13.06.2013 Views

Composition and Repellent Efficacy of Essential Oil from ... - Iresa

Composition and Repellent Efficacy of Essential Oil from ... - Iresa

Composition and Repellent Efficacy of Essential Oil from ... - Iresa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Composition</strong> <strong>and</strong> <strong>Repellent</strong> <strong>Efficacy</strong> <strong>of</strong> <strong>Essential</strong> <strong>Oil</strong> <strong>from</strong><br />

Laurus nobilis against Adults <strong>of</strong> the Cigarette Beetle<br />

Lasioderma serricorne (Coleoptera: Anobiidae)<br />

Jouda Mediouni-Ben Jemâa, Nisrine Tersim, Laboratoire de Protection des<br />

Végétaux, INRAT Rue Hedi Karray, 2080, Ariana, Université de Carthage, Tunisia,<br />

<strong>and</strong> Mohamed Larbi Khouja, Laboratoire d’Ecologie et d’Amélioration Sylvo-<br />

Pastorale, INRGREF, Rue Hedi Karray, 2080, Ariana, Université de Carthage,<br />

Tunisia<br />

__________________________________________________________________________<br />

ABSTRACT<br />

Mediouni-Ben Jemâa, J., Tersim, N., <strong>and</strong> Khouja, M.L. 2011. <strong>Composition</strong> <strong>and</strong> repellent efficacy<br />

<strong>of</strong> essential oil <strong>from</strong> Laurus nobilis against adults <strong>of</strong> the cigarette beetle Lasioderma serricorne<br />

(Coleoptera: Anobiidae). Tunisian Journal <strong>of</strong> Plant Protection 6: 29-41.<br />

This study reports the chemical composition <strong>and</strong> the repellent activity <strong>of</strong> Laurus nobilis (Lauraceae)<br />

essential oil against 7-10 days old adults <strong>of</strong> the cigarette beetle Lasioderma serricorne. <strong>Essential</strong> oil<br />

chemical composition was assessed via GC <strong>and</strong> GC/MS analysis. 1,8-cineole (24.55%), linalool<br />

(17.67%), eugenylmethylether (12.40%), isovaleraldehyde (9.65%) <strong>and</strong> camphene (7.21%) were the<br />

major compounds. Significant pest repellent activity was demonstrated. <strong>Repellent</strong> action was highly<br />

dependent upon oil concentration <strong>and</strong> exposure time. The best repellent efficacy was observed for high<br />

doses <strong>and</strong> short exposure period. At the dose 0.12 µl/cm 2 , repellency reached 92.5% after 1 h <strong>of</strong><br />

exposure. Moreover, the median repellent dose value (RD 50) was 37.84 µl/cm 2 . The results suggested<br />

that L. nobilis essential oil may have potential as a control agent against this stored product beetle.<br />

Keywords: <strong>Essential</strong> oil, GC-MS, laurel, Lasioderma serricorne, Laurus nobilis, median repellent dose<br />

RD 50<br />

___________________________________________________________________________________<br />

The widespread use <strong>of</strong> synthetic<br />

insecticides has led to many negative<br />

consequences resulting in increasing<br />

attention being given to natural products<br />

(13, 26). Aromatic plants are among the<br />

most efficient insecticides <strong>of</strong> botanical<br />

origin <strong>and</strong> essential oils <strong>of</strong>ten constitute<br />

Corresponding author: Jouda Mediouni- Ben Jemâa<br />

Email: joudamediouni@lycos.com<br />

Accepted for publication 9 July 2011<br />

the bioactive fraction <strong>of</strong> plant extracts<br />

(47, 52). Several investigations have been<br />

conducted on plant extract, especially on<br />

essential oils, to study their biological<br />

activity against stored seeds pest insects:<br />

eugenol (30), olive oils (31), <strong>and</strong> various<br />

essential oils (29). In stored-product<br />

insect pest control, essential oils may<br />

have numerous types <strong>of</strong> effects (43): they<br />

may have a fumigant activity (51), they<br />

may penetrate inside the insect body as<br />

contact insecticides (55), they may act as<br />

anti-feedants (25), they may affect some<br />

Tunisian Journal <strong>of</strong> Plant Protection 29 Vol. 6, No. 1, 2011


iological parameters such as growth rate,<br />

life span <strong>and</strong> reproduction (48, 44, 50) or<br />

they may act as repellents (41, 49).<br />

<strong>Repellent</strong>s are defined as substances that<br />

act locally or at a distance, deterring an<br />

arthropod <strong>from</strong> flying to, l<strong>and</strong>ing on or<br />

biting human or animal skin (or a surface<br />

in general) (8, 11). Usually, insect<br />

repellents work by providing a vapor<br />

barrier deterring the arthropod <strong>from</strong><br />

coming into contact with the surface (9).<br />

Among them, essential oils, complex<br />

mixtures <strong>of</strong> volatile compounds isolated<br />

<strong>from</strong> a large number <strong>of</strong> plants, have been<br />

found to have these properties against<br />

various haematophagous arthropods,<br />

some <strong>of</strong> them being the basis <strong>of</strong><br />

commercial repellent formulations (15).<br />

Mediterranean laurel Laurus nobilis<br />

(Lauraceae) is an evergreen shrub up to<br />

2.15 m height <strong>and</strong> commonly named bay<br />

laurel (2). It is native to the Southern<br />

Mediterranean region <strong>and</strong> widely<br />

cultivated in Europe <strong>and</strong> the USA as an<br />

ornamental plant (22). Bay leaf is widely<br />

used as a dried herb <strong>and</strong> gives a very<br />

fragrant <strong>and</strong> aromatic essential oil; it is<br />

used as a valuable spice <strong>and</strong> flavoring<br />

agent in the culinary <strong>and</strong> food industries<br />

<strong>and</strong> as an additive in cosmetics (12).<br />

Moreover, it is also widely used in folk<br />

medicine to treat gastrointestinal<br />

problems, rheumatism, diuretic, urinary<br />

problems <strong>and</strong> stones (1). In Tunisia, bay<br />

laurel is a common species called "R<strong>and</strong>".<br />

It grows at the edges <strong>of</strong> rivers, on<br />

mountains <strong>and</strong> on wet cliffs. It also grows<br />

in the humid <strong>and</strong> sub-humid bioclimatic<br />

areas, especially in Ain Draham, Tabarka,<br />

<strong>and</strong> Cap-Bon (46).<br />

The biological activities <strong>of</strong> L.<br />

nobilis have been extensively<br />

investigated. Kivçak <strong>and</strong> Mert (35)<br />

indicated that L. nobilis could be used as<br />

botanical biopesticide in postharvest crop<br />

protection. In this context, Papachristos<br />

<strong>and</strong> Stamopoulos (43) reported that L.<br />

nobilis essential oil has a repellent action,<br />

reduces fecundity, decreases egg<br />

hatchability, increases larval mortality<br />

<strong>and</strong> adversely influences <strong>of</strong>fspring to<br />

female <strong>of</strong> bean weevil Acanthoscelides<br />

obtectus. Correspondingly,<br />

Andronikashvili <strong>and</strong> Reichmuth (3), Saim<br />

<strong>and</strong> Meloan (49) indicated that L. nobilis<br />

essential oil had good repellency against<br />

the rust-red flour beetle Tribolium<br />

castaneum. In addition, Cosimi et al. (14)<br />

reported that L. nobilis essential oil had<br />

repellency against Sitophilus zeamais,<br />

Cryptolestes ferrugineus, <strong>and</strong> Tenebrio<br />

molitor.<br />

On the other h<strong>and</strong>, fumigant toxic<br />

<strong>and</strong> oviposition-deterring activities <strong>of</strong> L.<br />

