong>th</strong>at space is itself constrained.


WFI2<br />

DETERMINATION OF ENZYME-STEROID BINDING SITES<br />

BY CPMAS 13C NMRAND SELECTIVE EXCITATION<br />

Vincent Bork* and Jacob Schaefer<br />

Department of Chemistry, Washington University<br />

St. Louis, MO 63130<br />

Richard J. Auchus and Douglas F. Covey<br />

Department of Pharmacology, Washington University<br />

School of Medicine, St. Louis, MO 63110<br />

The spatial proximity of inequivalent 13C nuclei in solids,<br />

which have been multiply labeled wi<strong>th</strong> 13C, can be obtained from<br />

spin transfer rates in CPMAS experiments involving selective<br />

excitation. The selective excitation is used to invert just one<br />

line in <strong>th</strong>e spectrum which arises from a particular 13C label.<br />

By varying a dipolar evolution time, 13C-13C connectivity is<br />

revealed by new peaks in <strong>th</strong>e spectrum obtained as a difference<br />

between <strong>th</strong>e normal CPMAS spectrum, and <strong>th</strong>e CPMAS spectrum wi<strong>th</strong><br />

selective excitation. Confusing natural-abundance background<br />

peaks disappear in <strong>th</strong>e difference spectrum. This difference<br />

technique can be used to identify 13C-labeled chemical bonds in<br />

complex biological solids. For example, <strong>th</strong>e technique has<br />

demonstrated <strong>th</strong>at <strong>th</strong>e insoluble adduct between a [13C2]-<br />

acetylenic steroid and human estradioldehydrogenase involves<br />

binding of <strong>th</strong>e drug to bo<strong>th</strong> lysine and cystine residues.


WF14<br />

THE USE OF MULTIPLE ECHO ACQUISITION AND STIMULATED ECHO5<br />

TO DETECT SLOW MOTIONS<br />

S. D. Kennedy, S. Ganapa<strong>th</strong>y, S. Swanson, R. 8. Bryant<br />

Department of Biophysics<br />

University of Rochester Medical Center<br />

Rochester, New York 14642<br />

The use of Fourier transformed echo trains was described by<br />

Zilm at <strong>th</strong>e <strong>ENC</strong> last year. The advantages for a number of<br />

studies include increases in signal to noise, clear<br />

demonstration of heterogeneous broadening, transverse<br />

relaxation time measurements rapidly, as well as sensitivity<br />

to motions of <strong>th</strong>e spins various types. We have demonstrated<br />

<strong>th</strong>at <strong>th</strong>e me<strong>th</strong>od provides a very efficient monitor of ms<br />

motions in polymers. The techniques are equally well suited<br />

to <strong>th</strong>e study of chemical exchange in <strong>th</strong>e solid or spin<br />

exchanges caused by relaxation. In <strong>th</strong>e basic spin echo train<br />

e~:periment, <strong>th</strong>e time scale limitation i~ imposed by <strong>th</strong>e<br />

effective transverse relaxation times in <strong>th</strong>e system~ which<br />

may vary considerably from sample to sample, but are<br />

typically in <strong>th</strong>e tens of ms range.<br />

The basic e~periment may be e~:tended in time by using a<br />

stimulated echo. The spins are phase encoded during <strong>th</strong>e<br />

period ÷ollowing <strong>th</strong>e 90 degree pulse or magnetization cycle<br />

by Hartmann-Hahn contact for example, <strong>th</strong>en stored along z for<br />

a variable time during which motion or a magnetic or chemical<br />

exchange event may change <strong>th</strong>e Larmor frequency. The read-out<br />

is accomplished wi<strong>th</strong> a <strong>th</strong>ird 90 degree pulse and <strong>th</strong>e<br />

formation of a stimulated echo. This experiment extends <strong>th</strong>e<br />

time scale of <strong>th</strong>e motion observation to <strong>th</strong>e carbon T, ra<strong>th</strong>er<br />

<strong>th</strong>an <strong>th</strong>e T2. We have applied <strong>th</strong>is technique in a series of<br />

polymers to detect slow motions. In molecules containing<br />

nitrogen such as peptides~ <strong>th</strong>e "4N may complicate<br />

interpretation of <strong>th</strong>e data in terms of motions alone. The<br />

e~:periment, when combined wi<strong>th</strong> o<strong>th</strong>er rela~:ation time<br />

measurements and MASS~ provides an easy me<strong>th</strong>od for measuring<br />

<strong>th</strong>e "4N T~, a parameter of interest in its own right. We<br />

report results on a series of amino acids and peptides <strong>th</strong>at<br />

demonstrates <strong>th</strong>e me<strong>th</strong>od and indicates <strong>th</strong>e importance of<br />

nitrogen relaxation times in dynamical intrepretations.


WF16<br />

CHARACTERIZATION OF TRANSITION METAL SILICIDES<br />

WITH 2°Si NM:R SPECTROSCOPY<br />

T. M. Duncan* and D. M. Simonsen 1<br />

AT&T Bell Laboratories<br />

Murray Hill, NJ 07974.<br />

The ~Si NMR spectra of 26 silicides of transition metals (Ti, Zr, Hf, V,<br />

Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, N], Pd, Pt, and Cu) are reported.<br />

These metallic compounds which are used in semiconductor devices, exhibit<br />

NMR spectra wi<strong>th</strong> parameters ---10 times as large as <strong>th</strong>ose of organosilicon or<br />

silicon oxide compounds; 2%i isotropie shifts span <strong>th</strong>e range from -1650 to<br />

-I-925 ppm, relative to TMS, and 2%i anisotropies extend to 325 ppm wi<strong>th</strong><br />

most near 150 to 200 ppm. The isotropic shifts vary systematically wi<strong>th</strong> <strong>th</strong>e<br />

Group of <strong>th</strong>e metal atom, but are only weakly dependent on <strong>th</strong>e Period;<br />

silicides of Group VIII metals wi<strong>th</strong> an even number of electrons (e.g. Fe, Ru,<br />

Ni, Pd, Pt) comprise <strong>th</strong>e compounds wi<strong>th</strong> isotropic shifts greater <strong>th</strong>an 1000<br />

ppm. Interpretation of <strong>th</strong>e isotropic shifts will be presented. The shielding<br />

anisotropies are sensitive indicators of <strong>th</strong>e bonding symmetry of <strong>th</strong>e silicon<br />

site. In contrast to 13C anisotropies in which ~rs is almost exclusively<br />

downfield of all, 2%i anisotropies of metal silicides are well distributed<br />

between ~r 1 downfield and upfield of a I[. The relative position of o~ varies<br />

systematically wi<strong>th</strong> silicon site geometry, depending principally on <strong>th</strong>e degree<br />

of bonding perpendicular and parallel to <strong>th</strong>e axis of symmetry. Finally,<br />

silicides exist in several different stoichiometries for a given binary<br />

combination (e.g., TisSi3, TiSi, TiSi2). The large distribution of isotropic<br />

shifts and shielding anisotropies allows resolution of individual spectra and<br />

<strong>th</strong>us quantitative analysis of multiple phases in a inhomogeneous material<br />

I. Dep~rtrnent of Chemistry, Yale University, New Haven, Connecticut


WFlt<br />

HIGH-SPEED MAS IgF NMR OF FLUOROCARBON POLYMERS<br />

t<br />

Steven F. Dec, Robert A. Wind, and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Fort Collins, CO 80523<br />

A powerful tool for <strong>th</strong>e elucidation of <strong>th</strong>e microstructure of fluoro-<br />

carbon polymers is IgF NMR. Studies of <strong>th</strong>is nature have previously been<br />

limited to <strong>th</strong>e liquid state due, in part, to large homonuclear dipole-<br />

dipole interactions, which obscure any chemical shift fine structure <strong>th</strong>at<br />

may be present in <strong>th</strong>e NMR spectra of solid samples. In <strong>th</strong>is poster we<br />

show <strong>th</strong>at, by using a relatively simple magic-angle spinning system<br />

(rotational frequencies > 20 kHz), high-resolution solid-state 19F spec-<br />

tra can be obtained at high fields. Results for a number of polymers at<br />

rotational frequencies greater <strong>th</strong>an 18 kHz show <strong>th</strong>at sufficient resolu-<br />

tion is obtained at <strong>th</strong>ese spinning speeds to I) identify all major fluor-<br />

ine sites in <strong>th</strong>e polymers (i.e., small chemical shift differences for a<br />

particular fluorine group, due to nearest neighbor effects, are readily<br />

measured); 2) permit a deconvolution of overlapping peaks to obtain <strong>th</strong>e<br />

number of fluorine atoms occupying each site; and 3) determine <strong>th</strong>e rela-<br />

tive amounts of each different monomer present.<br />

next-nearest neighbor effects in <strong>th</strong>ese systems is presented.<br />

19F NMR evidence of


WF20<br />

DESIGN OF AN EFFICIENT PROBE FOR HIGH FIELD<br />

MULTINUCLEAR CP/MAS NMR OF SOLIDS<br />

Preben Daugaard, Vagn Langer, and Hans O. Oakobsen*<br />

Department of Chemistry, University of Aarhus,<br />

DK-8000 Arhus C, Denmark<br />

Very high-speed, stable spinning is a desirable technique in multi-<br />

nuclear CP/MAS, MA5, or VAS (variable angle spinning) experiments of solid<br />

materials for several reasons. For example <strong>th</strong>is applies to bo<strong>th</strong> high-field<br />

CP/MAS studies of spin-l/2 (e.g. 13C, ]SN, 31p, and ]]3Cd) and quadrupolar<br />

nuclei (e.g. liB, 2~Na, and 27AI).<br />

We describe <strong>th</strong>e design of a high speed multinuclear CP/MAS probe for<br />

<strong>th</strong>e 51 mm bore superconducting magnet of our Varian XL-300 spectrometer.<br />

The spinning speed of <strong>th</strong>e 7 mm o.d. rotors can routinely and accurately be<br />

set at any value up to at least 10 kHz wi<strong>th</strong> a stability of a few hertz.<br />

Air drive pressures of I and 4 bar are required for 4.5 and 9.0 kHz spin-<br />

ning, respectively, lhe spinner assembly employs a separate double air<br />

bearing which acquires an air pressure of only i-2 bar for a11 spinning<br />

speeds up to 10 kHz. We also expect to be able to discuss preliminary re-<br />

sults for <strong>th</strong>e design of a 15 kHz spinner assembly during <strong>th</strong>e meeting.<br />

The simplicity of <strong>th</strong>e splnner assembly, and <strong>th</strong>e high sensitivity and<br />

high electronic efficiency of <strong>th</strong>e probe wili be demonstrated along wi<strong>th</strong><br />

"real life" applications.<br />

0


WF22<br />

ORIENTATION OF THE 15N CHEMICAL SHIFT TENSOR<br />

IN A POLYCRYSTALLINE DIPEPTIDE<br />

C.J. HartF.ell., T.K. Pratum and G.P. Drobny<br />

Department o/Chemistr!t, Universitlj o/ Washington, Seattle, WA. 98195<br />

ABSTRACT<br />

In an effort to circumvent <strong>th</strong>e ambiguities inherent in a determination of <strong>th</strong>e<br />

orientation of a chemical shift tensor in <strong>th</strong>e molecular frame of a polycD'stalline solid:<br />

we have pursued a study of <strong>th</strong>e mutual orientation of <strong>th</strong>ree tensor interactions. In<br />

<strong>th</strong>is study of polycrystalline L-[1-13Ci - alanyl-lilSN ~-alanine we have oriented <strong>th</strong>e lSN<br />

chemical shift tensor in <strong>th</strong>e molecul~ frame by reference to two dipole interactions.<br />

The 13C-ISN and lSN-H dipole interactions axe probed using a modification of <strong>th</strong>e<br />

experiment of Stoll, Vega and Vaughan. The I H dipole-modulated 13C dipole-coupled<br />

lSlN spectrum is obtained as a transform of <strong>th</strong>e data in t2.<br />

From simulations of <strong>th</strong>e experimental spectra, two sets of polar angles are de-<br />

termined relating <strong>th</strong>e 13C-lSN and lSN-H dipoles to <strong>th</strong>e IsN chemical shift tensor.<br />

We have determined refined values for <strong>th</strong>e polar angles Bc~ and c~c~ describing <strong>th</strong>e<br />

orientation of <strong>th</strong>e 13c-lsN bond to <strong>th</strong>e tensor. The angle ~3cx describing <strong>th</strong>e angle<br />

between 033 and <strong>th</strong>e 13C- lSN bond is 106 = and <strong>th</strong>e angle ac.~ describing rotation<br />

about 033 is 5 c. The angle ~3~H is 19 =. This experiment verifies <strong>th</strong>e results of <strong>th</strong>e<br />

13C dipole-coupled aSN powder spectra and simulations showing <strong>th</strong>at or3 lies in <strong>th</strong>e<br />

peptide plane and o~2 is nearly perpendicular to <strong>th</strong>e plane.


WF24<br />

VT CP/MAS NMR OF ANTIFERROMAGNETIC METAL COMPLEXES<br />

Gordon. C__~. Campbell and James F. Haw<br />

Department of Chemistry, Texas A&M University<br />

College Station, TX 77843<br />

Drawing on our previous experience wi<strong>th</strong> variable-temperature (FT) CP/MAS<br />

NMR of paramagnetic species 1,2, we are now applying <strong>th</strong>e technique to <strong>th</strong>e study of<br />

antiferromagnetic materials. Antiferromagnetism is found in a wide variety of<br />

transition metal dimers and complexes in which a low-lying triplet excited<br />

electronic energy state lies above a singlet ground state. Spin pairing in <strong>th</strong>e<br />

singlet state at low temperatures leads to diamagnetism, while at higher<br />

temperatures <strong>th</strong>e triplet state is significantly populated, and <strong>th</strong>ese substances<br />

exhibit <strong>th</strong>e properties of paramagnetic materials.<br />

It is <strong>th</strong>us difficult in many cases to observe CP/MAS NMR spectra of anti-<br />

ferromagnetic solids at or above room temperature. Lowering <strong>th</strong>e sample temp-<br />

erature is found to significantly increase <strong>th</strong>e amount of information available<br />

from CP/MAS NMR data. Not only do resonances closer to metal centers become<br />

observable, but <strong>th</strong>e temperature dependence<br />

of <strong>th</strong>e chemical shifts may give quant-<br />

itative information about <strong>th</strong>e electronic<br />

character of <strong>th</strong>e species. A good example<br />

of <strong>th</strong>is is afforded by <strong>th</strong>e 13C CP/MAS NMR<br />

data for copper(ll) n-butyrate hydrate<br />

dimer presented in <strong>th</strong>e figure, where mag-<br />

netically inequivalent sites (eg., CI and<br />

CI') are also observable.<br />

1. J. F. Haw and G. C. Campbell,<br />

J__~. Ma~n. Reson., 66, 558 (1986).<br />

VARIABLE TEPdPE]u.,tTURE C-13 CP/IdAS SPECTRA<br />

OF COPPlg:I {11) N-BUTYRATE HYDRATE DIMER<br />

¢~ ~K<br />

2. G. C. Campbell, R. C. Crosby, and J. F. Haw,<br />

J. Ma~n. Reson. 69 191 (1986). I 1 i


WF26<br />

TEMPERATUREVARIABLE SOLID SOLUTION CPMAS NMR STUDIES<br />

OF DYES IN GLASSY POLYMERS<br />

Bernd Wehrle and Plans-Heinrich Limbach*<br />

Institut ffir Physikalische Chemie der Universitit Freiburg l.Br.,<br />

Albertstr.21, 7800 Freiburg, West Germany<br />

Photoreactive solids such as dyes imbedded in solid tnatrices are of<br />

considerable technical and <strong>th</strong>eoretical interest. We report here <strong>th</strong>e use of<br />

temperature variable CPMAS NMR spectroscopy for <strong>th</strong>e study of structure<br />

and dynamics of dyes dissolved in glassy polymers. As in liquid solution<br />

state NMR, solution state NMR studies are greatly aided if matrix signals<br />

are absent in <strong>th</strong>e spectra. Since most of <strong>th</strong>e known organic dyes but few<br />

polymers contain nitrogen we propose here I~N CPMAS NMR of I~N en-<br />

riched dyes. This me<strong>th</strong>od has also <strong>th</strong>e advantage <strong>th</strong>at spectra can be re-<br />

corded even at fairly low dye concentrations. Thus, interesting lnfor-<br />

mations about <strong>th</strong>e structure and <strong>th</strong>e dynamics of dyes in solid matrices<br />

can be obtained, such as fast chemical reactions inside <strong>th</strong>e dye, rotational<br />

and transverse diffusion, or slow crystallization.<br />

In particular, we present here low temperature I~,N CPMAS NMR spectra<br />

of a tetraazaannulene derivative (TTAA) dissolved to a few percent in<br />

glassy polystyrene, PMMA, etc. In crystalline TTAA fasl proton tau~o-<br />

merism leads to sharp I~N NMR lines whi<strong>th</strong> temperature dependent positi-<br />

ons. ~ By contrast, <strong>th</strong>e solid solution ~N NMR lines of TTAA in glassy po-<br />

lymers are broad but show a characteristic temperature dependence. 2D<br />

experiments reveal <strong>th</strong>at <strong>th</strong>is broadening is inhomogeneous. The lineshapes<br />

can be simulated wi<strong>th</strong> <strong>th</strong>e assumption of a broad gaussian distribution of<br />

different sites in <strong>th</strong>e glass in which dye molecules experience a differenl<br />

reaction profile of tautomerism. Wi<strong>th</strong>in <strong>th</strong>e NMR timescale <strong>th</strong>e molecu]es do<br />

not rotate nor are able to exchange sites at room temperature. Thus, dye<br />

tautomerism can be used as a novel probe for local order. Some conse-<br />

quences of for <strong>th</strong>e understandung of chemical reactions in condensed<br />

matter are discussed.<br />

1. H.H.Limbach, B.Wehrle, H.Zimmermann, R.D.Kendrick, C.S.Yannoni<br />

j.Am.Chem.Soc., in press).


WF28<br />

DYNAMIC NUCLEAR POLARIZATION IN ORGANIC CONDUCTORS<br />

t<br />

Robert A. Wind, Herman Lock and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Fort Collins, CO 80523<br />

In solids containing unpaired electrons, nuclear spin magnetization<br />

can be enhanced via Dynamic Nuclear Polarization (DNP). This can be used<br />

for, among o<strong>th</strong>er <strong>th</strong>ings, increasing <strong>th</strong>e signal-to-noise ratio of an NMR<br />

signal, obtaining information about <strong>th</strong>e vicinity of <strong>th</strong>e unpaired elec-<br />

trons and determination of electron mobilities. We have applied DNP in<br />

combination wi<strong>th</strong> IH and 13C NMR to two organic compounds <strong>th</strong>at become<br />

metallic by doping <strong>th</strong>em wi<strong>th</strong> a suitable agent, namely trans-polyacetylene<br />

and (fluoroan<strong>th</strong>enyl)2PF 6. The main results are:<br />

(i) Trans-polyacetylene. Even undoped trans-polyacetylene contains<br />

mobile electrons, <strong>th</strong>e so-called "solitons". We found <strong>th</strong>at electron<br />

mobility is restricted: part of <strong>th</strong>e time <strong>th</strong>e unpaired electrons can be<br />

considered as fixed in space, whereas <strong>th</strong>e rest of <strong>th</strong>e time <strong>th</strong>ey are<br />

moving over <strong>th</strong>e polymer chains wi<strong>th</strong> about <strong>th</strong>e velocity of sound. Fur-<br />

<strong>th</strong>ermore, <strong>th</strong>e influence of air oxidation has been investigated, <strong>th</strong>e<br />

effects bo<strong>th</strong> on <strong>th</strong>e amount and types of defects created by <strong>th</strong>is oxidation<br />

and on <strong>th</strong>e amount and mobility of <strong>th</strong>e unpaired electrons.<br />

(ii) (Fluoran<strong>th</strong>enyl)2PF6. This work has been done in collaboration<br />

wi<strong>th</strong> Michael Mehring. The 13 C spectrum consists of seven distinguishable<br />

lines. It has been found <strong>th</strong>at <strong>th</strong>e locations of at least four of <strong>th</strong>ese<br />

lines shift by irradiating wi<strong>th</strong> increasing microwave power at <strong>th</strong>e ESR<br />

frequency. This proves <strong>th</strong>at <strong>th</strong>ese locations are at least partially<br />

determined by a Knight shift due to <strong>th</strong>e mobile electrons.


WF30<br />

SOLID STATE ~P MAS NMR AS A TOOL FOR STUDYING 3-DIMENSIONAL<br />

SOLIDS: THE CHALCOPYRITES ZnSiPe, ZnSnPe, ZnGePe, AND<br />

RELATED MATERIALS<br />

Robin A. Nissan', and T. A. Hewston<br />

Naval Weapons Center, China Lake, CA 93555<br />

Three-dimensional solids containing phosphorus in a<br />

reduced state are of interest as tough, stable ceramic mat-<br />

erials. These materials may be syn<strong>th</strong>esized from <strong>th</strong>eir con-<br />

stituent elements or from combinations of binary materials at<br />

elevated temperatures. Phase purity and structural integrity<br />

are generally monitored by X-ray powder diffraction.<br />

Elemental analysis by wet chemical me<strong>th</strong>ods or by electron<br />

microscopy yields information on stoichiometry. Structure<br />

determinations for new materials require single crystal X-ray<br />

diffraction analyses. Phase-impure materials are difficult<br />

to analyze by <strong>th</strong>ese techniques, especially if <strong>th</strong>e materials<br />

include amorphous phases which would be transparent to X-rays<br />

and complicate elemental analyses. New me<strong>th</strong>ods for <strong>th</strong>e ana-<br />

lysis of 3-dimensional solids are required.<br />

We have initiated a program to study inorganic phos-<br />

phides by solid state ~P MAS NMR. The chalcopyrites<br />

ZnSiP~,, ZnGePe, and ZnSnPe have <strong>th</strong>e ordered zincblende<br />

structure. This family of materials was chosen for our<br />

initial studies since a series of isostructural compounds<br />

existed where one atom could be varied. In addition, we have<br />

studied a series of binary phosphides including Mg-,P;., GaP,<br />

and CaP. The most striking result here is <strong>th</strong>e spectral<br />

simplicity. Chemical shift anisotropy and dipole-dipole<br />

broadening pose no problems at 81 MHz in most cases. The<br />

lines are sharp and crystallographically unique phosphorus<br />

sites are distinguished- One notable exception is ZrP where<br />

we observe two overlapping axially symmetric powder patterns<br />

representing <strong>th</strong>e two crystallographic sites of phosphorus in<br />

<strong>th</strong>is compound. Results will also be presented for CdPS::~<br />

where <strong>th</strong>e Pe units occupy cation sites. Studies of relaxa-<br />

tion times and quantitative analysis of mixtures are<br />

presently under way.


WF32<br />

SOLID STATE NMR OF PROTEINS<br />

P. Stewart, R. McNamara, D. Chen, C. Lee, D. White, and S. Opella<br />

Department of Chemistry<br />

University of Pennsylvania<br />

Philadelphia, Pennsylvania 19104<br />

Recent results from solid state NMR studies of unoriented and oriented<br />

protein samples will be presented. The analysis of powder pattern<br />

lineshapes and relaxation parameters as a function of temperature is being<br />

used to describe backbone and sidechain dynamics of proteins. A number<br />

of different spectral parameters measured in oriented samples are being<br />

interpreted in terms of structural parameters. In particular, a general<br />

me<strong>th</strong>od for determining <strong>th</strong>e mutual orientations of adjacent peptide planes<br />

from solid state NMR measurements is being developed.<br />

The spectroscopic experiments involve <strong>th</strong>e observation of 13C, 15N and<br />

14N resonances so <strong>th</strong>at chemical shift, quadrupole, and dipole-dipole<br />

interactions can be examined in multiple sites. The samples include<br />

lysozyme, filamentous bacteriophage coat protein, and model peptides.


WF34<br />

13C MAS NMR STUDIES OF VARIOUS<br />

SUPPORTED METAL CATALYSTS<br />

°D.M.Simonsena, K.W.Zilm a, T.Root b, T.M.Duncanc, L.Bonneviotd, and G.Hallere<br />

aDept, of Chemistry, Yale University, New Haven, CT 06511<br />

The structure of small molecules chemisorbed on supported metal<br />

catalyst systems has been extensively studied by broad-line NMR. To date,<br />

relatively little work has been done on <strong>th</strong>ese systems wi<strong>th</strong> magic-angle spinning<br />

(MAS) techniques. Previous studies, especially <strong>th</strong>ose on supported Pt catalysts,<br />

have indicated <strong>th</strong>at MAS NMR experiments may be of limited utility in<br />

characterizing chemisorbed species on surfaces due to problems wi<strong>th</strong> Knight<br />

shifts and sample inhomogeneity. This poster will present bo<strong>th</strong> static powder<br />

patterns and MAS spectra of 13C-labelled e<strong>th</strong>ylene chemisorbed on platinum and<br />

palladium catalysts as well as 13CO chemisorbed on platinum, palladium,<br />

ru<strong>th</strong>enium, and rhodium catalysts. As expected 13C MAS NMR spectra show no<br />

significant line narrowing for <strong>th</strong>e 13CO/Pt system. However, MAS techniques<br />

allow <strong>th</strong>e resolution of relatively narrow individual peaks in all o<strong>th</strong>er samples<br />

studied. By using bo<strong>th</strong> F'I" and CP me<strong>th</strong>ods wi<strong>th</strong> MAS reaction chemistry can be<br />

followed in <strong>th</strong>ese systems under controlled conditions. The effects of magnetic<br />

susceptibilities and Knight shifts on <strong>th</strong>ese spectra will also be discussed.<br />

bDept, of Chemical Engineering, UW-Madison, Madison, Wl<br />

CA T & T Bell Laboratories, Murray Hill, NJ<br />

dUniversite P. et M. Curie, Paris, France<br />

eDept, of Chemical Engineering, Yale University, New Haven, CT


WF36<br />

A PROTON MAS NMR METHOD FOR DETERMINING INTIMATE MIXING IN POLYMER BLENDS<br />

D.L. VanderHart" and W.F. Manders, National Bureau of Standards, Gai<strong>th</strong>ersburg,<br />

MD 20899, and R.S. Stein and W. Hermans, Polymer Science and Engineering<br />

Department, University of Massachusetts, Amhearst, MA 01002<br />

Intimate mixing (on a scale less <strong>th</strong>an i nm) in polymers can be probed<br />

effectively by laC CP-MAS techniques as has been shown by Schaefer, et al.<br />

(Macromolecules, 1981, 14, 188). The basic idea is <strong>th</strong>at if one mixes<br />

deuterated and protonated polymers, cross polarization (CP) signals from <strong>th</strong>e<br />

carbons on <strong>th</strong>e deuterated polymers will arise only if dipolar-coupled protons<br />

are close by, say, 0.5 nm or less. A non-trivial problem in <strong>th</strong>is me<strong>th</strong>od,<br />

however, is <strong>th</strong>at perdeuterated polymers usually contain 1 - 2% residual<br />

protons, and <strong>th</strong>ese 'Impurity' protons, as well as protons on <strong>th</strong>e prononated<br />

chains, generate deuterated carbon signals.<br />

In <strong>th</strong>is poster, we show <strong>th</strong>at similar information is available by observing<br />

<strong>th</strong>e impurity protons directly. The impurity protons are different from <strong>th</strong>e<br />

protons on <strong>th</strong>e protonated chains since <strong>th</strong>eir average interaction wi<strong>th</strong> o<strong>th</strong>er<br />

protons is much weaker. In a relatively rigid polymer, at low magic angle<br />

spinning (](AS) frequencies, <strong>th</strong>e impurity proton signals in <strong>th</strong>e deuterated<br />

homopolymer will be broken up into well-defined sidebands and centerbands (see<br />

spectra A and B, non-spinning and 2.2kHz spinning, respectively, of deuterated<br />

atactic polystyrene (aPS)). In contrast, a relatively rigid protonated<br />

homopolymer will produce no narrow centerbands or sidebands because of <strong>th</strong>e<br />

stronger proton dipolar interactions and <strong>th</strong>e concurrent fast spin-exchange<br />

behavior. In a mixture of relatively rigid polymers, one deuterated and <strong>th</strong>e<br />

o<strong>th</strong>er protonated, <strong>th</strong>ere will be an attenuation of <strong>th</strong>e narrowed centerband and<br />

sidebands from <strong>th</strong>e impurity protons when mixing is intimate, i.e. when protons<br />

from <strong>th</strong>e protonated polymer lie wi<strong>th</strong>in, say, 0.8 nm of <strong>th</strong>e impurity protons.<br />

Spectrum C is <strong>th</strong>at of a protonated aPS mixed wi<strong>th</strong> <strong>th</strong>e deuterated aPS using 2.2<br />

kHz spinning and a spectral display where <strong>th</strong>e impurity protons contribute<br />

equal signals to <strong>th</strong>ose in B. An 85% attenuation, compared to B, of <strong>th</strong>e<br />

aromatic proton centerband at 7 ppm is seen in <strong>th</strong>e blend spectrum. As<br />

expected in <strong>th</strong>is blend of similar polymers wi<strong>th</strong> similar tacticities, mixing is<br />

quite intimate. Interference from <strong>th</strong>e broad and strong protonated aPS<br />

resonances is limited to a rolling baseline. Because of M.AS, and <strong>th</strong>e<br />

resonance distinctions which ensue, <strong>th</strong>is<br />

A analysis can be carried out in <strong>th</strong>e presence<br />

of varying amounts of mobile solvent residues<br />

which, in our case, contribute to <strong>th</strong>e<br />

aliphatic bands between 0 and 3 ppm. This<br />

technique offers an important sensitivity<br />

advantage over <strong>th</strong>e 13C CP technique. The<br />

requirement for two relatively rigid polymers<br />

is common to bo<strong>th</strong> techniques, so low<br />

temperature operation is sometimes mandated.<br />

Perhaps <strong>th</strong>e best news is <strong>th</strong>at <strong>th</strong>is technique<br />

represents a minor comeback for <strong>th</strong>e<br />

beleaguered single-pulse ID experiment.<br />

Bandwid<strong>th</strong> requirements should allow one to<br />

carry out <strong>th</strong>is experiment using high-<br />

resolution electronics.<br />

I I I I I I I l I<br />

40 20 0 -20 PPM


• WF38<br />

29SI DYNAMIC NUCLEAR POLARIZATION STUDIES OF<br />

DEHYDROGENATED AMORPHOUS SILICON<br />

H. Lock m, G. E. Maciel, R. A. Wind<br />

Department of Chemistry, Colorado State University<br />

and<br />

N. Zumbulyadis<br />

Corporate Research Laboratories<br />

Eastman Kodak Co., Rochester, New York 14650<br />

Dehydrogenated amorphous silicon, a-Si, contains a large number of<br />

dangllng-bond paramagnetlc centers. This opens <strong>th</strong>e possibility of<br />

performing 29Si dynamic nuclear polarization (DNP) experiments,<br />

where <strong>th</strong>e 29SI polarization is enhanced by irradiating at or near<br />

<strong>th</strong>e electron larmor frequency. We performed 29Si DNP in a-Si<br />

in an external magnetic field of 1.4 T, corresponding to 29Si<br />

larmor frequency of 11.9 MHz, and an electron larmor frequency,<br />

re, of ca. 40 GHz. The amplitude of <strong>th</strong>e microwave field, B 1, was<br />

0.06 mT (max.).<br />

The main results are:<br />

I. The 29Si DNP enhancement is antisymmetrical around re,<br />

indicating <strong>th</strong>at <strong>th</strong>e dangling bonds are fixed in space.<br />

2. The shape of <strong>th</strong>e DNP enhancement curve as a function of<br />

microwave frequency offset is independent of BI. This means <strong>th</strong>at<br />

at 40 GHz <strong>th</strong>e ESR llne is mainly inhomogeneously broadened, which<br />

is confirmed by ESR measurements at 9 and 40 GHz.<br />

3. For a B1 of 0.06 mT <strong>th</strong>e maximum 29Si DNP enhancement is 40.<br />

This value is obtained using a microwave frequency ±29 MHz away<br />

from <strong>th</strong>e electron larmor frequency. The enhancement is probably<br />

due to an unresolved solid state effect.<br />

4. The integrated intensity of <strong>th</strong>e 29Si spectrum, enhanced vi____aa<br />

DNP is <strong>th</strong>e same wi<strong>th</strong> and wi<strong>th</strong>out magic angle spinning. Hence, <strong>th</strong>e<br />

DNP effect is mainly due to direct interactions between <strong>th</strong>e 29Si<br />

nuclei and <strong>th</strong>e unpaired electrons.


WF40<br />

NONAXIALLT SYMMETRIC DIPOLAR COUPLINGS IN SOLIDS AND LIQUID CRYSTALS<br />

m<br />

T.P. Jarvie, A.M. Thayer, a J.M. Mlllar m<br />

, M. Luzar and A. Pines<br />

University of California, Berkeley<br />

Small amplitude motions in solids can induce an asymmetry in <strong>th</strong>e<br />

dipolar coupling of two spln I=I/2 nuclei. In contrast to hlgh-field<br />

NMR, such subtle motlonal effects are readily observed in <strong>th</strong>e zero field<br />

NMR spectrum. Experimental examples can be found in <strong>th</strong>e llbratlonal<br />

motions of <strong>th</strong>e water molecules In a polyerystalllne hydrate, <strong>th</strong>e proton<br />

Jumps In a hydrogen-bonded carboxyllc acid dimer, and <strong>th</strong>e diffusive Jumps<br />

of a probe molecule in an unaligned blaxlal smectlc E liquid crystal<br />

phase. An interesting experimental result shows <strong>th</strong>at <strong>th</strong>e presence of a<br />

nonzero asymmetry parameter in <strong>th</strong>e dlpolar coupling produces a quenching<br />

effect of <strong>th</strong>e coupling to small residual or local fields in analogy to a<br />

spin I=I system (I) in zero field.<br />

I. G.W. Leppelmeler and E.L. Harm, Phys. Rev. Iqi, 72~ (1966).


WF42<br />

ERRORS IN MAPPING RF MAGNETIC FIELDS<br />

Robert G. Bryant, Jerzy Szumowski, + and Joseph P. Hornak<br />

Biophysics Department<br />

University of Rochester<br />

Rochester, NY 14642<br />

÷ Radiology Department<br />

University of Rochester Medical Center<br />

Rochester, NY 14642<br />

* Chemistry Department<br />

Rochester Institute of Technology<br />

Rochester, NY 14623<br />

Homogeneous radio frequency magnetic flelds are necessary for <strong>th</strong>e<br />

production of uniform contrast nuclear magnetic resonance images and for<br />

spatlally locallzed spectroscopy, it is often tempting to map <strong>th</strong>e RF<br />

magnetic flelds of a resonator from <strong>th</strong>e image intensity of a water<br />

phantom placed wi<strong>th</strong>in <strong>th</strong>e resonator. The resultant field maps are<br />

highly dependent on <strong>th</strong>e pulse sequence used to produce <strong>th</strong>e phantom<br />

images, and not always equlvalent. RF magnetic fleld maps obtained<br />

using a pickup toll probe moved about <strong>th</strong>e resonator and spin echo and<br />

GRASS imaging sequences on a GE Signa Imager will be presented for<br />

comparison. The basis for large observed differences betveen <strong>th</strong>e<br />

techniques are discussed.<br />

4~


WF44<br />

PROTON DETECTED SIP-IH HETCOR OF DNA FRAGMENTS<br />

Robert Santini*<br />

Claude R. Jones<br />

David Gorenstein<br />

Department of Chemistry<br />

Purdue University<br />

West Lafayette, IN 47907<br />

Many spectrometers can be converted to simultaneous broad band operation<br />

of bo<strong>th</strong> <strong>th</strong>e transmit-receive and decoupler channels. Wi<strong>th</strong> some extra equipment<br />

(an additional broad band board, a PTS 160, filters, and a 10 watt amplifier) <strong>th</strong>e<br />

conversion of an XL-200A back and for<strong>th</strong> between a dual broad band configuration<br />

and a standard configuration suitable for use in a multiuser environment can be<br />

accomplished wi<strong>th</strong> a few cable changes. Proton detected sIp-~H HETCOR spectra<br />

off syn<strong>th</strong>etic DNA fragments wi<strong>th</strong> up to 14 base pairs were obtained in a dual<br />

broad band mode using a standard 5rnm probe. The proton transitions were first<br />

saturated (1) and a constant time sequence (2) was used. The pulse sequence<br />

was phase cycled to give a pure absorption phase spectrum after a hypercomplex<br />

transform.<br />

1. V. Sklenar, H. Miyashiro, G. Zon, H.T. Miles, and A. Bax,<br />

FEBS Letters (1986), 208, 94<br />

2. H. Kessler, C. Griensinger, J. Zarbock, and H.R. Loosli, J.<br />

Magn. Reson. (1984), 57, 331


WF46<br />

DEUTERIUM NMR STUDY OF METHYL GROUP DYNAMICS<br />

IN L-ALANINE<br />

Kebede Beshah*, Bdvard T. OleJniczak +, and Robert G. Griffin<br />

Francis Bitter National Nagnet Laboratory<br />

Massachusetts Institute of Technology<br />

Cambridge, NA 02139<br />

Deuterium quadrupole echo spectroscopy is used to study <strong>th</strong>e<br />

dynamics of <strong>th</strong>e CD 3 group in polycrystalline L-alanine-d 3. Temperature-<br />

dependent quadrupole echo lineshapes, <strong>th</strong>eir spectral intensities and x-<br />

dependence, and <strong>th</strong>e anisotropy of <strong>th</strong>e 2H spln-lattice relaxatlon were<br />

employed to determine <strong>th</strong>e rate and mechanism of <strong>th</strong>e -CD 3 group motion.<br />

The rigid lattice Pake pattern observed at low temperature (T < -120°C)<br />

transforms to a triplet spectrum characteristic of <strong>th</strong>reefold Jumps in <strong>th</strong>e<br />

intermediate exchange regime (-120°C to -70°C) and <strong>th</strong>is in turn to a<br />

Pake pattern of reduced bread<strong>th</strong> at higher temperatures (T > -70°C). The<br />

quadrupole echo lineshapes and <strong>th</strong>eir x-dependence, which are especially<br />

sensitive to <strong>th</strong>e rate and mechanism of <strong>th</strong>e motion, can be simulated<br />

quantitatively vi<strong>th</strong> <strong>th</strong>e <strong>th</strong>reefold jump model. Ve find ga = 20.0 kJlmole<br />

for <strong>th</strong>is process vhich is higher <strong>th</strong>an is observed for most me<strong>th</strong>yl groups,<br />

probably because of steric crowding in <strong>th</strong>e L-bla molecule. Finally, we<br />

observe a lineshape due to <strong>th</strong>e presence of multiple crystallographic<br />

forms which suggest <strong>th</strong>at <strong>th</strong>is technique can be extended to studies of <strong>th</strong>e<br />

dynamics of more complex systems.<br />

+Present address: Abbott Laboratories<br />

Nor<strong>th</strong> Chicago, IL 60046


WF4S<br />

SEGMENTAL DYNAMICS IN NYLON 66 BY DEUTERIUM NMR<br />

Hitoshi Miura* and Alan D. English<br />

Central Research and Development Department<br />

Experimental Station<br />

E. I. Dupont de Nemours & Company<br />

Wilmington, Delaware 19898<br />

The study of chain dynamics of nylon 66 by deuterium<br />

NMR is described. We prepared five selectively deuterated<br />

samples of nylon 66, for which T1 data and quadrupolar echo<br />

powder spectra were obtained at various temperatures from<br />

-I19C to 228C. By using <strong>th</strong>e difference of T1 in <strong>th</strong>e<br />

different phases, we can separate <strong>th</strong>eir spectra from each<br />

o<strong>th</strong>er. This enables us to study <strong>th</strong>e chain dynamics of each<br />

phase independently.<br />

The motion at different places in <strong>th</strong>e me<strong>th</strong>ylene<br />

segments in nylon 66 are quite different and are strongly<br />

dependent upon temperature. Line shape calculations for<br />

several kinds of models of molecular motion are compared to<br />

experimental spectra, which give important information on<br />

<strong>th</strong>e segmental motion of <strong>th</strong>e polymer at various temperatures.<br />

Models of motion in "pinned segments" composed of ei<strong>th</strong>er<br />

four or six me<strong>th</strong>ylene segments in ei<strong>th</strong>er crystalline or<br />

noncrystalline domains may be examined wi<strong>th</strong> <strong>th</strong>is system. We<br />

will present <strong>th</strong>e results and discuss <strong>th</strong>em.