nobilis essential oil were studied against<br />

the carmine spider mite, Tetranychus<br />

cinnabarinus (54). Similarly, Macchioni<br />

et al. (38) indicated that L. nobilis<br />

essential oil presented an acaricidal<br />

activity against Psoroptes cuniculi.<br />

Besides, the antifungal <strong>and</strong> antibacterial<br />

activities <strong>of</strong> L. nobilis oil were assayed.<br />

De Corato et al. (16) reported the<br />

antifungal activity <strong>of</strong> laurel oil against the<br />

three plant pathogenic fungi Botrytis<br />

cinerea, Monilinia laxa <strong>and</strong> Penicillium<br />

digitatum. Furthermore, the antibacterial<br />

activity <strong>of</strong> the various extracts has been<br />

assayed using the gram positive bacteria,<br />

Saphylococcus aureus ATTCC 25923 <strong>and</strong><br />

Enterococcus faecalis ATCC 29212, <strong>and</strong><br />

the gram negative bacteria, Escherichia<br />

coli ATCC 25922 <strong>and</strong> Pseudomonas<br />

aeruginosa ATCC 27853 (39).<br />

Additionally, Derwich et al. (17) showed<br />

that L. nobilis essential oil was very<br />

effective in vitro against three bacterial<br />

strains: S. aureus, S. intermedius <strong>and</strong><br />

Klebsiella pneumonia. Recently,<br />

Hassiotis (23) indicated that L. nobilis,<br />

Tunisian Journal <strong>of</strong> Plant Protection 30 Vol. 6, No. 1, 2011


abundant in the Mediterranean region,<br />

can influence the development <strong>of</strong> two<br />

mycorrhizal species, Glomus deserticola<br />

<strong>and</strong> G. intraradices.<br />

The cigarette beetle, Lasioderma<br />

serricorne is a cosmopolitan <strong>and</strong><br />

polyphagous stored product pest. L.<br />

serricorne is known to develop on a<br />

variety <strong>of</strong> grain-based products, spices,<br />

<strong>and</strong> tobacco, <strong>and</strong> infest these<br />

commodities during storage <strong>and</strong><br />

manufacturing (18). This beetle is among<br />

the main stored-product pests in Tunisia<br />

<strong>and</strong> North Africa (27).<br />

The cigarette beetle is one <strong>of</strong> the<br />

most ubiquitous <strong>of</strong> all stored-product<br />

insects. It occurs throughout the tropical<br />

<strong>and</strong> subtropical regions <strong>of</strong> the world. It<br />

occurs commonly in warm buildings<br />

throughout the temperate regions. It<br />

breeds on a wide variety <strong>of</strong> commodities,<br />

including both plant <strong>and</strong> animal materials<br />

(7, 24, 37), <strong>and</strong> is one <strong>of</strong> several beetle<br />

pests that commonly infest warehouses<br />

<strong>and</strong> retail stores (5).<br />

Effective management <strong>of</strong> the<br />

problem requires good sanitation,<br />

inspection <strong>of</strong> incoming goods, frequent<br />

rotation <strong>of</strong> stock, monitoring for the pest,<br />

removal <strong>of</strong> infested stock, <strong>and</strong> judicious<br />

application <strong>of</strong> biorational or conventional<br />

chemical insecticides. Historically,<br />

retailers <strong>and</strong> pest control operators have<br />

relied heavily on chemical pesticides (6).<br />

Nevertheless, the increasing awareness <strong>of</strong><br />

risk to environmental quality <strong>and</strong> human<br />

health has made necessary to seek safer<br />

methods. In this context, research over<br />

the last two or three decades has<br />

produced a variety <strong>of</strong> traps that are<br />

effective in detecting the pest (4, 34). The<br />

present work aims to investigate essential<br />

oil composition <strong>of</strong> L. nobilis <strong>and</strong> to<br />

evaluate its repellent efficacy against<br />

adults <strong>of</strong> L. serricorne.<br />

MATERIALS AND METHODS<br />

Insect rearing. The cigarette beetle<br />

L. serricorne was reared on wheat flour.<br />

A rearing colony was initiated in the<br />

Laboratory <strong>of</strong> Plant Protection<br />

(Entomology Section) at the Institut<br />

National de la Recherche Agronomique<br />

de Tunisie, Tunisia. The rearing<br />

conditions were darkness in 25 ± 1°C <strong>and</strong><br />

65% ± 5% relative humidity. Adult<br />

insects, 7-10 days old were used for<br />

repellency tests. This age was chosen<br />

because insects are more sensitive to oil<br />

treatment.<br />

Plant material. L. nobilis leaves<br />

were collected in February 2010 <strong>from</strong> the<br />

nursery <strong>of</strong> the experimental station <strong>of</strong><br />

Institut National de la Recherche en<br />

Génie Rural, Eau et Forêt at Ariana,<br />

Tunis, Tunisia. The harvested material<br />

was air-dried at room temperature (20-<br />

25°C) for one week <strong>and</strong> then stored in<br />

cloth bags.<br />

<strong>Essential</strong> oil extraction <strong>and</strong><br />

chemical analysis. <strong>Essential</strong> oil was<br />

extracted by hydrodistillation <strong>of</strong> dried<br />

leaves (100 g <strong>of</strong> each sample in 500 ml <strong>of</strong><br />

distilled water) using a modified<br />

Clevenger-type apparatus for 4 h. The<br />

oils were dried over anhydrous sodium<br />

sulphate <strong>and</strong> stored in sealed glass vials at<br />

4-5°C prior to analysis. Yield was<br />

averaged over four experiments <strong>and</strong><br />

calculated according to dry weight <strong>of</strong> the<br />

plant materials. Chemical analyses were<br />

performed at the Laboratory <strong>of</strong><br />

Bioprocesses, Centre de Biotechnologie<br />

de Sfax, Tunisia.<br />

The essential oils were analyzed<br />

using an Agilent-Technologies 6890 N<br />

Network GC system equipped with a<br />

flame ionization detector <strong>and</strong> HP-5MS<br />

capillary column (30 m × 0.25 mm, film<br />

thickness 0.25 µm; Agilent-Technologies,<br />

Little Falls, CA, USA). The injector <strong>and</strong><br />

Tunisian Journal <strong>of</strong> Plant Protection 31 Vol. 6, No. 1, 2011


detector temperatures were set at 220°C<br />

<strong>and</strong> 290°C, respectively. The column<br />

temperature was programmed <strong>from</strong> 80°C<br />

to 220°C at a rate <strong>of</strong> 4°C/min, with the<br />

lower <strong>and</strong> upper temperatures being held<br />

for 3 <strong>and</strong> 10 min, respectively. The flow<br />

rate <strong>of</strong> the carrier gas (Helium) was 1.0<br />

ml/min. A sample <strong>of</strong> 1.0 µl was injected,<br />

using split mode (split ratio, 1:100). All<br />

quantifications were carried out using a<br />

built-in data-h<strong>and</strong>ling program provided<br />

by the manufacturer <strong>of</strong> the gas<br />

chromatograph. The composition was<br />

reported as a relative percentage <strong>of</strong> the<br />

total peak area. The identification <strong>of</strong> the<br />

essential oils constituents was based on a<br />

comparison <strong>of</strong> their retention times to nalkanes,<br />

compared to published data <strong>and</strong><br />

spectra <strong>of</strong> authentic compounds.<br />

Compounds were further identified <strong>and</strong><br />

authenticated using their mass spectra<br />

compared to the Wiley version 7.0<br />

library. Major compounds (≥ 5%) <strong>and</strong><br />

other predominant components (0.5-5%)<br />

were marked in bold form.<br />

The retention time <strong>of</strong> a solute is<br />

taken as the elapsed time between the<br />

time <strong>of</strong> injection <strong>of</strong> a solute <strong>and</strong> the time<br />

<strong>of</strong> elution <strong>of</strong> the peak maximum <strong>of</strong> that<br />

solute. It is a unique characteristic <strong>of</strong> the<br />

solute <strong>and</strong> can be used for identification<br />

purposes while Kovats retention index<br />

(Kovats index or retention index) is a<br />

concept used in gas chromatography to<br />

convert retention times into systemindependent<br />

constants (36). The Kovats<br />

retention index <strong>of</strong> a certain chemical<br />

compound is its retention time<br />

normalized to the retention times <strong>of</strong><br />

adjacently eluting n-alkanes. While<br />

retention times vary with the individual<br />

chromatographic system (e.g. with<br />

regards to column length, film thickness,<br />

diameter, carrier gas velocity <strong>and</strong><br />

pressure, void time), the derived Kovats<br />

Tunisian Journal <strong>of</strong> Plant Protection 32<br />

retention indices are quite independent <strong>of</strong><br />

these parameters <strong>and</strong> allow comparing<br />

values measured by different analytical<br />

laboratories under varying conditions.<br />

Tables <strong>of</strong> Kovats retention indices can<br />

help identify components by comparing<br />

experimentally rimentally found Kovats retention<br />

indices with known values (36). The<br />

value <strong>of</strong> Kovats retention index is usually<br />

represented by I in mathematical<br />

expressions. Its applicability is restricted<br />

to organic compounds compounds. For isothermal<br />

chromatography, the Kovats retention<br />

index is given by the equation equation:<br />

where:<br />

I = Kovats retention index,<br />

n = the number <strong>of</strong> carbon atoms in<br />

the smaller alkane,<br />

N = the number <strong>of</strong> carbon atoms in<br />

the larger alkane,<br />

tr' ' = the adjusted retention time.<br />

For temperature programmed<br />

chromatography, the Kovats retention<br />

index is given by the equation equation:<br />

where:<br />

I = Kovats retention index,<br />

n = the number <strong>of</strong> carbon atoms in<br />

the smaller alkane,<br />

N = the number <strong>of</strong> carbon atoms in<br />

the larger alkane,<br />

z = the difference <strong>of</strong> the number <strong>of</strong><br />

carbon atoms in the smaller <strong>and</strong> larger<br />

alkane,<br />

tr = the retention time.<br />

Repellency bioassay bioassay.<br />

Filter paper tests tests. Repellency assays<br />

<strong>of</strong> L. nobilis essential oils were carried<br />

according to the experimental method<br />

described by Jilani <strong>and</strong> Saxena (28).<br />

Whatman filter papers (diameter 8 cm)<br />

Vol. 6, No. 1, 2011


were cut in half. Test solutions were<br />

prepared by dissolving 2, 4, 5 <strong>and</strong> 6 µl <strong>of</strong><br />

L. nobilis essential oil in 1 ml acetone.<br />

Doses were converted to give equivalent<br />

concentrations <strong>of</strong> respectively 0.04, 0.08,<br />

0.1 <strong>and</strong> 0.12 µl/cm 2 . Each solution was<br />

applied to half a filter-paper disc as<br />

uniformly as possible with a micropipette.<br />

The other half <strong>of</strong> the filter paper was<br />

treated with acetone alone as a control.<br />

The treated <strong>and</strong> control half discs were air<br />

dried under a fan to evaporate the solvent<br />

completely. Treated <strong>and</strong> untreated halves<br />

were attached to their opposites using<br />

adhesive tape <strong>and</strong> placed in Petri dishes.<br />

Twenty adult (7-10 days old) beetles <strong>of</strong><br />

mixed sex (ratio 1:1) were released at the<br />

centre <strong>of</strong> each filter paper disc. The<br />

dishes were then covered <strong>and</strong> sealed with<br />

Parafilm. Four replications were used for<br />

each concentration. Observations on the<br />

number <strong>of</strong> insects present on both the<br />

treated <strong>and</strong> untreated halves were<br />

recorded after 1, 3, 5 <strong>and</strong> 24 h for each<br />

tested concentration. Four trials were<br />

made for each concentration.<br />

Percentage repellency (PR) <strong>and</strong><br />

median repellent dose (RD50) <strong>of</strong> L.<br />

nobilis essential oil. Numbers <strong>of</strong> L.<br />

serricorne present on the treated <strong>and</strong><br />

untreated portions <strong>of</strong> the experimental<br />

paper halves were recorded after various<br />

periods <strong>of</strong> exposure. Percentage<br />

repellency (PR) was calculated according<br />

to Nerio et al. (42) as follows:<br />

PR = [(Nc – Nt)/(Nc + Nt)] × 100<br />

where Nc was the number <strong>of</strong> insects<br />

on the untreated area after the exposure<br />

interval <strong>and</strong> Nt was the number <strong>of</strong> insects<br />

on the treated area after the exposure<br />

interval. Four replications were used for<br />

each concentration. Probit analysis (20)<br />

was used to calculate the median repellent<br />

dose (RD50) (dose that repelled 50% <strong>of</strong><br />

the exposed insects) at 24 h <strong>of</strong> exposure.<br />

Results are presented as the mean <strong>of</strong><br />

percentage repellency ± the st<strong>and</strong>ard<br />

error.<br />

Data analysis.<br />

Chi-square (χ 2 ) test was applied to<br />

test for homogeneity ratio (1:1) in order<br />

to assess the repellent activity <strong>of</strong> L.<br />

nobilis essential oil (53). To assess the<br />

impact <strong>of</strong> oil concentration <strong>and</strong> exposure<br />

time on repellent action, data underwent<br />

two-way ANOVA, converting percentage<br />

data into angular values; the averages<br />

were separated by LSD tests (53).<br />

RESULTS<br />

Chemical composition. The<br />

composition <strong>and</strong> main constituents <strong>of</strong><br />

essential oils are shown in Table 1. GC<br />

<strong>and</strong> GC/MS analysis <strong>of</strong> L. nobilis<br />

essential oil leaves permitted to identify<br />

fifty one compounds. A total <strong>of</strong> 87.84%<br />

<strong>from</strong> the constituents <strong>of</strong> L. nobilis leaves<br />

essential oil were identified (Table 1).<br />

The oil yield was 0.584% on the basis <strong>of</strong><br />

dry matter weight.<br />

In detail, the essential oil <strong>of</strong> L.<br />

nobilis showed high percentages <strong>of</strong> 1,8-<br />

cineole (24.55%), linalool (17.67%),<br />

eugenylmethylether (12.40%),<br />

isovaleraldehyde (9.65%) <strong>and</strong> camphene<br />

(7.21%), while lower percentages were<br />

that <strong>of</strong> β-phell<strong>and</strong>rene (3.85%), camphor<br />

(2.66%), α-pinene (2.52%) <strong>and</strong> eugenol<br />

(2.18%).<br />

Tunisian Journal <strong>of</strong> Plant Protection 33 Vol. 6, No. 1, 2011


Table 1. Chemical composition (%) <strong>of</strong> essential oil <strong>from</strong> Laurus nobilis leaves<br />