WF50<br />

Solid State NMR Dynamics Studies of Duplex RNA<br />

Pearl Tsang*, Robert L. Void and Regitze R. Void<br />

Department of Chemistry B-014<br />

University of California at San Diego<br />

La Jolla, CA. 92093<br />

The results of dynamic studies of duplex RNA, obtained <strong>th</strong>rough a combination of<br />

solid state H-2 and P-31 NMR techniques, are presented in <strong>th</strong>is poster. The base pair and<br />

phosphodiester backbone motions of duplexes at various relative humidities have been<br />

separately examined using deuterium NMR to study purine-8 deuterated sites and phos-<br />

phorous NMR to study <strong>th</strong>e phosphodiester backbone, respectively. Deuterium spin-lattice<br />

relaxation rates of RNA are determined bo<strong>th</strong> at 38.4 and 76.8 MHz. P-31 NMR lineshape<br />

studies of RNA duplexes are also conducted.<br />

Deuterium spin-lattice relaxation rates for <strong>th</strong>e various purine-8 sites of <strong>th</strong>e RNA du-<br />

plexes studied show a trend of steadily decreasing T1 wi<strong>th</strong> increasing relative humidity.<br />

Based upon <strong>th</strong>e field dependence of <strong>th</strong>e RNA T1 values, it appears <strong>th</strong>at collective torsional<br />

modes may be a dominant factor in <strong>th</strong>e relaxation process.<br />

The results obtained for RNA are briefly compared to <strong>th</strong>ose obtained from analo-<br />

gous DNA samples. Significant dynamic differences between DNA and RNA have been<br />

observed, based upon <strong>th</strong>e ra<strong>th</strong>er different spin-lattice relaxation rates obtained for <strong>th</strong>e two<br />

species. P-31 NMR results for <strong>th</strong>e RNA are also compared to <strong>th</strong>ose of <strong>th</strong>e DNA.


WF52<br />

ANALYSIS OF CONPLBX NIXTURES BY ULTRAHIGH RESOLUTION NNR<br />

Steven R. Naple and Adam Allerhand<br />

Department of Chemistry, Indiana University, Bloomington, IN 47405<br />

Ultra-high resolution NNR me<strong>th</strong>odology has increased <strong>th</strong>e ability of <strong>th</strong>e<br />

NNR spectroscopist to observe minor component peaks of complex mixtures<br />

wi<strong>th</strong>out <strong>th</strong>e use of "solvent" suppression techniques. It is now possible to<br />

detect minor peaks in <strong>th</strong>e presence of laJor peaks which are 10 a times<br />

larger. Results from <strong>th</strong>e following examples will be discussed: (1) The<br />

observation and kinetics of <strong>th</strong>e aldo] condensation dimer of acetone.<br />

(2) The assignment of individual components in a complex petroleum fraction.<br />

(3) The determination of <strong>th</strong>e equilibrium anomerlc composition of<br />

carbohydrate solutions. These examples cover line wid<strong>th</strong>s ranging from very<br />

narrow to <strong>th</strong>ose typically encountered in 13C NNR of simple and complex<br />

organic molecules. We will also present information about <strong>th</strong>e<br />

Identification of instrumental artifacts and <strong>th</strong>e demands placed upon <strong>th</strong>e<br />

computer, bo<strong>th</strong> in <strong>th</strong>e horizontal (number of data points or words) and<br />

vertical (number of bits per word) directions, by ultra-high resolution NHR<br />

me<strong>th</strong>odology.


WF54 - POSTERS<br />

2D EXCHANGE NMR IN NON-SPINNING POWDERS<br />

C. Schmidt~ S. Kaufmann~ S. Wefing~ D. Theimer,<br />

B. Bl~mich" and H. W. Spiess~<br />

Max-Planck-Institut f~r Polymerforschung~<br />

Postfach 3148, D-6500 Mainz<br />

Information about molecular motions in isotropic<br />

solids is typically derived from lineshape analyses of<br />

wideline NMR spectra~ Nhile in liquid samples 2D exchange<br />

NMR has become an accepted me<strong>th</strong>od. In 2D exchange spectra<br />

some of <strong>th</strong>e information hidden in <strong>th</strong>e lineshapes of 1D<br />

spectra is reencoded into frequency coordinates of<br />

exchange signals, where it is accessible more accurately<br />

and in a model-independent fashion.<br />

We have studied deuteron and C-13 2D exchange NMR<br />

for <strong>th</strong>e characterization of molecular motions in powders<br />

and amorphous solid samples. The deuteron quadrupole<br />

coupling tensor is axially symmetric, so <strong>th</strong>at particu-<br />

larly simple exchange signals result. Discrete jumps are<br />

characterized by elliptical exchange singularities, where<br />

<strong>th</strong>e excentricity of <strong>th</strong>e ellipse is a direct measure of<br />

<strong>th</strong>e jump angle. Diffusive motions result in homogeneous<br />

broadening wi<strong>th</strong>.characteristic 2D lineshapes discrimina-<br />

ting different stages of partial diffusion towards <strong>th</strong>e<br />

full diffusion limit. For short mixing times pure<br />

diffusion~ diffusion in connection wi<strong>th</strong> discrete jumps,<br />

and pure jump motions can be distinguished.<br />

The 2D exchange experiment can also be performed in<br />

C-13 NMR on selectively labelled compounds. The asymmetry<br />

of <strong>th</strong>e chemical shielding tensor, however~ leads to more<br />

complicated 2D exchange patterns. Experimental and <strong>th</strong>eo-<br />

retical data demonstrate <strong>th</strong>at <strong>th</strong>e wideline 2D exchange<br />

experiment produces a direct image of <strong>th</strong>e jump angle<br />

distribution.<br />

Ref erences:<br />

1) C. Schmidt, S. Wefing~ B. Bl~mich and H.'W. Spiess,<br />

Chem. Phys. Lett. 130, 84 (198b).<br />

2) M. Linder, A. Hbhener and R. R. Ernst~ J. Chem. Phys.<br />

73, 4959 ~1980).


WF56<br />

LOCALIZED PROTON DENSITY. RELAXATION TIMES AND SELF DIFFUSION<br />

COEFFICIENT MEASUREMENTS IN SINGLE CELLS BY NMR MICROSCOPY.<br />

J. AEuayo, S. Blackband, J. Schoenlger and M. Mattlngly*, Division<br />

of NMR Research, Johns Hopkins University Medical School, Baltlmore,<br />

Maryland 21205.<br />

l~urDose. To obtain and intrepret localised measurements of proton<br />

density, relaxation times (T1/T2, and self diffusion coefficients of<br />

regions wi<strong>th</strong>in a single cell.<br />

Me<strong>th</strong>ods. A modified Bruker AM 400 spectrometer has been equipped<br />

wi<strong>th</strong> imaging software and hardware accessories. Using a 50 mm set<br />

of gradient coils up to 20 G/cm have been generated during imaging<br />

experiments. In order to optimize sensitivity, a 5 mm solenoid were<br />

used for <strong>th</strong>ese studies. A spin echo pulse sequence was used to<br />

obtain proton density weighted images. Multi-echo and inversion<br />

recovery programs were used to obtain T 2 and T 1 weighted images<br />

respectively. To obtain self diffusion measurements, <strong>th</strong>e spin echo<br />

and multi-echo programs were modified by adding two pulsed gradients<br />

on ei<strong>th</strong>er side of <strong>th</strong>e refocusing 180 ° pulse. In <strong>th</strong>ese programs a<br />

selective 90 ° pulse was used. Ova were obtained from Xenopus<br />

laevius.<br />

Results. The highest resolution to date has been I0 X 13 X 250<br />

microns (I). A homogeneous cell nucleus and heterogenous cytoplasm<br />

were observed. The highest proton density was in <strong>th</strong>e cell nucleus<br />

followed by <strong>th</strong>e marginal zone (region around <strong>th</strong>e nucleus) and<br />

finally <strong>th</strong>e cytoplasm. The cytoplasm has a high lipid content as<br />

evidenced by a chemically shifted component of <strong>th</strong>e signal from <strong>th</strong>is<br />

region. The cell nuclues was noted to have a long T 1 <strong>th</strong>at was<br />

similar to <strong>th</strong>e T 1 of <strong>th</strong>e surrounding buffer solution and longer <strong>th</strong>an<br />

<strong>th</strong>at of <strong>th</strong>e cytoplasm. The T 2 of <strong>th</strong>e nucleus was longer <strong>th</strong>an <strong>th</strong>at<br />

of <strong>th</strong>e cytoplasm. Diffusion studies are in <strong>th</strong>e process of being<br />

Intrepreted but indicate <strong>th</strong>at <strong>th</strong>e water in <strong>th</strong>e cell nucleus is<br />

similiar to <strong>th</strong>at of free water.<br />

Conclusion. It is now possible to obtain images of single cells and<br />

to obtain localized TI, T2, proton density and self diffusion<br />

measurements from wi<strong>th</strong>in different regions of single cells. The<br />

properties of <strong>th</strong>e cell nucleus in <strong>th</strong>e cell system <strong>th</strong>at we chose to<br />

study were significantly different <strong>th</strong>an <strong>th</strong>ose of <strong>th</strong>e surrounding<br />

cytoplasm. Fur<strong>th</strong>er study and correlation between <strong>th</strong>ese results and<br />

previous observation by o<strong>th</strong>er techniques is important in order to<br />

understand <strong>th</strong>e meaning of <strong>th</strong>ese observations.<br />

I. Aguayo J.B., Blackband S.J., Schoeniger J.S., Mattingly M.O., and<br />

Hintermann M., Nature, 322, 190-192, 1986.


WF58<br />

SPATIAL LOCALISATION OF ~lp ~LR SPECTROSCOPY USING PHASE<br />

MODULATED ROTATING FRAI~E IMAGING.<br />

Kartin J. Blackledse*, Peter Styles and Georse K. Radda<br />

X.R.C. CLINICAL NAGNETIC RESONANCE FACILITY, JOHN RADCLIFFE HOSPITAL,<br />

OXFORD ENGLAND U.K.<br />

Rotating frame imaging (R.F.I.) using <strong>th</strong>e B, field gradient of a<br />

surface coil has been shown to be a viable me<strong>th</strong>od for localislng<br />

phosphorus spectra in-vivo. Use of separate coils for transmitting and<br />

receivin E signal ensures <strong>th</strong>at <strong>th</strong>e encoding field gradient is linear and<br />

<strong>th</strong>e shape of <strong>th</strong>is field <strong>th</strong>roughout <strong>th</strong>e interrogated resion is flat and<br />

planar. As normally implemented, R.F.I. is an inherently inefficient<br />

technique; <strong>th</strong>is is because <strong>th</strong>e observation pulse is incremented, and<br />

received signal is amplitude modulated wi<strong>th</strong> respect to incremental<br />

pulse ansle. The magnetisatlon precesses about <strong>th</strong>e x-axis of <strong>th</strong>e<br />

rotatin 5 frame_, so <strong>th</strong>at of <strong>th</strong>e two components (y and z), only <strong>th</strong>e y<br />

component is detected. To overcome <strong>th</strong>is insensitivity, it i$ necessary<br />

to detect <strong>th</strong>e z component. This is achieved by 'flipping' <strong>th</strong>e<br />

masnetisation, immediately after <strong>th</strong>e incremental pulse, into <strong>th</strong>e x-y<br />

plane usin 5 a 7/2 pulse applied alon E <strong>th</strong>e y axis This signal is phase<br />

modulated, <strong>th</strong>e relative x and y component masnetisation in <strong>th</strong>e rotatin$<br />

frame varies wi<strong>th</strong> pulse angle. For <strong>th</strong>is modulation to be useful, <strong>th</strong>e<br />

phase encoding pulse (p.e.p) is required to have a bandwid<strong>th</strong> in bo<strong>th</strong><br />

B, and Bo over which it is effective in accurately transposln8 <strong>th</strong>e<br />

phase of <strong>th</strong>e mnsnetisation vector from <strong>th</strong>e y-z to <strong>th</strong>e x-y plane.<br />

Usin 5 a double coil (wi<strong>th</strong> smaller receiver coil) we receive from <strong>th</strong>e<br />

region (.2-.8) radii of <strong>th</strong>e transmitter coil away from <strong>th</strong>e surface. In<br />

<strong>th</strong>is resion, <strong>th</strong>e B, field streng<strong>th</strong> varies from >.5 to


WF60<br />

SENSITIVITY OF SURFACE COILS TO DEEP LYING VOLUMES<br />

William J. Tboma , ~ichael J. Albright ~,<br />

Piotr M. Starewicz" and Truman R. Brown<br />

Fo~Chase Cancer Center, Philadelphia, PA 19111<br />

Siemens Medical Systems, Iselin, NJ 08830<br />

Ne have acquired ri<strong>th</strong> an 8.5 cm-single turn3[urface coil in a 1M bore<br />

magnet operating at 1.5 T a single acquisition P spectrum (26 MHz) of <strong>th</strong>e<br />

human calf <strong>th</strong>at clearly displays ATP J-coupling and has a pbosphocreatine<br />

signal to noise of 25 wi<strong>th</strong> a 7 hertz gaussian filter. Obviously, <strong>th</strong>is is<br />

adequate sensitivity for <strong>th</strong>e entire volume. Unfortunately, in many cases, in<br />

order to distinquish amoung various physiological responses, it is required<br />

<strong>th</strong>at <strong>th</strong>e volume selected for observation be restricted. As <strong>th</strong>e volume from<br />

which <strong>th</strong>e signal is derived becomes smaller <strong>th</strong>e sensitivity of <strong>th</strong>e detection<br />

coil becomes critical. It is well known <strong>th</strong>at <strong>th</strong>e most important factors in<br />

coil sensitivity are <strong>th</strong>e distance from <strong>th</strong>e coil to <strong>th</strong>e volume from which <strong>th</strong>e<br />

signal originates, and <strong>th</strong>e Q of <strong>th</strong>e coil. O<strong>th</strong>er factors <strong>th</strong>at are important<br />

include <strong>th</strong>e geometric shape of <strong>th</strong>e coil, number of turns, and shielding of <strong>th</strong>e<br />

coil from dielectric losses.<br />

We have undertaken a study of <strong>th</strong>e sensitivity of surface coils for small<br />

regions as a function of <strong>th</strong>eir dep<strong>th</strong> for various surface coil designs,<br />

different turn numbers, various faraday shields, coil radius as a function of<br />

sample volume size, and coil Q. The Q of <strong>th</strong>e coil was measured by determining<br />

<strong>th</strong>e 90 ° pulse at, and <strong>th</strong>e resultant signal from, a 2 cm chamber containing<br />

phenylphosphonate in <strong>th</strong>e center of <strong>th</strong>e coil. Five and 10 cm <strong>th</strong>ick phantoms<br />

of dimensions large compared to <strong>th</strong>e surface coil diameter were filled wi<strong>th</strong><br />

solutions of differing ionic streng<strong>th</strong> and placed between <strong>th</strong>e coils and a 2S ml<br />

spherical sample.<br />

The resultant sensitivity of <strong>th</strong>e various coils rill be reported as a<br />

function of <strong>th</strong>e above parameters.


WF62<br />

CONVOLUTION CHEMICAL SHIFT IMAGING<br />

M.D. COCKMAN- (a,b) and T.H. MARECI (b,c)<br />

Departments of (a)Chemistry, (b)Radiology, and (c)Physics<br />

University of Florida, Gainesville, FL 32610<br />

One of <strong>th</strong>e challenges of NMR imaging is <strong>th</strong>e simultaneous<br />

collection of spatial and chemical information. However,<br />

non-selectlve Fourier chemical shift imaging me<strong>th</strong>ods, in<br />

which spatial information is obtained for every chemical<br />

resonance in a spectrum, hmve been time-consuming and require<br />

at least a <strong>th</strong>ree-dlmensional Fourier transformation<br />

algori<strong>th</strong>m. By a straightforward modification of <strong>th</strong>e me<strong>th</strong>od of<br />

Sepponen and coworkers (1), we have developed a new me<strong>th</strong>od of<br />

non-selectlve chemical shift imaging which requires less<br />

total data acquisition time and a simpler processing scheme.<br />

The new me<strong>th</strong>od is accomplished in part by requiring <strong>th</strong>at<br />

<strong>th</strong>e controlled inhomogeneity introduced by <strong>th</strong>e gradients be<br />

smaller <strong>th</strong>an <strong>th</strong>e inherent inhomogeneity which gives rise to<br />

<strong>th</strong>e chemical shift effect. The use of small gradient<br />

streng<strong>th</strong>s has <strong>th</strong>e benefit of increasing <strong>th</strong>e S/N ratio of <strong>th</strong>e<br />

resulting image. A second requirement of our me<strong>th</strong>od is <strong>th</strong>at<br />

<strong>th</strong>e magnitudes of a time delay, during which chemical shift<br />

encoding occurs, and a gradient, during which spatial<br />

encoding occurs, are changed in concert wi<strong>th</strong> each o<strong>th</strong>er. This<br />

simultaneous stepping has <strong>th</strong>e effect of creating a modulation<br />

function whose Fourier transform is <strong>th</strong>e convolution of a<br />

function of spatial position and a function of chemical shift<br />

frequency. Our technique has <strong>th</strong>erefore been named<br />

aconvolution chemical shift imaging'. This imaging scheme<br />

introduces spectral information into all spatial imaging<br />

dimensions. Thus a <strong>th</strong>ree-dimensional chemical shift imaging<br />

experiment can be reduced to a two-dimensional convolution<br />

chemical shift imaging experiment which retains <strong>th</strong>e same<br />

information.<br />

Convolution chemical shift imaging requires <strong>th</strong>at <strong>th</strong>e<br />

spatial field of view in frequency units must be on <strong>th</strong>e order<br />

of or smaller <strong>th</strong>an <strong>th</strong>e chemical shift separation of interest<br />

if one wishes to resolve a spatial image from each chemical<br />

shift species. Therefore <strong>th</strong>e me<strong>th</strong>od is best suited for small<br />

objects at high field.<br />

The convolution chemical shift imaging me<strong>th</strong>od has been<br />

implemented on a General Electric CSI-2 imager/spectrometer.<br />

Examples of <strong>th</strong>e imaging of phantoms using <strong>th</strong>e me<strong>th</strong>od are<br />

presented.<br />

This research was supported in part by <strong>th</strong>e NIH Biotechnology<br />

Resource Grant (P41-RR-02278) and <strong>th</strong>e Veterans Administration<br />

Medical Research Service.<br />

(1) R.E. Sepponen, J.T. Sipponen, and J.I. Tanttu,<br />

Assist. Tomogr. 8, 585 (1984).<br />

J. Comput.


WF64- POSTERS<br />

NMR FLOW IMAGING<br />

C. L. Dumoulln*, S. P. Souza, H. R. Hart Jr.<br />

General Electric Research and Development Center<br />

PO gox 8, Schenectady, New York 12301<br />

Many flow sensitive NMR procedures have been proposed and demonstrated.<br />

All of <strong>th</strong>ese me<strong>th</strong>ods rely on ei<strong>th</strong>er longitudinal magnetization or transverse<br />

magnetization for flow discrimination. Time-of-flight and spin washout are<br />

examples of flow sensitive techniques which make use of longitudinal magneti-<br />

zation. In <strong>th</strong>ese me<strong>th</strong>ods, <strong>th</strong>e longitudinal magnetization is changed in one<br />

location and monitored in ano<strong>th</strong>er downstream from <strong>th</strong>e first. Techniqdes which<br />

make use of transverse magnetization such as <strong>th</strong>e one described below typically<br />

monitor <strong>th</strong>e phase of spin magnetization and <strong>th</strong>us are not constrained by <strong>th</strong>e<br />

geometry of flow.<br />

The most significant problem in blood flow imaging in animals or humans<br />

is <strong>th</strong>e suppression of signals arising from non-moving spins. This is a par-<br />

ticularly severe problem because blood vessels are relatively small when com-<br />

pared to <strong>th</strong>e volume of <strong>th</strong>e surrounding tissue and blood flow is usually pulsa-<br />

tile ra<strong>th</strong>er <strong>th</strong>an constant. The rapid-scan, phase contrast technique presented<br />

here circumvents <strong>th</strong>ese problems and has proven very useful in obtaining non-<br />

invasive angiograms of heal<strong>th</strong>y and diseased patients.<br />

The flow-induced phase shift of a bi-polar gradient pulse is simply<br />

- vVTA G<br />

where ~ is <strong>th</strong>e flow-induced phase shift, 7 is <strong>th</strong>e gryomagnetic ratio, V is <strong>th</strong>e<br />

component of spin velocity in <strong>th</strong>e direction of <strong>th</strong>e applied magnetic field gra-<br />

dient, T is <strong>th</strong>e time between <strong>th</strong>e centers of <strong>th</strong>e lobes of <strong>th</strong>e bipolar gradient<br />

and A G is <strong>th</strong>e area of <strong>th</strong>e first lobe in <strong>th</strong>e bi-polar pulse (<strong>th</strong>e area of <strong>th</strong>e<br />

second lobe is -AG). To selectively detect flow in an imaging or spectroscopy<br />

procedure one can simply acquire two sets of data under different conditions<br />

of V, T or A G. We have found <strong>th</strong>at <strong>th</strong>e inversion of <strong>th</strong>e bi-polar gradient<br />

pulse gives <strong>th</strong>e best results. Thus, two echoes are obtained, one wi<strong>th</strong><br />

- 7VTA C and <strong>th</strong>e o<strong>th</strong>er wi<strong>th</strong> # - 7VT(-Ac). Moving spins are selectively<br />

detected ~ and stationary spins suppresse~ by taking <strong>th</strong>e difference of <strong>th</strong>e two<br />

echoes. Since <strong>th</strong>e flow sensitivity of such a procedure is only in <strong>th</strong>e direc-<br />

tion of <strong>th</strong>e applied field gradient, two flow images are obtained wi<strong>th</strong> or<strong>th</strong>ogo-<br />

nal flow sensitivities and combined to give <strong>th</strong>e total flow image. The inten-<br />

sity of each pixel in <strong>th</strong>e image is a quantitative measure of flow provided <strong>th</strong>e<br />

flow-induced phase shift, ~, is less <strong>th</strong>an about 1 radian.<br />

Suppression of non-moving spins can be enhanced by a weak dephasing gra-<br />

dient applied in <strong>th</strong>e direction of <strong>th</strong>e image projection. Such a gradient<br />

dephases spin magnetization over <strong>th</strong>e large volume of non-moving spins and has<br />

little effect in <strong>th</strong>e relatively small vessels. Additional suppression can be<br />

obtained by acquiring data very quickly and wi<strong>th</strong> short pulse-to-pulse inter-<br />

vals. Rapid scanning saturates non-moving spins while spins which move into<br />

<strong>th</strong>e detection region are fully relaxed. Fast scanning also makes <strong>th</strong>e flo~<br />

imaging procedure much less sensitive to patient motion since differences of<br />

data acquired in very short intervals are taken.


WF66<br />

IMMOBILIZED FERRITE pAirri~ 1:'~: 5ELEL'rlVE SPOILING OF A HOMOGENF.OUS B o FIELD AND<br />

ITS APplICATION TO SLrI~A~ C01L $ ~ P Y .<br />

Y. Oeoffrion'. M. Rydw. I. C. P Smi<strong>th</strong> sod H C. J~roU<br />

Division of BiololicaJ Sciences<br />

Nations/Research Council of Csosdt<br />

Ottawa, CANADA KIA 01~<br />

Ferrite pa.,'ticles on • solid support have been used to achieve selective sod<br />

lo~ spoilinj of• homogeneous Bo field. IH ~ imNLini techniques sad 3ip<br />

surface coil studies on phantoms have been used to deLineste <strong>th</strong>e proTde of <strong>th</strong>e loca/ized<br />

perturbation of <strong>th</strong>e Bo field sod to fur<strong>th</strong>er demonstrste <strong>th</strong>st in <strong>th</strong>e p~sont sppticstion<br />

<strong>th</strong>e spoifin| effect is Limited to _~ 0,5 cm •ray from <strong>th</strong>e surface of <strong>th</strong>e immobi/o.ed ferrite<br />

particles. AppLication of <strong>th</strong>is spproach to surface coU studies on a,nims/s has shoved <strong>th</strong>at<br />

itvu feasible to discrimiatte between 31p resonsoces originttiaj from tissues near <strong>th</strong>e<br />

body surface ofso soims/from <strong>th</strong>ose originttiag from tissues lyinj deeper in <strong>th</strong>e<br />

mmlmml.


WF68<br />

The SWIFT Me<strong>th</strong>od for In Vlvo Localized Spectroscopy<br />

W.M. Chew, L.-H. Chang, T.L.dames*<br />

Department of Pharmaceutical Chemistry<br />

University of California San Francisco<br />

San Francisco, California g4143<br />

Of paramount Importance in in v/vo MRS studies is <strong>th</strong>e ability to<br />

acqulre localized spectra from <strong>th</strong>e region of interest and wi<strong>th</strong> maximum<br />

signal to noise. Failure to localize can lead to false results and erroneous<br />

conclusions. Spectra obtained using localization schemes <strong>th</strong>at fail to<br />

maxlmlze signal to noise (S/N) can require long acquisition times and <strong>th</strong>us<br />

obscure <strong>th</strong>e ability to detect physiological changes. The optimal strategy<br />

during <strong>th</strong>e localization process is to keep manipulation of <strong>th</strong>e magnetization<br />

from <strong>th</strong>e region of Interest to a minimum, <strong>th</strong>ereby minimizing <strong>th</strong>e loss of<br />

S/N <strong>th</strong>at can occur due to finite T2's and Instrumental imperfections.<br />

We present a me<strong>th</strong>od of localization using <strong>th</strong>e SWIFT (Stored<br />

Waveform Inverse Fourier Transform) excitation me<strong>th</strong>od (1). Unlike most<br />

gradient localization me<strong>th</strong>ods (wl<strong>th</strong> one exception (2)), magnetization in <strong>th</strong>e<br />

region of Interest is not manipulated (volume selective nonexcitation during<br />

<strong>th</strong>e preparation period) <strong>th</strong>ereby retaining full z magnetization, an important<br />

signal to noise consideration. Magnetization outside <strong>th</strong>e region of interest is<br />

dephased and saturated using a combination of tailored SWIFT pulses and<br />

magnetic field gradients; a "read-out" pulse <strong>th</strong>en interrogates spins left on<br />

<strong>th</strong>e z axis from <strong>th</strong>e region of interest.<br />

(i) A.6. Marshal, A.T. Hsu, W.W. HunLer Jr., P. Schmalbrock, Prec. Soc. Me~. Res. Med. FirLh Annual<br />

MeeLing, Montreal (1986).<br />

(2) D.M. DoddrelI, J.M. Bulsing, GJ. 6allowiy, W~. Brooks. J. Field, M. Irving, H. Baddeley, d. Magn.<br />

Res. 70(2), 31g (1986).


WF70<br />

NATURAl, ABUNDANCE CARBON-13 NMR IMAGING<br />

IN BIOLOCICAL SYSTEMS<br />

Donald W. Kormos<br />

Department of Radiology, University Hospitals,<br />

C~RU, Cleveland, Ohio ~I06<br />

and Hong N. Yeung<br />

Technlcare Corporation, 29000 Aurora Road, Solon, Ohio 44139<br />

The feasibility of natural abundance carbon-13 NMR imaging was<br />

evaluated. Spin-echo, undecoupled images were obtained at 4.7 T (Oxford<br />

Instruments, 33-cm bore magnet) using a broadbanded Technicare Teslacon<br />

MR imaging system. A cylindrical volume coll (= 3,500 cm 3) and a single-<br />

turn surface coll (3 cm diameter), tuned to 50.6 MHz, excited and<br />

received <strong>th</strong>e carbon signals. Polypropylene spheres containing isotop-<br />

Ically enriched me<strong>th</strong>anol (= 99%) and e<strong>th</strong>ylene glycol wi<strong>th</strong> carbon-13 in<br />

natural abundance (= 1.1%) were used as phantoms for setting <strong>th</strong>e imaging<br />

parameters. Natural abundance carbon-13 images were obtained from an<br />

unfertilized chicken egg and a fresh oxtail (bo<strong>th</strong> obtained at a local<br />

supermarket!).<br />

Phantom images clearly showed =image multiplicity" due to carbon-<br />

proton J-coupllngs. The chicken egg image depicted only <strong>th</strong>e me<strong>th</strong>ylene<br />

(-CH2-) carbons of <strong>th</strong>e egg yolk. This finding was confirmed by high-<br />

resolution carbon spectra of separated egg white and egg yolk.<br />

Similarly, transverse and saglttal carbon-13 images obtained from <strong>th</strong>e<br />

oxtail phantom exclusively mapped lipid carbons. Separated fat and water<br />

proton images of <strong>th</strong>e oxtail using a modified Dixon me<strong>th</strong>od (wi<strong>th</strong> in situ<br />

inhomogeneity correction) were also obtained. A very good correlation<br />

between <strong>th</strong>e carbon-13 image and <strong>th</strong>e proton fat image was observed.<br />

We conclude <strong>th</strong>at natural abundance carbon-13 imaging is feasible at<br />

high fields wi<strong>th</strong> reasonable (= i hour) imaging times. Hardware<br />

improvements, proton decoupllng, and carbon-13 labeling will undoubtably<br />

decrease <strong>th</strong>e degree of difficulty.


WF72<br />

THE DESCI~IPTII]N AND ELIMII~TION OF SUBTRACTION ARTEFACTS IN :H<br />

EDITING SCHEMES: A PHASE CYCLING SCHEME TO ELIMINATE ABSORPTIVE<br />

AND DISPERSIVE ERRORS<br />

H.P He<strong>th</strong>erington °, D.L.Ro<strong>th</strong>man, K.L. Behar, M.R. Bendall and R.G. Shulman<br />

Dept of Molecular Biophysics and Biochemistry<br />

Yale University New Haven C.T. 06510<br />

In <strong>th</strong>e past <strong>th</strong>ree years <strong>th</strong>ere has been a rapid grow<strong>th</strong> in <strong>th</strong>e<br />

application of LH NMR to monitor in vivo metabolism. Due to <strong>th</strong>e small<br />

chemical shift dispersion of <strong>th</strong>e JH spectra, many small metabolite<br />

resonances are obscured by spectral overlap. To resolve <strong>th</strong>ese resonances<br />

a variety of homonuclear editing schemes have been proposed which rely on<br />

<strong>th</strong>e use of a selective inversion pulse or CW decoupling to alter <strong>th</strong>e 3-<br />

modulation of <strong>th</strong>e edited resonance(1). However, <strong>th</strong>ese me<strong>th</strong>ods<br />

experimentally and <strong>th</strong>eoretically fail to achieve exact cancellation of<br />

non-modulating resonances at <strong>th</strong>e frequency position of <strong>th</strong>e e~ited<br />

resonance, <strong>th</strong>ereby resulting in quantitative errors.<br />

By use of matrix me<strong>th</strong>ods(2) and <strong>th</strong>e product operator formalism (3), we<br />

have identified <strong>th</strong>e source of <strong>th</strong>ese errors as arising from<strong>th</strong>e editing<br />

pulse creating: a) perturbations in <strong>th</strong>e absorptive refocusing<br />

magnetization due to off resonance spin inversion effects and b)<br />

dispersive refocusing magnetization due primarily to <strong>th</strong>e effective field<br />

changes during <strong>th</strong>e selective inversion pulse or ~ecoupling period.<br />

HoNever, <strong>th</strong>ese errors can be <strong>th</strong>eoretically and experimentally eliminated<br />

by using <strong>th</strong>e following sequence and appropriate cycling scheme,<br />

where e and 2e form a standard spin echo sequence, ee.~ is a selective<br />

inversion pulse, ~=I/23 for doublets, and ee.~*~e=~. The selective<br />

inversion pulse, e~s~, is applied on alternate scans to <strong>th</strong>e 3-coupled<br />

spin of <strong>th</strong>e resonance to be edited and to a position symmetrically<br />

disposed to <strong>th</strong>e edited resonance to eliminate errors in absorptive<br />

refocusing magnetization. Incomplete cancellation due to dispersive<br />

refocusing magnetization is eliminated by cycling <strong>th</strong>e sequence of pulses<br />

and delays (2e.~-~e-2e-~) according to <strong>th</strong>e absorptive phase cycling<br />

described by He<strong>th</strong>erington and Ro<strong>th</strong>man(2). This scheme has been applied to<br />

<strong>th</strong>e living cat brain at 4.?T to obtain an edited spectrum of lactate.<br />

I) D.Ro<strong>th</strong>man et al, Proc. Natl. Acda. Sci, 81, 6330, (19B4)<br />

S. Williams et al, 3. Magn. Reson. bJ,40&, (19B5)<br />

2) H.He<strong>th</strong>erington and D.Ro<strong>th</strong>man, 3. Magn. Reson.,b5t 348,(1985)<br />

3) 0.Sorensen, Prog. Nucl. Magn. Reson. Spectrosc., 54,512,(1983)


WF74<br />

TAILORED EXCITATION IN THE ROTATING FRAME<br />

G.S. Karczmar*, T. Lawry, M.W. Weiner,<br />

J. Murphy-Boesch, and G.B. Matson<br />

Veterans Administration Medical Center, and<br />

University of California, San Francisco, California<br />

Shaped RF pulses are currently used in magnetic<br />

resonance imaging (MRI) to provide uniform excitation across<br />

a selected frequency interval. The distribution of<br />

frequencies across <strong>th</strong>e sample is created by a gradient in<br />

<strong>th</strong>e B 0 field. It is also possible to utilize a gradient in<br />

<strong>th</strong>e RF (B 1) field for spatial discrimination. Here we<br />

describe a new approach to localized spectroscopy based on<br />

selective excitation of precessional frequencies about an<br />

inhomogeneous B 1 field. Selective excitation is produced by<br />

a second RF field, designated B2, which is or<strong>th</strong>ogonal to <strong>th</strong>e<br />

inhomogeneous B 1 field. This approach derives from Hoult's<br />

rotating frame selective pulses (1). However, it differs<br />

in <strong>th</strong>at <strong>th</strong>e B 1 and B 2 fields are not on continuously.<br />

Fur<strong>th</strong>ermore, <strong>th</strong>e B 2 field is tailored to achieve uniform<br />

excitation over a desired frequency interval.<br />

In its simplest form, <strong>th</strong>e experiment is initiated by<br />

application of a B 1 field along <strong>th</strong>e X axis of <strong>th</strong>e rotating<br />

frame, <strong>th</strong>rough an NMR probe which produces an inhomogeneous<br />

RF field. At multiples of time tau <strong>th</strong>e B 1 field is<br />

momentarily removed and a brief B 2 pulse applied along <strong>th</strong>e Y<br />

axis. The B 2 pulses are selective for precessional<br />

frequencies about B 1 which are multiples of 1/tau, and<br />

continuation of <strong>th</strong>e sequence produces a net tipping of<br />

selected magnetization towards <strong>th</strong>e negative Y axis. Halfway<br />

<strong>th</strong>rough <strong>th</strong>e sequence <strong>th</strong>e phase of <strong>th</strong>e B 1 field is reversed,<br />

so <strong>th</strong>at <strong>th</strong>e experiment ends wi<strong>th</strong> selected magnetization<br />

along <strong>th</strong>e negative Y axis, and all o<strong>th</strong>er magnetization<br />

aligned along <strong>th</strong>e Z axis. The slice profile approaches a<br />

sine shape. Improvement of <strong>th</strong>e selection profile is<br />

obtained <strong>th</strong>rough modulation of <strong>th</strong>e duration of <strong>th</strong>e<br />

individual B 2 pulses to obtain tailored excitation<br />

equivalent to <strong>th</strong>at of shaped pulses such as <strong>th</strong>e sine pulse.<br />

Computer simulations are used to demonstrate a variety<br />

of pulse sequences which achieve acceptable slice profiles<br />

while minimizing RF power. Advantages over o<strong>th</strong>er B 1<br />

localization experiments include improved uniformity of<br />

excitation over <strong>th</strong>e selected slice, and minimal perturbation<br />

of magnetization outside of <strong>th</strong>e selected slice. This makes<br />

multiple slice experiments possible. Extension of <strong>th</strong>e<br />

me<strong>th</strong>od to <strong>th</strong>e use of o<strong>th</strong>er shaped pulses is straightforward.<br />

1. D.I. Hoult, J. Magn. Reson. 38, 369 (1980)


WF76<br />

RAPID ~ F R A M E IMAGING<br />

Kenne<strong>th</strong> R. Metz* and John P. Boehmer<br />

Department of Radiology<br />

The Pennsylvania State University College of Medicine<br />

~he M. S. Hershey Medical Center<br />

P. O. Box 850<br />

Hershey, Pennsylvania 17033<br />

Since its introduction [Hcult, J~R, 33, 183 (1979)], rotating-frame<br />

imging (RFI) has excited growing interest. This technique employs<br />

radiofrequency field (B I) gradients to produce a spatial (x) dependence<br />

of <strong>th</strong>e NMR nutation frequency: Fl(x) = ~Bl(X)/2~. Ordinarily, a one-<br />

dimensional spat/al image is formed using a t%D-dimensional pulse<br />

sequence of <strong>th</strong>e genen~l type:<br />

(Preparation - n-P - FID Acquisition - Relaxation Delay) n [RFI]<br />

where <strong>th</strong>e rf pulse wid<strong>th</strong> n-P increases wi<strong>th</strong> <strong>th</strong>e number of stored FID's.<br />

2DPT processing wi<strong>th</strong> respect to <strong>th</strong>e pulse wid<strong>th</strong> (t I) and acquisition time<br />

(t 2) yields a 2D frequency-dum~in map correlating <strong>th</strong>e NMR spectrum along<br />

<strong>th</strong>e F 2 axis wi<strong>th</strong> <strong>th</strong>e spatial position along <strong>th</strong>e F 1 axis.<br />

In many cases, <strong>th</strong>e obserut~ chemical species (e.g., IH20 or 23Na+)<br />

may exhibit only a single spectral line. ~his allows <strong>th</strong>e rotating-frame<br />

imge to be formed using <strong>th</strong>e sequence:<br />

Preparation - (P - Acquire One Point) n - Relaxation Delay [Rapid RFI]<br />

where n s~ssi~ individual points are acquired between pulses (P) in a<br />

long train. The rapid RFI me<strong>th</strong>od uses only a small fraction of <strong>th</strong>e rf<br />

power normally required, provides, good spatial resolution, and is<br />

extremely fast, as shown by <strong>th</strong>e I~ image below for a <strong>th</strong>ree-c/hamber<br />

phantcm acquired in 41 ms.<br />

l ' ' ' i ' ' ' I ' '<br />

6000 4000 2000 Hz


WF78<br />

A NOVEL METHOD FOR DIFFUSION AND FLOW MEASUREMENTS:<br />

IMAGING OF TRANSIENT MAGNETIZATION GRATINGS<br />

Timo<strong>th</strong>y R. Saarinen* and Charles S. Johnson, Jr.<br />

Department of Chemistry 045A<br />

University of Nor<strong>th</strong> Carolina<br />

Chapel Hill, NC 27514<br />

Holographic relaxation spectroscopy (HRS) is an optical<br />

me<strong>th</strong>od in which a grating pattern of photoproducts is written<br />

into a sample by a laser interference pattern. The time<br />

evolution of <strong>th</strong>e grating is determined by diffusion, flow,<br />

and relaxation rates. Analogous PFG-NMR experiments are<br />

described in which sinusoidal patterns of magnetization are<br />

"written" into samples along <strong>th</strong>e gradient direction. The<br />

time evolution of <strong>th</strong>e "grating" wi<strong>th</strong> diffusion, flow, and<br />

relaxation present is determined. To monitor <strong>th</strong>e time<br />

dependence, a "reading" gradient is applied during acqui-<br />

sition to yield an image of <strong>th</strong>e "grating" after Fourier<br />

transformation wi<strong>th</strong> respect to <strong>th</strong>e acquisition time. The<br />

Carr-Purcell sequence wi<strong>th</strong> an applied magnetic gradient is<br />

discussed along wi<strong>th</strong> applications to diffusion and flow.


WF80<br />

MULTIPLE QUANTUM FILTERING: USES IN IMAGING AND IMAGING RELATED<br />

EXPERIMENTS<br />

Nikolaus M. Szeverenyi<br />

SUNY, Heal<strong>th</strong> Science Center<br />

NMR Laboratory, Room 301<br />

708 Irving Avenue<br />

Syracuse, NY 13210<br />

Tel. (315) 473-8469<br />

The behavior of multiple quantum coherence in <strong>th</strong>e presence of<br />

magnetic field gradients can be exploited as ano<strong>th</strong>er mechanism to filter<br />

out water signal in an imaging instrument. Using a combination of<br />

r.f./receiver phase cycling and <strong>th</strong>e selection of a particular echo, one<br />

can achieve a high level of water suppression. Lactic acid and to a<br />

lesser extent fat, are biological materials <strong>th</strong>at respond to <strong>th</strong>is<br />

experiment. Results using selective pulses are displayed wi<strong>th</strong> a<br />

discussion of sensitivity considerations, field dependence and possible<br />

applications.


WK2<br />

15N NMR OF MACROMOI_F.CULF-S: APPLICATIONS TO THE<br />

b"I'UDY OF PROTEINS IN SOLUTION<br />

M. Bogusky', P. Leighton, R. Schiksnis, A. Khoury, P. Lu and S. Opella.<br />

Department of Chemistry<br />

University of Pennsylvania<br />

Philadelphia, Pennsylvania 19104<br />

One- and two-dimensional heteronuclear NMR techniques<br />

combined wi<strong>th</strong> 15N biosyn<strong>th</strong>etic labelling have been used to study a variety<br />

of globular and membrane bound proteins in solution. Five proteins<br />

including <strong>th</strong>e fd and Pfl phage coat proteins in micelles, cro repressor, lac<br />

repressor and lac headpiece, covering <strong>th</strong>e molecular weight range<br />

6-155kD have been investigated using <strong>th</strong>ese techniques. Heteronuclear<br />

correlation, bo<strong>th</strong> nitrogen and proton observe are used to resolve amide<br />

nitrogens and protons as well as sidechains containing nitrogen.<br />

Assignment of resonances to amino acid type are completed <strong>th</strong>rough <strong>th</strong>e<br />

use of single site 15N biosyn<strong>th</strong>etic labelling. Sequence specific assignments<br />

are accomplished wi<strong>th</strong> <strong>th</strong>e use of 13C-15N double labelled samples.<br />

Evaluation of <strong>th</strong>e advantages and limitations of bo<strong>th</strong> heteronuclear<br />

correlation techniques wi<strong>th</strong> regard to molecular weight are presented.<br />

Applications of polarization transfer techniques are used to<br />

increase sensitivity, assign resonances and monitor proton exchange for <strong>th</strong>e<br />

labelled proteins discussed. Protein backbone and sidechain dynamics are<br />

characterized by <strong>th</strong>e heteronuclear 15N-(IH} NOE. Qualitative<br />

determination of protein mobility on <strong>th</strong>e nanosecond timescale is readily<br />

accomplished for moderately sized proteins using <strong>th</strong>e heteronuclear NOE.<br />

Proteins dynamics are also characterized wi<strong>th</strong> <strong>th</strong>e use of "dynamic filters"<br />

inherent in several heteronuclear multipulse experiments. The combination<br />

of <strong>th</strong>e heteronuclear techniques discussed wi<strong>th</strong> <strong>th</strong>e conventional proton<br />

NMR techniques extend <strong>th</strong>e molecular weight range of protein systems<br />

which become tractable by high resolution solution NMR.


WK4<br />

P.E.COSY, DOUBLE QUANTUM FILTERED RELAY SPECTROSCOPY AND MORE.<br />

Stephen C. Brown, Paul L. Weber & Luciano Mueller<br />

Smi<strong>th</strong> Kline & French Laboratories<br />

709 Swedeland Road, Mail Code L940<br />

Swedeland, Pennsylvania 19479.<br />

Whenever one gains <strong>th</strong>e impression <strong>th</strong>at some aspect of NMR is<br />

becoming exhausted, a new twist is stumbled upon <strong>th</strong>at opens up new<br />

avenues of research. For instance, we recently found a new procedure<br />

to purge <strong>th</strong>e phases in COSY spectra, which we subsequently utilized to<br />

generate E.COSY 1 type spectra. This experiment involves <strong>th</strong>e reduction<br />

of <strong>th</strong>e flip angle in <strong>th</strong>e mixing pulse combined wi<strong>th</strong> <strong>th</strong>e said phase<br />

purging. The resulting spectra looked impressive enough to leave <strong>th</strong>e<br />

impression <strong>th</strong>at some people may want to see a name associated wi<strong>th</strong><br />

<strong>th</strong>is procedure; how about primitive or P. E.COSY 2.<br />

We also applied dual double quantum filtering procedure to <strong>th</strong>e<br />

RELAY experiment as originally proposed by O. Sorensen 3. To our<br />

delight we obtained superb results in a small protein (ubiquitin),<br />

which suggests <strong>th</strong>at <strong>th</strong>is procedure may become <strong>th</strong>e standard RELAY<br />

technique. For people who are in desperate need of names may we call<br />

<strong>th</strong>is DQFRELAY or DRECKSY (true meaning to be revealed upon request).<br />

Fur<strong>th</strong>ermore, we found an optimized combination of selective<br />

excitation and homogeneity spoiling in <strong>th</strong>e 2DNOE experiment to<br />

suppress <strong>th</strong>e solvent peak in H20 solution. These results and more we<br />

wish to present.<br />

References: 1. C. Criesinger, O. W. Sorensen and R. R.<br />

Ernst, J. Amer. Chem. Soc. 107, 6394 (1985).<br />

2. L. Mueller, J. Magn. Reson., March <strong>1987</strong>.<br />

3. O. W. Sorensen, Ph.D. <strong>th</strong>esis, ETH #7658<br />

(1984).


WK6<br />

ISOTOPE-FILTERED PROTON NHR EXPERIMENTS<br />

FOR SIMPLIFYING COMPLEX SPECTRA<br />

Stephen W. Fesik* Robert T. Gampe, Jr. Jay R. Luly, Herman H. Stein and<br />

• ' t<br />

Todd Rockway. Pharmaceutical Division, Abbott Laboratories, Abbott Park, IL<br />

60064.<br />

Extracting structural information from proton NHR spectra of large<br />

btomolecules or molecular complexes can be extremely difficult due to <strong>th</strong>e<br />

severe overlap of many signals. Recently, however• experimental approaches<br />

have been introduced to overcome some of <strong>th</strong>ese limitations by selectively<br />

detecting protons attached to an isotopically labelled nucleus (1,2) as well<br />

as <strong>th</strong>eir scalar (2) or dipolar coupled (3) partners. Isotope-filtered<br />

homonuclear Hartmann-Hahn (HLEV-17) and NOE experiments in which a spin-echo<br />

difference pulse sequence was inserted in <strong>th</strong>e experiment are presented. The<br />

approach is illustrated using an 15N-labelled dipeptide and applied in a study<br />

of <strong>th</strong>e bound conformation of an isotopically labelled pepsin inhibitor. In<br />

addition, isotope-filtered 2D NOE spectra are presented of a large, 15N-<br />

labelled cyclic peptide analog of atrial natriuretic factor incorporated into<br />

a model membrane. From <strong>th</strong>e spectral simplification achieved in <strong>th</strong>e<br />

experiment, additional proton-proton distances were obtained unambiguously,<br />

aiding our structural studies.<br />

I. R.H. Griffey, A.G., Redfield, R.E. Loomis, and F.W. Dahlquist,<br />

Biochemistry, 24, 817-822 (1985).<br />

2. J.A. Wilde, P.H.Bolton, N.J. Stolowich, and J.A. Gerlt, J. Magn. Reson.,<br />

6__88, 168-171 (1986).<br />

3. R.H. Griffey, M.A. Jarema, S. Kung, P.R. Rosevear, and A.G. Redfield,<br />

J. Am. Chem. Soc., i0___~7, 711-712 (1985).


WK8<br />

ISOTROPIC MIXING IN DNA<br />

Peter F. FIynn', Agustin Kintanar, Gary P. Drobny<br />

and Brian R. Reid<br />

Department o] Chemistry, Uniuersity of Washington<br />

Seattle, WA 98195<br />

We have investigated homonuclear coherence transfer in syn<strong>th</strong>etic DNA oligonu-<br />

cleotides using two-dimensional isotropic mixing experiments. These experiments<br />

employ broadband homonuclear decoupling techniques (MLEV-16) during <strong>th</strong>e mix-<br />

ing period to induce isotropic coupling wi<strong>th</strong>in a spin system resulting in net trans-<br />

fer of coherence. The leng<strong>th</strong> of <strong>th</strong>e mixing time determines <strong>th</strong>e extent of coherence<br />

transfer; brief mixing periods lead to COSY-like spectra and at longer mixing times,<br />

relayed coherence transfer effects are introduced.<br />

This me<strong>th</strong>od was used to determine <strong>th</strong>e scalar connectivities of sugar protons<br />

in canonical B-form, bent, and hairpin DNA structures. Cross-peaks were assigned<br />

unequivocally wi<strong>th</strong>out recourse to structural assumptions, since coherence is trans-<br />

ferred only <strong>th</strong>rough bonds. Assignments derived from <strong>th</strong>ese experiments were used<br />

to simpli~" and confirm NOESY spectrum assignments.<br />

Isotropic mixing techniques as applied to oligonucleotides differs from conven-<br />

tional relayed coherence transfer techniques in <strong>th</strong>at one can simultaneously observe<br />

shor~ and long range coherence transfer wi<strong>th</strong>in a spin system using <strong>th</strong>e former<br />

me<strong>th</strong>od. In addition, long range coherence transfer is more easily observed using<br />

isotropic mixing.


WKIO<br />

IH, IsC, AND ISN NMR STUDIES OF METAL COMPLEXES OF BLEOMYCIN<br />

Ian J. Mclennan* Michael P Gamcslk, Susanta K. Sarkar, Ad Bax t , and<br />

I °<br />

Jerry D. Gllckson, Depar ~ment of Radiology, The Johns Hopkins University<br />

School of Medicine, Baltimore MD 21205 and SNatlonal Institutes of Heal<strong>th</strong>,<br />

Be<strong>th</strong>esda MD 20892.<br />

The solution conformation of <strong>th</strong>e Zn(II) bleomycin complex has been<br />

studied by ZH, IsC, and ISN NMR. As part of <strong>th</strong>e study we have performed<br />

rotating frame NOE experiments in bo<strong>th</strong> H20 and D20. The Zn(II) bleomycln<br />

complex has been found to be partlcularly amenable to rotating frame<br />

experiments since <strong>th</strong>e TlP'S of <strong>th</strong>e complex are long (-50ms) at 4°C. The<br />

complete assignment of <strong>th</strong>e IH spectrum of <strong>th</strong>e Zn(II) bleomycln complex has<br />

been accomplished by COSY-llke experiments utilizing Hartman-Hahn<br />

polarization transfer. The complete assignment of <strong>th</strong>e IsC spectrum of <strong>th</strong>e<br />

Zn(II) bleomycin complex has been accomplished using <strong>th</strong>e RELAY me<strong>th</strong>od<br />

(Lerner and Bax (1986) J. Magn. Reson. 69, 375). The assignment of <strong>th</strong>e<br />

peptide amlde nitrogens in free bleomycin and <strong>th</strong>e Zn(II) bleomycin complex<br />

was accomplished by IH-16N multiple quantum experiments. The results from<br />

<strong>th</strong>ese experiments are discussed in terms of a probable solution<br />

conformation of <strong>th</strong>e Zn(II) bleomycln complex.


WK12 - POSTERS<br />

QUANTITATIVE INTERPRETATION OF A SINGLE 2D NOE SPECTRUM<br />

Peter A. Mirau<br />

AT&T Bell Laboratories<br />

Murray Hill, NJ 07974<br />

A new me<strong>th</strong>od is suggested for <strong>th</strong>e quantitative in-<br />

terpretation of 2D NOE data using selective relaxation rates<br />

and matrix techniques. This approach reduces <strong>th</strong>e experimen-<br />

tal time from one week to one day, gives proton-proton dis-<br />

tances wi<strong>th</strong> a precision of I0.1 ~, and can be used to<br />

characterize <strong>th</strong>e internal dynamics. Wi<strong>th</strong> <strong>th</strong>is approach <strong>th</strong>e<br />

structural and dynamic properties of Gramicidin S were<br />

determined from a single 2D NOE spectrum wi<strong>th</strong> a mixing time<br />

of 0.2 s. The peak volumes in <strong>th</strong>e 2D experiment were scaled<br />

via <strong>th</strong>e measured selective relaxation of Phe NH and Orn H ~<br />

protons and <strong>th</strong>e matrix of scaled peak volumes was solved to<br />

yield <strong>th</strong>e relaxation rate matrix. The distances measured by<br />

<strong>th</strong>is approach were indistinguishable (I0.1A ) from <strong>th</strong>ose<br />

measured from 1D NOE experiments, <strong>th</strong>e buildup of cross peaks<br />

in <strong>th</strong>e 2D NOE experiments, and <strong>th</strong>e distances expected from<br />

<strong>th</strong>e crystal structure. The dynamics were determined from<br />

<strong>th</strong>e ratio of <strong>th</strong>e sum of all <strong>th</strong>e cross relaxation rates to<br />

<strong>th</strong>e rate of decay of <strong>th</strong>e diagonal peak which, for isotropic<br />

motion, depends only <strong>th</strong>e <strong>th</strong>e correlation time. This<br />

analysis showed a correlation time for <strong>th</strong>e NH and H ° protons<br />

of 0.9~0.1 nsec; <strong>th</strong>e close correspondence between <strong>th</strong>e ob-<br />

served and expected values show <strong>th</strong>at <strong>th</strong>e peptide backbone is<br />

rigid in solution over <strong>th</strong>e time scale of molecular tumbling.<br />

Internal motions of make a significant contribution to <strong>th</strong>e<br />

relaxation of some side chain groups. The implications and<br />

limitations of <strong>th</strong>is approach and <strong>th</strong>e applications to DNA<br />

structure determination will be discussed.


WKI4 - POSTERS<br />

SYMMETRY AND ANTISYMMETRY IN 2D NMR SPECTRA<br />

O.W. S6rensen, C. Griesinger, C. Gemperle<br />

and R.R. Ernst<br />

Laboratorium fSr Physikalische Chemie<br />

EidgenSssische Technische Hochschule<br />

8092 Z~richo Switzerland<br />

The conditions for obtaining 2D spectra symmetric or<br />

antisymmetric wi<strong>th</strong> respect to reflection about <strong>th</strong>e<br />

diagonal have been extended and generalized. They<br />

can be formulated ei<strong>th</strong>er in terms of <strong>th</strong>e structure<br />

of pulse sequences or in terms of <strong>th</strong>e coherence<br />

transfer pa<strong>th</strong>ways selected.<br />

Recent results indicate <strong>th</strong>at new experimental<br />

techniques producing antisymmetric or asymmetric 2D<br />

spectra can be of advantage in certain practical<br />

situations. For example, experiments leading to<br />

antisymmetric spectra often result in suppression of<br />

uninformative and disturbing diagonal peaks.


WK16<br />

MULTINUCLEAR SOLID STATE NMR STUDIES OF INTERNAL MOLECULAR DYNAMICS IN<br />

FIBROUS AND CRYSTALLINE PROTEINS<br />

Y. Hiyama*, J. W. Hack +, S. W. Sparks** and D. A. Torchla,<br />

Natlonal Institute of Dental Research, Natlonal Institutes of Heal<strong>th</strong><br />

Be<strong>th</strong>esda, Maryland 20892<br />

Collagen*: Intact rabbit Achilles tendon collagen containing<br />

4-fluorophenylalanine (provided by Dr. J. T. Gerlg) has been studied by<br />

19F NMR at 470 MHz. Analysls of <strong>th</strong>e 19F CSA powder patterns obtained at<br />

-37°C show <strong>th</strong>at motion of all amino acid sldechains is restricted to small<br />

angle rolling or rare 180 ° fllps of <strong>th</strong>e phenyl ring. In contrast, above<br />

-4°C, <strong>th</strong>e powder pattern indicates considerable heterogenlety in <strong>th</strong>e<br />

dynamics of <strong>th</strong>e sidechaln, a result <strong>th</strong>at will be discussed wi<strong>th</strong> reference<br />

to collagen fiber structure.<br />

Keratin+: Assembled intermediate filaments of mouse epidermal<br />

keratin, labeled wi<strong>th</strong> 13C and 2H (provided by Dr. Peter Steinert) have<br />

been studied at several field streng<strong>th</strong>s. Analysls of measurements of<br />

Tl'S, llne wid<strong>th</strong>s and NOE values of filaments labeled wi<strong>th</strong> [I-13C] and<br />

[2-13C] glyclne show <strong>th</strong>at <strong>th</strong>e protein backbone, in <strong>th</strong>e non-helical N- and<br />

C-terminal domains, is Isotropically mobile on <strong>th</strong>e nanosecond timescale.<br />

Deuterium llneshapes of leucyl residues, located in <strong>th</strong>e interior helical<br />

domain of <strong>th</strong>e protein show <strong>th</strong>at motions of <strong>th</strong>ese sidechains are<br />

anisotropic. We will report on <strong>th</strong>e spatial extent and timescale of <strong>th</strong>ese<br />

sidechalr motions based on our analysis of <strong>th</strong>e 2H lineshape and relaxa-<br />

tlon data.<br />

Staphylococcal Nuclease~'#: Using genetically engineered E. Coli<br />

(provided by Dr. J. Gerlt) we have prepared crystals of S. Nuclease<br />

containing residue specific NNR spin labels. Deuterium lineshapes show<br />

<strong>th</strong>at except for me<strong>th</strong>yl rotation, molecular motion is highly restricted at<br />

temperatures below -35°C. In contrast, at 20°C, at least one half of each<br />

of <strong>th</strong>e Pro, Met, Phe and Tyr residues execute large amplitude sidechain<br />

motions. The detailed nature and timescale of <strong>th</strong>ese motions will be dis-<br />

cussed and, where possible, related to <strong>th</strong>e crystal structure. These are<br />

<strong>th</strong>e first extensive measurements of internal motions in a protein crystal<br />

and clearly show <strong>th</strong>at even in crystals proteins are dynamic structures.


WK18<br />

21) NMR METHODS FOR ~ SYSTEM IDENTIFICATIDN IN LARCE<br />

PROTEINS<br />

CLzudi~ Dalvi% S.S. Naru~* and Peter E. Wright<br />

Department of uc~ecular<br />

R ~ I m ~ of Scripps<br />

1~ Nor<strong>th</strong> Tcrr~y Pines Road<br />

Recent deve~pments in 2D NMR me<strong>th</strong>od~y now make it possible to<br />

obtain extensive and ~m~=uous spin system assignments for ~ of<br />

malecmlar weight up to- 20,O00d. Phase sensi~ve double quantum spe~:~Fy<br />

and Hartman-Hahn techniques are particularly im~l~ Appli~ticvs of <strong>th</strong>ese<br />

OdS to ]~g~emog]~l~n (M- 16,000) and myog~l~n (M ~ 18,000) wi~ be<br />

• Acc~n of dc~l~ quantum spectr~ wi'~ d~f&~nt • values<br />

impcm-tant to a.1]Dw di~erenl~ d direct and r~mote connectivj.i~.es and for<br />

spectr~ mmpl~f-ic~,',n and edii~ng. The double quan~nn experiment is<br />

well,bred for detection of weak, ]c~g-~d~ge ~ and can ~ e<br />

una.mhiguous czmuectiv'ities between <strong>th</strong>e aroma~c and alipha~c ~ of<br />

~ e spin systems. R ~ frame NOESY experiments are inva.luahle in<br />

studying exchange troces~s between different conforma~kmal suhstates of<br />

]~emq~hin. We show <strong>th</strong>at Hart~an-Hahn coherence transfer experiments<br />

can be used to ~d~ amino acid spin systems in a ~ of malecular<br />

weight 38,000; a::mv~ COSY techniques are iI~r~.~le far a ~ of<br />

size.


WK20<br />

ImQm~ss ~ M~/TIDIM~SIGNAL ~ C NMR<br />

H. Armitage, U. Bl6mer, I. Genge, A. Khuen, and D. Ziessow<br />

I.N. Stranski Institute, Technische Universit~t Berlin<br />

i000 Berlin 12, West Germany<br />

Stimulus to <strong>th</strong>e osntinuing development of M~DI~4 (MUltidimensional Stochas-<br />

tic Me<strong>th</strong>od) is <strong>th</strong>e simplicity of <strong>th</strong>e measurement process and <strong>th</strong>e prospect<br />

to obtain 2D spectra wi<strong>th</strong> high digital resolution which, wi<strong>th</strong> conventional<br />

2D techniques, ~uld require <strong>th</strong>e processing of i0 or more Giga~rds data<br />

arrays.<br />

In order to take full advantage of <strong>th</strong>e me<strong>th</strong>od, hardware and software has<br />

been developped which allows <strong>th</strong>e continuous recording of data pairs for <strong>th</strong>e<br />

excitation ( special ly designed quaternary noise) and response time func-<br />

tion, 1 Me~apair or more depending on <strong>th</strong>e amount of DRAM plugged into <strong>th</strong>e<br />

VME bus of <strong>th</strong>e 68000-based computer system for data acquisition. Spectral<br />

information is obtained by correlation of excitation and response as<br />

formed in <strong>th</strong>e frequency dom~J_n wi<strong>th</strong> <strong>th</strong>e ais of a Honeywell BulISPS 9 ~<br />

cc~puter. First order oprrelation yields <strong>th</strong>e c~mDn ID spectrum Hl(W). Ex-<br />

tremely long time records are used in order to alleviate artifacts stemming<br />

from cyclic correlation. From <strong>th</strong>e same raw data, after suitable subtraction<br />

of <strong>th</strong>e first order response, <strong>th</strong>ird ~ ~ is performed pointwise<br />

to determine a genuine 3D spectral function H3(Wl,W2,W 3) in regions of in-<br />

re_rest as indicated by <strong>th</strong>e ID spectrum. For instance, <strong>th</strong>e choice w3=-w 2 re-<br />

duces H 3 to a 2D spectrum H 3 ' (Wl,W 2) which is equivalent to <strong>th</strong>e result of<br />

<strong>th</strong>e E-COSY technique. Points my be selected such <strong>th</strong>at <strong>th</strong>e entire spectral<br />

range is assessed wi<strong>th</strong> coarse digital resolution, and narrow regions wi<strong>th</strong><br />

extremely small frequency steps.<br />

Simulated and experimental data are presented to demonstrate <strong>th</strong>e unique<br />

features of MUDI~4. As a particular case study, results for <strong>th</strong>e cyclic pep-<br />

tide cyclosporin are shown which derive frcm 80 Megapairs raw data for a<br />

total spectral range of 3246 Hz (7.5 h magnet time). A typical 2D spectrum<br />

(512x512 window at 0.4 Hz step size) is given which ~uld require <strong>th</strong>e pro-<br />

cessing of about 256 Megawords of data wi<strong>th</strong> conventional 2D techn/ques.


WK22 - POSTERS<br />

SOLVENT SUPPRESSION WITHOUT PHASE DISTORTION<br />

Malcolm H. levitt* and Hazy F. Roberts<br />

M.I.T., NN14-5122, Cambridge, MA 02139<br />

Ve describe a new class of pulse sequences, NERO (Non-linear Excitation<br />

Rejecting On-Resonance), which alloy wideband excitation of an NI~<br />

spectrum except for a deep, flat section near <strong>th</strong>e carrier vhere <strong>th</strong>e<br />

response is zero. The novel feature of <strong>th</strong>e nev sequences is <strong>th</strong>at phase<br />

distortion of excited resonances is negligible, in contrast to usual<br />

me<strong>th</strong>ods based on linear response. Ve rill shov numerical simulations<br />

and experimental results for <strong>th</strong>e following sequence, called NER0-1:<br />

120°-~1-115°-~2-115 °-2~3-115°-~2-115 °-¢1-120°-~ r<br />

where pulses 180 ° out of phase have an overbar, and delays ~k are given<br />

by<br />

~1 = 0. 1391(~0exc12n)<br />

.c 2 = 0.6251( It~xc1210<br />

2~ 3 = 0.4281(&0exc/2n)<br />

~r = 0" 2221(A~exc/2~)<br />

Here (A~0exc/2,) is <strong>th</strong>e offset frequency (Hz) of <strong>th</strong>e center of <strong>th</strong>e<br />

excited spectral region. This class of pulse sequence is capable of<br />

providing solvent suppression almost free from undesirable phase<br />

distortions.


WK24<br />

BROADBAND HETERONUCLEAR DECOUPLING<br />

IN THE PRES<strong>ENC</strong>E OF HOMONUCLEAR INTERACTIONS<br />

D. Surer*, K.V. Schenker and A. Pines<br />

University of California, Berkeley<br />

Heteronuclear decoupllng in anlsotropic systems llke solids and liquid<br />

crystals has to compete not only wi<strong>th</strong> <strong>th</strong>e offset from resonance of <strong>th</strong>e<br />

radio frequency and <strong>th</strong>e heteronuclear couplings, but also wi<strong>th</strong> strong<br />

homonuclear interactions like homonuclear dipole-dipole couplings or<br />

quadrupolar interactions. These additional interactions make <strong>th</strong>e<br />

decoupling performance of CW decoupling strongly offset dependent and<br />

are not overcome by <strong>th</strong>e composite pulse decoupling sequences developped<br />

for isotropic liquids. We have developped a <strong>th</strong>eoretical analysis of<br />

decoupling in such systems and found a class of composite pulse<br />

decoupling sequences designed for use in anisotropic systems <strong>th</strong>at are<br />

relatively insensitive to resonance offset and pulse imperfections. One<br />

of <strong>th</strong>e sequences, COMARO-2, can be written as YX YX YX YX YX ~, where<br />

each element represents a composite pulse 385 320 25.<br />

sl<br />

/ _\<br />

lg<br />

• -" .-•'"<br />

Figure : Left : <strong>th</strong>eoretical offset dependence of deuterium decoupling<br />

for a single deuteron. Right : experimental results from<br />

dime<strong>th</strong>oxybenzene-d 8 in a nematic liquid crystal.<br />

References :<br />

D. Suter, K.V. Schenker and A. Pines, J. Magn. Reson. (Hay <strong>1987</strong>).<br />

K.V. Schenker, D. Surer and A. Pines, J. Magn. Reson. (Hay <strong>1987</strong>).<br />

CW<br />

2


WK26<br />

LINE SHAPES IN ONE-DIMENSIONAL<br />

CHEMICAL SHIFT IMAGING<br />

P.B. Barker W, D. Bailes a, D. Bryant a and B.D. Ross<br />

Huntington Medical Research Institute, Pasadena, CA 91105.<br />

aplcker International, Wembley, Middlesex.<br />

It has recently been demonstrated <strong>th</strong>at <strong>th</strong>e two-dimensional NMR<br />

technique of Marecl (I) gives good spatially locallsed 31p spectra In<br />

clinical applications (2). In some instances <strong>th</strong>e spectral resolution may be<br />

degraded by <strong>th</strong>e "phase-twlst" line shape (3) which is encountered as a<br />

result of <strong>th</strong>e phase-modulation of <strong>th</strong>e NMR signals as a function of <strong>th</strong>eir<br />

spatial coordinates<br />

This poster presents a variation of <strong>th</strong>e data processing me<strong>th</strong>ods<br />

developed in conventional high-resolution NMR to retain pure absorption<br />

llneshapes (4). The me<strong>th</strong>od requires <strong>th</strong>e recording of two data sets for<br />

each phase-encode gradient amplitude; in one case <strong>th</strong>e gradient amplitude<br />

is positive, in <strong>th</strong>e o<strong>th</strong>er negative. These two data sets are <strong>th</strong>en processed<br />

conventionally using complex Fourier transformations; linear combinations<br />

• of <strong>th</strong>e two frequency domain data matrices are <strong>th</strong>en used to cancel <strong>th</strong>e<br />

dispersion components of <strong>th</strong>e line shape. O<strong>th</strong>er equivalent processing<br />

me<strong>th</strong>ods are possible; for instance, linear combinations of <strong>th</strong>e original<br />

time-domain data matrices may be used in conj.unction wi<strong>th</strong> <strong>th</strong>e<br />

processing me<strong>th</strong>od of States (5). Whilst <strong>th</strong>is is slightly more efficient in<br />

terms of processing time and disk storage, <strong>th</strong>e me<strong>th</strong>od used largely<br />

• depends on <strong>th</strong>e ease-of Implementation on <strong>th</strong>e available spectrometer<br />

system.The improvements offered are expected to be particularly<br />

noticeable In <strong>th</strong>e extension to multl-dlmenslonaI chemlcal shift Imaging.<br />

( 1 ) T.H. Mareci and H.R. Brooker, J. Magn. Reson., 57, 157 (I 984).<br />

(2) D. Bailes et. al., J. Magn. Reson., submitted for publication<br />

(3) G. Bodenhausen, R. Freeman, R. Niedermeyer and D.L. Turner, J. Magn.<br />

Reson., 26, 133 (1977).<br />

(4) J. Keeler and D. Neuhaus, J. Magn. Resort., 63, 454 ( ] 985).<br />

(5) D.J. States, R.A. Haberkorn and D.J. Ruben, J. Hagn. Resort., 48, 286<br />

(1982).


WK28<br />

SELECTION OF COHER<strong>ENC</strong>E TRANSFER PATHWAYS BY FOURIER ANALYSIS<br />

HOW TO IMPROVE THE EFFICI<strong>ENC</strong>Y OF 2D NMR SPECTROSCOPY<br />

R. Ramachandran, P. Darba and L.R. Brown*<br />

Research School of Chemistry<br />

The Australian National University<br />

Canberra, A.C.T. 2601, Australia<br />

To interpret complex 2D NffR spectra it is often necessary to run<br />

a series of complementary 2D N~ spectra which select for different<br />

kinds of information. Examples would be a series of auto correlated<br />

spectra wi<strong>th</strong> filters of different quantum orders or a series of<br />

multiple quantum correlation spectra of different quantum orders. As<br />

currently practiced, each member of <strong>th</strong>e series is recorded separately<br />

using concurrent cycling of pulse and receiver phases to select <strong>th</strong>e<br />

appropriate coherence transfer pa<strong>th</strong>way. This is a very inefficient<br />

procedure which requires large amounts of spectrometer time and which<br />

leads to spectra <strong>th</strong>at may not be strictly comparable due to<br />

instability of <strong>th</strong>e spectrometer and/or <strong>th</strong>e sample.<br />

A me<strong>th</strong>od will be shown for extracting such a series of spectra<br />

from a single data set. The new me<strong>th</strong>od involves recording a series<br />

of spectra wi<strong>th</strong> appropriate incrementation of pulse phases, but wi<strong>th</strong><br />

no variation of receiver phase. Fourier analysis of <strong>th</strong>e set of<br />

spectra by means of digital zero-order phase corrections <strong>th</strong>en allows<br />

extraction of coherence transfer pa<strong>th</strong>ways containing any specific<br />

multiple quantum order from <strong>th</strong>e same data set. Examples will be<br />

given for generation from a single data set of multiple quantum<br />

filtered COSY spectra of different quantum orders and multiple<br />

quantum spectra of different quantum orders.<br />

A major advantage of <strong>th</strong>e proposed me<strong>th</strong>od is <strong>th</strong>at every transient<br />

recorded is used in <strong>th</strong>e generation of <strong>th</strong>e spectum corresponding to<br />

each quantum order. This means, for example, <strong>th</strong>at compared to<br />

recording a COSY spectrum wi<strong>th</strong> a two-quantum filter by conventional<br />

means, <strong>th</strong>ere is no penalty in sensitivity involved in generation of<br />

multiple quantum filtered spectra wi<strong>th</strong> filters of order 2,3 and 4 (or<br />

more) by <strong>th</strong>e proposed me<strong>th</strong>od. This also makes <strong>th</strong>e new me<strong>th</strong>od highly<br />

efficient for experiments which require co-addition of spectra<br />

corresponding to different quantum orders, e.g.E. COSY or time<br />

reversal. An example will be shown for E. COSY.