Nº Component RT KI %<br />

1 Isohexane 2.06 636 0.35<br />

2 Pentane 2.14 663 0.47<br />

3 Isovaleraldehyde 2.27 701 9.65<br />

4 Cyclopentane 2.5 716 0.11<br />

5 Heptanen 3.29 766 0.03<br />

6 α-thujene 8.65 921 0.22<br />

7 α-pinene 8.88 930 2.52<br />

8 Camphene 9.27 945 0.41<br />

9 β-Phell<strong>and</strong>rene 10.13 977 3.85<br />

10 β-Pinene 10.19 980 1.39<br />

11 β-Myrcene 10.61 995 0.30<br />

12 Δ3-Carene 11.16 1010 0.11<br />

13 α-Terpinene 11.38 1014 0.11<br />

14 1,8-Cineole 12.05 1029 24.55<br />

15 β-Ocimene 12.07 1030 0.04<br />

16 γ-Terpinene 12.68 1045 0.26<br />

17 Trans-Sabinene hydrate 12.96 1050 0.14<br />

18 2-Norbornanone 13.60 1064 1.20<br />

19 Linalool 14.28 1080 17.67<br />

20 2-cyclohexen-1-ol 14.71 1089 0.08<br />

21 Camphor 15.39 1111 2.66<br />

22 Tepinene-1-ol 16.33 1126 1.47<br />

23 α-terpineol 16.72 1189 1.29<br />

24 2-Pinen-10-ol 16.84 1196 0.14<br />

25 Cis-geraniol 17.70 1229 0.10<br />

26 Linalyl acetate 18.45 1257 0.69<br />

27 α-Fenchyl acetate 19.30 1288 0.40<br />

28 2-undecanone 19.48 1297 0.09<br />

29 Phenol 19.92 1312 0.30<br />

30 Camphene 21.14 1357 7.21<br />

31 Eugenol 21.33 1367 2.18<br />

32 Geraniol acetate 21.86 1386 0.08<br />

33 β-elemene 22.15 1398 0.08<br />

34 Eugenylmethylether 22.67 1415 12.40<br />

35 β-caryophyllene 22.89 1426 0.27<br />

36 α-Guaiene 23.34 1443 0.10<br />

37 α-Caryophyllene 23.74 1459 0.08<br />

38 Cyclodecene 24.08 1471 0.08<br />

39 Naphtalene 24.55 1490 0.27<br />

40 Eremophilene 24.79 1499 0.67<br />

41 β-elemene 25.09 1511 0.17<br />

42 Δ-cadinene 25.41 1526 0.10<br />

43 β- Isopropyl 26.04 1554 0.05<br />

44 Benzene 26.17 1558 0.28<br />

45 Spathulenol 26.80 1587 1.12<br />

46 Veridiflorol 27.09 1599 0.11<br />

47 Δ-Gurjunene 27.36 1612 0.09<br />

48 β-Gurjunene 27.94 1636 0.23<br />

49 Isospathulenol 28.12 1644 0.12<br />

50 2-Naphthalenemethanol 28.43 1658 0.50<br />

51 Ledene 28.51 1661 0.70<br />

Total 87.84<br />

Tunisian Journal <strong>of</strong> Plant Protection 34 Vol. 6, No. 1, 2011


Major compounds <strong>and</strong> other<br />

predominant components were marked in<br />

bold form to be visualized; RT, KI were<br />

respectively Retention Time <strong>and</strong> Kováts<br />

retention Index calculated on a HP-5MS<br />

capillary column (30 m × 0.25 mm × 0.25<br />

µm).<br />

Repellency. Chi-square analysis<br />

indicated that L. nobilis essential oil<br />

showed significant pest repellent activity<br />

to L. serricorne adults. The oil was<br />

repellent even at low concentrations (2<br />

µl) as the hypothesis <strong>of</strong> the ratio 1:1 was<br />

rejected (Table 2). The best repellent<br />

efficacy was observed for high doses <strong>and</strong><br />

short exposure period (1 <strong>and</strong> 3 h). Best<br />

results were obtained for the<br />

concentration 0.12 µl/cm 2 after 1, 3 <strong>and</strong> 5<br />

h <strong>of</strong> exposure (Table 2). Thus, L. nobilis<br />

oil has potential for use against this<br />

stored-product insect as a repellent.<br />

L. nobilis essential oil was repellent<br />

to the cigarette beetle species (Tables 3<br />

<strong>and</strong> 4). The lowest concentration (0.04<br />

µl/cm 2 ) <strong>of</strong> the oil led to percentage<br />

repellency <strong>of</strong> 52.5% against adults L.<br />

serricorne, after 1 h <strong>of</strong> exposure.<br />

Meanwhile, at 0.1 µl/cm 2 , L. nobilis<br />

essential oil achieved respectively 80,<br />

72.5, 50 <strong>and</strong> 17.5% repellency after 1, 3,<br />

5 <strong>and</strong> 24 h exposure (Table 3). At the<br />

highest concentration (0.12 µl/cm 2 ),<br />

repellency was arranged between 92.5<br />

<strong>and</strong> 60% for respectively 1 <strong>and</strong> 24 h <strong>of</strong><br />

exposure (Table 3).<br />

A repellent activity was exhibited by<br />

laurel oil at all tested concentrations, but<br />

especially after the shorter exposure time<br />

(1 <strong>and</strong> 3 h <strong>of</strong> exposure). Significant<br />

statistical differences were observed<br />

between oil concentrations at all tested<br />

exposure times (Table 3). Similarly, for<br />

each tested concentration, significant<br />

differences were obtained between<br />

exposure times (Table 3).<br />

Probit analysis showed that L.<br />

serricorne was susceptible to L. nobilis<br />

essential oil. The corresponding RD50 was<br />

37.84 µl/cm 2 (Table 4).<br />

DISCUSSION<br />

Results reported in this work<br />

showed that L. nobilis essential oil<br />

composition was characterized by the<br />

presence <strong>of</strong> 1,8-cineole (24.55%), linalool<br />

(17.67%), eugenylmethylether (12.40%),<br />

isovaleraldehyde (9.65%) <strong>and</strong> camphene<br />

(7.21%), as major compounds. Moreover,<br />

β-phell<strong>and</strong>rene (3.85%), camphor<br />

(2.66%), α-pinene (2.52%) <strong>and</strong> eugenol<br />

(2.18%) were also present as predominant<br />

components in laurel oil.<br />

The chemical composition <strong>of</strong> bay<br />

laurel essential oils <strong>from</strong> different origins<br />

has been studied by different researchers.<br />

In all cases, 1,8-cineole was the major<br />

component with percentages ranging<br />

between 31.4 <strong>and</strong> 56% (34). Other<br />

compounds were present in appreciable<br />

amounts including linalool, transsabinene<br />

hydrate, a-terpinyl-acetate,<br />

methyl eugenol, sabinene <strong>and</strong> eugenol<br />

(21). Benzene compounds (eugenol,<br />

methyl eugenol <strong>and</strong> elemicin), present in<br />

percentages ranging between 1 <strong>and</strong> 12%,<br />

are responsible for the spicy aroma <strong>of</strong> bay<br />

leaves <strong>and</strong> are extremely important<br />

factors determining the sensory quality <strong>of</strong><br />

bay leaves (45).<br />

In repellency bioassays, L. nobilis<br />

essential oil tested gave encouraging<br />

results against adults <strong>of</strong> L. serricorne.<br />

The oil showed strong repellent efficacy<br />

that was highly dependent upon the<br />

concentration <strong>and</strong> exposure time.<br />

Tunisian Journal <strong>of</strong> Plant Protection 35 Vol. 6, No. 1, 2011


Dose<br />

(µl/<br />

cm 2 )<br />

0.04<br />

0.08<br />

0.1<br />

0.12<br />

Table 2. Filter paper repellency assay using Laurus nobilis essential oil after different exposure times against Lasioderma serricorne adults<br />