WK30<br />

PATTERN RECOGNITION IN 2D NMR.<br />

A MULTIVARIATE STATISTICAL APPROACH WITH LOGIC PROGRAMMING.<br />

H. Grahn , F. Delaglio, M. A. Delsuc and G. C. Levy,<br />

NMR and Data Processing Laboratory, Bowne Hall,<br />

Syracuse University, Syracuse, NY 13244-1200<br />

A new me<strong>th</strong>od for <strong>th</strong>e analysis of two-dimensional NMR data<br />

is presented. The me<strong>th</strong>od, based on principal component<br />

analysis (PCA), is shown to be very efficient in <strong>th</strong>e<br />

modeling of different spin patterns in homonuclear shift<br />

correlation 2D spectra.<br />

The PCA me<strong>th</strong>od can be described as a graphical me<strong>th</strong>od<br />

which projects multidimensional data down on a few<br />

dimensional space (line, plane or hyperplane) and hence<br />

provides a simplified interpretation of <strong>th</strong>e clusters in an<br />

n-dimensional space. The scope of <strong>th</strong>e me<strong>th</strong>od is <strong>th</strong>at similar<br />

objects (spins) can be grouped toge<strong>th</strong>er. Based on a prior<br />

knowledge of different spin systems, new "unknown" compounds<br />

can be classified and <strong>th</strong>e spin connectivities in <strong>th</strong>e molecule<br />

can be outlined.<br />

An important difference to o<strong>th</strong>er pattern recognition<br />

me<strong>th</strong>ods is <strong>th</strong>at no previous assumptions about <strong>th</strong>e analyzed<br />

data are needed, e.g., coupling constant information. The<br />

me<strong>th</strong>od uses <strong>th</strong>e intensities of <strong>th</strong>e cross-peaks and <strong>th</strong>e<br />

chemical shifts of <strong>th</strong>e diagonal peaks as parameters. The<br />

first step in analysis is <strong>th</strong>e preprocessing of <strong>th</strong>e data. This<br />

step involves locating all peaks in <strong>th</strong>e data and scaling peak<br />

intensities to unit variance. The peak data are reduced to a<br />

system of objects and variables for <strong>th</strong>e PC analysis. In <strong>th</strong>e<br />

course of <strong>th</strong>e PC analysis, n-dimensional projections of <strong>th</strong>e<br />

data are constructed which contain patterns which will group<br />

all <strong>th</strong>e objects comprising each spin system into a<br />

characteristic pattern. Using <strong>th</strong>e logic programming language<br />

PROLOG, <strong>th</strong>e patterns can be located and <strong>th</strong>e corresponding<br />

spin systems identified.<br />

Using PC analysis in combination wi<strong>th</strong> logic programming,<br />

it is possible to identify <strong>th</strong>e different spin systems in a<br />

spectrum having mixed spin systems.<br />

We acknowledge NIH Grant RR-01317, N.A.T.O. for support of<br />

Dr. Delsuc and Troedsson Research Fund, Sweden, for support<br />

of Dr. H. Grahn.


WK32<br />

C~4IC~L EXCHANGE IN METAL £X/JSTE~.<br />

ANALYSIS WITH 2D LINEAR PREDICTION<br />

AND DIRECT ANALYSIS OF THE RATE MATRIX.<br />

Bruc~ A. ~ ' , J. A. Mallkayil, m~d Ian M. Azmltag~<br />

Depa~ :,,-~-,L,~ of Mblecular Biophysics and Biochemistry<br />

snd Diagnostic Radiology<br />

Yale Urul.ver~l.ty School of M~dicine<br />

Nma Haven, CT 06515<br />

NMR me<strong>th</strong>cKis are well suited tD <strong>th</strong>e mMsurEm~nt of c~mnical exchange<br />

~ . In many ~ , ~ , such as <strong>th</strong>e less sensitive metal<br />

nuclei <strong>th</strong>at may be found in blomolecules, low signal to noise ratio may<br />

significantly hamper <strong>th</strong>e aommrate msasure of exchange rates. To<br />

ov~-~ome <strong>th</strong>is ~ have applied ~o recen%ly repcn-hed me<strong>th</strong>ods o£ NMR data<br />

analysis in <strong>th</strong>ese areas. As an alternative to <strong>th</strong>e Fourier transform,<br />

we used <strong>th</strong>e me<strong>th</strong>od of linear prediction wi<strong>th</strong> <strong>th</strong>e s/ngular value<br />

deocmposit/nn (LPSVD) I . This me<strong>th</strong>od is potentially capable of<br />

signal fru, noise in <strong>th</strong>e time series data, resulting in<br />

a noise free result. ~ , ~ have used <strong>th</strong>e me<strong>th</strong>od for two-<br />

dimensional arm~lysis where its ability to elim/nate truncati~<br />

artifacts allows <strong>th</strong>e use of fe~.r points in t2 and in %/. This reduces<br />

<strong>th</strong>e size of <strong>th</strong>e 2D data set and minimizes experimsntal time. Analysis<br />

in <strong>th</strong>is way gives directly <strong>th</strong>e amplitude of <strong>th</strong>e peaks required for <strong>th</strong>e<br />

chemical exchange calculations wi<strong>th</strong>out <strong>th</strong>e need for integration. As<br />

apodization funct/ons are not used, <strong>th</strong>ere is no resulting distortion of<br />

peak intensity which might occur wi<strong>th</strong> normal 2D FT processed data sets.<br />

For bo<strong>th</strong> <strong>th</strong>e one and %~o dimensional analyses wi<strong>th</strong> LPSVD, we polish <strong>th</strong>e<br />

output data (frequency, dscsy, phase, and amplitude) wi<strong>th</strong> a non-lirear<br />

minimization. The calculated peaks from a single 2D data set are <strong>th</strong>en<br />

used %o form a matrix of intensities <strong>th</strong>at is analyzed using a recently<br />

described matrix dia~mLlization p r ~ .<br />

We will illustrate <strong>th</strong>e use of <strong>th</strong>is me<strong>th</strong>od wi<strong>th</strong> <strong>th</strong>e analysis of metal<br />

excha~/8 in <strong>th</strong>e dscanuclear cadmium-i±iolate complex,<br />

C~0(SO~O~O)*s(N~ )4" In <strong>th</strong>e solid state, <strong>th</strong>ree distinct Cd sites<br />

have been identified in <strong>th</strong>e sulfate form of <strong>th</strong>is complex by X-ray<br />

crystallography and by solid state 1'3Od NMR s~-troscc~py- The <strong>th</strong>ree<br />

sites, site A, site B, and site C have Oi~, OdS4, and CdS40<br />

oocrdinations respectively 3 . In solution, site B and site C are in<br />

fast exchange and <strong>th</strong>erefore a single 113 Cd resonazK~ is observed for<br />

<strong>th</strong>ese sites" The results of our 2D chemical exchange studies have<br />

fur<strong>th</strong>er established, for <strong>th</strong>e first time, metal exchange between site A<br />

and <strong>th</strong>e o<strong>th</strong>er two sites. It is <strong>th</strong>e kinetics of <strong>th</strong>e latter exchange<br />

<strong>th</strong>at we will describe using <strong>th</strong>e oombined LPSVD and <strong>th</strong>e matrix<br />

diagm~alization proosdures described above.<br />

i) ~Jsen, H. 1985, O. Mag. Res. 61:465<br />

2) Perrin C. L. and Gipe, R. K. J. Am. Chem. Soc. 106:4036<br />

Johnston, E. R. and Chert, D. 2~ h ~C ~ Abstract.<br />

Abel, E. W. et al. 1986, J. Mag. Res. 70:34<br />

3) Murphy, D.P. et al. 1981, J. Am. Chem. Soc. 103:4400 (and<br />

ref <strong>th</strong>erein)


WK34<br />

DECONVOLUTION OF HIGH RESOLUTION TWO-DIMENSIONAL<br />

NMR SIGNALS BY DIGITAL SIGNAL PROCESSING WITH"<br />

LINEAR PREDICTIVE SINGULAR VALUE DECOMPOSITION<br />

David Cowburn. Adam E. Schuasheim, and Francis Picart<br />

The Rockefeller University,<br />

New York, New York, 10021<br />

NMR signals from high resolution pulsed experiments can be adequately represented by sums of<br />

sinusoids. Normally <strong>th</strong>ese signals are transformed to <strong>th</strong>e frequency domain by FOurier transformation<br />

and <strong>th</strong>e chemical information inherent in <strong>th</strong>e frequency, damping, intensity, or phase of <strong>th</strong>e sinusoids is<br />

subsequently obtained by various deconvolutions, ranging from simple 'peak-picking' for frequency to<br />

non-linear least squares fitting to obtain all <strong>th</strong>e sinusoid properties. This deconvolution in <strong>th</strong>e frequency<br />

domain is particularly compficated by <strong>th</strong>e need to set initial parameters for <strong>th</strong>e non-linear least squares<br />

analys~. The characteristics of <strong>th</strong>e coatribufing sinusoids in <strong>th</strong>e lime domain are needed for recognition<br />

of patterns of signals and correlation wi<strong>th</strong> expected properties. We show a new me<strong>th</strong>od of analyzing<br />

two-dimensional NMR spectra for <strong>th</strong>is purpose.<br />

The technique of linear predictive singular value decomposition 0..PSVD), applied previously in<br />

NMR (1), permits <strong>th</strong>e extraction of frequency information from a time-domain signal. The technique is<br />

related to <strong>th</strong>e Fourier Transform and presents <strong>th</strong>e same information but in a sometimes more useful<br />

fashion for certain types of processing wi<strong>th</strong> some costs in initial processing speeds.<br />

In our approach, a Fourier transform is performed as a digital filter on each row in <strong>th</strong>e tl,t 2 space.<br />

The resulting interferogram is <strong>th</strong>en passed column-by-cohtmn <strong>th</strong>rough <strong>th</strong>e LPSVD algori<strong>th</strong>m. The<br />

information returned from <strong>th</strong>e procedure is stored in a linked-list data file su'ucutre containing <strong>th</strong>e<br />

amplitude, frequency, damping, and phase of <strong>th</strong>e roots extracted for each column as well as a declara-<br />

tion field. A flexible structure is developed which employs a number of routines to process <strong>th</strong>e roots<br />

and remove spurious results.<br />

We have found <strong>th</strong>at <strong>th</strong>ese procedures can provide previously unobtainable resolution enhance-<br />

men), and eliminate sinc modulation caused by signal truncation. The procedure can obviate <strong>th</strong>e need<br />

for t l-phase sensitive detection, and can substantially increase <strong>th</strong>e apparent SNR of final spectra. Addi-<br />

tionally, <strong>th</strong>e automated exwaction of chemical information can be facilitated by virtue of <strong>th</strong>e resulting<br />

linked list of roots. These points are illustrated here wi<strong>th</strong> bo<strong>th</strong> simulated data and simple sets of experi-<br />

mental data.<br />

Acknowledgments<br />

Supported by grants from NSF, NIH, <strong>th</strong>e Keck Foundation, and an equipment grant from Sperr3'<br />

Corporation. We are grateful to Dr. Dennis Hare, and to Dr. R. De Beer for provision of source codes<br />

for <strong>th</strong>eir programs, and Computing Services, Rockefeller University, for advice.<br />

481<br />

(1). H. Barkuijsen, R. de Beer, W. M. M. J. Bovee, and D. van Ormondt J. Magn. Res. 61 465-


WK3C<br />

LINEAR PREDICTION Z-TRANSFORM (LPZ) SPECTRAL ANALYSIS<br />

WITH ENHANCED RESOLUTION AND SENSITIVITY<br />

J. Tang* and J. R. Norris<br />

Chemistry Division, Argonne National Laboratory<br />

Argonne, IL 60439<br />

We have developed a new approach of spectral analysis (LPZ) l"s wi<strong>th</strong> improved<br />

resolution and sensitivity by combining <strong>th</strong>e linear prediction (l~P) <strong>th</strong>eory and <strong>th</strong>e<br />

z-transform, a combination of Fourier and Laplace transform. Instead of using <strong>th</strong>e<br />

power spectrum formula obtained by <strong>th</strong>e conventional MEM me<strong>th</strong>od, <strong>th</strong>e LPZ<br />

formula should be used to obtain a spectrum wi<strong>th</strong> phase information. The linear<br />

prediction coefficients can be calculated by <strong>th</strong>e Householder decomposition<br />

(QRD) 1-~, <strong>th</strong>e singular value decomposition (SVD), <strong>th</strong>e autoregression me<strong>th</strong>od (AR)<br />

using <strong>th</strong>e Levinson-Durbin algori<strong>th</strong>m or <strong>th</strong>e Burg's algori<strong>th</strong>m s. The LPZ me<strong>th</strong>od<br />

can overcome <strong>th</strong>e truncation artifacts and phase distortion problems. Applications<br />

of <strong>th</strong>e LPZ me<strong>th</strong>od to I-D and 2-D NMR signals will be demonstrated. In addition,<br />

<strong>th</strong>e comparisons among many variations of <strong>th</strong>e LPZ me<strong>th</strong>od (using SVD, QRD or<br />

AR) and <strong>th</strong>e o<strong>th</strong>er similar me<strong>th</strong>ods such as LPQRD 4, LPSVD s and <strong>th</strong>e ME..M 6"7<br />

me<strong>th</strong>ods will be illustrated.<br />

1. J. Tang and J.R. Norris, J. Chem. Phys. 84, 5210 (1986).<br />

2. J. Tang and J.R. Norris, J. Magn. Reson. 69, 180 (1986).<br />

3. J. Tang and J.R. Norris, Chem. Phys. Lett. 131, 252 (1986).<br />

4. J. Tang, C.P. Lin, M.K. Bowman, and J.R. Norris, J. Magn. Reson. 62, 167<br />

(1985).<br />

5. H. Barkhuijsen, J. de Beer, W.M.M.J. Bovee and D. van Ormondt, J. Magn.<br />

Reson. 61, 167 (1985).<br />

6. J.P. Burg, Thesis, Stanford University (1975).<br />

7. S. Sibisi, J. Skilling, R.G. Brereton, E.D. Laue and J. Staunton, Nature 311, a46<br />

(1984).<br />

This work was supported by <strong>th</strong>e Division of Chemical Sciences, Office of B~_~ic<br />

Energy Sciences of <strong>th</strong>e U.S. Department of Energy under contract W-31-109-Eng-38.


WK3S<br />

EXPERIMENTAL STUDY OF THE OPTIRIZED SELECTIVE RF PULSES<br />

Jintong Haoo, T.H. hreci, K.E. Scott and E.R. Andrev<br />

Departments of Radiology and Physics<br />

Gsinesvllle, FL 32611<br />

Selective rodiofrequency (rf) pulmes ore important in bo<strong>th</strong> NHR<br />

spectroscopy end imaging. Because <strong>th</strong>e magnetization equation of<br />

motion is nonlineor, <strong>th</strong>e design of <strong>th</strong>e rf pulse shapes cspoble of<br />

precisely affecting <strong>th</strong>e magnetization in a veil-defined frequency<br />

range is not s simple problem. Recently, <strong>th</strong>e concept of optimal<br />

control hob been introduced for <strong>th</strong>e design of rf pulses amplitude<br />

modulated as a function of time to provide frequency selectivity.<br />

Several selective pulse shapes hsve been developed using <strong>th</strong>ese<br />

te<strong>th</strong>ods, hoverer, very few experimental results have been presented.<br />

We have presented a detoiled description of <strong>th</strong>e use of <strong>th</strong>e conjugate<br />

gradient me<strong>th</strong>od in <strong>th</strong>e optics1 control problem to design a selective<br />

180 degree inversion pulses (1). Using <strong>th</strong>is me<strong>th</strong>od, we have found a<br />

series of <strong>th</strong>e 9e and <strong>th</strong>e 180 degree rf pulse shapes <strong>th</strong>at have very<br />

high selectivity. We have performed experiments on I GE CS1-2<br />

imager/spectrometer vhich confirm <strong>th</strong>eoretical predictions from <strong>th</strong>e<br />

application of optimal control me<strong>th</strong>ods. Bo<strong>th</strong> our computer<br />

simulations end experimental results are presented in <strong>th</strong>is poster.<br />

Also, we 8how <strong>th</strong>at <strong>th</strong>e frequency response of <strong>th</strong>e magnetization<br />

affected by a selective 180 degree inversion rf pulse is <strong>th</strong>e game as<br />

<strong>th</strong>at for a selective refocusing pulse. Computer simulations for bo<strong>th</strong><br />

a sinc and optimal pulse are presented to demonstrate <strong>th</strong>e principle<br />

and experimental results for selective refocusing pulses ire<br />

presented. Thus, I single optimal selective 180 degree rf pulse can<br />

be used is ei<strong>th</strong>er in inversion or refocusing pulse. In bo<strong>th</strong><br />

IituationI, its selectivity can be optiIlzed to fit <strong>th</strong>e desired<br />

frequency profile end we rill diicuII how to apply <strong>th</strong>lI procedure in<br />

designing selective pulses to fit various selectivity criteria.<br />

Optimal control me<strong>th</strong>ods can also be applied to <strong>th</strong>e case of<br />

selective 90 degree rf pulses. The degree of improvement possible is<br />

not as great as for selective 180 degree pulses but significant<br />

improvement is possible. Bo<strong>th</strong> experimental and computer simulation<br />

results of <strong>th</strong>e optimal selective 90 degree rf pulses will also<br />

be presented in <strong>th</strong>is poster. Thus, <strong>th</strong>e optimal control se<strong>th</strong>od has<br />

solved <strong>th</strong>e problem of designing optimized rf pulse shapes for<br />

frequency selective excitation.<br />

This research is supported by grants from <strong>th</strong>e National Znstitute of<br />

Heal<strong>th</strong> {P41-RR-e2278) and <strong>th</strong>e Veterans Administration Medical<br />

Research Service.<br />

1. Jintong Meo, T. H. Mareci, K. N. Scott and E. R. Andrev, J. MIgn.<br />

ReIon. 70, 31e (1986)


WK40<br />

PULSE SHAPING FOR SOLVENT SUPPRESSION AND<br />

SELECTIVE EXCITATION IN TWO-DIMENSIONAL AND<br />

MULTIPLE PULSE NMR SPECTROSCOPY<br />

Mark McCoy, Laura Kang and Warren S. Warren*<br />

Department of Chemistry, Princeton University, Princeton, NJ 08544<br />

Applications of shaped radiofrequency pulses to solvent<br />

suppression in COSY spectra, excitation of two separate resonance<br />

frequencies, and uniform spin-1 excitation will be presented. We will<br />

also experimentally demonstrate <strong>th</strong>e tradeoffs between symmetric<br />

amplitude modulation, asymmetric amplitude modulation, and<br />

simultaneous phase/amplitude modulation. Recent results of new<br />

analytical solutions to <strong>th</strong>e Bloch equations, derived for atomic laser<br />

spectroscopy, will also be experimentally tested.<br />

This work is supported by <strong>th</strong>e National Science Foundation<br />

under grant CHE-8502199.<br />

1. M. McCoy and W. S. Warren, Chem. Phys. Lett. (in press)<br />

2. F. Loaiza, M. Levitt, M. McCoy, M. Silver and W. S. Warren, J. Chem.<br />

Phys. (submitted)


WK42<br />

RELAXATION-ALLOWED COHER<strong>ENC</strong>E TRANSFER<br />

BETWEEN SPINS WHICH POSSESS NO MUTUAL SCALAR COUPLING<br />

Stephen Wimperis and Geoffrey Bodenhausen<br />

Institut de Chimie Organique<br />

Universite de Lausanne<br />

Rue de la Barre 2<br />

CH-1005 Lausanne<br />

switzerland<br />

In NMR of isotropic liquids it is often stated<br />

<strong>th</strong>at coherence transfer can only occur between two spins<br />

<strong>th</strong>at possess a mutual scalar coupling. This assertion is<br />

put to frequent use, for instance in two-dimensional COSY<br />

spectra where <strong>th</strong>e presence of a cross-peak - indicative of<br />

coherence transfer - is taken as proof of <strong>th</strong>e existence of<br />

a scalar coupling.<br />

We demonstrate <strong>th</strong>at, as a result of multi-<br />

exponential transverse relaxation, coherence transfer can<br />

occur between two inequivalent spins <strong>th</strong>at are not scalar<br />

coupled. Cross-peaks in COSY spectra are shown which arise<br />

solely from <strong>th</strong>is novel mechanism, and so do no__tt indicate<br />

<strong>th</strong>e existence of a scalar coupling. Since <strong>th</strong>e use of COSY<br />

spectra for <strong>th</strong>e analysis of complex spin systems has had<br />

considerable impact in chemistry and molecular biology,<br />

<strong>th</strong>e matter of <strong>th</strong>e correct interpretation of cross-peaks is<br />

one of widespread interest.


WK44<br />

TWO-DIMENSIONAL POMMIE 13C NMR SPECTRUM EDITING.<br />

Bruce Coxon<br />

Center for Analytical Chemistry<br />

National Bureau of Standards<br />

Gai<strong>th</strong>ersburg, MD 20899<br />

The one-dimensional POMMIE (Phase Oscillations to MaxiMlze<br />

Editing) technique has recently been dev~loped 1,2 as an<br />

alternative to <strong>th</strong>e DEPT me<strong>th</strong>od of spectrum editing. We have<br />

extended <strong>th</strong>e POMMIE editing me<strong>th</strong>od to <strong>th</strong>e two-dimensional domain.<br />

Our initial studies have focused on 2D POMMIE ~(CH)-resolved 13C<br />

NMR spectrum editing, using <strong>th</strong>e pulse sequence:-<br />

~/2(H)-I/2~-~(H)~/2(C)-I/2~-~/2(H)~/2(H,@)z~I/2-~(H)~(C ) -<br />

i/2~-D-~i/2-acquire 13C, decouple IH, where ~ - IJcH, D is a<br />

delay (equal to <strong>th</strong>e leng<strong>th</strong> of <strong>th</strong>e ~(H) pulse) <strong>th</strong>at was inserted<br />

to equalize <strong>th</strong>e 13C dephasing and refocusing periods, and <strong>th</strong>e<br />

pulse pair ~/2(H)~/2(H,~) consists of <strong>th</strong>e multiple quantum<br />

formation and read pulses, respectively, <strong>th</strong>e latter pulse having<br />

a variable phase shift 4.<br />

Automated acquisitions of sets of 2D POMMIE data by <strong>th</strong>ree<br />

different me<strong>th</strong>ods (a, b, and c) have been investigated. By use<br />

of <strong>th</strong>e phase angle set ~ - ~/2, ~/6, and 5~/6, sets of <strong>th</strong>ree 2D<br />

data matrices have been acquired ei<strong>th</strong>er (a) sequentially, or (b)<br />

in interleaved fashion, <strong>th</strong>e latter me<strong>th</strong>od being designed to<br />

minimize <strong>th</strong>e effects of sample or spectrometer instability.<br />

For me<strong>th</strong>ods (a) and (b), <strong>th</strong>e 2D POMMIE 13C subspectra were<br />

computed from <strong>th</strong>e relationships CH - data(~/2), CH 2 - data(~/6)<br />

data(5~/6), and CH 3 - data(~/6) + data(5~/6) - data(~/2), by<br />

using <strong>th</strong>e same Pascal software <strong>th</strong>at had been written earlier for<br />

<strong>th</strong>e purpose of 2D DEPT 13C NMR spectrum editing 3.<br />

Me<strong>th</strong>od (c) involved <strong>th</strong>e direct automated construction of<br />

<strong>th</strong>e 2D POMMIE 13C subspectra "on <strong>th</strong>e fly", by means of rotating<br />

phase shifts of <strong>th</strong>e MQ read pulse and <strong>th</strong>e receiver 2. This me<strong>th</strong>od<br />

did not require combination of <strong>th</strong>e 2D data matrices by use of<br />

software.<br />

2D POMMIE carbon-proton chemical shift correlated spectrum<br />

editing has also been implemented by using <strong>th</strong>e sequence:-<br />

~/2(H)-I~2~-~(H)~/2(C)-I/2J-tl/2-~(C)-~I/2-~/2(H)~/2(H,~ ) -<br />

i/2~-acquire 13C, decouple IH. - -<br />

The me<strong>th</strong>ods have been applied experimentally to selected<br />

peptides and carbohydrate derivatives.<br />

[I] J. M. Bulsing, W. M. Brooks, J. Field, and D. M. Doddrell,<br />

J. Magn. Reson. 56, 167-173 (1984).<br />

[2] J. M. Bulsing and D. M. Doddrell, J. Magn. Reson. 61, 197-219<br />

(1985).<br />

[3] B. Coxon, J. Magn. Reson. 66, 230-239 (1986).


WK46<br />

MULTIPLE-ACQUISITION TWO-DIMENSIONAL HOMONUCLEAR<br />

SHIFT CORRELATION SPECTROSCOPY<br />

Dieter J. Neyerhoff* and Rudi Nunlist*<br />

NMR Center<br />

Department of Chemistry<br />

University of California<br />

Berkeley, Ca. 94720<br />

Two-dimensional homonuclear shift correlation spectroscopy<br />

experiments are very powerful for molecular structure elucidation.<br />

Experiments such as COSY, delayed COSY, relayed COSY and NOESY are<br />

routinely used; in order to get reliable information <strong>th</strong>ey often<br />

have to be repeated several times wi<strong>th</strong> different parameters.<br />

Pulse sequences and programs will be given which - similar to<br />

<strong>th</strong>e CONOESY experiment* - combine such experiments into a single<br />

pulse sequence. Each dataset obtained <strong>th</strong>is way contains different<br />

information depending on <strong>th</strong>e stage of magnetization at <strong>th</strong>a time of<br />

acquisition.<br />

Application of <strong>th</strong>ese pulse-sequences eliminate <strong>th</strong>e need of<br />

repeating entire experiments wi<strong>th</strong> slightly different parameters<br />

and <strong>th</strong>us reduce experimental time and operator interference<br />

significantly.<br />

Experimental data will be presented to illustrate <strong>th</strong>e power<br />

of multiple-acquisition 2D pulse experiments.<br />

I. Haasnot, C. A. G.; van de Ven, F. J. M.; Hilbers, C. W. J.<br />

Magn. Res. 1984, 56, 343-349. Gurevich, A. Z.; Barsukov, I.<br />

L.; Arseniev, A. S.; Bystrov, V. F. J. Magn. Res. 1984, 56,<br />

471-478.


WK48<br />

IMPROVED TECHNIQUES FOR THE ACQI//SITION OF TOCSY<br />

AND CAMELSPIN SPECTRA AND COMPUTER SIMULATIONS<br />

OF THE TOCSY EXPERIMENT<br />

Mark Rance<br />

Department, of Mc~e~<br />

R e ~ Ius~t~e of ~<br />

10686 Nor<strong>th</strong> Tm"rey Pines Road<br />

La Jc~ Califcrni~ 9'2037<br />

The homonuc]ear HarCmann-Hahn coherence transfer (TOCSY) experiment<br />

and <strong>th</strong>e r~-frsme NDE (CAMELSPIN) experiment have become very<br />

im~t ~ far <strong>th</strong>e assignment of proton N MR spectra and for <strong>th</strong>e<br />

spe~c~r~u of ~ c e ~mstraints for use in structure d~m"u~,~t~rs. For<br />

optimal results bo<strong>th</strong> of <strong>th</strong>ese experiments are normally acquired in a manner<br />

which allows phas~I/ve, alm~'pt/on mode spectz-~ to be obt~ed.<br />

However, in <strong>th</strong>e most ~ ~ o ~ implemen~ of 1~hese %e~es<br />

phase anomalies greatly degra~le <strong>th</strong>e quality of <strong>th</strong>e 6pe~r'a. In addit~cm,<br />

many commercial ~ectrom~ are not ideally suited for <strong>th</strong>e<br />

hardware demands required for opt~al perfm-mance of <strong>th</strong>ese exper~ents.<br />

We will ~ a novel technique far <strong>th</strong>e ~ 1 ~ ~ of phase anomalies<br />

which is based an z-fil~ and which can be ea.~y adapted for ei<strong>th</strong>er <strong>th</strong>e<br />

TOCSY ¢r <strong>th</strong>e CAMELSPIN experiment and can be readily implemented on<br />

most. spectrometers. This technique also allows optimal pceit/m~zing of <strong>th</strong>e rf<br />

during <strong>th</strong>e mixing period in bo<strong>th</strong> experiments. Some results will<br />

also be presented from computer ~im~ of <strong>th</strong>e TO CSY experiment,<br />

involv'ing <strong>th</strong>e evaluation of various ~ schemes and <strong>th</strong>e determlua.t:m~n of<br />

optimal experiment parameters for a varie~ af spin sys~ms.


Master Index<br />

of<br />

Papers and Posters


Ackerman, J. L ........... MK25<br />

Adams, R ................. .Wed am<br />

Aguayo, J ................. WF56<br />

Albright, M. J ............ .WF60<br />

Alderman, D. W ......... NIF 19<br />

Allen, L ................... .MF1<br />

Allerhand, A .............. WF52<br />

Anderson, N ........... Mon am<br />

Andrew, D ............. .Thur am<br />

Andrew, E. R ............ .WK38<br />

Anet, F. A. L ............. MF51<br />

Armitage, H .............. .WK20<br />

Armitage, I. M ............ WK32<br />

Auchus, R. J . . . . . . . . . . . . . . WF12<br />

Bailes, D .................. .WK26<br />

Balschi, J. A ........... ...WF10<br />

Bank, Shelton ............ Wed am<br />

Barbara, T. M ............ MK15<br />

Barker, P. B .............. WK26<br />

Baum, J ................. MK01, Sun pm<br />

Bax, A ..................... WK10, MK23<br />

Bazzo, R .................. MK43<br />

Becla, P ................... MF11<br />

Behar, K. L ............... WF72<br />

Behling, R. W ............ MF41<br />

Benesi, A ................. .Wed am<br />

Bendall, M. R ............ MF57, MF65,<br />

WF72<br />

Bermel, W ................ MK37<br />

Berson, J. A .............. MF29<br />

Beshah, K ................. WF46, MF11<br />

Biannuci, A. M ........... Mort am<br />

Blackband, S ............. .WF56<br />

Blackledge, M. J ......... WF58<br />

B15mer, U ................ .WK20<br />

Bliimich, B ............. WF54, Tue pro,<br />

Wed am<br />

Bodenhausen, G ..... .WK42, Tue am<br />

Boeffel, C ................. Wed am<br />

Boehmer, J. P ........... MF59, WF76<br />

Bogusky, M... ........... .WK02<br />

BoRon, P. H .......... Mon am<br />

Bonneviot, L .............. WF34<br />

Borgias, B. A ............ NIK03, Mort am<br />

Bork, V .................... WF12<br />

Bowers, C. R ............ MK41<br />

Bowers, J . . . . . . . . . . . . . . . . . MF31<br />

Boyd, J . . . . . . . . . . . . . . . . . . . . MK43<br />

Brandes, R ................ MF45<br />

Briggs, R. W ............. MF59<br />

Bronnimann, C. E ....... MF27<br />

Brown, L. R .............. WK28, MK29<br />

Brown, S. C .............. WK04<br />

Boldface Type Indicates Speakers<br />

Brown, T. R .............. MK27, WF60,<br />

MF61<br />

Briischweiler, R .......... Sun pm<br />

Bryant, D ................. .WK26<br />

Bryant, R ................. ~IF13, WF14,<br />

WF42<br />

Biihlmann, C ............. Sun pm<br />

Butler, A .................. MF7<br />

Campbell, G. C ........... WF24<br />

Carduner, K .............. MF15<br />

Carter, R. O. HI .......... MF15<br />

Chang, L.-H .............. WF68<br />

Chaffield, M. J ............ W-F2<br />

Chen, D .................... WF32<br />

Chew, W. M .............. WF68<br />

Chu, S. C.-K ............. WF10<br />

Clore, M .................. MK 11, Mon am<br />

Cockman, M. D .......... WF62<br />

Cohen, M. S .............. MF61<br />

Covey, D. F ............... WF12<br />

Cowburn, D ........... .WK34, Tue am<br />

Coxon, B ................. .WK44<br />

Craig, E. C ............... _MK33<br />

Cross, T. A ............... IvIF47<br />

Dalvit, C .................. .WK 18<br />

Danzitz, M ................ MF7<br />

Darba, P ................... MK29, WK28<br />

Daugaard, P .............. .WF20<br />

Davis, D. G ............... MK05<br />

Dawes, S. B .............. MF25<br />

De Los Santos, A ........ Mon pm<br />

de Menorval, L. C ....... .WF8<br />

Dec, S. F .................. WF18, Tue pm<br />

Delaglio, F ................ WK30<br />

Delsuc, M. A ............. .WK30<br />

Den Hollander, J. A ...... Thur am<br />

Dixon, T .................. NIF63<br />

Dobson, C. M ......... MK1, Sun pm,<br />

Mon am<br />

Dora, H. C ............... /V[F01<br />

Drobny, G. P ............. WKS, V~/F22<br />

Du, L. N .................. MF63<br />

Dular, T ................... MF73<br />

Dumoulin, C. L ....... WF64, MF69,<br />

Tue pm<br />

Duncan, T. M ............. WF16, W-F34<br />

Dye, J. L .................. MF25<br />

Earl, W. L ................ B/IF17<br />

Eaton, H. L ............... Mon am<br />

Eckert, H .................. MF07, Wed am<br />

Eggenberger, U .......... .Tue am<br />

Ellis, P. D .............. Wed am<br />

Emerson, S. D ............ WF2<br />

English, A. D .... ......... WF48


Ernst, R. R ............ Sun pm, Tue pm<br />

Evans, P. A ............... Sun pm<br />

Fau<strong>th</strong>, J.-M ............... Sun pm<br />

Fesik, S. W ............... WK06, MK07<br />

Flynn, P. F ................ WK8<br />

Forbes, J .................. ]VIF31<br />

FoxaU, D .................. MF65<br />

Furihata, K ............... MK39<br />

Gado, M .................. .MF63<br />

Galvin, M. E ............. .Wed am<br />

Gamcsik, M. P ........... WK10<br />

Gampe, R. T ............. .WK6<br />

Ganapa<strong>th</strong>y, S ............. MF13, WF14<br />

Garbow, J. R ............. MF21<br />

Garroway, A. N ......... .MF77<br />

Garwood, M .............. MF65<br />

Gemperle, C .............. WK14,Sun pro,<br />

Tue pm<br />

Genge, I ................... WK20<br />

Geoffrion, Y .............. WF66<br />

Glass, T ................... MF1<br />

Gleason, K. K ........ MF23, Sun pm<br />

Glickson, J. D ............ WK10<br />

Glover, G .............. .Thur am<br />

Gonen, O ............... MF03, Sun pm<br />

Gorenstein, D ............. WF44<br />

Grahn, H .................. WK30<br />

Grandinetti, P. J . . . . . . . . . . WF4<br />

Grant, D. M .............. .MF19<br />

Greenburg, M. M ........ MF29<br />

Griesinger, C .......... WK14, MK37,<br />

Sun pm, Tue am,<br />

Tue pm<br />

Griffin, R. G .......... MFll, WF46,<br />

Wed am<br />

Gronenborn, A. M...Mon am<br />

Gutowsky, H. S ..... .Wed pm<br />

Guy, C. A ................ .MF47<br />

Hallenga, K ............... MF43<br />

HaUer, G .................. WF34<br />

Hammel, P. C ............ MF3, Sun pm<br />

Hanley, C ................. MK1, Sun pm<br />

Harbison, G. S ....... Wed am<br />

Hart, H. R. Jr ............. WF64, Tue pm<br />

Hartzell, C. J ............. .WF22<br />

Hauksson, J .............. .WF2<br />

Haw, J. F ................. WF24<br />

Hengyi, S ................. MK31<br />

Hermans, W .............. WF36<br />

He<strong>th</strong>erington, H. P ....... WF72<br />

Hewston, T. A ............ WF30<br />

Hill, L. E ................. .MF25<br />

Hiyama, Y ................ .WK16<br />

Hoch, J. C ............. MK31, Tue am<br />

Boldface Type Indicates Speakers<br />

Holak, T. A ............... MK13, WF6<br />

Hornak, J. P .............. WF42<br />

Hoult, D. I ............. Thur am<br />

Hseu, T. H ............... MK 19<br />

Hunter, W. W. Jr ........ MF67<br />

Husted, C ................ ~ 1<br />

Jaccard, G ................ .Tue am<br />

Jakobsen, H. J ............ WF20<br />

James, T. L ............... WF68, MK3,<br />

Mon am<br />

Janakiraman, V .......... .MK25<br />

Janssen, R ................ .Wed am<br />

JarreU, H. C ............... WF66<br />

Jarret, R. M ........... .MF53, Sun pm<br />

Jarvie, T ................... WF40<br />

Jelinski, L. W ............ MF41<br />

Jiang, Y. J ................ MF19<br />

Job, C ..................... Mon pm<br />

Johnson, B. A ............ WK32<br />

Johnson, C. S. Jr ........ WF78<br />

Johnson, K. M ........... MF43<br />

Johnston, E ............... MF55<br />

Jonas, J ................... .WF4<br />

Jones, C. R ............... WF44<br />

Jue, T ...................... MK45<br />

Kang, L ................... .WK40<br />

Karczmar, G. S ........... WF74<br />

Kaufmann, S .............. WF54, Tue pm<br />

Kay, L. E ................. .WF6<br />

Keams, D. R ............. MF45<br />

Keller, P.J ................ M1::69<br />

Kendrick, R. D ........... MF39, Wed am<br />

Kennedy, S. D ........... MF13, W'F14<br />

Kentgens, A. P. M ...... .Wed am<br />

Kessler, H ................ MK37<br />

Khoury, A ................ .WK2<br />

Khuen, A ................. .WK20<br />

King, J. D ................ .Mort pm<br />

Kintanar, A ............... .WK08<br />

Kjaer, M ................... MKll, MK31<br />

Kohlbrenner, W. E ...... MK7<br />

Kohno, H ................. MF75<br />

Kolbert, A. C ............. Wed am<br />

Kopelevich, M ........... _MF51<br />

Kormos, D. W ............ WF70<br />

Kreis, R ................... Sun pm<br />

Kuhns, P ................. 2VIF3, Sun pm<br />

LaMar, G. N .............. WF02<br />

Lamb, D. M ............... WF04<br />

Langer, V .................. WF20<br />

Laue, E. D ............. .Tue am<br />

Lawry, T .................. WF74<br />

Lecomte, J. T. J .......... WF2<br />

Lee, C ...................... WF32


Lee, K.-B ................. WF2<br />

Leigh, J. S ................ MF5<br />

Leighton, P ............... .WK2<br />

Levitt, M ................ WK22, Tue pro,<br />

Wed am<br />

Levy, G. C ............... .WK30<br />

Limat, D ................... Tue am<br />

Limbach, H.-H ........... WF26<br />

Liu, S.-B .................. WF8, MF35<br />

Loaiza, F .................. WFS0<br />

Lock, H ................... .WF28, WF38<br />

LoGrasso, P. V .......... MF47<br />

Lowe, I. J ................. MF71<br />

Lu, P ...................... .WK2<br />

Ludvigsen, S ............. MK31<br />

Luly, J. R ................. WK6<br />

Luyten, P. R .......... .Thur am<br />

Luzar, M ................... WF40<br />

Maciel, G. E .............. WF18, WF28,<br />

MF27, WF38,<br />

Tue pm<br />

Mack, J. W .............. .WK16<br />

Madi, Z .................... Sum pm<br />

Madsen, J. C ............. Sun pm<br />

Majors, P. D .............. Wed am<br />

Malikayil, J. A ........... .WK32<br />

Manders, W. F ........... WF36<br />

Mao, J ..................... WK38<br />

Maple, S. R ............... WF52<br />

Marchetti, P. S ........... .Wed am<br />

Mareci, T. H .............. WK38, WF62<br />

Markley, J. L ............. Tue am<br />

Marshall, A. G ........... MF67, MK33<br />

Mateescu, G. D .......... MF73<br />

Matson, G ................. WF74<br />

Matsui, S .................. MF75<br />

Mattingly, M .............. WF56<br />

Matzkanin, G. A ......... Mort pm<br />

Mayne, C. L .............. MF19<br />

McCoy, M ................ .WK40<br />

McDowell, C. A ......... ~[K09<br />

McGourty, J. L .......... .WF2<br />

McLennan, I. J ........... .WK10<br />

McNamara, R ............. WF32<br />

Meier, B. H ............... MF17<br />

Meier, B. U ............... Sun pm<br />

Merrill, R. A .............. MF29<br />

Metz, K .................... WF76<br />

Meyerhoff, D. J .......... WK46<br />

Millar, J. M ............... WF40<br />

Miller, J. B ............... NIF77<br />

Mirau, P. A ............ WK12, Tue pm<br />

Moll, F. III ............... MF47<br />

Morris, D ................. .Wed am<br />

Boldface Type Indicates Speakers<br />

Mueller, L ................. WK4<br />

Muira, H .................. .WF48<br />

Murphy-Boesch, J ....... WF74<br />

Narula, S.S ............... WK18<br />

Navon, G ................. MF41<br />

Nayeem, A ................ Wed am<br />

Neiss, T. G ............... MF33, Sun pm<br />

Nelson, S. J .............. MK27<br />

Nettesheim, D. G ........ MK21<br />

Nguyen, K ................ Mon am<br />

Nicholson, L. K ......... NIF47<br />

Nicol, A. T ............ .Mon pm<br />

Nissan, R.A .............. .WF30<br />

Norris, J. R ............... WK36<br />

Novic, M .................. Tue am<br />

Nunlist, R ................. WK46<br />

O'Neil-Johnson, M ...... MF55<br />

Ohuchi, M ................ .MK39<br />

Oldfield, E ................ MF31<br />

Olejniczak, E. T .......... MK7, MK21,<br />

WF46<br />

Opella, S ................... WF32, WK2<br />

Oschkinat, H ............. .Tue am<br />

Pardi, A ................... MK17<br />

Pearson, G. A ............ MK47<br />

Pearson, R. M ........ Mon pm<br />

Pekar, J ................... .1VII:z05<br />

Petrich, M. A ............ MF23, Sun pm<br />

Peyton, D. H .............. WF2<br />

Pf~indler,P ................ .Tue am<br />

Pfenninger, S ............. Sun pm<br />

Picart, F ................... WK34<br />

Pines, A ................... WF08, WK24,<br />

MF35, WF40<br />

Poulsen, F. M ............ MKll, MK31<br />

Pratum, T. K ............. .WF22<br />

Prestegard, J. H ......... WF06, MK13<br />

Pugmire, R. J ............ MF19<br />

Quinting, G ............... MF27<br />

Radda, G. K .............. WF58<br />

Radloff, C ................ Sun pm<br />

Ragle, J. L ............. .Wed am<br />

Raidy, T. E ............... .Wed am<br />

Raleigh, D. P ............. Wed am<br />

Ramachandran, R ........ WK28<br />

Rance, M .................. WK48<br />

Ra<strong>th</strong>, A. R ................ MF65<br />

Ream, L ................... Mon pm<br />

Reid, B. R ................ .WK8<br />

Reimer, J. A .............. MF23, Sun pm<br />

Roberts, J. E .......... MF33, Sun pm<br />

Roberts, M. F ............ .WK22, Tue pm<br />

Rockway, T .............. .WK6<br />

Rollwitz, W. L ....... Mon pm


Ronemus, A. D .......... .MF49<br />

Rooney, W. D ............ MK15<br />

Root, T .................... WF34<br />

Ross, B. D ................ WK26<br />

Ro<strong>th</strong>man, D. L ............ WF72<br />

Rupprecht, A ............. NIF45<br />

Rydzy, M .................. WF66<br />

Ryoo, R .................. .WF8<br />

Saarinen, T ................ WF78<br />

Sammon, M. J ........... .MF41<br />

Santfni, R .................. WF44<br />

Sarkar, S. K .............. WKI0<br />

Saunders, M .............. MF53, Sun pm<br />

Schaefer, J ................ WF12, MF21<br />

Schenker, K. V .......... .WK24<br />

Schiksnis, R .............. WK2<br />

Schmalbrock, P .......... MF67, MF69<br />

Schmidt, C ................ WF54, Tue pm<br />

Schoeniger, J ............. WF56<br />

Sch6nenberger, C ........ Sun pm<br />

Schussheim, A. E ........ WK34<br />

Schweiger, A ............. Sun pm<br />

Scott, K. N ................ WK38<br />

Seidel, H .................. MF39, Wed am<br />

Sekihara, K ............... MF75<br />

Seto, H .................... MK39<br />

Shan, X ................... MF31<br />

Shu, A. T ................. MF67<br />

Shulman, R. G ........... WP'72<br />

Silver, M .................. WF80<br />

Simonsen, D. M .......... WF34, WF16<br />

Singel, D. A .............. MF39<br />

Sklenkar, V ............... MK23<br />

Smi<strong>th</strong>, I. C. P ............. WF66<br />

Smi<strong>th</strong>, W. S ............... WF2<br />

Soffe, N ................... MK43<br />

Serensen, O. W ...... .WK14, Sun pm,<br />

Tue pm<br />

Souza, S. P ............... WF64, Tue pm<br />

Spanton, S. G ............ MK35<br />

Sparks, S. W ............. WK16<br />

Spiess, H. W ............. WF54, Tue pm,<br />

Wed am<br />

Springer, C. S. Jr ....... .MK15, WF10<br />

Starewicz, P. M .......... WF60<br />

Stebbins, J. F ............ _MF35<br />

Stein, H. H ............... .WK6<br />

Stein, R. S ................ WF36<br />

Stengle, T. R ............ .MF09<br />

Stephens, R. L ........... MK35<br />

Steuemagel, S ............ MK37<br />

Stewart, P ................. WF32<br />

St6cklein, W .............. MF39<br />

Studer, W ................. Sun pm<br />

Boldface Type Indicates Speakers<br />

Styles, P ................... WF58<br />

Suter, D ................. WK24,Tue pm<br />

Suzuki, E.-I .............. ~Ion am<br />

Swanson, S ............... MF13, WF14<br />

Szeverenyi, N. M ........ WF80<br />

Szumowski, J ............. WF42<br />

Takegoshi, K ............. MK9<br />

Tang, C. G ................ Tue pm<br />

Tang, J ..................... WK36<br />

Thanabal, V ............... WF2<br />

Thayer, A. M .......... WF40, Wed am<br />

Theimer, D ................ WF54, Tue pm<br />

Thoma, W. J .............. WF60, MF61<br />

Thomas, A ................ Sun pm<br />

Tijink, E ................... Wed am<br />

Torchia, D. A ............. WK16<br />

Tsang, P ................... WF50<br />

Ugurbil, K ................ MF65<br />

Vander Hart, D. L ........ WF36<br />

Veeman, W. S ......... Wed am<br />

Vogt, V.-D ................ Wed am<br />

Vold, R. L ................ MF49, WF50<br />

Vold, R. R ................ MF49, WF50<br />

Wade, C. G ............... MF55<br />

Wagner, K ................ MK37<br />

Walter, T. H .............. MF31<br />

Wang, C .................. .MK17<br />

Warren, W. S ......... WK40, MF79,<br />

Thur am<br />

Waugh, J. S ........... MF3, Sun pm,<br />

Tue pm<br />

Weber, P. L .............. .WK4<br />

Wef'mg, S ................. WF54, Tue pm<br />

Wehrle, B ................. WF26<br />

Weiner, M. W ............ WF74<br />

Weitekamp, D. P ..... MK41, Thur am<br />

Westler, W. M ........ Tue am<br />

White, D ................... WF32<br />

Whittern, D ............... MK35<br />

Williams, E. H ........... MF37<br />

WiUiamson, K. L ....... .MF9<br />

Wimperis, S .............. .WK42, Tue am<br />

Wind, R. A ............. WF18, WF28,<br />

WF38,Tue pm<br />

Wolff, P. A ............... MFll<br />

Woolfenden, W. R ...... .MF19<br />

Wright, P. E .............. WK18<br />

Wfi<strong>th</strong>rich, K ........... Mort am<br />

Yamane, T ................ MF41<br />

Yannoni, C. S ........ .MF39, Wed am<br />

Yesinowski, J. P .... .Wed am<br />

Yeung, H. N .............. WF70<br />

Yu, C ...................... MK19<br />

Zamir, D .................. .Mt:I 1


Zciglcr, R ................. MF27<br />

Zhou, N ................... Mort am<br />

Zicssow, D ............... .WK20<br />

Zilm, K. W ............... MF29, WF34<br />

Zon, G .................... Mon am<br />

Zuiderweg, E. R. P ...... MK21<br />

Zumbulyadis, N .......... WF38<br />

Boldface Type Indicates Speakers


List of Attendees<br />

(registered by March 1, <strong>1987</strong>)


Connie L. Ace<br />

E<strong>th</strong>icon Inc.<br />

Route 22<br />

Somerville, NJ 08876<br />

Doro<strong>th</strong>y A. Adams<br />

PhilLips Medical Systems<br />

41Hurd Avenue<br />

Monroe, CT 06468<br />

James B. Aguayo<br />

Johns Hopkins University<br />

Div. of NMR Research<br />

310 Taylor<br />

Baltimore, ND 21205<br />

Lawrence Atemany<br />

Mobil Res.& Devet.<br />

Bittingsport Road<br />

Paulsboro, NJ 08066<br />

Witti Ammann<br />

Varian<br />

611 Hanson Way<br />

PaLo ALto, CA 94303<br />

Karen L. Anderson<br />

University of Utah<br />

Dept. of Chemistry<br />

SaLt Lake City, UT 84112<br />

John A. Anderson<br />

Univ. of Itt.-Chicago<br />

P.O. Box 6998-M/C 937<br />

Chicago, IL 60680<br />

Frank A.L. Anet<br />

Univ. of Calif. - LA<br />

Chem/BiochemDept<br />

Los AngeLes, CA 90024<br />

lan M. Armitage<br />

Yale University<br />

Dept Mot Biophy/Biochem<br />

P.O. Box 3333<br />

New Haven, CT 06510<br />

Cheryl H. Arrowsmi<strong>th</strong><br />

Stanford Magnetic Resonanc<br />

Stanford University<br />

Stanford, CA 94305-5055<br />

Jerome L. Ackerman<br />

Mass Gent Hospital<br />

NMR Facility Baker 2<br />

Dept. of Radiology<br />

Boston, NA 02114<br />

Bruce R. Adams<br />

University of Wisconsin<br />

1101 University Avenue<br />

Madison, WI 53706<br />

Michael J. Atbright<br />

Siemens Medical Systems<br />

186WoodAve. Sou<strong>th</strong><br />

lsetin, NJ 08830<br />

Brian D. Attore<br />

Sick ChiLd. Hosp.<br />

88 ELm St., 5<strong>th</strong> fLr<br />

Toronto,Ont.Canada<br />

Karl R. Amundson<br />

Univ. Cal. - BerkeLey<br />

Dept. of Chem. Eng.<br />

Berkeley, CA94720<br />

StanLey E. Anderson<br />

Westmont CoLlege<br />

Dept. of Chemistry<br />

Santa Barbara, CA 93108<br />

WiLLiam R. Anderson<br />

Lehigh University<br />

S.G. Mudd Btdg #6<br />

Be<strong>th</strong>Lehem, PA 18015<br />

Eric. V. AnsLyn<br />

Cat Tech<br />

Pasadena, CA 91125<br />

Robert D. Armstrong<br />

GE NMR Instruments<br />

20 TechnoLogy Pkwy.<br />

Suite380<br />

Norcross, GA 30092<br />

Dennis J. Ashwor<strong>th</strong><br />

Stauffer Chemical<br />

1200 S. 47<strong>th</strong> Street<br />

Richmond, CA 94804<br />

Gato Acosta<br />

Diasonics, Inc.<br />

533 Cabot Road<br />

San Francisco, CA 94080<br />

Robert E. Addleman<br />

Indiana University<br />

Department of Chemistry<br />

Bloomington, IN 47405<br />

Donald W. Alderman<br />

University of Utah<br />

Chemistry Dept.<br />

Salt Lake City, UT 84112<br />

John D. Attman<br />

Univ.of CaLifornia<br />

Dept. Pharm. Chem.<br />

San Francisco, CA 94143<br />

A.M.(Andy) Anderson<br />

Witmad GLass Co., Inc.<br />

1506Uppinghan Rd.<br />

Thousand Oaks, CA 91360<br />

Niets H. Anderson<br />

University of Washington<br />

Dept. of Chemistry<br />

Seattle, WA 98195<br />

D. Andreu<br />

See abstract<br />

Byron H. Arison<br />

Merck & Co.<br />

P.O.Box 2000<br />

Rahway, NJ 07065<br />

Henry C. Arndt<br />

Miles Laboratory<br />

1129 Myrtle St.<br />

Elkhart, IN 46514<br />

Hector Avram<br />

Oiasonics, Inc.<br />

533 Cabot Rd<br />

San Franciso, CA 94080


David Axe[son<br />

EMR-CoaL Research Labs<br />

Canmet/Crt PO Bag 1280<br />

Devon ALberta<br />

Canada TOC lEO<br />

ALex D. Bain<br />

Bruker Spectrospin Ltd<br />

555 Steele Ave. E<br />

Mitton,Ont.Canada L9T 1Y6<br />

Lairna Battusis<br />

Varian<br />

Chemistry Dept.<br />

Fort Col[ins, CO 80525<br />

Thomas M. Barbara<br />

SUNY - Stony Brook<br />

Dept of Chemistry<br />

Stony Brook, NY 11794<br />

Vtadimir J. Basus<br />

University of California<br />

School of Pharmacy<br />

BOX 0446<br />

San Francisco, CA 94143<br />

Jean Baum<br />

Oxford University<br />

Inorganic Chem. Lab<br />

Sou<strong>th</strong> Parks Rd.<br />

Oxford, England OX13QR<br />

Ad Bax<br />

Natt[ ]nst of Heal<strong>th</strong><br />

gtdg 2 Rm 109<br />

Be<strong>th</strong>esda, ND 20892<br />

William H. Bearden<br />

JEOL USA ]NC.<br />

11 Dearborn Road<br />

Peabody, NA 01960<br />

Larry Becket<br />

General Chemical Corp.<br />

344 W.Oenesee St.<br />

Syracuse, NY 13108<br />

John H. Begemann<br />

New Me<strong>th</strong>ods Research Inc.<br />

719 E. Genesee St.<br />

Syracuse, NY 13210<br />

Mary S. Bailey<br />

Univ. of Cincinnati<br />

Col Med Dept Ant/Celt Bio.<br />

2.31 Be<strong>th</strong>esda Ave.<br />

Cincinnati, OH 45229<br />

John H. Batdo<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94536<br />

Shetton Bank<br />

Univ of Sou<strong>th</strong> Carolina<br />

MRL<br />

Columbia, SC 29208<br />

Peter B. Barker<br />

HMRI<br />

10 Pico Street<br />

Pasadena, CA 91109<br />

Lyrme S. Batchetder<br />

Varian Associates<br />

611Hansen Way<br />

Pato Afro, CA 94303<br />

Mary W. Baum<br />

Princeton University<br />

Dept. of Chemistry<br />

Princeton, NJ 08544<br />

Renzo Bazzo<br />

Oxford University<br />

Dept. of Biochem<br />

Oxford, Eng., UK OX1 3QR<br />

gittiarn T. Beaudry<br />

Chem. Res. & Dev. Ctr.<br />

SMCCR-RSC-P/Beaudry<br />

Abrdn Prv.Grd., MD 21010-5<br />

ALvin J. Beeter<br />

I.E. DUPONT de NEMOURS<br />

Wilmington, DE 19898<br />

Ronatd Behting<br />

AT&T BELL LABS<br />

Room 1C-432<br />

600 Mountain Ave.<br />

Murray Hill, NJ 07974<br />

David B. Bailey<br />

USI Chemical<br />

1275 Section Rd.<br />

Cincinnati, OH 45237<br />

James A. Batshi<br />

Harvard Medical School<br />

NMR Lab<br />

221Longwood Ave.<br />

Boston, NA 02115<br />

Oebra L. Banvitte<br />

UCSF<br />

Dept. of Pharmaceut. Chem.<br />

San Francisco, CA 94143<br />

Victor J. Bartuska<br />

Chemagnetics<br />

209 Commerce Dr.<br />

Fort Collins, CO 80524<br />

Lorenz J. Bauer<br />

Allied Signal<br />

50 E. ALgonquin Rd.<br />

Des Ptaines, lL 60017<br />

Karen P. Baum<br />

Univ. of Ca[if.<br />

ChemDept.<br />

Santa Barbara, CA 93106<br />

John M. Beate<br />

Ohio State University<br />

Dept. of Chemistry<br />

120 W. 18<strong>th</strong> Ave.<br />

Columbus, OH 43210<br />

Edwin D. Becker<br />

NIH<br />

Btdg l/Rm 118<br />

Be<strong>th</strong>esda, MD 20892<br />

James W. Beery<br />

Sandoz Crop Protect.Corp<br />

]41E. Ohio Street,<br />

Mail Stop 5120<br />

Chicago, lL 60611<br />

M. Robin BendaLt<br />

Varian<br />

Griffi<strong>th</strong> Univ Sch Sci.<br />

Na<strong>th</strong>an, Queensland<br />

Australia 4111


Alan Benesi<br />

Penn State University<br />

Dept. of Chemistry<br />

NNR Lab<br />

University Park, PA 16802<br />

Benedict W. Bergerter<br />

Dept. of Chemistry<br />

Yale University<br />

225 Prospect St PO Box 666<br />

New Haven, CT 06511<br />

Nichae[ A. Bernstein<br />

Nerck Frosst Canada<br />

PO BOX 1005<br />

Pointe Ctair-Oorvat,<br />

Quebec/Canada H9/R 4P8<br />

Norman S. Bhacca<br />

Chemistry Dept.<br />

Louisiana State Univ.<br />

Baton Rouge, LA 70803<br />

Harriet Bible<br />

Sargent Welch<br />

9012 Nango Ave.<br />

Norton Grove, IL 60053<br />

Karen K. Bittner<br />

Raychem Corp.<br />

300 Constitution Ave.<br />

Menlo, CA 94025<br />

C. Scott Btackwett<br />

Union Carbide Tech Ctr.<br />

Old Sa~nitt River R.<br />

Tarrytoun, NY 10591<br />

Michael J. Bogusky<br />

University of Penn.<br />

ChemDept.<br />

Philadelphia, PA 19104<br />

Manju S. Bonsatt<br />

Indian lnst of Science<br />

Bangatore, India 560012<br />

Richard Borders<br />

Kimberly Clark<br />

Btdg 4001408<br />

1600 HotcombBridge<br />

Roswetl, GA 30076<br />

Mabry Benson<br />

USDA West Reg Res Ctr<br />

800 Buchanan St.<br />

Albany, CA 94710<br />

Bruce 1. Berkoff<br />

University California<br />

Biophysics Group<br />

22 Gitman Halt<br />

Berkeley, CA 96720<br />

Richard D. Bertrand<br />

University of Colorado<br />

Dept. of Chem.<br />

PO BOX 7150 Austin Bluffs<br />

Cot. Sprgs, CO 80933-7150<br />

Anna Maria Bianucci<br />

UCAL SF<br />

Dept. of Pharm. Chem.<br />

513 Damassus Ave.<br />

San Francisco, CA 94143<br />

An<strong>th</strong>ony Bietecki<br />

MIT Nat'[ Nag Lab<br />

Btdg NW14<br />

Cambridge, HA 02139<br />

Stephen J. Blackband<br />

Johns Hopkins Univ.<br />

School of Med.<br />

720 Rutland Ave.<br />

Baltimore, MD 21205<br />

Bernhard Btuemich<br />

MAX PLANC-INST POLM CHUNG<br />

Postfach 3148<br />

D-6500<br />

Mainz, Germany<br />

Lizann Botinger<br />

Univ. of Penn.<br />

Biochem/Biophys<br />

Philadelphia, PA 19104<br />

Jo-Anne K. Bonstee[<br />

DuPont Exper Sta.<br />

PPD E269<br />

gitmington, DE 19898<br />

Phittip Borer<br />

Syracuse University<br />

1117 gestcott St.<br />

Syracuse, NY 13210<br />

Jack A. Berdasco<br />

Potym. Mat'| Res. Gr.<br />

574 Btdg/Dou Chemical Co.<br />

Midland, Ri 48667<br />

Wotfgard Bermet<br />

Bruker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

Kebecle Beshah<br />

Francis Bitter Nat't.<br />

Nagnet. Lab<br />

NW 14-5107/NIT<br />

Cambridge, HA 02139<br />

Roy Bible<br />

G.D. Searte & Co.<br />

6901Searte Pkwy<br />

Skokie, ]L 60077<br />

Donald C. Bishop<br />

Chemagnetics, inc.<br />

208 Commerce Dr.<br />

Ft. Collins, CO 80524<br />

Martin J. Blacktedge<br />

Univ. of Oxford<br />

MRC Biomed NRR Facility<br />

John Radcliffe Hospital<br />

Oxford/UK<br />

Geoffrey Bodenhausen<br />

Univ. of Lausanne<br />

Inst de Chimie Organique<br />

Rue de ta Barre 2<br />

1005 Lausanne, Switz<br />

Philip H. Botton<br />

Wesleyan University<br />

Chemistry Dept.<br />

Niddteton, CT 06457<br />

Babut Borah<br />

Norwich Eaton Pharm.<br />

I~D Box 191<br />

Woods Corners,<br />

Norwich, NY 13815<br />

Brandan A. Borgias<br />

Univ. of Calif.- SF<br />

Dept. of Pharm. Chem.<br />

San Francisco, CA 94163


Vincent P. Bork<br />

Washington Univ.<br />

Chemistry Dept.<br />

St. Louis, NO 63130<br />

Akset A. Bo<strong>th</strong>ner-By<br />

Carnegie-Relton Univ.<br />

Dept. of Chem<br />

Pittsburgh, PA 15213<br />

C. Russell Bowers<br />

Cattech<br />

Ar<strong>th</strong>ur Amos Noyes Lab<br />

Pasadena, CA 91125<br />

Raymond J. Brambitta<br />

ALLied-Signal<br />

Morristown, NJ 07960<br />

Anita Brandotini<br />

Mobil Chem. Co. RgO<br />

PO Bx 240<br />

Edison, HJ 08818<br />

Christian Brevard<br />

Bruker Instruments<br />

Ranning Park<br />

Bitterica, NA 01821<br />

Jacques Briand<br />

Univ British Columbia<br />

Dept Chem2036 Rain Halt<br />

Vancouvera Brt. Col.<br />

Canada V6T 1Y6<br />

Chuck E. Bronniman<br />

CSU Reginat NNR Facility<br />

Dept of Chem<br />

Colorado State University<br />

Fort Collins, CO 80521<br />

Bernadette A. Brown<br />

IBR<br />

166 Hillside Ave.<br />

Riveredge, NJ 07661<br />

Stephen C. Brown<br />

Smi<strong>th</strong> Ktine & French Labs<br />

709 Suedetand Rd.<br />

Swedetand, PA 19479<br />

Rarie Borzo<br />

Hoechst-Cetanese<br />

86Norris Ave.<br />

Summit, NJ 07901<br />

James H. Bourett<br />

Plant Celt Research Inst.<br />

1548 Brentwoed Ct.<br />

Walnut Creek, CA 94595<br />

Jona<strong>th</strong>an Boyd<br />

Oxford University<br />

Dept. of Biochem.<br />

Sou<strong>th</strong> Parks Rd.<br />

Oxford, England, UK<br />

Malcolm R. Brarnwett<br />

Bruker Instruments<br />

2880 Zanker Rd. Ste 106<br />

Jan Jose, CA 95134<br />

Steve Brandt<br />

Chemical Dynamics Corp.<br />

3001 Hadley Rd.<br />

S. Plainfield, NJ 07080<br />

Wallace S. Brey<br />

Univ. of FLorida<br />

ChemDept<br />

Gainesvitte, FL 32611<br />

Richard W. Briggs<br />

Hilton Hershey Ned Ctr<br />

Dept. of Radiology<br />

PO Box 850<br />

Hershey, PA 17033<br />

Ar<strong>th</strong>ur L. Brooke<br />

Oxford Magnet Technology<br />

Eynsham, Oxforshire<br />

England, UK OX8 1BP<br />

Leo D. Brown<br />

NRR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Truman R. Brown<br />

Fox Chase Cancer Center<br />

7701Burhotme Ave.<br />

Philadelphia, PA 19111<br />

Richaet D. Boska<br />

V.A. Medical Ctr.-S.F.<br />

RRS Lab<br />

4150 CLement St.<br />

San Francisco, CA 94121<br />

John L. Bowers<br />

Univ. of ILLinois<br />

Box 18-1Noyes Lab<br />

Urbana, IL 61801<br />

Joel C. Bradley<br />

Cambridge Isotope Lab.<br />

20 Coemerce Way<br />

Woburn, NA 01801<br />

Rotf Brandes<br />

Univ. of California<br />

San Diego<br />

Dept. of ChemB-014<br />

La Jotta, CA 92093<br />

Gerald T. Bratt<br />

University of Rinnesota<br />

Biochem. Dept.<br />

435 Deteware St. SE<br />

HinneapoLis, RN 55455<br />

William Brey<br />

Univ. Texas/Hed/Radiot.<br />

UT Heal<strong>th</strong> Center - Houston<br />

6431Fannin<br />

Houston, TX 77030<br />

Hichette S. Broido<br />

Hunter College Chem Dept.<br />

695 Park Ave.<br />

Neu York, NY 10021<br />

Etwood E. Brooks<br />

Univ. of Cincinnati<br />

Chem Dept ML172<br />

Cincinnati, OH 45221<br />

Ronatd D. Brown<br />

Merck & Co.<br />

PO Box 62000 R80M-113<br />

Rahway, NJ 07065<br />

Larry R. Brown<br />

Australia Nat't Univ.<br />

RES School of Chem<br />

Canberra, A.C.T.<br />

Austral ia 2601


Hark S. Brown<br />

Yale School of Hed.<br />

Dept. of Diag. Rad.<br />

333 Cedar St CB58<br />

Neu Haven, CT 06511<br />

Har<strong>th</strong>a Bruch<br />

DuPont Expermtt Station<br />

Polymer Preducts Dept.<br />

Wilmington, DE 19898<br />

Thomas E. Butt<br />

FDA/Btdg 29/Rm530<br />

8800 Rockvitte Pike<br />

Be<strong>th</strong>esda, HI) 20892<br />

Douglas P. Burum<br />

Bruker Instruments<br />

Hanning Park<br />

Bitterica, HA 01821<br />

Gordon C. Campbell, Jr.<br />

Texas AgN<br />

Dopt. of Chemistry<br />

cortege Station, TX 7-/843<br />

James L. Carotan<br />

Natorac Cryogenics Corp<br />

837 Arnold Dr Ste. 600<br />

Hartinez, CA 94553<br />

Louis G. Carreiro<br />

Army Rat Tech Lab<br />

SLCRT-OHN Arsenal St.<br />

Watertown, HA 02172<br />

Toni L. Ceckter<br />

Univ Rochester Red Ctr<br />

Biophysics Dept.<br />

Rochester, NY 14627<br />

Lawrence Chan<br />

Univ Colorado<br />

Sch of Med.<br />

Box C280 4200 E 9<strong>th</strong> St<br />

Denver, CO 80262<br />

Hsu Chang<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

S. San Francisco, CA 94080<br />

Rodney D. Brown Ill<br />

lBN Research Labs<br />

PO Box 218<br />

Yorktown Hgts., NY 10598<br />

Robert G. Bryant<br />

Univ Rochester Ned Ctr<br />

Biophysics Dept.<br />

Rochester, NY 14642<br />

Steven A. Bumgardner<br />

Chen~gnetics, Inc.<br />

208 Con~rce Dr.<br />

Ft. Collins, CO 80524<br />

C. Allen Bush<br />

lttinois Inst. Tech<br />

Dept of Chemistry<br />

Chicago, IL 60616<br />

Steve Caravaja[<br />

Proctor & Gant~te<br />

5299 Spring Grove Ave<br />

Cincinnati, OH 45217<br />

Thomas A. Carpenter<br />

Cambridge Univ.<br />

Lab Ned Che~n/Ctin Sch<br />

Aclclen Brooke's Hosp.<br />

Canbridge, UK<br />

Lewis W. Cary<br />

GE NNR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

V. P. Chacko<br />

Johns Hopkins fled Inst<br />

110MRI, Dopt Rad.<br />

600 Wolfe St.<br />

Baltimore,, ND 21205<br />

Tze-Ning Chan<br />

Schering Corp.<br />

60 Orange St.<br />

Bloomfield, NJ 07003<br />

Shoumo Chang<br />

Univ. of California<br />

Chemistry Dept<br />

lrvine, CA 92717<br />

Sydney K. Brownstein<br />

Nat't Res Council Canada<br />

Chemistry Div.<br />

Ottawa,Ont,Canada K1A OR9<br />

Edward Bubienko<br />

G.E. Red Sys. Group<br />

University of California<br />

Freemont, CA 92439<br />

Louet[ J. Burnett<br />

San Diego State University<br />

Physics Oopt.<br />

San Diego, CA 92119<br />

R. Andrew Byrd<br />

BiD LaWCtr Drugs/Biol.<br />

NIH Btdg 29-432<br />

Be<strong>th</strong>esda, MD 20892<br />

Kei<strong>th</strong> R. Carduner<br />

Ford Notor Co.<br />

Research Staff<br />

Dearborn, M! 48121<br />

Allan Carr<br />

Anderson Urot.Assoc.<br />

218 E. Calhoun St.<br />

Anderson, SC 29621<br />

Nichaet Cassidy<br />

Oxford Instruments<br />

3A Alfred Circle<br />

Bedford, HA 01730<br />

Linda D. Chadwick<br />

Siemens Ned. Syst.<br />

186 Woo(] Ave S.<br />

Isetin, NJ 08830<br />

S. Chandrasekar<br />

Dept of Chemistry<br />

Georgia State Univ.<br />

Atlanta, ~ 30303<br />

Jih-Wen Chang<br />

Univ. Cal.-Berkeley<br />

Mail Stp 11-B85<br />

Dept of Chem<br />

Berkeley, CA 94720


Lydia L. Chang<br />

Stauffer Chemical Co.<br />

1200 S. 47<strong>th</strong> St.<br />

Richmond, CA 94804<br />

Hark A. Chaykovsky<br />

Bruker Instruments<br />

Manning Park<br />

Bitlerica, MA 01821<br />

Benjamin Chen<br />

YaLe Univ. Sch Ned<br />

Dept Diag. Rad<br />

333 Cedar St.<br />

HeM Haven, CT 06510<br />

N. g. Cheng<br />

HercuLes Inc.<br />

Research Center<br />

WiLmington, DE 19894<br />

Kenner A. Christensen<br />

Univ of Arizona<br />

ChemDept<br />

Tuscon, AZ 85721<br />

John Chung<br />

Univ of ILLinois<br />

Box 30 Noyes Lab<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

Hike N. Ctingan<br />

Doty Scientific Inc.<br />

600 Ctemson Rd.<br />

CoLumbia, SC 29223<br />

Robert Codrington<br />

Varian Associates<br />

611 Nansen gay<br />

Pato ALto, CA 94303<br />

Lawrence D. Cotebrook<br />

Concordia Univ/Chem<br />

1455 deMaissoneuve BL W<br />

Nontreat,Oue<br />

Canada H3G 1N8<br />

Chuck Connor<br />

Dept of Chem<br />

Univ of Cat<br />

BerkeLey, CA 94720<br />

Hark D. Chatfietd<br />

Univ. of CaLif.,Davis<br />

ChemDept<br />

Davis, CA 95616<br />

WaLter J. Chazin<br />

Res lnst Scripps CLinic<br />

NB-21103<br />

10666 N. Torrey Pine Rd.<br />

La Jotta, CA 92037<br />

Deng-Ywan Chen<br />

Univ of Penn.<br />

Dept of Chem<br />

PhiLadeLphia, PA 19104<br />

Peter Cheung<br />

PhiLLips PetroLeum<br />

347A Petro. Lab<br />

PhiLLips Res. Ctr.<br />

Barttesvilte, OK 74004<br />

Simon C. Chu<br />

Univ. of Cat Davis<br />

NHR FaciLity<br />

Davis, CA 95616<br />

Theodore C. Ctaiborne<br />

Hedrad Inc.<br />

271 Kappa Hanor Dr.<br />

Pittsburgh, PA 15239<br />

David N. Cochran<br />

Ayerst Labs Research<br />

CH 8000<br />

Princeton, NJ 08540<br />

Scott g. Coffin<br />

RockefeLler Univ.<br />

1230 York Ave.<br />

New York, NY 10021-6399<br />

Kimberty L. Cotson<br />

YaLe Univ.Ned Sch<br />

Dept of Pharm.<br />

333 Cedar St<br />

New Haven, CT 06510<br />

Noodrow N. Conover<br />

GE NHR instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94536<br />

Nariann J. Chatfietd<br />

Univ of CaL.-Davis<br />

ChemDept<br />

Davis, CA 95616<br />

Brad F. Chemetka<br />

Univ of Cat BerkeLey<br />

Dept of Chem Eng.<br />

BerkeLey, CA 94720<br />

Doris Cheng<br />

Exxon Chemical Co.<br />

PO Box 45<br />

Linden, NJ 07036<br />

Gwendotyn N. Chmurny<br />

NCi Frederick Cancer<br />

Research Center<br />

PO Box B<br />

Frederick, MD 21701<br />

l-Ssuer Chuang<br />

Chemistry Dept Bx42<br />

CoLorado State Univ.<br />

Ft Cottins, CO 80523<br />

Niger J. Ctayden<br />

ICI PLC, lnt'l Nat't Ctr<br />

P 0 Box 90<br />

Nitton,Hiddtesbrough<br />

CLeveLand,England TS6 8JE<br />

Hichaet D. Cockman<br />

Univ of Fla.<br />

Box 71<br />

Leigh HaLt<br />

Gainesvilte, FL 32611<br />

Hetga J. Cohen<br />

Univ. of Sou<strong>th</strong> CaroLina<br />

Chem Dept NNR Lab<br />

CoLumbia, SC 29208<br />

Thomas Connick<br />

Dory Scientific<br />

600 Ctemson Rd<br />

CoLumbia, SC 29223<br />

Frank Contratto<br />

Varian Assoc.<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478


Michael Cooper<br />

Lockheed MSC 0/48-92<br />

1111 Lockheed Way<br />

B/195B<br />

Sunnwate, CA 94089-3504<br />

Paul Cope<br />

Witmad Glass Co.<br />

Route 40 & Oak Rd.<br />

Buena, NJ 08310<br />

Charles E. Cottrelt<br />

Ohio State Univ.<br />

CCIC<br />

176 W. 19<strong>th</strong> Ave.<br />

CoLumbus, OH 43210<br />

Edward Craig<br />

Ohio State Univ.<br />

Dept of Chem.<br />

120 W 18<strong>th</strong> Ave<br />

CoLumbus, OH 43210-1173<br />

Roger W. Crecety<br />

Univ of Delaware<br />

ChemDept.<br />

Newark, DE 19716<br />

Richard C. Crosby<br />

Texas AgN<br />

Dept. Chem.<br />

cortege Station, TX 77843<br />

Joseph C. Crowtey<br />

Lockheed Misstes/Spece<br />

3251 Hanover St<br />

8204/09350<br />

Pato ALto, CA 94304-1191<br />

John D. Cutnett<br />

So. Illinois Univ.<br />

Physics Dept.<br />

Carbondate, IL 62901-4401<br />

David C. Oatgarno<br />

American Cyanamid<br />

PO Box 400<br />

Princeton, NJ 08540<br />

Prashan<strong>th</strong> Darba<br />

Univ Wisconsin/Madison<br />

Dept of Biochem<br />

420 Henry Matt<br />

Madison, WI 53706<br />

James W. Cooper<br />

IBM Instruments<br />

PO Box 8332<br />

Danbury, CT 06813<br />

Chris Coretsopeutos<br />

Univ. of ILLinois<br />

Dept of Chem<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

David Couburn<br />

RockefeLLer Univ.<br />

1230 York Ave.<br />

Box 299<br />

New York, NY 10021-6399<br />

Ray Crandatl<br />

Xerox Corp<br />

800 Phillips Rd.<br />

Webster, NY 14580<br />

Robert Creekmore<br />

FMC Corp.<br />

PO Box 8<br />

Princeton, NJ 08540<br />

Timo<strong>th</strong>y A. Cross<br />

FLorida St. Univ.<br />

Chem Dept<br />

Tattahassee, FL 32306<br />

Sean A. Curran<br />

Monsanto Co.<br />

730 Worcester St.<br />

SpringfieLd, MA 01151<br />

Dana Andre D'Avignon<br />

Washington Univ.<br />

Campus Box 1134<br />

St. Louis, NO 63130<br />

Jerry L. DaLLas<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Darrell R. Davis<br />