Number <strong>of</strong> beetles on each half after each exposure time<br />

Trial<br />

1 h<br />

Tr Un χ2 χ2r Tr<br />

3 h<br />

Un χ2<br />

χ2<br />

r<br />

5 h<br />

Tr Un χ2 χ2r Tr<br />

24 h<br />

Un χ2 χ2r<br />

1 3 17 9.85 22.05 6 14 3.25 6.0 9 11 0.25 0.0 10 10 0 2.45<br />

2 5 15 5.05 ** 8 12 0.85 5 10 10 0 5 12 8 0.85 NS<br />

3 7 13 1.85<br />

9 11 0.25 * 11 9 0.25 NS 14 6 3.25<br />

4 4 16 7.25<br />

6 14 3.25<br />

9 11 0.25<br />

11 9 0.25<br />

1 3 17 9.85 33.8 5 15 5.05 16. 7 13 1.85 1.2 8 12 0.85 0.45<br />

2 4 16 7.25 ** 7 13 1.85 2 9 11 0.25 5 9 11 0.25 NS<br />

3 5 15 5.05<br />

4 16 7.25 * 8 12 0.85 NS 10 10 0<br />

4 2 18 12.85<br />

6 14 3.25<br />

11 9 0.25<br />

10 10 0<br />

1 2 18 12.85 51.2 3 17 9.85 42. 5 15 5.05 20 7 13 1.85 1.8<br />

2 3 17 9.85 ** 4 16 7.25 05 6 14 3.25 * 9 11 0.25 NS<br />

3 2 18 12.85<br />

2 18 12.85 ** 5 15 5.05<br />

8 12 0.85<br />

4 1 19 16.25<br />

2 18 12.85 4 16 7.25<br />

10 10 0<br />

1 1 19 16.25 68.45 1 19 16.25 64. 2 18 12.85 42. 4 16 7.25 28.8<br />

2 2 18 12.85 ** 2 18 12.85 8 4 16 7.25 05 5 15 5.05 *<br />

3 0 20 20.05<br />

1 19 16.25 ** 3 17 9.85 ** 4 16 7.25<br />

4 0 20 20.05<br />

0 20 20.05 2 18 12.85<br />

3 17 9.85<br />

Data tested by χ 2 -test for homogeneity <strong>of</strong> 1:1 ratio;<br />

** Means for treated (Tr) <strong>and</strong> untreated (Un) halves significantly different at P < 0.01;<br />

* Means significantly different at P < 0.05;<br />

NS: Difference between means not significant (P < 0.05)<br />

Tunisian Journal <strong>of</strong> Plant Protection 36 Vol. 6, No. 1, 2011


Table 3. Percentage repellency (mean ± SE) <strong>of</strong> Laurus nobilis essential oil against Lasioderma serricorne adults<br />

after various periods <strong>of</strong> exposure<br />

Period <strong>of</strong><br />

Dose (µl/cm<br />

Exposure (h)<br />

2 )<br />

0.04 0.08 0.1 0.12<br />

1 52.5 ± 0.75 d, A 65 ± 0.70 c, A 80 ± 0.90 b, A 92.5 ± 1.1 a, A<br />

3 27.5 ± 0.25 d, B 45 ± 0.51 c, B 72.5 ± 0.81 b, B 90 ± 0.95 a, A<br />

5 2.5 ± 0.01 d, C 12.5 ± 0.15 c, C 50 ± 0.50 b, C 72.5 ± 0.83 a, B<br />

24 -15.5 ± 0.13 d, D 7.5 ± 0,09 c, D 17.5 ± 0.25 b, D 60 ± 0.6 a, C<br />

Comparison made between mean values <strong>from</strong> the same column (by letters in uppercase) revealed exposure time<br />

impact on insect repellency.<br />

Comparison made between mean values <strong>from</strong> the same row (by letters in lowercase) indicated oil concentration<br />

impact on insect repellency.<br />

Values followed by the same letter are not significantly different according to LSD test at P ≤ 0.05.<br />

Table 4. RD50 value <strong>of</strong> Laurus nobilis essential oil against Lasioderma serricorne<br />

adults after 24 h <strong>of</strong> exposure<br />

RD50 a,b Slope ± SEM Degree <strong>of</strong> freedom χ2<br />

37.84<br />

(24.17-82.11)<br />

2.30 ± 0.4 5 11.3<br />

a<br />

Units RD50 = µl/ cm 2 , applied for 24 h at 25°C.<br />

b<br />

95% lower <strong>and</strong> upper confidence limits are shown in parenthesis.<br />

Despite its economic importance,<br />

little work has been done to manage L.<br />

serricorne by using medicinal plants<br />

although their excellent pharmacological<br />

actions (40). Bullington (10) observed<br />

that vapor toxicity <strong>of</strong> neem oil was<br />

efficient on L. serricorne. Moreover,<br />

Foeniculum vulgare essential oil gave<br />

significant mortality against L. serricorne<br />

adults at the dose 0.105 mg/cm 2 (32). In<br />

addition, essential oils <strong>from</strong> horseradish<br />

(Cocholeria aroracia), <strong>and</strong> mustard<br />

(Brassica juncea) used at the dose <strong>of</strong> 3.5<br />

mg/cm 2 were effective against L.<br />

serricorne adults (33). The present work<br />

reported first investigations on the<br />

repellent activity <strong>of</strong> L. nobilis essential oil<br />

against L. serricorne as stored product<br />

pest.<br />

Results <strong>of</strong> our study compare<br />

favorably with other investigations in<br />

which L. nobilis essential oil produced<br />

significant activity against pest insects. In<br />

this context, Erler et al. (19) reported<br />

repellent activity <strong>of</strong> L. nobilis essential oil<br />

against the adult females <strong>of</strong> Culex<br />

pipiens. Besides, Cosimi et al. (14)<br />

demonstrated the repellency <strong>of</strong> this oil<br />

against three stored beetles Sitophilus<br />

zeamais, Cryptolestes ferrugineus <strong>and</strong><br />

Tenebrio molitor. Additionally,<br />

Papachristos <strong>and</strong> Stampoulos (43)<br />

showed that essential oil <strong>from</strong> L. nobilis<br />

presented a repellent activity against<br />

Acanthoscelides obtectus.<br />

Our results clearly demonstrate the<br />

diversity <strong>of</strong> chemical composition <strong>of</strong><br />

Tunisian laurel essential oil <strong>and</strong> its<br />

insecticidal proprieties against L.<br />

serricorne as a major pest <strong>of</strong> stored<br />

products. Further work is required in<br />

order to investigate other insecticidal<br />

activities such as contact, fumigant <strong>and</strong><br />

anti-feedant actions against stored pest<br />

insects.<br />

Tunisian Journal <strong>of</strong> Plant Protection 37 Vol. 6, No. 1, 2011


__________________________________________________________________________<br />

RESUME<br />

Mediouni-Ben Jemâa J., Tersim N. et Khouja M.L. 2011. <strong>Composition</strong> et efficacité répulsive de<br />

l’huile essentielle de Laurus nobilis contre les adultes du lasioderme du tabac Lasioderma<br />

serricorne (Coleoptera: Anobiidae). Tunisian Journal <strong>of</strong> Plant Protection 6: 29-41.<br />

Cette étude rapporte la composition chimique et l’activité répulsive de l’huile essentielle du Laurus<br />

nobilis (Lauraceae) contre des adultes de 7-10 jours d’âge du lasioderme du tabac Lasioderma<br />

serricorne. La composition chimique de l’huile essentielle a été évaluée par des analyses<br />

chromatographiques (CPG et CPG/MS). Les composés majeurs de cette huile sont 1,8-cinéole<br />

(24,55%), linalool (17,67%), eugenylméthylether (12,40%), isovaleraldéhyde (9,65%) et le camphene<br />

(7,21%). Une activité répulsive significative a été démontrée. L’action répulsive dépend de façon très<br />

significative de la concentration d’huile et du temps d’exposition. La meilleure efficacité répulsive a<br />

été observée pour les doses les plus élevées et les courtes périodes d’exposition. Pour la dose 0,12<br />