Univ of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112<br />

Walter G. Copan<br />

Lubrizot Corp<br />

29400 Lakeland Btvd<br />

Wicktiffe, OH 44092<br />

Mary Lou Cotter<br />

Or<strong>th</strong>o Pharm.<br />

Route 202<br />

Raritan, NJ 08869-0602<br />

Bruce Coxon<br />

Nat'[ Bur of Stds<br />

Chemistry BLdg A361<br />

Gai<strong>th</strong>ersburg, HI) 20899<br />

Eaten Crecety<br />

Brandywine Res. Labs<br />

226 W Park PLace<br />

Newark, DE 19711<br />

Robert M. Crosby<br />

M-R Resourses Inc.<br />

262 Lakeshore Dr.<br />

PO Box 642<br />

Ashburnham, IdA 01430<br />

Michael Crowtey<br />

Harper Grace Hospitat<br />

NMR Center<br />

Detroit, M! 48201<br />

Janet C. Curtis<br />

Univ of Utah<br />

Dept of Chemistry<br />

SaLt Lake City, UT 84112<br />

Josef Oadok<br />

Carnegie MeLton Univ.<br />

Chemistry Dept.<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213<br />

Neat Dando<br />

ALcoa<br />

Anal Chem Tech Ctr<br />

ALcoa Center, PA 15046<br />

Detphine Davis<br />

Univ Cat/Santa Barbara<br />

Dept of Chem<br />

Santa Barbara, CA 93106


Nicotette Davis<br />

View Engineering<br />

1656 Emeric Ave.<br />

Simi Valley, CA 03065<br />

Steven F. Dec<br />

Colorado St. Univ.<br />

Dept of Chem<br />

Ft. Collins, CO 80501<br />

Alan J. Deese<br />

Genera[ Electric<br />

Ned. Systems Group<br />

255 Fourier Ave.<br />

Freemont, CA 94539<br />

E. James Detikatny<br />

Univ of British Columbia<br />

Dept of Chemistry<br />

Vancouver/BC/Canada V6T1Y6<br />

Peter C. Demou<br />

Yate University<br />

ChemDept<br />

PO Box 6666<br />

New Haven, CT 06511<br />

Jeffrey S. deRopp<br />

Univ of Cat-Davis<br />

NMR Facility<br />

Davis, CA 95616<br />

Hea<strong>th</strong>er Dettman<br />

University of Ottawa<br />

Dept of Chem<br />

Ottawa<br />

Ontario/Canada K1N9B4<br />

Lisa M. DiMichete<br />

Merck & Co., Inc.<br />

PO Box 2000<br />

Btdg 801Rm 210<br />

Rahway, NJ 07065<br />

Thomas Dixon<br />

Emory Univ.<br />

Radiology Dept.<br />

412 Woodruff Hem.Bldg.<br />

Atlanta, GA 30322<br />

Peter J. Domai[le<br />

DuPont Exp. Station<br />

Wilmington, DE 19898<br />

Donald G. Davis<br />

NIEHS<br />

Lab Note. Biophycs.<br />

PO Box 12233<br />

Research Tri. Pk, NC 27709<br />

Rona[d L. Dechene<br />

Auburn lnt't. IMR Div.<br />

Eight Electronics Ave.<br />

Danvers Industrial Pk.<br />

Danvers, HA 01923<br />

Frank Oetagtio<br />

New Me<strong>th</strong>ods Research<br />

719 E. Genesee St.<br />

Syracuse, HY 13210<br />

Marc Detsuc<br />

Syracuse Univ.<br />

305 Bowne Hat[<br />

Syracuse, NY 03210<br />

Christopher E. Dempsey<br />

Oxford University<br />

Dept of Biochem<br />

Sou<strong>th</strong> Park Rd<br />

Oxford/England, UK OXl 3QU<br />

Christian Detettier<br />

University of Ottawa<br />

Dept of Chemistry<br />

Ottawa/Canada K1N9B4<br />

Lisa A. Deuring<br />

Varian Assosciates<br />

255 Fourier Ave<br />

Fremont, CA 94539<br />

Bob DiPasquate<br />

JEOL USA Inc<br />

11 Dearborn Rd.<br />

Peabody, HA 01960<br />

Chris N. Dobson<br />

Oxford Univ.<br />

Oept of ]norg. Chem.<br />

Sou<strong>th</strong> Parks Rd<br />

Oxford England, UK OX1 30R<br />

Robert Lee Domenick<br />

Stanford Nag. Res. Lab.<br />

Stanford University<br />

Stanford, CA 94305-5055<br />

William Dawson<br />

Canmet, Energ.Res.Lab.<br />

555 Boo<strong>th</strong> Street<br />

Ottawa/<br />

Ontario/Canada KIA OG1<br />

James J. Dechter<br />

Arco Oil & Gas<br />

PRC-1C17<br />

2300 W. Piano Pkwy<br />

Piano, TX 75075<br />

John L. DeLayre<br />

Tecmag Inc.<br />

6006 Bettaire Blvd.<br />

Ste. 118<br />

Houston, TX 77081<br />

Louis C. DeNenorvat<br />

Univ of Cal.-Berkeley<br />

Dept of Chem.<br />

Berkeley, CA 94720<br />

Lawrence W. Dennis<br />

Exxon Res & Eng<br />

PO Box 4255<br />

Baytown, TX 77522-4255<br />

George Detre<br />

SRI International<br />

333 Ravenswood Dr.<br />

Menlo Park, CA 94025<br />

Susan L. Dexheimer<br />

Laurence Berke[ey Lab<br />

Berkeley, CA 94720<br />

Joseph A. DiVerdi<br />

Chemagnetics Inc.<br />

208 Commerce Dr.<br />

Ft. Cottins, CO 80524<br />

Jack Ooherty<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Harry C. Oorn<br />

vPI<br />

Chemistry Dept.<br />

Blacksburg, VA 24061


F. David Doty<br />

Doty Scientific Inc.<br />

600 Ctemson Rd.<br />

CoLumbia, SC 29223<br />

Daniel R. Draney<br />

American Cyanamid Co.<br />

1937 W. Main St.<br />

Stamford, CT 06904-0060<br />

Susan Oruckman<br />

E.R. Squibb<br />

PO Box 4000<br />

Princeton, NJ 08543<br />

Haureen A. Duffy<br />

Can~oridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, HA 01801<br />

R. William Dunlap<br />

Amoco Research Center<br />

PO Box 400<br />

Napervitte, IL 60566<br />

Cecil Dybowski<br />

University of Delaware<br />

Dept of Chemistry<br />

Neward, DE 19716<br />

Thomas A. Early<br />

GE NMR Instruments<br />

255 Fourier Way<br />

Fremont, CA 94539<br />

William M. Egan<br />

FDA Biophys.lab<br />

Ctr Drugs & Biologies<br />

ge<strong>th</strong>esda, MD 20892<br />

Henry Eisenson<br />

Sciteq Electronics<br />

8401Aero Drive<br />

San Diego, CA 92113<br />

John Eng<br />

Princeton Univ.<br />

Chemistry Dept.<br />

Princeton, NJ 08540<br />

Judy M. Dory<br />

Doty Scientific Inc.<br />

600 Ctemson Rd.<br />

Columbia, SC 29223<br />

Edward A. Dratz<br />

Montana State Univ.<br />

Dept of Chem.<br />

Bozeman, MT 59717<br />

George R. Dubay<br />

Duke University<br />

Dept of Chemistry<br />

P.M. Gross Chem Labs<br />

Durham, NC 27706<br />

Charles L. Dumoutin<br />

Genera[ Electric Co.<br />

Res. & Devet. Ctr.<br />

PO Box 8 KI-NMR<br />

Schenectady, NY 12301<br />

Theresa S. Dunne<br />

Lederte Labs<br />

Middletown Rd. 658/320<br />

Pearl River, NY 10965<br />

Thomas M. Eads<br />

Kraft Inc., Tech Ctr.<br />

801Waukegan Rd.<br />

Gtenview, IL 60025<br />

Het[mut Eckert<br />

Cat. Tech.<br />

Dept of Chemistry<br />

Mail 164-30<br />

Pasadena, CA 91125<br />

Thomas F. Egan<br />

Tecmag<br />

6006 BetAir Blvd.<br />

Houston, TX 77081<br />

Paul D. Ellis<br />

Univ of So.Carolina<br />

Chemistry Dept.<br />

Columbia, SC 29208<br />

Cart E. Engteman<br />

Ohio State Univ.<br />

120 W. 18<strong>th</strong> Ave.<br />

Columbus, OH 43210<br />

Montee A. Doverspike<br />

Naval Res. Lab.<br />

Code 6120<br />

4555 Overtook Ave., SU<br />

Washington, DC 20375-5000<br />

Gary Drol0ny<br />

Chemistry Dept.<br />

Univ. of Washington<br />

Seattle, WA 98195<br />

Eliot W. Dudley<br />

New Me<strong>th</strong>ods Research<br />

719 E. Genesee St.<br />

Syracuse, NY 13210<br />

T. Michael Duncan<br />

AT&T Belt Labs<br />

6E-318<br />

Murray Hilt, NJ 07974-2070<br />

Lois J. Durham<br />

Stanford University<br />

ChemOept.<br />

Stanford, CA 94305-5080<br />

William L. Earl<br />

Los Atames Nat't Lab.<br />

Mail Stop C345<br />

Los Atames, NM 87545<br />

Richard R. Eckman<br />

Exxon Chemical<br />

5200 Bayway Dr.<br />

Baytown, TX 77520<br />

Keigi Eguchi<br />

JEOL USA [NC<br />

1418 Nakagami<br />

Akishima, 196<br />

Tokyo Japan<br />

Steven Donald Emerson<br />

Univ. of California<br />

Chem. Dept.<br />

Davis, CA 95616<br />

ALan D. English<br />

DuPont Exp. Station<br />

Central Res & Devel.<br />

Wilmington, DE 19898


Raut G. Enriquez<br />

]nstituto De Ouimica<br />

Univ. Nacionat Autonoma<br />

Circuito Exterior<br />

Ciudad Univer., MX 04510<br />

C. Anderson Evans<br />

Berlex Laboratories Inc.<br />

110 E. Hanover Ave.<br />

Cedar Knolls, NJ 07927<br />

Mary Fabry<br />

Einstein Col. Med.<br />

1300 Morris Park Ave.<br />

Bronx, NY 10461<br />

Rod Fartee<br />

DuPont Central Res.<br />

E328/126<br />

Wilmington, DE 19898<br />

Thomas C. Farrar<br />

Univ of Wisconsin<br />

Chemistry Dept.<br />

Madison, Wl 53706<br />

Jeffrey R. Fitzsimmons<br />

Shands Hosp. JHMHC<br />

Dept of Radiology<br />

Gainesvilte, FL 32601<br />

Peter F. Ftynn<br />

Univ. of Washington<br />

Dept of Chemistry BG-IO<br />

Seattle, WA 98195<br />

Peter Forster<br />

University of Otkahoma<br />

Dept of Chemistry<br />

Norman, OK 73019<br />

Stephen Freetand<br />

Chemagnetics<br />

208 Commerce Dr.<br />

Ft. Collins, CO 80524<br />

Alan J. Freyer<br />

Penn State Univ<br />

152 Davey Lab Chem Dept<br />

University Park, PA 16802<br />

George Entzminger<br />

Doty Scientific<br />

600 Clemson Rd.<br />

Columbia, SC 29223<br />

Jerenn/ R. Everett<br />

Beecham Pharmaceuticals<br />

Brockham Park<br />

Betchwor<strong>th</strong>,<br />

Surrey, UK RH3 7AJ<br />

Paul E. Fagerness<br />

Upjohn/Product Control II<br />

7832-259-12<br />

Portage Road<br />

Kalamazoo, MI 49001<br />

Bruce W. Farnum<br />

Certified Tech Corp.<br />

7404 Washington Ave. So.<br />

Minneapolis, MR 55344<br />

Raymond Ferguson<br />

Condux, Inc.<br />

300 Whitby Dr.<br />

Wilmington, DE 19803<br />

William W. Fleming<br />

IBM Almaden Res K91/801<br />

650 Harry Road<br />

San Jose', CA 95120-6099<br />

Jeffrey Forbes<br />

Univ. of illinois<br />

Noyes Lab Box 42-1<br />

505 S. Ma<strong>th</strong>ews<br />

Urbana, IL 61801<br />

Natalie Foster<br />

Lehigh Univ.<br />

Dept of Chemistry<br />

Mudd Btdg #6<br />

Be<strong>th</strong>lehem, PA 18015<br />

Dominique Freeman<br />

G E Red Syst<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Richard M. Fronko<br />

Naval Research Lab<br />

Code 6122<br />

Washington, 0C 20375-5000<br />

Richard R. Ernst<br />

ETH Zurich<br />

Lab. Physikalische Chemie<br />

ETH-Zentrum<br />

Zurich Switzerland 8092<br />

Edward L. Ezett<br />

UT Medical Branch<br />

Galveston, TX 77550<br />

Teresa Fan<br />

Univ.Calif-Davis<br />

NMR Facility<br />

Davis, CA 95616<br />

Sylvia A. Farnum<br />

3N Corp.<br />

Spec.Chem Lab<br />

Bldg 236-2B-11, 3M Ctr.<br />

St. Paul, MN 55144-1000<br />

Stephen W. Fesik<br />

Abbott Laboratories<br />

D-47G AP9<br />

Abbott Park, IL 60064<br />

Timo<strong>th</strong>y Flood<br />

PPG<br />

PO Box 31<br />

Barberton, OH 44203<br />

Charles E. Forbes<br />

Celanese Research Co.<br />

86Morris Ave<br />

Summit, NJ 07901<br />

David Foxatt<br />

Varian Associates<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Michael H. Frey<br />

JEOL USA INC<br />

11 Dearborn Rd.<br />

Peabody, NA 01960<br />

David Fry<br />

Hoffman-LaRoche, Inc.<br />

Dept of Physical Chem.<br />

Nuttey, NJ 07110


James S. Frye<br />

Colorado State Univ<br />

Dept of Chem<br />

Ft ColLins, CO 80523<br />

Bing N. Fung<br />

Univ of Otkahorna<br />

Dept of Chemistry<br />

Norman, OK 73019<br />

Nichaet Fuson<br />

Wabash CoLlege<br />

Dept of Chem<br />

Crawfordsvitte, IN 47933<br />

Michael Gamcsik<br />

John Hopkins Univ.<br />

720 RutLand Ave.<br />

BaLtimore, HD 21205<br />

Joel R. Garbow<br />

Honsanto Co.<br />

Life Sciences, NHR Ctr<br />

700 ChesterfieLd Vlg Pkb~y<br />

St. Louis, NO 63198<br />

Hichae[ Garwood<br />

Univ of Ninnesota<br />

Gray Freshwater<br />

Biological Institute<br />

Navarre, HN 55392<br />

John H. Geckte<br />

Bruker Instrument<br />

Manning Park<br />

Bitterica, HA 01821<br />

Robert T. Gempe Jr.<br />

Abbott Labs AP9<br />

Pharm. Discv. Div<br />

RMR Research Group<br />

Abbott Park, IL 6006/+<br />

John T. Gerig<br />

Univ of CaLifornia<br />

Chemistry Dept.<br />

Santa Barbara, CA 93106<br />

A<strong>th</strong>ot[ A. Gibson<br />

gatorac Cryogenics<br />

837 Arnold Dr. Ste.600<br />

Nartinez, CA 94553<br />

Toshimichi Fujiuara<br />

JEOL Ltd.<br />

Biomet Lab<br />

1418 Nakagami-Akishirna<br />

Tokyo/Japan 196<br />

Kazuo Furihata<br />

Univ of Tokyo<br />

lnst of AppLied Biology<br />

Bunk You-Ku<br />

Tokyo Japan<br />

Colin A. Fyfe<br />

University of GueLph<br />

Guelph<br />

Ontario Canada N1G 2U1<br />

Zhehong Gan<br />

University of Utah<br />

Salt Lake City, UT 84112<br />

Janice Kotes Garde<br />

Nonsanto Co.<br />

800 N. Lindberg Btvd<br />

St Louis, NO 63166<br />

Nancy K. Geananget<br />

Univ of Houston<br />

Dept of Chemistry<br />

4800 Calhoun<br />

Houston, TX 77004<br />

Thomas E. Gedris<br />

Florida State Univ.<br />

Dept of Chemistry<br />

Tattahassee, FL 32306<br />

Yves Geoffrion<br />

See abstract<br />

Bernard C. Gerstein<br />

Iowa State University<br />

229 Spedding<br />

Ames, IA 50010<br />

Dara E. Gilbert<br />

UCLA<br />

Dept of Chem& Biochem<br />

405 Hitgard Ave.<br />

Los Angeles, CA 90024<br />

Eiichi Fukushima<br />

Lovetace Nedicat Found.<br />

2425 Ridgecrest Dr. SE<br />

Atbuciuerque, NH 87108<br />

George T. Furst<br />

Univ of Penn<br />

Chemistry Dept.<br />

PhiLadelphia, PA 1910/+<br />

Robert A. Gate<br />

N. R. Resourses<br />

PO Box 642<br />

262 Lakeshore Dr.<br />

Ashburnham, HA 01430<br />

ALbert R. Garbsr<br />

Univ of So CaroLina<br />

ChemOept<br />

CoLumbia, SC 29208<br />

AlLen N. Garroway<br />

Naval Research Labs<br />

Cede 6122<br />

Washington, DC 20375-5000<br />

Russett A. Geanange[<br />

Univ of Houston<br />

Dept of Chemistry<br />

4800 CaLhoun<br />

Houston, TX 77004<br />

Leslie T. Gelbeum<br />

Georgia Tech<br />

Dept of Applied Biotogy<br />

AtLanta, GA 30332<br />

Walter V. Gerasirnowicz<br />

USDA - ERRC<br />

600 E Nermaid Lane<br />

Philadelphia, PA 19118<br />

Paul J. Oiammatteo<br />

Texaco Inc.<br />

PO Box 509<br />

Beacon, NY 12508<br />

Russell W. Gittis<br />

The Upjohn Co.<br />

1140-230-2<br />

7171 Portage Rd.<br />

Kalamazoo, HI 49001


Peter S. Given<br />

Nabisco Brands<br />

100 DeForest Ave.<br />

PO Box 1941<br />

E. Hanover, NJ 07936<br />

Karen Gteason<br />

Univ of California<br />

Dept of Chem Eng.<br />

Berketey, CA 94720<br />

G. Gtover<br />

See abstract<br />

Wench/ Gotdberg<br />

Merck Isotopes<br />

PO Box 2000<br />

Rahway, NJ 07065<br />

Ricardo R. Gonzatez-Mendez<br />

Resonex Inc.<br />

720 Patomar Ave.<br />

Sunnyvate, CA 94086<br />

Warren J. Goux<br />

Univ of Texas -Dattas<br />

Dept of Chemistry<br />

PO Box 688<br />

Dattas, TX 75080<br />

David M. Grant<br />

Dept of Chemistry<br />

University Utah<br />

Satt Lake City, UT 84112<br />

Christian Griesinger<br />

E<strong>th</strong>-Zurich Phy Chem Lab<br />

E<strong>th</strong>-Zentrum<br />

CH-8092<br />

Zurich, Switzerland<br />

Chartes M. Grisham<br />

Univ of Virginia<br />

Dept of Chemistry<br />

Chartottesvitte, VA 22901<br />

Terry W. Gultion<br />

Washington Univ.<br />

Dept of Chemistry<br />

St. Louis, MO 63130<br />

Jay A. Gtaset<br />

Univ of Connecticut<br />

Oept of Biochemistry<br />

Hear<strong>th</strong> Center<br />

Farmington, CT 06032<br />

James W. Gteeson<br />

Mobit Res. & Oevet.<br />

PO Box 819047<br />

Dattas, TX 75381<br />

Gian C. Gobbi<br />

Dow Chemicat (Canada)<br />

PO Box 3030<br />

Vidat St.S. Sarnia,<br />

Ontario, Canada NTT 7M1<br />

Nina C. Gonetta<br />

ciba Geigy<br />

556 Morris Ave.<br />

Summit, NJ 07901<br />

Paut R. Gootey<br />

The Upjohn Co.<br />

7171 Portage Rd.<br />

7832-259-12<br />

Katamazoo, HI 49001<br />

David W. Graden<br />

Or<strong>th</strong>o Pharm. Corp.<br />

Route 202<br />

Raritan, NJ 08869<br />

Peter Grant<br />

Varian Associates<br />

505 Ju[ie Rivers Road<br />

Sugar Land, TX 77478<br />

Robert G. Griffin<br />

Nationat Magnet Lab<br />

NW14-5113 MIT<br />

77Massachusetts Ave.<br />

Cambridge, HA 02139<br />

Stephen H. Grode<br />

The Upjohn Co.<br />

1140-250-2<br />

Kalamazoo, MI 49001<br />

Wei Guo<br />

Univ Missouri-Columbia<br />

Dept of Chem.<br />

Cotumbia, MO 65211<br />

Tho(nas E. Grass<br />

VPI<br />

Dept of Chemistry<br />

Btacksburg, VA 24061<br />

Jerry D. Gtickson<br />

Johns Hopkins Hospitat<br />

Sch of Med/Dept of Rad.<br />

Taytor Btdg Rm 310<br />

Battirnore, MD 21205<br />

Laurence A. Goff<br />

ICI Americas, Inc.<br />

Witmington, DE 19897<br />

Oded Gonen<br />

MIT<br />

RM-6-133<br />

Cambridge, HA 02139<br />

Myra Gordon<br />

Merck Sharp & Dohme lsot.<br />

612-1209 Richmond St.<br />

London,Ont,Canada NGA 3L7<br />

Hans Grahm<br />

Syracuse University<br />

305 Bowne Hatt<br />

Syracuse, NY 13210<br />

George Gray<br />

Varian Associates<br />

611Hansen Way<br />

ParD Atto, CA 94303<br />

Janet M. Griffi<strong>th</strong>s<br />

Univ of Catif-Berketey<br />

Oept of Chem Engineering<br />

Berketey, CA 94720<br />

Angeta M. Gronenborn<br />

Max Planck Institute<br />

8033 Martinsried BE1<br />

Munich, FRG<br />

Herbert Gutowski<br />

Univ of Ittinois<br />

505 S. Ma<strong>th</strong>ews<br />

Urbana, IL 61801


Herbert Gutowski<br />

University of Illinois<br />

505 S. Ma<strong>th</strong>ews<br />

Champaign,<br />

Urbana, IL 61801<br />

Andreas Hackman<br />

Univ of Dortmund<br />

Inst. of Physics<br />

PO Box 500 500<br />

Dortmund,50, FRG D-4600<br />

Elizabe<strong>th</strong> Hajdu<br />

G. D. Searte & Co.<br />

4901Searte Parkway<br />

Skokie, IL 60077<br />

Gordon K. Hamer<br />

Xerox Research Center<br />

of Canada<br />

2660 Speakman Drive<br />

Nississuaga/Ont/Can LSK2L1<br />

willis B. Hammond<br />

ALlied Signal, Inc.<br />

PO Box 1021R<br />

Morristown, NJ 07960<br />

Ronatd L. Barter<br />

Univ. Catif<br />

Dept of Chem<br />

Santa Cruz, CA 9506/,<br />

V. Hariharasubramanian<br />

Univ of Pennsylvania<br />

Dept of Biochem & Biophys<br />

School of Medicine<br />

Philadelphia, PA 19106<br />

Cyn<strong>th</strong>ia J. Hartzelt<br />

Univ. of Washington<br />

Dept of Chemistry BG-IO<br />

Seattle, WA 98195<br />

John R. Havens<br />

Raychem Corp.<br />

300 Constitution Dr.<br />

Menlo Park, CA 94025<br />

Jane E. Hawks<br />

Kings College (KQC)<br />

Dept of Chemistry<br />

Univ. of London<br />

Strnd/Lndn/Eng, UK WC2R 2L<br />

C.A.G. Haasnoot<br />

Unitever Research Lab<br />

Oliver van Moorttaan 120<br />

3133 AT Vlaardingen,<br />

Nedertand<br />

Grant W. Haddix<br />

Univ of Catif - Berkeley<br />

Dept of Chem Eng<br />

Berkeley, CA 94720<br />

Laurance David Halt<br />

Cambridge Univ/MCCS<br />

Addenbrookes Hosp.<br />

Hilts Rd.<br />

Cambridge, UK<br />

Bruce E. Hammer<br />

Intermagnetics Gen.Corp.<br />

Hag. Resonance Res. Lab.<br />

1223 Peoples Ave.<br />

Troy, NY 12180<br />

Oc Hee Han<br />

Univ of Illinois<br />

Dept of Chemistry<br />

505 S. Ma<strong>th</strong>ews<br />

Urbana, 1L 61801<br />

James A. Happe<br />

Lawrence Livermore<br />

National Lab<br />

PO Box 808<br />

Livermore, CA 94550<br />

Arnold M. Harrison<br />

Union Carbide<br />

PO Box 8361<br />

So. Charleston, WV 25303<br />

Dennis L. Hasha<br />

Oow Chemical Co.<br />

Analytical Labs Bldg 574<br />

Midland, MI 48667<br />

James F. Haw<br />

Texas A&M Univ<br />

ChemDept<br />

cortege Station, TX 77843<br />

Geoffrey E. Hawks<br />

Queen Mary College-London<br />

Univ of London,Chem Dept.<br />

Mite End Road<br />

London,England, UK E14NS<br />

Fred Haberle<br />

Brucker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

Edward W. Hagaman<br />

Oak Ridge National Lab<br />

Oak Ridge, TN 37831<br />

Ktaas Hattenga<br />

Michigan State Univ.<br />

Chemistry Dept.<br />

East Lansing, M! 48824<br />

Terry E. Hammond<br />

Standard Oil of Ohio<br />

4440 Warrensvitte Rd.<br />

Cleveland, OH 44128<br />

Diane K. Hancock<br />

Nat'l Bur. of Stds.<br />

Btdg 222 A-361<br />

Gai<strong>th</strong>ersburg, MD 20899<br />

Gerard S. Harbison<br />

S.U.N.Y. Stonybrook<br />

Dept of Chemistry<br />

Stony Brook, NY 11794<br />

J. Stephen Hartman<br />

Brock Univ. Chem. Dept.<br />

St.Ca<strong>th</strong>arines/Ont. L2S3A1<br />

Jon B. Hauksson<br />

Univ of Calif. Davis<br />

Dept of Chem<br />

Davis, CA 95616<br />

Bruce L. Hawkins<br />

Colorado State Univ.<br />

Dept of Chemistry<br />

Ft. Collins, CO 80523<br />

Shigenobu Hayashi<br />

Univ of Illinois<br />

School Of Chem Science<br />

505 S. Ma<strong>th</strong>ews Ave.<br />

Urbana, IL 61801


Richard A. Hearman<br />

ICI PLC, C&P Group<br />

PO Box 90<br />

Middtesbrough,<br />

Cleveland TS6 8JE, UK<br />

Rose Anne HeLms<br />

Doty Scientific<br />

600 Clemson Rd.<br />

Columbia, SC 29223<br />

P. Mark Henrichs<br />

Eastman Kodak Co.<br />

Research Labs<br />

Rochester, NY 14650<br />

Roy Hickman<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

Howard Hill<br />

Varian Associates<br />

611Hansen Way<br />

ParD Alto, CA 94303<br />

Tetsu Hinomoto<br />

JEOL USA, INC.<br />

11 Dearborn Rd.<br />

Peabody, MA 01960<br />

Yukio Hiyama<br />

NIH<br />

Btdg 30, Rm 106<br />

Be<strong>th</strong>esda, MD 20892<br />

Tadeusz A. Hotak<br />

Yale University<br />

Dept of Chemistry<br />

New Haven, CT 06511<br />

Xiaole Hong<br />

Georgia State Univ.<br />

Dept of Chemistry<br />

University Plaza<br />

Atlanta, GA 30303<br />

Joseph P. Hornak<br />

Rochester Inst. of Tech.<br />

Chemistry Dept.<br />

Rochester, NY 14623<br />

Nick J. Heaton<br />

Univ. of Calif.-San Diego<br />

La Jotta, CA 92093<br />

Janet M. Henderson<br />

Varian Associates<br />

Hanover Ave.<br />

F[orham Park, NJ<br />

Hoby P. He<strong>th</strong>erington<br />

Yale University<br />

Dept of Mot. Biophys<br />

and Biochem.<br />

New Haven, CT 06510<br />

Robert Highet<br />

Nat'[ Heart/Lung & Blood I<br />

National Inst. of Heal<strong>th</strong><br />

Bldg 10 Rm 7N320<br />

Be<strong>th</strong>esda, MD 20892<br />

David F. Hiltenbrand<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, MA 01960<br />

Toshifumi Hiraoki<br />

University of Calgary<br />

Div. of Biochemistry<br />

Calgary,A[ta,Can. T2N1N4<br />

Gina L. Hoatson<br />

College of William & Mary<br />

Dept of Physics<br />

Williamsburg, VA 23185<br />

Scott K. Holland<br />

Yale University<br />

Sch of Med, Diag. Rad.<br />

333 Cedar St<br />

New Haven, CT 06520<br />

Robert S. Honkonen<br />

Stauffer Chemical Co.<br />

Eastern Research Ctr.<br />

Dobbs Ferry, NY 10522<br />

Howard Homing<br />

Varian Associates<br />

505 Julie Rivers Rd<br />

Sugar Land, TX 77478<br />

Gregory Helms<br />

Univ of Hawaii<br />

Dept of Chem - Manda<br />

2945 The MaLt<br />

Honolulu, HI 96822<br />

Michael J. Hennessy<br />

IGC Intermag. Gen. Corp.<br />

Magnetic Res. Lab.<br />

1223 Peoples Ave.<br />

Troy, NY 12180<br />

J. Michael Hewitt<br />

Eastman Kodak Co.<br />

Research Laboratories<br />

Rochester, NY 14615<br />

Lauren E. Hilt<br />

Michigan State Univ.<br />

Oept of Chemistry<br />

East Lansing, MI 48824<br />

Peter R. Hitliard<br />

Ctairot Res. Labs.<br />

2 Blachtey Rd.<br />

Stamford, CT 06922<br />

Robert C. Hirst<br />

Goodyear Tire & Rubber<br />

Dept. 415A<br />

Akron, OH 44305<br />

Jeffrey Hoch<br />

Rowland Institute<br />

100 Cambridge Pkwy.<br />

Cambridge, NA 02142<br />

Brenda S. Hotmes<br />

Naval Research Lab,<br />

Code 6120<br />

Washington, DC 20375-5000<br />

Kenne<strong>th</strong> D. Hope<br />

Univ of Atabama-Birmgham.<br />

Dept of Chemistry<br />

University Station<br />

Birmingham, AL 35294<br />

David I. Houtt<br />

NIH<br />

9000 Rockvilte Pike<br />

Be<strong>th</strong>esda, MD 20892


Edward S. Hsi<br />

Union Carbide Corp.<br />

PO Box 670<br />

Bound Brook, gJ 08805<br />

Dee-Hua Huang<br />

University of Atabama<br />

NMR Facitity/CHS B-31<br />

Birmingham, AL 35294<br />

Robert L. Hubbard<br />

Tektronix Inc.<br />

Box 500,MS50-324<br />

Beaverton, OR 97077<br />

Steven Huhn<br />

Nabisco Brands Res. Ctr.<br />

100 DeForest Ave.<br />

East Hanover, NJ 07936<br />

Ca<strong>th</strong>erine T. Hunt<br />

Rohm & Haas Co.<br />

Anatyticat Res 8B<br />

Spring House, PA 19477<br />

Stuart Hurtbert<br />

Burroughs Wellcome<br />

3030 Cornwattis Rd.<br />

Res Tri.Park, NC 27709<br />

Tracey Hutchins<br />

Chemicat Dynamics<br />

3001Hadtey Road<br />

PO Box 395<br />

So. Ptainfietd, NJ 07080<br />

David A. Ikenberry<br />

Univ of Catif.-San Diego<br />

Dept of Chemistry<br />

B-014<br />

La Jotta, CA 92093<br />

Dan Iverson<br />

Varian Associates<br />

611Hansen Way<br />

ParD Atto, CA 94303-0883<br />

Victoria J. Jacob<br />

Spectrat Data Services<br />

818 Pioneer<br />

Champaign, IL 61820<br />

Grace Hsu<br />

M & T Chemicats<br />

PO Box 1104<br />

Rahway, NJ 07065<br />

Wen-Chang W. Huang<br />

Univ. of Washington<br />

Dept of Chemistry<br />

Seattte, WA 98105<br />

Donatd W. Hughes<br />

McMaster University<br />

Dept of Chemistry<br />

1280 Main St., West<br />

Hamitton,Ont.Canada L8S 4M<br />

Chi Cheng Hung<br />

Washington University<br />

Box 1134<br />

Chemistry Dept.<br />

St. Louis, NO 63130<br />

Brian K. Hunter<br />

Oueen's University<br />

Kingston,<br />

Ontario, Canada K7L 3N6<br />

Cyn<strong>th</strong>ia Husted<br />

Univ of [ttinois<br />

Box 43 Roger Adams Lab<br />

Sch. of Chem. Science<br />

Urbana, IL 61801<br />

WittiamC. Hutton<br />

Monsanto Co.<br />

Life Sci. NMR Ctr.<br />

700 Chesterftd. Vit.Pkwy.<br />

St. Louis, MO 63198<br />

Paut T. Ingtefietd<br />

Ctark University<br />

Dept of Chemistry<br />

Worcester, MA 01610<br />

Pradeep S. lyer<br />

Unocat<br />

Science & Tech.Div<br />

376 S. Vatencia Ave.<br />

Brea, CA 92621<br />

Russett E. Jacobs<br />

Univ. of Catifornia<br />

Dept. of Phys. & Biophys.<br />

Irvine, CA 92717<br />

Victor L. Hsu<br />

Univ. of Catif.-San Diego<br />

B-014 Dept of Chemistry<br />

La Jo[ta, CA 92093<br />

Shaw-Guand Huang<br />

Harvard University<br />

Dept of Chemistry<br />

Cambridge, MA 02138<br />

David Hughes<br />

Varian Associates<br />

611Hansen Way<br />

ParD Afro, CA 94303<br />

David T. Hung<br />

Resonex<br />

720 Pa[omar Ave.<br />

Sunnyva[e, CA 94086<br />

Ratph E. Hurd<br />

GE NNR Inst.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Howard Hutchins<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, NA 01960<br />

Geno A. lannaccone<br />

VPI & SU<br />

Chemistry Dept.<br />

Btacksburg, VA 24061<br />

Ru<strong>th</strong> R. Inners<br />

Bruker Instruments<br />

Manning Park<br />

Vitterica, MA 01821<br />

Jasper Jackson<br />

120 Sherwood<br />

Los Atamos, NM 87544<br />

Nazim J. Jaffer<br />

Univ of Catifornia - L.A.<br />

Dept of Chem& Biochem.<br />

Los Angetes, CA 90024


Hans J. Jakobsen<br />

Univ of Aarhus<br />

Dept of Chemistry<br />

800 Aarhus C,<br />

Denmark<br />

Erica Jansson<br />

Univ of Catif.-San Fran.<br />

Science 926<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Ronald M. Jarret<br />

Cortege of Hoty Cross<br />

Dept of Chem.<br />

Worcester, NA 01610<br />

Lynn W. Jetinski<br />

AT&T Bert Laboratories<br />

600 Mountain Ave.<br />

Murry Hilt, NJ 07974<br />

LeRoy F. Johnson<br />

GE HMR<br />

225 Fourier Ave.<br />

Fremont, CA 94539<br />

Kermit M. Johnson<br />

Michigan State Univ.<br />

Chemistry Dept.<br />

East Lansing, Ml 48824<br />

Eric R. Johnston<br />

IBM Instruments, Inc.<br />

San Jose, CA 95110<br />

Robert L. Jones<br />

Georgia Tech<br />

Chemistry Dept.<br />

Attanta, GA 30332<br />

Deborah A. Kattick<br />

UCAL, Berketey<br />

Lab for Chem. Biodynamics<br />

Catvin Lab, Dept of Chem<br />

Berketey, CA 94720<br />

Samue[ Kaptan<br />

Xerox Corp.<br />

800 Phittips Rd.<br />

0114 24D<br />

Webster, NY 14580<br />

Thomas L. James<br />

Univ of Catifornia<br />

PO Box 0446<br />

San Francisco, CA 94143<br />

Norma Jardetzky<br />

Stanford University<br />

Stanford Magnetic Lab<br />

Stanford, CA 94305-5055<br />

Thomas P. Jarvie<br />

Univ. of Catifornia<br />

Oept of Chemistry<br />

Berketey, CA 94720<br />

Yi Jin Jiang<br />

University of Utah<br />

Deportment of Chemistry<br />

Box 102<br />

Satt Lake City, UT 8/,112<br />

Bruce A. Johnson<br />

Yate Univ./Sch of Med.<br />

Dept of Mot Biophys<br />

PO 3333<br />

New Haven, CT 06510<br />

Connie Johnson<br />

Bruker Instruments<br />

Manning Park<br />

git[erica, MA 01821<br />

Atan A. Jones<br />

Ctark University<br />

Dept of Chemistry<br />

Worcester, NA 01610<br />

Tom Jue<br />

Yate University<br />

Mot Biophys & Biochem.<br />

New Haven, CT 06511<br />

Pau[ Kanyha<br />

GE NMR Institute<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Leeta Kar<br />

Univ. of Ittinois<br />

Dept of Ned. Chem<br />

PO Box 6998<br />

Chicago, IL 60680<br />

Na<strong>th</strong>an J. Janes<br />

Johns Hopkins Univ NIAAA<br />

1800 E. Jefferson St.<br />

Battimore, MD 21205<br />

Harotd C. Jarrett<br />

Nat't. Res. Councit-Canada<br />

Div. of Biotogica[ Science<br />

Ottawa,Ont. Canada K1A OR6<br />

Linda A. Jeticks<br />

Hunter cortege<br />

695 Park Ave.<br />

New York City, NY 10021<br />

Constantino Job<br />

Auburn lnternational-iMR<br />

4473 Wittow Rd. Ste. 105<br />

Hacienda Business Pk.<br />

Pteasonton, CA 94566<br />

James H. Johnson<br />

Hoffmann-La Roche<br />

340 Kingstand St.<br />

Btdg 71<br />

Nuttey,, NJ 07110<br />

Chartes S. Johnson, Jr.<br />

Univ of Nor<strong>th</strong> Carolina<br />

Dept of Chem., 045A<br />

Chape[ Hitt, NC 27514<br />

Ctaude R. Jones<br />

Purdue University<br />

Dept of Chemistry<br />

W. Lafayette, IN 47907<br />

Gary P. Juneau<br />

Otin Corporation<br />

PO Box 586<br />

Cheshire, CT 06410-0586<br />

Lung Fa (Jeff) Kao<br />

Ctorox Tech Center<br />

PO Box 493<br />

Pteasanton, CA 94566<br />

Gregory S. Karczmar<br />

Univ. of Catif.-San Fran.<br />

415 Warren Dr. #11<br />

San Francisco, CA 94131


Rodney V. Kastrup<br />

Exxon Research & Engineeri<br />

Rte. 22 E. CLinton Townshi<br />

Annandate, NJ 08801<br />

Lewis E. Kay<br />

Yale University<br />

Oept of Chemistry<br />

225 Prospect St.<br />

Hew Haven, CT 06511<br />

James H. Keetar<br />

Cambridge University<br />

University Chemistry Lab<br />

Lensfield Rd.<br />

Canbridge, England CB21EW<br />

Tony Keller<br />

Bruker Instruments<br />

Manning Park<br />

Billerica, HA 01821<br />

Max A. Keniry<br />

Univ. of California<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Robert A. Kinsey<br />

BF Goodrich<br />

Res & Oeve[. Ctr.<br />

9921Brecksvitte Rd.<br />

Brecksvitte, OH 44141<br />

Branimir Ktaic<br />

Stanford Nag. Res. Lab<br />

Stanford University<br />

Stanford, CA 94305-5055<br />

Christopher T. G. Knight<br />

Univ. of Illinois<br />

Sch. Chemical Science<br />

505 S. Ma<strong>th</strong>ews Ave.<br />

Urbana, IL 61801<br />

Richard A. Komoroski<br />

Univ. of Ark for Hed.Sci.<br />

Slot 596 4301W. Markham<br />

Little Rock, AR 72205-71~<br />

Alan M. Kook<br />

Rice University,NHR Ctr.<br />

Dept of Chemistry/Rm 309A<br />

Houston, TX 77005<br />

Robert J. Kauten<br />

Univ. of California-Davis<br />

717 Atvarado #168<br />

Davis, CA 95616<br />

David R. Kearns<br />

Univ. of Calif.-San Diego<br />

Dept of ChemB-014<br />

La Jotta, CA 92093<br />

Paul A. Keifer<br />

Univ. of Ittinois<br />

School of Chem. Science<br />

Box 95-9<br />

Urbana, IL 61801<br />

Michael F. Ketty<br />

GE NMR Institute<br />

255 Fourier Ave.<br />

Fre~nont, CA 94539<br />

Gordon J. Kenned,/<br />

Esso Petroleum Canada<br />

PO Box 3022 Research Dept<br />

Sarnia/Ont. Can. N7T 7141<br />

Agustin B. Kintanar<br />

University of Washington<br />

Dept of Chemistry/BG-lO<br />

Seattle, WA 98195<br />

Melvin P. Klein<br />

Univ. of Calif.-Berkeley<br />

Lawrence Berkety Lab<br />

Berkeley, CA 94720<br />

Mark J. Knudsen<br />

Univ of California-Davis<br />

Dept of Biol. Chem.<br />

School of Medicine<br />

Davis, CA 95616-2043<br />

Hobby Kondo<br />

JEOL USA INC<br />

11 Dearborn Rd.<br />

Peabody, HA 01960<br />

Max Kopetevich<br />

UCLA<br />

Dept of Chemistry<br />

405 Hilgard Ave.<br />

Los Angeles, CA 90024<br />

Roger A. Kautz<br />

Stanford Medical Ctr.<br />

Dept of Cell Biotogy,DlO5<br />

Stanford, CA 94305<br />

Joseph D. Keegan<br />

GE NHR Institute<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Paul J. Keller<br />

Barrow Neurot. Inst.<br />

350 W. Thomas Rd.<br />

Phoenix, AZ 85013<br />

Raymond D. Kendrick<br />

IBM Research<br />

650 Harry Rd.<br />

San Jose, CA 95120-6099<br />

Albrecht Khuen<br />

Technical Univ of Berlin<br />

lwan-N.-Stanski-Inst.<br />

Str. 17 Juni 112,D-1000<br />

Berlin 12,Gerrnany<br />

Gregory L. Kirk<br />

Resonex<br />

720 Patomar Ave.<br />

Sunnyvale, CA 94086<br />

Jack Ktinowski<br />

Univ. of Cambridge<br />

Dept of Physical Chemistry<br />

Lensfietd Rd.<br />

CatTibrdg, Eng. CB21EP<br />

Frank E. Koehn<br />

Sea Pharm/Harbor Branch<br />

Oceanographic Inst.<br />

5600 Old Dixie Hwy.<br />

Ft. Pierce, FL 33450<br />

Marvin J. Kontney<br />

Univ. of Wisconsin<br />

Dept. of Chemistry<br />

1101 University Ave.<br />

Madison, gi 5]706<br />

Christoph Koppen<br />

Univ Bremn - FRG<br />

Physics Dept.<br />

2800 Bremen 33/FRG


Donald W. Kormos<br />

Case Western Univ.<br />

Dept of Radiology<br />

University Circle<br />

Cleveland, OH 44106<br />

David Kramer<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

V. V. Krishnamur<strong>th</strong>y<br />

Univ of California<br />

Pest. Chem. & Tox. Lab.<br />

Berketey, CA 94720<br />

Atsushi Kubo<br />

Univ. British Cotu~ia<br />

Dept of Chemistry<br />

2036 Main Matt<br />

Vancouver/Be,Can. V6T 1Y6<br />

Katsuhiko Kushida<br />

Varian Associates<br />

611Hansen Way<br />

Pa[o Alto, CA 94303<br />

Douglas N. Lamb<br />

Univ. of Illinois<br />

Noyes Lab Box 17-1<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

David Lankin<br />

Varian Associates<br />

205 W. Touny Ave.<br />

Park Ridge, ]L 60068<br />

Dirk Laukiem<br />

Bruker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

Ted Lawry<br />

Vet. Admin. Ned. Ctr.<br />

HRS Lab (11D)<br />

4150 Clement St.<br />

San Francisco, CA 94121<br />

Joseph H.C. Lee<br />

Sou<strong>th</strong>ern Illinois Univ.<br />

Dept of Chem. & Biochem.<br />

Carbondate, IL 62901<br />

Christine A. Kostek<br />

IBN Instruments<br />

Orchard Park<br />

PO Box 3332<br />

Danbury, CT 06801<br />

Thomas P. Krick<br />

Univ. Ninnesota<br />

Dept of Biochemistry<br />

1479 Gortner Ave.<br />

St. Paul, MN 55108<br />

Bata S. Krishnan<br />

Bristol Nyers Co.<br />

5 Research Pkwy.<br />

Wattingford, CT 06492<br />

Philip L. Kuhns<br />

Chemagnetics, inc.<br />

208 Commerce Drive<br />

Ft. Collins, CO 80524<br />

Gittes Labette<br />

Cambridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, HA 01801<br />

Joseph B. Lambert<br />

Nor<strong>th</strong>western Univ.<br />

Chemistry Dept.<br />

Evanston, IL 60201<br />

Laurine A. LaPtanche<br />

Nor<strong>th</strong>ern Illinois Univ.<br />

Dept of Chemistry<br />

DeKatb, IL 60115<br />

Frank Laukiem<br />

Bruker Instruments<br />

Hanning Park<br />

Bitterica, HA 01821<br />

W. John Layton<br />

Univ of Kentucky<br />

NRC<br />

Chemistry Dept.<br />

Lexington, KY 40506-0053<br />

Robert W. K. Lee<br />

Univ of California<br />

Chemistry Dept.<br />

Riverside, CA 92521<br />

John F. Koztouski<br />

Purdue University<br />

Dept. of Nedicina[ Chem.<br />

School of Pharmacy<br />

West Lafayette, lN 47907<br />

N. Rama Krishna<br />

Univ of Alabama<br />

NHR Core Fac. CHS B-31<br />

Birmingham, AL 35294<br />

Richard W. Kriwacki<br />

Boehringer Ingelheim<br />

Pharmaceutical, Inc.<br />

90 E. Ridge Rd.<br />

Ridgefietd, CT 06877<br />

Ahi[ Kumar<br />

Syracuse University<br />

305 Bowne Hall<br />

Syracuse, NY 13210<br />

Gerd N. LaMar<br />

Univ. of Calif.-Davis<br />

Davis, CA 95616<br />

Andrew N. Lane<br />

NlHR-London<br />

The Ridgeway Nitl Hilt<br />

London, England NW7 1AA<br />

Ernest Douglas Laue<br />

Univ. of Cambridge<br />

Dept of Biochemistry<br />

Tennis Ct. Road<br />

Cambridge,England CB2 1QW<br />

Paul C. Lauterbur<br />

University of lttinois<br />

Biemedicat NR Lab<br />

1307 West Park<br />

Urbana, IL 61801<br />

Chang J. Lee<br />

Univ of California<br />

Dept of Chemistry<br />

Berkely, CA 94720<br />

Yu-Hwei Lee<br />

Univ. Illinois-Chicago<br />

Ned ChemDept<br />

833 S. Wo(xJ St.<br />

Chicago, II 60612


Guang-Huei Lee<br />

Sun Refining/Hkting Co.<br />

PO Box 1135<br />

Narcus Hook, PA 19061-0835<br />

Hark Leifer<br />

Varian Associates<br />

611Hansen gay<br />

Pato ALto, CA 94303<br />

Hary Frances LeopoLd<br />

University of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112<br />

Nartin E. Levenson<br />

Auburn Int'[ IHR Div.<br />

Eight ELectronics Ave.<br />

Danvers Industrial Pk<br />

Danvers, HA 01923<br />

George C. Levy<br />

Neu Me<strong>th</strong>ods Research Inc.<br />

Syracuse University<br />

305 Bowne Hall<br />

Syracuse, NY 13210<br />

Robert L. Lichter<br />

S.U.N.Y.Stony Brook<br />

2401 Lab Office BLdg.<br />

Stonybrook, NY 11794-4433<br />

Fu-Tyan Lin<br />

Univ of Pittsburgh<br />

1305 CB/ChemDept<br />

Pittsburgh, PA 15260<br />

Peter Ltewettyn<br />

Varian Associates<br />

611Hansen Way<br />

Pa[o ALto, CA 94303<br />

George H. Lohrer<br />

Programmed Test Sources<br />

9 Beaver Brook Rd.<br />

Littteton, HA 01460<br />

Irving J. Lowe<br />

Carnegie MeLlon Univ.<br />

BiD[ Sci<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213<br />

Suzannie C. Lee<br />

Proctor & GambLe Co.<br />

Miami VaLLey Labs.<br />

Box 39175<br />

Cincinnati, OH 45247<br />

PhiLip Leighton<br />

Univ of PennsyLvania<br />

Dept of Chemistry<br />

Phita., PA 19104-6323<br />

CharLes L. Lerman<br />

ICI Americas<br />

Concord Pike & Hurphy Rd.<br />

gitmington, DE 19897<br />

John R. Levin<br />

General ELectric Co.<br />

199 Pomeroy Rd.<br />

Suite 104<br />

Parsippany, NJ 07054<br />

Barbara A. Lewis<br />

Univ. Wisconsin-Madison<br />

Dept of Chemistry<br />

1101 University Ave.<br />

Madison, WI 53706<br />

John J. Likos<br />

Honsanto Co.<br />

700 ChesterfieLd ViLLage P<br />

St. Louis, NO 63198<br />

Shang-Bin Liu<br />

Univ. of CaLifornia<br />

Chemistry Dept.<br />

HiLdebrand D-64<br />

BerkeLey, CA 94720<br />

H. Lock<br />

See abstract<br />

James L. Loo<br />

Univ CaLifornia<br />

Div of Nature Sciences<br />

Santa Cruz, CA 95064<br />

Peter Luksch<br />

Scientific Info Services<br />

7 Woodtand Ave.<br />

Larchmont, NY 10538<br />

Yang-Chih Lee<br />

Thomas Jefferson Univ.<br />

5 Jacatyn Dr.<br />

Havertown, PA 19065<br />

Gregory Leo<br />

Honsanto 018<br />

800 N. Lindbergh BLvd.<br />

St. Louis, NO 63167<br />

Laura Lerner<br />

LCP/NIADDK/NIH<br />

Btdg 2 Rm B2-08<br />

Be<strong>th</strong>esda, HI) 20892<br />

Hatcotm H. Levitt<br />

NIT<br />

NW14-5122<br />

Cambridge, NA 02139<br />

Shi-Jiang Li<br />

Johns Hopkins<br />

Sch. Ned.310 TayLor<br />

720 RutLand Ave.<br />

BaLtimore, MD 21205<br />

Hans H. Limback<br />

Univ of Frieburg<br />

Physical Chemistry<br />

ALbert Str.21<br />

07800 Freiburg W.Ger<br />

David Live<br />

Emory University<br />

Dept of Chemistry<br />

AtLanta, GA 30322<br />

Michael P. Lohrer<br />

Programmed Test Sourses<br />

9 Beaver Brook Rd.<br />

Littteton, HA 01460<br />

Jan Lovy<br />

Kingston Tech Inc.<br />

2235B Route 130<br />

Dayton, NJ 08810<br />

Robert E. Lundin<br />

gestern Req. Res. Ctr.<br />

800 Buchanan St.<br />

ALbany, CA 94710


P. R. Luyten<br />

Univ. of California<br />

Chemistry Dept.<br />

La Jolta, CA 92093<br />

James W. Rack<br />

Nat't Inst. of Dent. Res.<br />

NIH Btdg 30 Rm 106<br />

Be<strong>th</strong>esda, HI) 20892<br />

Prem P. Mahendroo<br />

Atcon Laboratories, inc.<br />

6201S. Freeway<br />

Ft. Wor<strong>th</strong>, TX 76134<br />

Paul D. Majors<br />

Lovetace Medical Found.<br />

2425 Ridgeorest Dr, SE<br />

Albuquerque, NM 87108<br />

Douglas R. Manatt<br />

Lawrence Livermore Lab<br />

Nuclear Chem, LLNL<br />

PO Box 808 L-233<br />

Livermore, CA 94550<br />

Steven R. Maple<br />

Indiana University<br />

Dept of Chemistry<br />

Btoemington, IN 47405<br />

Charlene Marie<br />

Ctorox Tech Center<br />

7200 Johnson Dr.<br />

Pteasanton, CA 94566<br />

Trevor G. Marshall<br />

E.F. Unicon Systems Inc.<br />

3423 Hilt Canyon Ave.<br />

Thousand Oaks, CA 91360<br />

Gerald B Matson<br />

VA Nedica[ Center<br />

MRS Lab (11D)<br />

4150 Clement St.<br />

San Francisco, CA 94121<br />

Nark Mattingty<br />

Bruker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

James R. Lyerla<br />

IBM Almaden Res. Ctr.<br />

650 Harry Rd.<br />

San Jose, CA 95120<br />

Alexander G. Hacur<br />

Neu Me<strong>th</strong>ods Research inc.<br />

719 E. Genesee St.<br />

Syracuse, NY 13210<br />

Vera V. Hainz<br />

University of Illinois<br />

Sch. of Chemical Sciences<br />

Box 34-1<br />

Urbana, 1L 61801<br />

J. An<strong>th</strong>ony Hatikayit<br />

Yale University<br />

Dept. HBB<br />

333 Cedar St.<br />

Neu Haven, CT'06510<br />

Sadasivam Manogaran<br />

Univ of California<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Paul S. Marchetti<br />

Univ. of So. Carolina<br />

Chemistry Dept.<br />

Cotun~ia, SC 29205<br />

Ron Raron<br />

Merck Institute<br />

Merck & Co., Inc.<br />

PO Box 2000<br />

Rahway, NJ 07065<br />

Joel F. Martin<br />

Univ. Calif.-San Diego<br />

Dept of Radiology/H-756<br />

San Diego, CA 92103<br />

Shigeru Matsui<br />

Hitachi Central Res. Lab.<br />

Hitachi, Ltd.<br />

PO Box 2<br />

Kokubunji, Tokyo 185 Japan<br />

Anabeta Haynard<br />

Univ. of Toronto<br />

80 St. George St.<br />

Toronto, M55 1A1 Canada<br />

Gary E. Maciel<br />

Colorado State Univ.<br />

Chemistry Dept.<br />

Ft. Collins, CO 80523<br />

Michael L. Haddox<br />

Syntex Corp. Res. Div.<br />

3401Hittview Ave.<br />

PaiD Alto, CA 94304<br />

Truett Majors<br />

Varian Associates<br />

611Hansen Way<br />

Pard At[o, CA 94303<br />

Stanley L. Manatt<br />

Jet Propulsion Laboratory<br />

4800 Oak Grove Dr.<br />

Pasadena, CA 91109<br />

Jintong MaD<br />

University of Florida<br />

HRI Group<br />

Dept of Radiology<br />

Gainesvitte, FL 32611<br />

Thomas H. Hareci<br />

University of Florida<br />

Radiology Dept<br />

Box J-374<br />

Gainesvitte, FL 32610<br />

Brian J. Marsden<br />

Univ. of Alberta<br />

Dept of Biochem.<br />

Edmonton,<br />

Alberta, Canada T6G 2H7<br />

G. D. Mateescu<br />

Case Western Resrv. Univ.<br />

Cleveland, OH 44106<br />

George Hattinger<br />

Diasonics, Inc.<br />

533 Cabot R.<br />

San Francisco, CA 94080<br />

Charles L. Nayne<br />

University of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112


John HcAutiffe<br />

Univ of Cincinnati<br />

Oept of Anes<strong>th</strong>esia<br />

231Be<strong>th</strong>esda Ave.<br />

Cincinnati, OH 45267<br />

Lewis NcDonald<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, NA 01960<br />

Stuart J. McLachlan<br />

General Electric Co.<br />

255 Fourier Ave.<br />

Freemont, CA 94539<br />

Lee McPeters<br />

Rohm & Haas Co.<br />

PO Box 219<br />

Bristol, PA 19007<br />

Ronatd A. Merrill<br />

YaLe University<br />

Sterling Chem Lab<br />

PO Box 6666<br />

New Haven, CT 06511-8118<br />

Frank Michaets<br />

Eastman Kodak Res. Labs.<br />

Eastern Ave.<br />

Rochester, NY 14650<br />

PameLa A. Mitts<br />

Univ of Calif.-San Fran.<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Peter A. Mirau<br />

AT&T BeLt Labs<br />

600 Mountain Ave.<br />

Murray HILL, NJ 07974<br />

ore Mots<br />

gayne State Univ.<br />

Dept of Chemistry<br />

Detroit, Ml 48202<br />

Courtney F. Morgan<br />

Univ. of CaLif.-Santa Cruz<br />

Natural Sciences It<br />

Santa Cruz, CA 95064<br />

Mark A. McCoy<br />

Frick Chemical Lab<br />

Washington Road<br />

Princeton, NJ 08544<br />

Jacquetine L. McGourty<br />

Univ. of CaLif.-Davis<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

fan J. McLettan<br />

Johns Hopkins Ned. Sch.<br />

Dept of Radiology<br />

BaLtimore, MD 21205<br />

James H. Medley<br />

BristoL-Myers<br />

Pharm. Res. & Dev. Div.<br />

PO Box 4755<br />

Syracuse, NY 13221-4755<br />

Kenne<strong>th</strong> R. Metz<br />

Penn State Univ.<br />

Hershey Red. Ctr/Rad.Dept.<br />

PO Box 850<br />

Hershey, PA 17033<br />

John M. Mittar<br />

Yale University<br />

Dept of Chemistry<br />

PO Box 6666<br />

New Haven, CT 06511<br />

Michael J. Minch<br />

Univ. of Pacific<br />

Dept of Chem.<br />

Stockton, CA 95211<br />

Hitoshi Miura<br />

E356/113,CR.D,<br />

E.].DuPont de Nemours<br />

Wilmington, DE 19898<br />

Ben Montez<br />

818 Pioneer<br />

Champaign, IL 61820<br />

Paul K. Morris<br />

Morris Instruments Inc.<br />

1382 McMahon Ave.<br />

GLoucester,<br />

Ontario, Canada K1T 1C3<br />

Paula L. McDaniet<br />

Univ. of Illinois<br />

505 S. Ma<strong>th</strong>ews<br />

Box 35-1Dept of Chem.<br />

Urbana, IL 61801<br />

Robert A. McKay<br />

gashington University<br />

Dept of Chem/Camp Bx1134<br />

1Brookings Dr.<br />

St. Louis, NO 63130<br />

Ronatd McNamara<br />

Univ. of PennsyLvania<br />

Dept of Chemistry<br />

PhiladeLphia, PA 19104<br />

Michael T. Melchior<br />

Exxon Research<br />

Clinton Township<br />

Annandate, NJ 08801<br />

Dieter Meyerhoff<br />

Univ. of Calif.-Berkeley<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Joel B. HilLer<br />

Naval Research Lab<br />

Code 6120<br />

Washington, DC 20375-5000<br />

Virginia W. Miner<br />

Dow Chemical Co.<br />

Btdg 574<br />

Midland, MI 48667<br />

Steven C. Mohr<br />

GE NNR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

J. Robert Mooney<br />

Standard OiL Co.<br />

4440 Warrensvilte Ctr Rd.<br />

Cleveland, OH 44128<br />

George O. Morton<br />

American Cyanamid Co.<br />

Lederte Labs Div.<br />

Pearl River, NY 10965


Michael E. Noseley<br />

Univ of California -S.F.<br />

Dept of Radiology<br />

Box 0446<br />

San Francisco, CA 94143<br />

Donald D. Huccio<br />

Univ. Of ALabama<br />

Dept of Chemistry<br />

Birmingham, AL 35294<br />

Nar<strong>th</strong>a P. Nurari<br />

Liposome Technology Inc.<br />

1050 Hamilton Court<br />

Menlo Park, CA 94025<br />

Joseph Nurphy-Boesch<br />

Univ of California<br />

School of Pharmacy<br />

Box 0446<br />

San Francisco, CA 94143<br />

Barbara L. Nyers-Acosta<br />

Lockheed Hiss. & Space Co.<br />

0/48-92 B/195B<br />

PO Box 3504<br />

Sunnyvale, CA 94088-3504<br />

Lewis E. Nance<br />

Univ. of Nor<strong>th</strong> Carolina<br />

Dept of Chemistry<br />

601S. College Rd.<br />

Wilmington, NC 28403-3297<br />

Sarah J. Nelson<br />

Fox Chase Cancer Center<br />

NHR Labs<br />

77'01Burhotme Ave.<br />

Philadelphia, PA 19111<br />

David G. Nettesheim<br />

Abbott Labs<br />

D-47G, AP9<br />

Abbott Park, IL 60064<br />

Xuan-Zhong Ni<br />

Doty Scientific<br />

600 Ctemson Rd.<br />

Colun~oia, SC 29223<br />

Ann T. Nicot<br />

Litton-Guidance & Control<br />

5500 Canoga Ave.<br />

Woodland Hilts, CA 91365<br />

Edwin Hotelt<br />

Dept of Chemistry<br />

San Francisco State Univ.<br />

1600 Holtoway Ave.<br />

San Francisco, CA 94132<br />

Karl T. Muetter<br />

Univ of Calif.- Berkeley<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

James B. Murdoch<br />

Picker Inter.<br />

NHR Division<br />

5500 Avion Park Dr.<br />

Highland Heights, OH 44143<br />

Martin S. Mutter<br />

McNeil Pharmaceuticats<br />

Dept of Chemical Research<br />

Sprg. House, PA 19477-0776<br />

Donald L. Naget<br />

Eppley Institute<br />

Univ. Nebraska Ned Ctr.<br />

Omaha, NE 68105<br />

Surinder Singh Naruta<br />

Scripps Clinic & Research<br />

Dept of Notecutar Biol.<br />

10666 g. Torrey Pines Rd.<br />

La Jotta, CA 92037<br />

Janis T. Nelson<br />

Syntex Research<br />

3401Hittvieu Ave.<br />

Pa[o Alto, IL 60566<br />

Richard A. Ne~anark<br />

3N Co.<br />

Btdg 201-BS-05<br />

St. Paul, NN 55144<br />

Brenda C. Nichols<br />

Varian Associates<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

Ronatd A. Nieman<br />

Arizona State University<br />

Chemistry Dept.<br />

Tempe, AZ 85287<br />

Foad Mozayeni<br />

Akzo Chemie America<br />

8401W. 47<strong>th</strong> St.<br />

NcCook,, IL 60525<br />

Detteff Nuetter<br />

Bruker Instruments<br />

Nanning Park<br />

Bitterica, MA 01821<br />

Paul Murphy<br />

IBM Instruments Btdg 1<br />

Orchard Park<br />

Danbury, CT 06810<br />

Mark E. Myers<br />

General Motors Res. Lab.<br />

30500 Mound Road<br />

Warren, Ml 48090-9055<br />

Thomas T. Nakashima<br />

Univ of ALberta<br />

Chemistry Dept.<br />

Edmonton,<br />

Atta.,Canada T6G 2G2<br />

Vitas garutis<br />

gatco Chemicals<br />

One Nalco Center<br />

gaparvitte, IL 60566<br />

Janis T. Nelson<br />

Syntex Research<br />

3401Hittvieu Ave.<br />

Paid Alto, CA 94304<br />

Richard D. Neumark<br />

Laurence Berkeley Lab<br />

MS 55-121<br />

1 Cyclotron Road<br />

Berkeley, CA 947"20<br />

Linda Nichotson<br />

Florida State University<br />

Inst. Hote.Biophys.<br />

Tallahassee, FL 32306<br />

Walter P. Nienczura<br />

University of Hawaii<br />

Chemistry Dept.<br />

Honolulu, HI 96822


Robin A. Nissan<br />

Naval Weapons Center<br />

Code 3851Nichetson Lab<br />

China Lake, CA 93555<br />

Atsuko Y. Nosaka<br />

NIH<br />

Nat't Inst. of Aging<br />

Gerontology Center<br />

Baltimore, ND 21224<br />

Coteen Young O'Gara<br />

Wayne State Univ.<br />

Chemistry Dept.<br />

410 W. Warren Ave.<br />

Detroit, N! 48202<br />

Mark A. O'Neil-Johnson<br />

IBM Instruments<br />

40 Airport Pkwy.<br />

San Jose, CA 95110<br />

Jong H. Ok<br />

Univ. of Calif.-San Diego<br />

Dept of Chemistry<br />

La Jotta, CA 92093<br />

ALan W. Otson<br />

General Electric NHR<br />

3165 Ludlow Rd.<br />

Shaker Hgts., OH 44120-283<br />

Anita M. Orendt<br />

Univ of Utah<br />

Chemistry Dept/Box 6G<br />

Salt Lake City, UT 84112<br />

James D. Otvos<br />

Univ of Wisconsin<br />

at Nitwaukee<br />

Dept of Chemistry<br />

Nitwaukee, W! 53201<br />

Peter J. Paterson<br />

JEOL USA INC<br />

11 Dearborn Rd<br />

Peabody, HA 01960<br />

Ross Payne<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303-0883<br />

Joseph H. Noggte<br />

University of Delaware<br />

Dept of Chemistry<br />

Newark, DE 19711<br />

Rudi Nuntist<br />

Univ. of California<br />

Chemistry Dept.<br />

Berkeley, CA 94720<br />

John F. O'Gara<br />

General Ntrs Tech Res. Lab<br />

30500 Hound R.<br />

Warren, N! 48090-9055<br />

Terrance G. Oas<br />

NIT<br />

Francis Bitter Natl Nag. L<br />

Cambridge, HA 02139<br />

Eric Otdfietd<br />

University of Illinois<br />

Sch. of Chemical Science<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

Stanley J. Opetta<br />

Univ of Pennsylvania<br />

Dept of Chemistry<br />

PhiladeLphia, PA 19104<br />

Donald G. Ott<br />

Los Atamos Nat't. Lab.<br />

Exptos. Tech. Group<br />

MSG-920<br />

Los Atames, NN 87545<br />

Allen R. Palmer<br />

Chernagnetics<br />

208 Commerce Dr.<br />

Ft Collins, CO 80524<br />

Steven L. Patt<br />

Varian Associates<br />

611Hansen gay<br />

Pato ALto, CA 94303<br />

Robert N. Pearson<br />

3590 Churchitt Ct.<br />

Auburn Int~l IMR Div.<br />

Pteasanton, CA 94566<br />

Carol I. Noggte<br />

Medtab, Inc.<br />

8 Falcon Court<br />

Wilmington, DE 19808<br />

Daniel J. O'Donnett<br />

Chemagnetics, Inc.<br />

208 Commerce Dr.<br />

Ft. ColLins, CO 80524<br />

Daniel J. O'Leary<br />

UCLA<br />

Dept of Chem& Biochem<br />

Los Angeles, CA<br />

Nuneki Ohuchi<br />

JEOL Ltd.<br />

Nakagami Akishima<br />

Tokyo, Japan 196<br />

Edward T. Otejniczak<br />

Abbott Labs Btdg AP9<br />

Pharmaceutical Discovery<br />

Abbott Park, IL 60064<br />

Arnulf Oppett<br />

Siemens A. G.<br />

Henkestr 127<br />

D-8520<br />

Erlangen, FRG<br />

Albin Otter<br />

Univ of Alberta<br />

Dept of Chemistry<br />

Edmonton,<br />

Alta, Canada TSG 2G2<br />

Jona<strong>th</strong>an W. Paschal<br />

Eli Lilly Res. Labs.<br />

Lilly Corp. Center<br />

Indianapolis, 1N 46285<br />

John Paxton<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Gerald A. Pearson<br />

Univ of Iowa<br />

Chemistry Dept.<br />

Iowa City, IA 52242


Joseph H. Pease<br />

Univ. of Calif.-Berkeley<br />

Melvin Calin Lab<br />

Berkeley, CA 94720<br />

Donald J. Pennino<br />

The B.O.C. Group Inc.<br />

100 Mountain Ave.<br />

Nurray Hill, NJ 07974<br />

Carote Perry<br />

Univ of Utah<br />

Chemistry Dept.<br />

Salt Lake City, UT 84112<br />

David H. Peyton<br />

Univ of Catif.-Davis<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

Stephen B. Phitson<br />

Univ. of Minnesota<br />

Dept of Chem.<br />

207 Pleasant St., SE<br />

Minneapolis, MN 55455<br />

T. Phil Pitner<br />

Boehringer lngelheim<br />

90 E. Ridge/PO Box 368<br />

Ridgefie[d, CT 06877<br />

Mark D. Potiks<br />

Univ. of Connecticut<br />

Inst. of Materials Science<br />

U-136<br />

Storrs, CT 06268<br />

Ftemming M. Poutsen<br />

Cartsberg Labs<br />

Dept of Chem.<br />

Gamte Carlsberg VEJIO<br />

DK-2500 Vatby, Copenh Denma<br />

William Proctor<br />

Oxford Instruments<br />

3A Alfred Circle<br />

Bedford, HA 01730<br />

Jin Oiao<br />

San Diego State Univ.<br />

Dept of Chemistry<br />

San Diego, CA 92182<br />

James J. Pekar<br />

Univ. Of Pennsylvania<br />

Dept of Biochem/Biophysics<br />

Philadelphia, PA 19104<br />

Ray Perkins<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

Joseph J. Pesek<br />

San Jose State Univ.<br />

Chemistry Dept.<br />

San Jose, CA 95192<br />

Minh Tan Phan Viet<br />

Univ. of Montreal<br />

Chemistry Dept.<br />

PO Box 6128, Sta. A<br />

Montrt,Oue,Can. H3C 3J7<br />

Francis Picart<br />

Rockefeller Univ.<br />

Box 299<br />

1230 York Ave.<br />

New York, NY 10021<br />

Steven M. Pitzenberger<br />

Merck Sharp & Dohma Res.<br />

Btdg 26o100<br />

West Point, PA 19486<br />

Karl Heinz Pook<br />

Boehringer lnge<strong>th</strong>eim KG<br />

Analytical Chem.<br />

6507 Inge<strong>th</strong>eim<br />

Rhein, West Germany<br />

Thomas K. Pratum<br />

Univ. of Washington<br />

Dept of Chemistry, BG-IO<br />

Seattle, WA 98195<br />

Ronatd J. Pugmire<br />

Univ. of Utah<br />

304 Park Btdg<br />

Salt Lake City, UT 84112<br />

Michael J. Ouast<br />

UTMB-Galveston<br />

200 University Blvd.<br />

St. 601<br />

Galveston, TX 77550<br />

Jeffrey G. Petton<br />

Univ. of Calif.-Berkeley<br />

Melvin Calvin Lab<br />

Berkeley, CA 94720<br />

Thomas G. Perkins<br />

GE NMR, Instruments<br />

255 Fourier Ave.<br />

Freemont, CA 94539<br />

Hark A. Petrich<br />

Univ. of California<br />

Dept of Chem. Eng.<br />

Berkeley, CA 94720<br />

Martin A. Phitlippi<br />

Chtorox Co.<br />

PO Box 493<br />

Pleasanton, CA 94566<br />

Ross G. Pitcher<br />

Hoffman LaRoche<br />

Physical Chemistry Dept.<br />

Nutley, NJ 07110<br />

Nick Ptavac<br />

Univ of Toronto<br />

Dept of Chemistry<br />

80 St. George St.<br />

Toronto,Ont,Canada MSS 1A1<br />

Michael A. Porubcan<br />

E.R. Squibb<br />

PO Box 4000<br />

Princeton, NJ 08543<br />

James H. Prestegard<br />

Yale University<br />

Chemistry Dept.<br />

New Haven, CT 06511<br />

David E. Purdy<br />

Siemens Medical Systems<br />

186goodAve., So.<br />

Iselin, NJ 08830<br />

Gregory Ouinting<br />

Colorado State Univ.<br />

Chemistry Dept.<br />

Ft. Collins, CO 80523


Dattas L. Rabenstein<br />

Dept. of Chemistry<br />

Univ. of Catifornia<br />

Riverside, CA 92521<br />

Tom Raidy<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Margaret H. Rakowsky<br />