µl/cm 2 , l’effet répulsif atteint 2,5% après 1 h d’exposition. De plus, la dose médiane répulsive (DR 50)<br />

était de 37,84 µl/cm 2 . Ces résultats suggèrent que l’huile essentielle du L. nobilis pourrait avoir un<br />

potentiel comme agent de lutte contre ce coléoptère des produits stockés.<br />

Mots clés: CPG-SM, dose médiane répulsive RD 50, huile essentielle, Lasioderma serricorne, laurier,<br />

Laurus nobilis<br />

__________________________________________________________________________<br />

ﻣ<br />

. ﺟﺧ ﻲﺑﻌﻟا ﻣو ﺳﺗ ﻳﻧو ةدﺟ ،ﻋﺎﺟ ﺑ-ﻲﻧﻳﻣ<br />

ةرﺎﻟا ءﺎﻟ ﻎﻟﺎﻟا رﻟا ءازإ Laurus nobilis رﺎﻐﻟا/<br />

ﻧﻟ<br />

يﻌﻟا ﻳﻟ ةدرﺎﻟا ﻟﺎﻌﻟاو آﻟا . 2011<br />

(Coleoptera: Lasioderma serricorne<br />

Tunisian Journal <strong>of</strong> Plant Protection 6: 29-41.<br />

. Anobiidae)<br />

Laurus nobilis رﺎﻐﻟا/<br />

ﻧﻟ يﻌﻟا ﻳﻟ ةدرﺎﻟا ﻟﺎﻌﻟاو ﺎﻟا آﻟا ﺳارﺑ ﻌﻟا اه ها<br />

آﻟا ﻳﺗ ﺗ . Lasioderma serricorne ةرﺎﻟا ءﺎﻟ ( مﺎﻳأ 10 -7)<br />

ﻐﻟﺎﻟا تاﻟا ءازإ (Lauraceae)<br />

1,8-cineole ﻲه ﻳﻟا اﻬﻟ ﺳﺎﺳﻷا ﺻﺎﻌﻟا نإ . (GC/MS) ﻓاﻏﺗﺎﻣوﻟا ﻟﺎﻟا لﺎﻌﺳﺎﺑ ﻳﻟ ﺎﻟا<br />

(9.65%) isovaleraldehyde و (12.40%) eugenylmethylether و (17.67%) linalool و (24.55%)<br />

آﺑ ةﺑ ﺗﻣ ةدرﺎﻟا ﻟﺎﻌﻟا ﻧﺎآو.<br />

ﻳﻟا اﻬﻟ ﻳﻌﻣ ةدرﺎ ﻟﺎﻌﻓ ﺗ ﺗ . (7.21%) camphene و<br />

0.<br />

12 ﻋﺟ ﻋو . ةﻟا ضﻌﻟا ةﻣو ﻌﺗﻟا تﺎﻋﻟا ﻋ ةدرﺎ ﻟﺎﻌﻓ ﻀﻓأ ﺣﻟ . ضّﻌﻟا<br />

ةﻣو ﻳﻟا<br />

2<br />

ﺳﻟا ﻋﻟا ﻐﺑ ،ﻟذ ﻰﻟإ ﻓﺎإ . ضﻌﻟا ﻣ ﻋﺎﺳ ﻌﺑ % 92.<br />

5 دﻟ ﻳﻟا ﻟا ﻐﺑ ، ﺳ/<br />

ﻟوﻣ<br />

2<br />

ﺳآ ﻌﻳ نأ ﻳ ﻧﻟ يﻌﻟا ﻳﻟا نأ ﺎﻬﻋ ﻟا ﺎﻟا ﺗ . ﺳ/<br />

ﻟوﻣ<br />

37.84 (RD50) ةدرﺎﻟا<br />

. ﻧوﻟا داﻟا ءﺎﺧ ﻓﺎﻟ<br />

Lasioderma ،GC/MS<br />

،رﺎﻐﻟا/<br />

ﻧﻟا ،يﻌﻟا ﻳﻟا ، RD50 ةدرﺎﻟا ﺳﻟا ﻋﻟا : ﺣﺎﻣ تﺎآ<br />

Laurus nobilis ،serricorne<br />

__________________________________________________________________________<br />

LITERATURE CITED<br />

1. Ali-Shtayeh, M.S., Yaniv, Z., <strong>and</strong> Mahajna, J.<br />

Influence <strong>of</strong> phenological stages <strong>and</strong> method <strong>of</strong><br />

2000. Ethnobotanical survey in the Palestinian<br />

distillation on Iranian cultivated bay leaves<br />

area: A classification <strong>of</strong> the healing potential <strong>of</strong><br />

volatile oil. Pakistan J. Biol. Sci. 10: 2895medicinal<br />

plants. J. Ethnopharmacol. 73: 221-<br />

2899.<br />

232.<br />

3. Andronikashvili, M. <strong>and</strong> Reichmuth, Ch. 2002.<br />

2. Amin, G., Sourmaghi, M.H.S., Jaafari, S.,<br />

Repellency <strong>and</strong> toxicity <strong>of</strong> essential oils <strong>from</strong><br />

Hadjagaee, R., <strong>and</strong> Yazdinezhad, A. 2007.<br />

Ocimum gratissimum (Lamiaceae) <strong>and</strong> Laurus<br />

Tunisian Journal <strong>of</strong> Plant Protection 38 Vol. 6, No. 1, 2011


nobilis (Lauraceae) <strong>from</strong> Georgia against the<br />

rust-red flour beetle Tribolium castaneum<br />

(Herbst) (Coleoptera: Tenebrionidae). Pages<br />

749-762. In: Credl<strong>and</strong>, P.F., Armitage, D.M.,<br />

Bell, C.H., Cogan, P.M., Highley, E. (Eds.),<br />

Advances in Stored Products Protection,<br />

Proceedings <strong>of</strong> the Eighth International<br />

Working Conference <strong>of</strong> Stored Product<br />

Protection, 22–26 July 2002, York, UK. CAB<br />

International, Wallingford, Oxon.<br />

4. Arbogast, R.T., Kendra, P.E., <strong>and</strong> Hini, S.R.C.<br />

2003. Lasioderma serricorne (Coleoptera:<br />

Anobiidae): spatial relationship between trap<br />

catch <strong>and</strong> distance <strong>from</strong> an infested product.<br />

Florida Entomol. 86: 437-444.<br />

5. Arbogast, R.T., Kendra, P.E., Mankin, R.W.,<br />

<strong>and</strong> McDonald, R.C. 2002. Insect infestation <strong>of</strong><br />

a botanicals warehouse in north-central Florida.<br />

J. Stored Prod. Res. 38: 349-363.<br />

6. Arbogast, R.T., Kendra, P.E., Mankin, R.W.,<br />

<strong>and</strong> McGovern, J.E. 2000. Monitoring insect<br />

pests in retail stores by trapping <strong>and</strong> spatial<br />

analysis. J. Econ. Entomol. 93: 1531-1542.<br />

7. Ashworth, J.R. 1993. The biology <strong>of</strong><br />

Lasioderma serricorne. J. Stored Prod. Res. 29:<br />

291-303.<br />

8. Blackwell, A., Stuart, A.E., <strong>and</strong> Estambale,<br />

B.A. 2003. The repellant <strong>and</strong> antifeedant<br />

activity <strong>of</strong> oil <strong>of</strong> Myrica gale against Aedes<br />