Naval Research Lab.<br />

Code 617]<br />

Washington, DC 20375<br />

Mark A. Rance<br />

Res. Inst. of Scripps Ctin<br />

10666 N. Torrey Pines Rd.<br />

La Jotta, CA 92037<br />

Betty M. Ra<strong>th</strong>er<br />

Pennwatt Co.<br />

900 First St.<br />

King of Prussia, PA 19406<br />

John M. Read<br />

DuPont Medical Prod. Dept.<br />

E336/29<br />

gilmington, DE 19898<br />

Robert A. Reamer<br />

Merck Sharp & Dohme<br />

PO Box 2000, Btdg 801-210<br />

Rahway, NJ 07065<br />

Christina Redfietd<br />

Univ. of Oxford<br />

Inorganic Chemistry Lab.<br />

Sou<strong>th</strong> Parks Road<br />

Oxford, England, UK OXl 30<br />

william F. Reynolds<br />

Univ. of Toronto<br />

Chemistry Dept.<br />

Toronto,Ont.,Canada M5S 1A<br />

Rene Richarz<br />

Varian Associates<br />

611Hansen Way<br />

ParD Alto, CA 94303<br />

Dan Raftery<br />

Univ. of Catif.-Berketey<br />

Hitderbrand D-60<br />

Berkeley, CA 94720<br />

Ponni Rajagopat<br />

UCLA<br />

Dept of Chem& Biochem<br />

c/o Jutie Feigon<br />

Los Angeles, CA 90024<br />

Daniel P. Raleigh<br />

MIT/Rm NW 14-5107<br />

77Massachusetts Ave.<br />

Cambridge, HA 02139<br />

Chris I. Ratctiffe<br />

Nat't. Res. Council Canada<br />

Ottawa, Ont, Can. K1A OR6<br />

Bruce David Ray<br />

IUPUI Physics Dept.<br />

PO Box 647<br />

Indianapetis, IN 46223<br />

David B. Reader<br />

Cambridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, HA 01801<br />

Gade S. Reddy<br />

DuPont Central Research<br />

E328<br />

Wilmington, DE 19898<br />

Jeffrey A. Refiner<br />

Univ of Calif.-Berkeley<br />

Dept Chem. Eng.<br />

201 Gilman Hall<br />

Berkeley, CA 94720<br />

An<strong>th</strong>ony A. Ribeiro<br />

Duke University<br />

Box 3711<br />

Durham, NC 27710<br />

John Rieger<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 7"/478<br />

John I. Ragte<br />

Univ. of Massachusetts<br />

Dept of Chemistry,<br />

LGRT411<br />

Amherst, HA 01003<br />

Srinivasan Rajan<br />

American Cyanamid<br />

PO Box 400<br />

Princeton, NJ 08540<br />

John Ralph<br />

Univ of Calif.-Berkeley<br />

Dept of Chemistry<br />

Berkety, CA 94720<br />

Alan Ra<strong>th</strong><br />

Varian Associates<br />

CNID, Cancer Ct. Rm 228<br />

Albuquerque, NM<br />

G. Joseph Ray<br />

Amoco Research Center<br />

PO Box 400<br />

Napervitte, IL 60566<br />

Lyn Ream<br />

Auburn Int't. IMR Oiv.<br />

4473 Willow Rd.<br />

Hacienda Business Park<br />

Pteasonton, CA 94566<br />

Richard D. Redfearn<br />

Marshall Res. & Dev. Lab.<br />

DuPont<br />

3500 Grays Ferry Ave.<br />

Philadelphia, PA 19146<br />

Linda G. Reven<br />

Univ. of Ittinois<br />

Noyes Lab Box 53-1<br />

505 S. Ma<strong>th</strong>ews Rd.<br />

Urbana, IL 61801<br />

Metanie Rice-Bernatzki<br />

Varian Associates<br />

611Hansen Way<br />

Pa[o Alto, CA 94303<br />

Errott S. Riewerts<br />

Sou<strong>th</strong>west Research lnst.<br />

PO Box 28510<br />

San Antonio, TX 7828/,


Peter Rinatdi<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

WiLLiam H. Ritchey<br />

Case Western Resrv. Univ.<br />

Oept of Chemistry<br />

Cleveland, OH 44106<br />

Valerie J. Robinson<br />

Syntex, inc.<br />

2100 Syntex Ct.<br />

Mississuaga,<br />

Ontario, Can. L5N 3X4<br />

JtxJy C. Rodeghero<br />

Clorox Tech Center<br />

Analytical Res. & Serv.<br />

7200 Johnson Dr.<br />

Pleasanton, CA 94566<br />

Stephen B. W. Roeder<br />

San Diego State Univ.<br />

Dept of Physics<br />

San Diego, CA 92182<br />

WiLliam D. Rooney<br />

S.U.N.Y.-Stoneybrook<br />

Dept of Chemistry<br />

Stoneybrook, NY 11794<br />

Kenne<strong>th</strong> 0. Rose<br />

Exxon Research & Engineeri<br />

CLLAB/LH170<br />

Annanda[e, NJ 08801<br />

Daniel W. Ro<strong>th</strong><br />

Amplifier Research<br />

160 School House Rd.<br />

Souderton, PA 18964-9990<br />

Steven P. Rucker<br />

Univ. of Calif.-BerkeLey<br />

Dept of Chemistry<br />

Serketey, CA 94720<br />

Jacques Rutschmann<br />

Diasonics, inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

James H. Riordan<br />

Sou<strong>th</strong>ern Research inst.<br />

PO Box 55305<br />

Birmingham, AL 35255-5305<br />

Christopher D. Ri<strong>th</strong>ner<br />

Warner Lan~bert<br />

2800 Plymou<strong>th</strong> Rd.<br />

Ann Arbor, M1 48105<br />

Thomas J. Robinson<br />

3H Co./Riker Labs<br />

3N Center/Bldg 270-4S-02<br />

St. PauL, HN 55144<br />

James C. Rodgers<br />

Univ of California<br />

Oept of Chemistry, B-014<br />

La Jolla, CA 92093<br />

William L. Rottuitz<br />

Sou<strong>th</strong>west Research Inst.<br />

6220 Cutebra Rd.<br />

PO Box 28510<br />

San Antonia, TX 78284<br />

Thatcher W. Root<br />

Univ of Wisconsin<br />

Dept of Chem. Eng.<br />

Hadison, WI 5]706<br />

Scott Ross<br />

Cattech, 12772<br />

Pasadena, CA 91126<br />

T. Michael Ro<strong>th</strong>geb<br />

Proctor & Gamble<br />

lvorydale Tech. Ctr.<br />

5299 Spring Grove Ave.<br />

Cincinnati, OH 45217<br />

Randat Rue<br />

Varian Associates<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Timo<strong>th</strong>y R. Saarinen<br />

Univ. of Nor<strong>th</strong> Carolina<br />

Dept of Chemistry<br />

Chapel Hill, NC 27514<br />

John A. Ripmeester<br />

Nat't. Res. Council-Canada<br />

Div of Chemistry<br />

Ottaua,Ont.,Canada K1A OR9<br />

James E. Roberts<br />

Lehigh University<br />

Chem. Dept/Btdg.6<br />

Be<strong>th</strong>lehem, PA 18015<br />

Ronatd K. Rodebeugh<br />

CIBA-GEIGY Corp.<br />

444 Sa~nilt River Rd.<br />

Ardstey, NY 10502<br />

D. Christopher Roe<br />

OuPont Experimental Sta.<br />

Central Research E356<br />

Wilmington, DE 19898<br />

Alan Ronemus<br />

Univ. of California<br />

Chem Dept B-014<br />

La Jotta, CA 92093<br />

Richard C. Rosanske<br />

Florida State Univ.<br />

Chemistry Dept.<br />

Tatlahassee, FL 32306-3006<br />

Klaus Ro<strong>th</strong><br />

V.A. Ned. Ctr-San Fran.<br />

NHR Lab (110)<br />

4150 Clement St.<br />

San Francisco, CA 94121<br />

David J. Ruben<br />

National Hagnet Lab,HIT<br />

170 Albany St.<br />

Cambridge, HA 02119<br />

John G. Russell<br />

California State Univ.<br />

Dept of Chemistry<br />

Sacramento, CA 95819<br />

Paul Sagalyn<br />

Army Materiats Tech Lab.<br />

SLCNT-OMM<br />

Dept of <strong>th</strong>e Army<br />

Watertown, HA 02172-0001


Ronald Sager<br />

Quantum Design<br />

11568 Sorento Valley Rd.<br />

Suite 15<br />

San Diego, CA 92121<br />

Robert E. Santini<br />

Purdue University<br />

Chemistry Dept #92<br />

West Lafayette, IN 47907<br />

Indrani Sarkai<br />

Vittanova<br />

Viltanova, PA 19085<br />

James D. Satterlee<br />

Univ of New Mexico<br />

Chemistry Dept.<br />

Albuquerque, NM 87131<br />

Brian Sayer<br />

McMaster University<br />

Dept of Chemistry<br />

1280 Main St.,West<br />

Hmttn,Ont,Canada L8S 4M1<br />

Robert A. Schiksnis<br />

Univ of Pennsylvania<br />

Dept of Chemistry D5<br />

Philadelphia, PA 19104<br />

Kirk Schmitt<br />

Mobile Res. & Dev.<br />

PO Box 1025<br />

Princeton, gJ 08540<br />

Everett C. Schreiber<br />

G.E. NMR<br />

255 Fourier Ave.<br />

Fremont, CA 94536<br />

Jay F. Schutz<br />

Henkel Research Corp.<br />

2330 Circadian Way<br />

Santa Rosa, CA 95407<br />

Emil M. Scoffone<br />

Univ. of California<br />

Chemistry Dept.<br />

Berkeley, CA 94720<br />

Felix Satinas, Ill<br />

Univ. Texas Med. Branch<br />

200 University Blvd. Ste 6<br />

Galveston, TX 77550<br />

Armando DeLos Santos<br />

Sou<strong>th</strong>west Res. Inst.<br />

6220 Cutebra Rd.<br />

San Antonia, TX 78284<br />

Susanta K. Sarkar<br />

Smi<strong>th</strong> Ktine & French<br />

L-940 PO Box 7929<br />

Philadelphia, PA 19101<br />

John K. Saunders<br />

Nat'l Res Council of Canad<br />

Div. of Biological Science<br />

Ottawa,Ont,Can. K1A OR6<br />

Terrence A. Scahitt<br />

Upjohn Co.<br />

Physical & Analytical Chem<br />

Kalamazoo, MI 49001<br />

Thomas Schteich<br />

Univ of California<br />

Dept of Chemistry<br />

Santa Cruz, CA 95064<br />

Charles Schramm<br />

Catalytica Assoc., Inc.<br />

430 Ferguson Dr.<br />

Mountain View, CA 94043<br />

Jane K. Schreiber<br />

G.E.NMR<br />

255 Fourier Ave.<br />

Fremont, CA 94538<br />

Herbert M. Schwartz<br />

Renssetaer Polytechnic Ins<br />

Chemistry Dept<br />

Troy, NY 12181<br />

Ka<strong>th</strong>erine N. Scott<br />

Univ. Florida<br />

Miller Heal<strong>th</strong> Ctr.<br />

Radiology Dept.<br />

Gainesvitte, FL 32610<br />

Everett R. Santee, Jr.<br />

Univ of Akron<br />

Institute Polymer Science<br />

302 E. Buchtel Ave.<br />

Akron, OH 44325<br />

K. P. Sara<strong>th</strong>y<br />

Auburn University<br />

Dept of Chemistry<br />

Auburn, AL 36849<br />

Shiro Satoh<br />

Varian Associates<br />

611 gansen Way<br />

ParD Atto, CA 94303<br />

Francoise Sauriot<br />

McGitt University<br />

Chemistry Dept.<br />

Montreat,Oue,Can. H3A 2K6<br />

Jacob Schaefer<br />

Washington University<br />

Dept of Chemistry<br />

St. Louis, MO 63130<br />

Petra Schrnatbrock<br />

Ohio State University<br />

MRI Facility<br />

1630 Upham Drive<br />

Columbus, OH 43210<br />

Suzanne E. Schramm<br />

Mobile Res. & Dev. Ctr.<br />

PO Box 1025<br />

Princeton, RJ 08540<br />

Regina Schuck<br />

G.E. NMR Inst.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Arnold L. Schwartz<br />

Varian Associates<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Kenne<strong>th</strong> L. Servis<br />

Univ of So. Calif.<br />

Dept of Chemistry<br />

Los Angeles, CA 90089-1062


Naresh K. Se<strong>th</strong>i<br />

Univ. of Utah<br />

Dept of Chemistry<br />

Bx132, Henry Eyrng.Btvd.<br />

Salt Lake City, UT 84112<br />

Bernard L. Shapiro<br />

Texas A & M Univ.<br />

Chemistry Dept.<br />

cortege Station, TX 77843<br />

Peter Shepard<br />

John Wiley & Sons, Ltd.<br />

Baffins Lane<br />

Chichester,<br />

Sussex, England, UK<br />

Yang T. Shieh<br />

Case Western Resrv. Univ.<br />

Dept of Chemistry<br />

CLeveland, OH 44106<br />

Sakae Shiojima<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, MA 01960<br />

Ben A. Shoulders<br />

University of Texas<br />

Chemistry Dept.<br />

Austin, TX 78712<br />

Ronatd E. Siatkowski<br />

Naval Reserch Lab<br />

Chemistry Division<br />

Code 6122<br />

Washington, DC 20375-5000<br />

Connie S. Sitber<br />

gakefietd Corp.<br />

3131A East 29<strong>th</strong> St.<br />

Bryan, TX 77802<br />

Virgil Simptaceanu<br />

Biotog. Sci/Carnegie Metro<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213-2683<br />

Larry D. Sims<br />

Univ. of Houston<br />

4800 CaLhoun<br />

Houston, TX 77004<br />

A. J. Shaka<br />

Univ of California<br />

Chemistry Dept.<br />

Berkeley, CA 94720<br />

Michael J. Shapiro<br />

Sandoz Research Inst.<br />

NMR Facilities, Rte 10<br />

East Hanover, NJ 07936<br />

Donald R. Shepherd<br />

AmpLifier Research<br />

160 School House Rd.<br />

Souderton, PA 18964-9990<br />

Carl M. ShieLds<br />

Case Western Resrv. Univ.<br />

Dept of Chemistry<br />

Cleveland, OH 44106<br />

Ata Shirazi<br />

Univ of CaLifornia<br />

Chemistry Dept.<br />

Santa Barbara, CA 93106<br />

Litian G. Shum<br />

Avery International<br />

325 N. Altadena Drive<br />

Pasadena, CA 91107<br />

Hanna Siezputowski-Gracz<br />

Univ of Missouri<br />

Biology Dept.<br />

Columbia, NO 65211<br />

Robin F. Sitverman<br />

ClBA-Geigy Corp.<br />

556 Morris Ave.<br />

Summit, NJ 07901<br />

Etena Simptacenau<br />

Carnegie MeLton Univ.<br />

Ct. Biomed. Res. MeLLon In<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213-2683<br />

Dean g. Sindorf<br />

Chemagnetics<br />

208 Commerce Dr.<br />

Ft. Cottins, CO 80524<br />

Xi Shan<br />

Univ. Of IlLinois<br />

Box 4-1NL<br />

505 S. Ma<strong>th</strong>ews Ave.<br />

Urbana, IL 61801<br />

Robert L. Shetdon<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Mark H. Sherwood<br />

Univ of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112<br />

Nancy R. Shine<br />

ICR, Pacific Presb.<br />

Medical Center<br />

2200 Webster St.<br />

San Francisco, CA 94115<br />

James N. Shoo[ery<br />

Varian Associates<br />

611Hansen gay<br />

Pa[o ALto, CA 94303<br />

Dikoma C. Shungu<br />

Hershey Medical Center<br />

Dept of Radiology<br />

Hershey, PA 17033<br />

Steve K. Silber<br />

Texas A & M University<br />

Chemistry Dept.<br />

Cortege Station, TX 77843<br />

Diana R. Sirnonsen<br />

Yale University<br />

Sterling Chemical Lab<br />

225 Prospect St.<br />

New Haven, CT 06511<br />

Marjorie Simpson<br />

Univ of Calif. Berkeley<br />

Dept of Chem Eng.<br />

Berketey, CA 94720<br />

David J. Single<br />

Harvard University<br />

Dept of Chemistry<br />

12 Oxford St. #90<br />

Cambridge, MA 02138


Robert Skarjune<br />

3M Company<br />

Btdg 201-BS-OS/3M Ctr.<br />

St. Paul, MN 55144<br />

George Stomp<br />

The Upjohn Co.<br />

Physical & Analytical Chem<br />

7255-209-006<br />

Kalamazoo, MI 49001<br />

Karen Ann Smi<strong>th</strong><br />

Colgate-Palmolive Co.<br />

909 River Road<br />

Piscataway, NJ 08854<br />

Letand L. Smi<strong>th</strong><br />

Univ of Texas<br />

Medical Branch<br />

Galveston, TX 77550<br />

Steven O. Smi<strong>th</strong><br />

NW14-5107/M1T<br />

Nat't Rag Lab<br />

170 Atbeny St.<br />

cambridge, HA 02139<br />

Richard Snook<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

Mark S. Solum<br />

Univ of Utah<br />

Chemistry Dept<br />

HEB #132<br />

Salt Lake City, UT 84112<br />

Christopher H. Sotak<br />

GE NMR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Charles S. Springer, Jr.<br />

State Univ of New York<br />

Chemistry Dept.<br />

Stony Brook, NY 11794-3400<br />

Ru<strong>th</strong> S. Stamaszek<br />

Abbott Laboratories<br />

Nor<strong>th</strong> Chicago, IL 60064<br />

Tore Skjetne<br />

Sintef, Tronc~eim<br />

Center for NMR<br />

N-7034 Trondheim Noruay<br />

Ca<strong>th</strong>erine Stomp<br />

Medical Theraputics,<br />

9162-243-67<br />

The Upjohn Co.<br />

Kalamazoo, Nl 49001<br />

Martin A. R. Smi<strong>th</strong><br />

Bruker Spectrospin-Canada<br />

555 Steetes Ave. E.<br />

Milton, Ont,Canada L9T 146<br />

Michael B. Smi<strong>th</strong><br />

Henry Ford Hospital<br />

NMR Facility Dept Neur.<br />

2799 W. Grand Blvd.<br />

Detroit, Ml 48202<br />

Wanda S. Smi<strong>th</strong><br />

Univ of California<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

Arlen Soderquist<br />

University of Utah<br />

Chemistry Dept.<br />

Salt Lake City, UT 8/,121<br />

ore Sorenson<br />

E<strong>th</strong> Zurich<br />

Physical Chem Lab<br />

E<strong>th</strong> Zentrum<br />

8092 Zurich Switzertnd<br />

Steven W. Sparks<br />

National Inst. Heal<strong>th</strong><br />

Btdg 30/RmlO6/NIDR<br />

Be<strong>th</strong>esda, MD 20815<br />

J. B. Sptizmesser<br />

Doty Scientific<br />

600 Ctemson Rd.<br />

Columbia, SC 29223<br />

John D. Stanley<br />

Heu Me<strong>th</strong>ods Research<br />

719 E. Genessee St.<br />

Syracuse, HY 13210<br />

Vtadimir Sklenar<br />

NIH, Lab Chem Phys,<br />

NIDDK, 2/Rm B2-22<br />

Be<strong>th</strong>esda, MD 20892<br />

Steve H. Smattcembe<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Rebecca L. Smi<strong>th</strong><br />

Rohm & Haas Co.<br />

Analytical Research<br />

727 Norristown Rd.<br />

Spring House, PA 19477<br />

Stanford L. Smi<strong>th</strong><br />

Univ of Kentucky<br />

MR/SC<br />

101 Stone Bldg.<br />

Lexington, KY 40506-0053<br />

William B. Smi<strong>th</strong><br />

Texas Christian Univ.<br />

Chemistry Dept.<br />

Fort Wor<strong>th</strong>, TX 76129<br />

Nicholas Soffe<br />

University of Oxford<br />

Dept of Biochem<br />

Sou<strong>th</strong> Parks Rd.<br />

Oxford, England, UK<br />

Steven D. Sorey<br />

University of Texas-Austin<br />

Dept of Chemistry<br />

Austin, TX 78712<br />

Richard F. Sprecher<br />

DOE, PETC<br />

PO Box 10940<br />

Pittsburgh, PA 15236<br />

Naurice St-Jacques<br />

Univ of Montreal<br />

Chemistry Dept.<br />

Montreat,Ont,Can H3C3J7<br />

Piotr M. Starewicz<br />

Siemens Medical Systems<br />

186 Wood Ave., So.<br />

Isetin, NJ 08830


Ru<strong>th</strong> E. Stark<br />

College of Staten Island<br />

CUNY<br />

Staten Is,and, NY 10301<br />

Richard L. Stephens<br />

Abbott Laboratories<br />

D418,AP9<br />

Nor<strong>th</strong> Chicago, IL 60004<br />

Phoebe L. Stewart<br />

Univ of Pennsylvania<br />

Chemistry Dept.<br />

Phita., PA 19104-6323<br />

Gerald N. Stockton<br />

American Cyanamid Co.<br />

Agricultural Res. Div.<br />

Princeton, NJ 08540<br />

David Stranz<br />

E.I.Dt~Pont Agr. Prod. Dept<br />

Experimental Station<br />

Wilmington, DE 19898<br />

Nark J. Sullivan<br />

Hercules, inc.<br />

Research Ctr.<br />

Wilmington, DE 19894<br />

Dieter Suter<br />

Univ. of California<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Fred J. Swiecinski<br />

USl Chemicals, Inc.<br />

3100 Golf Rd.<br />

Rolling Neadows, IL 60008<br />

Nikotaus Szeverenyi<br />

S.U.N.Y. Heal<strong>th</strong> Science<br />

Radiology Dept.<br />

708 Irving Ave.<br />

Syracuse, NY 13210<br />

Christian I. Tanzer<br />

Bruker Instruments<br />

Nanning Park<br />

Bitterica, NA 01821<br />

Jona<strong>th</strong>an F. Stebbins<br />

Stanford University<br />

Dept of Geology<br />

Stanford, CA 94305-2115<br />

Larry L. Sterna<br />

Shell Development Co.<br />

PO Box 1380<br />

Houston, TX 77251<br />

Robert C. Stewart<br />

~unoco Prod. Research<br />

4502 E 41st St.<br />

PO Box 3385<br />

Tulsa, OK 74102<br />

Gerhard Stoeckt<br />

Scientific Info Services<br />

7 NoodlandAve.<br />

Larchmont, NY 10538<br />

Jane Strouse<br />

Univ of California<br />

Dept of Chem& Biochem<br />

Los Angeles, CA 90024<br />

GLenn R. Sullivan<br />

GE NNR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Jerome D. Swalen<br />

IBM<br />

Almaden Res. Ctr.<br />

K-34/802, 650 Harry Rd.<br />

San Jose, CA 95120<br />

Brian D. Sykes<br />

Univ of ALberta<br />

Oept of Biochemistry<br />

Edmonton,<br />

ALberta, Canada T6G 2H7<br />

Kiyonori Takegoshi<br />

Univ of California<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Herbert Taus<br />

GE NNR Instruments, Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Edward O. Stejskat<br />

Nor<strong>th</strong> Carolina State<br />

Dept of Chemistry<br />

Box 8204<br />

Raleigh, NC 27695-8204<br />

Edward Sternin<br />

Univ of British Columbia<br />

Dept of Physics<br />

Vancvr.BC,Canada V6T2A6<br />

Peter Stitbes<br />

Royal Inst Tech<br />

S-10044 Stockholm, Sweden<br />

Waldehar Stoecktern<br />

IBH<br />

650 Harry Rd.<br />

San Jose, CA 95120-6099<br />

Biing-Ning Su<br />

Stauffer Chemical<br />

Eastern Res. Ctr.<br />

Dobbs Ferry, NY 10522<br />

Richard H. Sullivan<br />

Jackson State University<br />

PO Box 17636<br />

Jackson, MS 39217<br />

Linda Sweeting<br />

Towson State University<br />

Chemistry Dept.<br />

Baltimore, HD 21204<br />

Linda L. Szafraniec<br />

Chem Res. Dev. & Eng Ctr.<br />

SNCCR-RSC-P<br />

Abrdn Prv Grnd., MD 21010-<br />

Jau Tang<br />

Argonne National Lab<br />

Chemistry Division<br />

Argonne, IL 60439<br />

Robert E. Taylor<br />

Bruker Instrument<br />

Nanning Park<br />

Bitterica, NA 01821


R. Tearson<br />

See program<br />

Ann N. Thayer<br />

AT&T BeLt Labs<br />

600 Mountain Ave.<br />

Murray HiLt, NJ 07974<br />

Ar<strong>th</strong>ur R. Thompson<br />

Argonne Nat'l Lab<br />

Chemistry E169<br />

9700 S. Cass Ave.<br />

Argonne, IL 60439<br />

Victor Tong<br />

TecNag<br />

6006 Bettaire BLvd.<br />

Houston, TX 77081<br />

Beau James Toy<br />

Univ of Catif- San Fran.<br />

401 Gold Street<br />

Auburn, CA 95603<br />

James Tropp<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

Rayond Tse<br />

Desoto Inc. ACAR<br />

1700 S. Mt Prospect Rd.<br />

Des Ptaines, IL 60017<br />

Gary L. Turner<br />

SpectraL Data Services<br />

818 Pioneer<br />

Chanpaign, IL 61820<br />

Feng-Fang Tzeng<br />

Univ. of Catif-Riverside<br />

Dept of Chemistry<br />

Riverside, CA 92521<br />

Stephen ULrich<br />

GE NNR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 96539<br />

Mike Tesic<br />

Varian Associates<br />

611Hansen Way<br />

Pato ALto, CA 94303<br />

WiLLiam J. Thoma<br />

Fox Chase Cancer Ctr.<br />

NMR lab<br />

7701 Burhotme Ave.<br />

Phitadetphia, PA 19111<br />

Robert L. Thrift<br />

GE NNR Instruments Inc.<br />

255 fourier Ave.<br />

Fremont, CA 94539<br />

Dennis A. Torchia<br />

Nat'[ Inst. of HeaL<strong>th</strong><br />

Btdg 30, Rm 106<br />

Be<strong>th</strong>esda, MD 20892<br />

Daniel O. Traficante<br />

Univ of Rhode Island<br />

Dept of Chemistry<br />

Kingston, R! 02881<br />

Pearl Tsang<br />

Scripps CLinic & Res. Foun<br />

10666 Toney Pines Rd.<br />

La Jotta, CA 92093<br />

Chien Ken Tseng<br />

Stauffer Chemical Co.<br />

1200 S. 67<strong>th</strong> St.<br />

Richmond, CA 96804<br />

Anne H. Turner<br />

Howard University<br />

Dept of Chemistry<br />

Washington, DC 20059<br />

Na<strong>th</strong>an Tzodikov<br />

G.E. NMR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Sun Un<br />

Univ of California<br />

Chem. Biodynamics Lab LBL<br />

Berkeley, CA 96720<br />

Venkataraman Thanabat<br />

Univ of Calif.-Davis<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

Hans Thomann<br />

Exxon Corporation<br />

Exxon Cord. Res. Lab<br />

AnnandaIe, NJ 0~01<br />

Hye Kyung C. Timken<br />

Univ of ILLinois<br />

Noyes Lab Box 24-1<br />

505 S. Ma<strong>th</strong>eus Ave.<br />

Urbana, IL 61801<br />

David R. Torgeson<br />

Mid-Continent Instruments<br />

2327 N. Dakota Ave.<br />

Ames, IA 50010<br />

Lynda G. Treat-Ctemons<br />

Stanford University<br />

SMRL<br />

Stanford, CA 94305-5055<br />

Rotf Tschudin<br />

Nat'L. Inst. of Heal<strong>th</strong><br />

Btdg 2, RmB2-02<br />

Be<strong>th</strong>esda, MD 20892<br />

David Turner<br />

Pennzoit Tech. Ctr.<br />

PO Box 7569<br />

The Woodlands,, TX 77387<br />

Christopher J. Turner<br />

Columbia University<br />

Box 555 Havermeyer Halt<br />

New York, NY 10027<br />

Kamit Ugurbit<br />

Univ of Minnesota<br />

GFWBI<br />

Navarre, MN 55392<br />

Steve W. Unger<br />

Univ of CaLif.-Davis<br />

NMR FaciLity MS-1A<br />

Davis, CA 95616


Timo<strong>th</strong>y Vail<br />

Chem Dynamics Corp.<br />

PO Box 395<br />

3001 Hadley Rd.<br />

S. PLainfield, NJ 07080<br />

Joseph B. Vaughn<br />

Rockefeller University<br />

1230 York Ave.<br />

New York, NY 10021<br />

Alexander J. Vega<br />

DuPont Experimental Sta.<br />

E356<br />

Wilmington, DE 19898<br />

Ronatd E. Viola<br />

Univ of Akron<br />

Dept of Chemistry<br />

Akron, OH 44325<br />

Tom Walter<br />

Univ of ILLinois<br />

Box 22 Noyes Lab<br />

Urbana, IL 61801<br />

Jin-shan Wang<br />

Virginia Potytech. & SU<br />

Dept of Vet. Biosciences<br />

College of Vet Med.<br />

Btacksburg, VA 24061<br />

Raymond L. Ward<br />

Lawrence Livermore Labs<br />

Box 808, L-310<br />

Livermore, CA 94550<br />

Andrew L. Waterhouse<br />

Tutane University<br />

Dept of Chemistry<br />

New Orleans, LA 70118<br />

Gretchen G. Webb<br />

Yale University<br />

Dept of Chem<br />

225 Prospect St.<br />

New Haven, CT 06511<br />

David Weisteder<br />

US Dept of Agriculture<br />

Nor<strong>th</strong>ern Regionat Res. Ctr<br />

Peoria, IL 61604<br />

Ka<strong>th</strong>teen G. Valentine<br />

Princeton University<br />

ChemDept. Frick Lab<br />

Princeton, NJ 08544<br />

David M. Vea<br />

Varian Associates<br />

505 Jutie Rivers Road<br />

Sugar Land, TX 77478<br />

Vincent S. Venturetta<br />

Anaquest/BOC Tech Ctr.<br />

100 Mountain Ave.<br />

Murray Hilt, NJ 07974<br />

Chartes G. Wade<br />

IBM Instruments<br />

40 Airport Pkuy<br />

San Jose, CA 95110<br />

Chuan Wang<br />

Rutgers College<br />

Dept of Chemistry<br />

Piscataway, NJ 0~54<br />

Pu Sen Wang<br />

Monsanto Research Corp.<br />

Mound Ave.<br />

Miamisburg, OH 45342<br />

Warren S. Warren<br />

Princeton University<br />

Frick Chemical Lab<br />

Dept of Chemistry<br />

Princeton, NJ 08544<br />

Charles L. Watkins<br />

Univ. of ALabama<br />

Dept of Chemistry<br />

Birmingham, AL 35294<br />

Jon O. Web[)<br />

M-R Resourses Inc.<br />

PO Box 642<br />

262 Lakeshore Dr.<br />

Ashburnham, HA 01430<br />

Daniet P. Weitekamp<br />

CatTech<br />

Noyes Lab of Chem. Phys.<br />

Pasadena, CA 91125<br />

David VanderHart<br />

Nat'[ Bureau of Stds.<br />

Gai<strong>th</strong>ersburg, MD 20899<br />

W. S. Veeman<br />

See program<br />

Daniel g. Vigneron<br />

Univ of Calif.-San Fran.<br />

Dept. of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Frances Ann Walker<br />

San Francisco State Univ.<br />

Chemistry Dept.<br />

San Francisco, CA 94132<br />

Hsin Wang<br />

Eastman Kodak Res. Lab<br />

B[dg 82/FL1<br />

Rochester, NY 14650<br />

Mark A. Ward<br />

Natco Chemical Co.<br />

PO Box 87<br />

Sugar Land, TX 77487<br />

Dennis L. Warrenfe[tz<br />

Univ. of Georgia<br />

CCRC Russet[ Labs<br />

A<strong>th</strong>ens, GA 30613<br />

John S. Waugh<br />

Mass Inst. of Tech.<br />

6-235<br />

Dept of Chemistry<br />

Cambridge, HA 02139<br />

Jarma P. Wehrte<br />

Johns Hopkins Univ.<br />

Sch of Med/Dept Rad.<br />

Baltimore, ND 21205<br />

Larry B. We[sh<br />

ALlied Signal EMRC<br />

50 East Atgonquin Rd.<br />

Des Ptaines, IL 60017


David E. Wemmer<br />

Univ of California<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Nito Westter<br />

Univ. of Wisconsin<br />

Dept of Biochemistry<br />

420 Henry Natl<br />

Madison, WI 53706<br />

David R. Wheeler<br />

Cattech 164-30<br />

Pasadena, CA 91125<br />

David J. Wilbur<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Philip G. Williams<br />

Nat't. Tritium Labeling<br />

Lawrence Berkeley Lab<br />

UCALLBerketey<br />

Berkeley, CA 94720<br />

Kenne<strong>th</strong> L. Wittiamson<br />

Nount Holyoke College<br />

Chemistry Dept.<br />

Sou<strong>th</strong> Hadley, MA 01075<br />

Donald M. Wilson<br />

Chevron Research<br />

576 Standard Ave.<br />

Richmond, CA 94802<br />

Robert A. Wind<br />

Colorado State University<br />

Dept of Chemistry<br />

Ft. Collins, CO 80523<br />

Scott E. Woehter<br />

Georgia State Univ.<br />

Dept of Chemistry<br />

University Plaza<br />

Atlanta, GA 30303<br />

Gerd Wolff<br />

Bruker Instruments<br />

Manning Park<br />

Bilterica, NA 01821<br />

Laurence G. Werbetou<br />

Hew Mexico Inst. of<br />

Nining Technotogy<br />

Chemistry Dept.<br />

Socorro, gN 87801<br />

Stephen N. Wharry<br />

Phillips Petroleum<br />

144 P.L.<br />

Barttesvitte, OK 74004<br />

Earl B. Whipple<br />

Pfizer Inc.<br />

Central Research Labs<br />

Groton, CT 06340<br />

M. Robert Willcott<br />

NHR Imaging, Inc.<br />

2501-C Central Pkt~/<br />

Houston, TX 77092<br />

Wanda F. Wittiarns<br />

Allergen Pharmaceuticals<br />

Dept of Anaty. & Biopharm.<br />

2525 DuPont Dr.<br />

irvine, CA 92713<br />

Daniel Wittiamson<br />

Epptey Institute<br />

Univ. of Nebraska Red. Ctr<br />

Omaha, NE 68105<br />

G. Edwin Wilson, Jr.<br />

Univ. of Akron<br />

Chemistry Dept.<br />

Akron, OH 44325<br />

Toni Wir<strong>th</strong>lin<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Donald E. Woessner<br />

Nobil Research & Devet.<br />

137"/THiclway Rd.<br />

Dallas, TX 75244<br />

Atan golfson<br />

Bruker Instrument<br />

Manning Park<br />

Bitterica, NA 01821<br />

Denver D. Werstler<br />

GenCorp Research<br />

2990 Gitchrist Rd.<br />

Akron, OH 44305<br />

Roger W. Wheattey<br />

Phospho Energetics Inc.<br />

3401 Market St.<br />

Philadelphia, PA 19104<br />

Carol F. Wichmann<br />

Merck & Co. R80R-203<br />

PO Box 2000<br />

Rahway, NJ 07065<br />

Gerald D. Williams<br />

Penn St./Hershey Ned<br />

Dept of Radiology<br />

Hershey, PA 17033<br />

Even Williams<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

William K. Wilson<br />

Rice University<br />

Biochemistry<br />

PO Box 1892<br />

Houston, TX 77251<br />

At Witunowski<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Sue C. Witt<br />

WRRC<br />

800 Buchanan St.<br />

Albany, CA 94710<br />

Roger A. Wolfe<br />

Occidental Chemical Corp.<br />

Technology Center<br />

Long Road<br />

Grand Island, NY 14072<br />

Tuck C. Wong<br />

University of Missouri<br />

Chemistry Dept.<br />

Columbia, MO 65211


Warner R. Wootfenden<br />

University of Utah<br />

Box 92 HE B[dg<br />

Chemistry Dept.<br />

Salt Lake City, UT 84112<br />

John M. Wright<br />

Univ of California<br />

Dept of Chemistry B-014<br />

La Jotla, CA 92093<br />

Kurt Wu<strong>th</strong>rich<br />

ETH-Honggerberg<br />

lnst.Motekutahbiotogie<br />

und Biophysik<br />

CH8093, Zurich Switzerlnd<br />

Ching Yao<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

Chin Yu<br />

Nat'[ Tsing Hua Univ.<br />

Chemistry Dept.<br />

Hsinchu,<br />

Taiwart30043 Rep China<br />

Dieter Ziessow<br />

Technical Univ. Berlin<br />

I.N. Stranski Inst.<br />

Str 17 Juni 112,D1000<br />

Berlin 12, Germany<br />

Jan B. Wooten<br />

Phittip Norris Res & Dev<br />

PO Box 26583<br />

Richmond, VA 23261<br />

David A. Wright<br />

GE NNR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Ping Pin Yang<br />

Int'l Mineral & Chem Corp.<br />

PO Box 207<br />

Terre Haute, IN 47808<br />

James P. Yesinowski<br />

California lnst Tech<br />

MC 164-30<br />

Pasadena, CA 91125<br />

Toby Zens<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Eric R.P. Zuiderweg<br />

Abbott Labs<br />

NMR Research<br />

Abbott Park, IL 60064<br />

Denise L. Wor<strong>th</strong>en<br />

Cattech 127-72<br />

Pasadena, CA 91125<br />

Peter E. Wright<br />

Research Inst of<br />

Scripps Clinic<br />

Dept of Molecular Biology<br />

La Jotta, CA 92037<br />

Constantino S. Yannoni<br />

IBM Almaden Res. 1(341802<br />

650 Harry Road<br />

San Jose, CA 95120-6099<br />

Hon9 N. Yeung<br />

4829 Lindsey (]vat<br />

Richmond Hgts., OH 44143<br />

Ning Zhou<br />

Univ. California<br />

Pharmaceutical ChemOept.<br />

San Francisco, CA 94143<br />

Nicholas Zumbutyadis<br />

Eastman Kodak Co.<br />

Research Labs<br />

Rochester, NY 14650


Notes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!