aegypti mosquitoes <strong>and</strong> its enhancement by the<br />

addition <strong>of</strong> salicyluric acid. Proc. Royal Coll.<br />

Phys. Edinburgh 33: 209-214.<br />

9. Brown, M. <strong>and</strong> Hebert, A.A. 1997. Insect<br />

repellents: an overview. J. Am. Acad.<br />

Dermatol. 36: 243-249.<br />

10. Bullington, S.W. 1998. A new system to protect<br />

stored cocoa beans <strong>from</strong> insects without the use<br />

<strong>of</strong> methyl bromide. Pages 88-89. In Proceedings<br />

<strong>of</strong> the 1998 Annual International Research<br />

Conference on Methyl Bromide Alternatives<br />

<strong>and</strong> Emissions Reductions. December 7-9,<br />

1998, Orl<strong>and</strong>o FL, USA.<br />

11. Choochote, W., Chaithong, U., Kamsuk, K.,<br />

Jitpakdi, A., Tippawangkosol, P., Tuetun, B.,<br />

Champakaew, D., <strong>and</strong> Pitasawat, B. 2007.<br />

<strong>Repellent</strong> activity <strong>of</strong> selected essential oils<br />

against Aedes aegypti. Fitoterapia 78: 359-364.<br />

12. Conforti, F., Statti, G., Uzunov, D., <strong>and</strong><br />

Menichini, F. 2006. Comparative chemical<br />

composition <strong>and</strong> antioxidant activities <strong>of</strong> wild<br />

<strong>and</strong> cultivated Laurus nobilis L. leaves <strong>and</strong><br />

Foeniculum vulgare subsp. piperitum (Ucria)<br />

coutinho seeds. Biol. <strong>and</strong> Pharm. Bull. 29:<br />

2056-2064.<br />

13. Copping, L.G. <strong>and</strong> Menn, J.J. 2000.<br />

Biopesticides: a review <strong>of</strong> their action,<br />

applications <strong>and</strong> efficacy. Pest Manag. Sci. 56:<br />

651-676.<br />

14. Cosimi, S., Rossi, E., Cioni, P.L., <strong>and</strong> Canale,<br />

A. 2009. Bioactivity <strong>and</strong> qualitative analysis <strong>of</strong><br />

some essential oils <strong>from</strong> Mediterranean plants<br />

against stored-product pests: Evaluation <strong>of</strong><br />

repellency against Sitophilus zeamais<br />

Motschulsky, Cryptolestes ferrugineus<br />

(Stephens) <strong>and</strong> Tenebrio molitor (L.). J. Stored<br />

Prod. Res. 45:125-132.<br />

15. Curtis, C., Lines, J., Lu, B., <strong>and</strong> Renz, A. 1989.<br />

Natural <strong>and</strong> synthetic repellents. Pages 75-92.<br />

In Curtis, C.F. (Ed.), Appropriate Technology<br />

in Vector Control. CRC Press, Boca Raton,<br />

Florida. 1990 pp.<br />

16. De Corato, U., Maccioni, O., Trupo, M., <strong>and</strong> Di<br />

Sanzo, G. 2010. Use <strong>of</strong> essential oil <strong>of</strong> Laurus<br />

nobilis obtained by means <strong>of</strong> a supercritical<br />

carbon dioxide technique against post harvest<br />

spoilage fungi. Crop Prot. 29: 142-147.<br />

17. Derwich, E., Benziane, Z., <strong>and</strong> Boukir, A. 2009.<br />

Chemical composition <strong>and</strong> antibacterial activity<br />

<strong>of</strong> leaves essential oil <strong>of</strong> Laurus nobilis <strong>from</strong><br />

Morocco. Aust. J. Basic Appl.Sci. 3: 3818-<br />

3824.<br />

18. Dimetry N.Z., Barakat A.A., El-Metwaly, H.E.,<br />

Risha, E. M.E., <strong>and</strong> Abdelsalem, A.M.E. 2004.<br />

Assessment <strong>of</strong> damage <strong>and</strong> losses in some<br />

medicinal plants by the cigarette beetle<br />

(Lasioderma serricorne (F.). Bull. Nat. Res.<br />

Cent. Egypt 29: 325-333.<br />

19. Erler, F., Ulug, I., <strong>and</strong> Yalcinkaya, B. 2006.<br />

<strong>Repellent</strong> activity <strong>of</strong> five essential oils against<br />

Culex pipiens. Fitoterapia 77: 491-494.<br />

20. Finney, D.L. 1971. Probit Analysis. 3rd ed.<br />

Cambridge University Press, UK, 125 pp.<br />

21. Flamini, G., Tebano, M., Cioni, P.L., Ceccarini,<br />

L., Ricci, A.S., <strong>and</strong> Longo, I. 2007. Comparison<br />

between the conventional method <strong>of</strong> extraction<br />

<strong>of</strong> essential oil <strong>of</strong> Laurus nobilis L. <strong>and</strong> a novel<br />

method which uses microwaves applied in situ,<br />

without resorting to an oven. J. Chromat. A.<br />

1143: 36-40.<br />

22. Hamrouni Sellami, I., Aidi Wannes, W.,<br />

Bettaieb, I., Berrima, S., Thouraya Chahed, Th.,<br />

Marzouk, B., <strong>and</strong> Limam, F. 2011. Qualitative<br />

<strong>and</strong> quantitative changes in the essential oil <strong>of</strong><br />

Laurus nobilis L. leaves as affected by different<br />

drying methods. Food Chem. 126: 691-697.<br />

23. Hassiotis, Ch.N. 2010. Evaluation <strong>of</strong> essential<br />

oil antifungal activity against mycorrhizal fungi<br />

- The case <strong>of</strong> Laurus Nobilis essential oil. Isr. J.<br />

Ecol. Evol. 56: 35-54.<br />

24. Howe, R.W. 1957. A laboratory study <strong>of</strong> the<br />

cigarette beetle, Lasioderma serricorne (F.)<br />

(Col., Anobiidae) with a critical review <strong>of</strong> the<br />

Tunisian Journal <strong>of</strong> Plant Protection 39 Vol. 6, No. 1, 2011


literature on its biology. Bull. Entomol. Res. 48:<br />

9-56.<br />

25. Huang, Y., Tan, J.M.W., Kini, R.M., <strong>and</strong> Ho,<br />

S.H. 1997. Toxic <strong>and</strong> antifeedant action <strong>of</strong><br />

nutmeg oil against Tribolium castaneum<br />

(Herbst) <strong>and</strong> Sitophilus zeamais Motsch. J.<br />

Stored Prod. Res. 33: 289-298.<br />

26. Isman, M.B. 2006. Botanical insecticides,<br />

deterrents, <strong>and</strong> repellents in modern agriculture<br />

<strong>and</strong> an increasingly regulated world. Annu.<br />

Rev. Entomol. 51: 45-66.<br />

27. Jarraya, A. 2003. Principaux nuisibles des<br />

plantes cultivées et des denrées stockées en<br />

Afrique du nord: leur biologie, leurs ennemis<br />

naturels, leurs dégâts et leur contrôle. Maghreb<br />

Editions, Tunisia. 415 pp.<br />

28. Jilani, G. <strong>and</strong> Saxena, R.C. 1990. <strong>Repellent</strong> <strong>and</strong><br />

feeding deterrent effects <strong>of</strong> turmeric oil,<br />

sweetflag oil, neem oil, <strong>and</strong> a neem-based<br />

insecticide against lesser grain borer<br />

(Coleoptera, Bostrychidae). J. Econ. Entomol.<br />

83: 629-634.<br />

29. Kellouche A., Ait-Eider, F., Labdaoui, K.,<br />

Moula, D., Ouendi, K., Hamadi, N.,<br />

Ouramdane, A., Frerot, B., <strong>and</strong> Mellouk, M.,<br />

2010. Biological activity <strong>of</strong> ten essential oils<br />

against cowpea beetle, Callosobruchus<br />

maculatus Fabricius (Coleoptera: Bruchidae).<br />

Int. J. Integ. Biol. 10: 86-89.<br />

30. Kellouche, A. <strong>and</strong> Soltani, N. 2004. Activité<br />

biologique de cinq plantes et de l’huile<br />

essentielle de l’une d’entre elles sur<br />

Callosobruchus maculatius (F.). Intern. J.<br />

Tropical Insect Sci. 24: 184-191.<br />

31. Kellouche, A., Soltani, N., Kreiter, S., Auger, J.,<br />

Arnold, I., <strong>and</strong> Kreiter, P. 2004. Biological<br />

activity <strong>of</strong> four vegetable oils on Callosobruchus<br />

maculatus (Fabricius) (Coleoptera: Bruchidae).<br />

Redia, LXXXVII: 39-47.<br />

32. Kim, D.H. <strong>and</strong> Ahn, Y.J. 2001. Contact <strong>and</strong><br />

fumigant activities <strong>of</strong> constituents <strong>of</strong><br />

Foeniculum vulgare fruit against three<br />

coleopteran stored-product insects. Pest Manag.<br />

Sci. 57: 301-306.<br />

33. Kim, S.I., Park, C., Ohh, M.H., Cho, H.C., <strong>and</strong><br />

Ahn, Y.J. 2003. Contact <strong>and</strong> fumigant activities<br />

<strong>of</strong> aromatic plants extracts <strong>and</strong> essential oils<br />

against Lasioderma serricorne (Coleoptera:<br />

Anobiidae). J. Stored Prod. Res. 39: 11-19.<br />

34. Kitashima, Y., Hirao, M., <strong>and</strong> Takahashi, T.<br />

2007. Influence <strong>of</strong> pheromone trap location on<br />

the capture <strong>of</strong> cigarette beetle, Lasioderma<br />

serricorne (fabricius). J. Med. Ent. Zool. 58:<br />

45-51.<br />

35. Kivçak, B. <strong>and</strong> Mert, T. 2002. Preliminary<br />

evaluation <strong>of</strong> cytotoxic properties <strong>of</strong> Laurus<br />

nobilis leaf extracts. Fitoterapia 73: 242-243.<br />

36. Kovats, E. 1965. Gas chromatographic<br />

characterisation <strong>of</strong> organic substances in the<br />

retention index system. Advances in<br />

Chromatography, Chap. 7: 229-247.<br />

37. LeCato, G.L. 1978. Infestation <strong>and</strong><br />

development by the cigarette beetle in spices. J.<br />

Georgia Entomol. Soc. 13: 100-105.<br />

38. Macchioni, F., Perrucci, S., Cioni, P., Morelli,<br />

I., Castilho, P., <strong>and</strong> Cecchi, F. 2006.<br />

<strong>Composition</strong> <strong>and</strong> acaricidal activity <strong>of</strong> Laurus<br />

novocanariensis <strong>and</strong> Laurus nobilis essential<br />

oils against Psoroptes cuniculi. J. Essent. <strong>Oil</strong><br />

Res. 18: 111-114.<br />

39. Marzouki, H., Khaldi, A., Chamli, R., Bouzid,<br />

S., Piras, A., Falconieri, D., <strong>and</strong> Marongiu, B.<br />

2009. Biological activity evaluation <strong>of</strong> the oils<br />

<strong>from</strong> Laurus nobilis <strong>of</strong> Tunisia <strong>and</strong> Algeria<br />

extracted by supercritical carbon dioxide. Nat.<br />

Prod. Res. 23: 230-237.<br />

40. Namba, T. 1993. The Encyclopedia <strong>of</strong> Wakan-<br />

Yaku (Traditional Sino-Japanese<br />

Medicines〉with Color Pictures. Second<br />

edition, Hoikusha Publishing Co,Ltd<br />

Osaka,VoL I,250 pp.<br />

41. Ndungu, M., Lawndale, W., Hassanali, A.,<br />

Morena, L., <strong>and</strong> Cabra, C.S. 1995. Cleome<br />

monophylla essential oil <strong>and</strong> its constituents as<br />

tick (Rhipicephalus appendiculatus) <strong>and</strong> maize<br />

weevil (Sitophilus zeamais) repellents.<br />

Entomol. Exp. Appl. 76: 217-222.<br />

42. Nerio, L.S., Olivero-Verbel, J., <strong>and</strong> Stashenko.<br />

E.E. 2009. <strong>Repellent</strong> activity <strong>of</strong> essential oils<br />

<strong>from</strong> seven aromatic plants grown in Colombia<br />

against Sitophilus zeamais Motschulsky<br />

(Coleoptera). J. Stored Prod. Res. 45: 212-214.<br />

43. Papachristos, D.P. <strong>and</strong> Stamopoulos, D.C.<br />

2002. <strong>Repellent</strong>, toxic <strong>and</strong> reproduction<br />

inhibitory effect <strong>of</strong> essential oil vapours on<br />

Acanthoscelides obtectus (Say) (Coleoptera:<br />

Bruchidae). J. Stored Prod. Res. 38: 117-128.<br />

44. Pascual-Villalobos, M.J. 1996. Evaluation <strong>of</strong><br />

insecticidal activity <strong>of</strong> Chrysanthemum<br />

coronarium L. plant extracts. Boletin de<br />

Sanidad 22: 411-420.<br />

45. Pino, J., Borges, P., <strong>and</strong> Roncal, E. 1993. The<br />

chemical composition <strong>of</strong> laurel leaf oil <strong>from</strong><br />

various origins. Die Nahrung 37: 592-595.<br />

46. Pottier-Alapetite, G. 1979. Flore de la Tunisie.<br />

Angiospermes-Dicotylédones. Apétalesdialypétales.<br />

Publications Scientifiques<br />

Tunisiennes, Tunis, Tunisia, 291 pp.<br />

47. Regnault-Roger, C. 1997. The potential <strong>of</strong><br />

botanical essential oils for insect pest control.<br />

Integrated Pest Manag. Rev. 2: 25-34.<br />

48. Regnault-Roger, C. <strong>and</strong> Hamraoui, A. 1994.<br />

Inhibition <strong>of</strong> reproduction <strong>of</strong> Acanthoscelides<br />

obtectus Say (Coleoptera), a kidney bean<br />

Tunisian Journal <strong>of</strong> Plant Protection 40 Vol. 6, No. 1, 2011


(Phaseolus vulgaris) bruchid, by aromatic<br />

essential oils. Crop Prot. 13: 624-628.<br />

49. Saim, N. <strong>and</strong> Meloan, E.C. 1986. Compounds<br />

<strong>from</strong> leaves <strong>of</strong> bay (Laurus nobilis L.) as<br />

repellents for Tribolium castaneum (Herbst)<br />

when added to wheat flour. J. Stored Prod. Res.<br />

22: 141-144.<br />

50. Saxena, C.R., Dixit, P.D., <strong>and</strong> Harshan, V.<br />

1992. Insecticidal action <strong>of</strong> Lantana camara<br />

against Callosobruchus chinensis (Coleoptera.<br />

Bruchidae). J. Stored Prod. Res. 28: 279-281.<br />

51. Shaaya, E., Kostjukovski, M., Eilberg, J., <strong>and</strong><br />

Sukprakarn, C. 1997. Plant oils as fumigants<br />

<strong>and</strong> contact insecticides for the control <strong>of</strong><br />

stored-product insects. J. Stored Prod. Res. 33:<br />

7-15.<br />

52. Shaaya, E., Ravid, U., Paster, N., Juven, B.,<br />

Zisman, U., <strong>and</strong> Pissarev, V. 1991. Fumigant<br />

toxicity <strong>of</strong> essential oils against four major<br />

stored-product insects. J. Chem. Ecol. 17: 499-<br />

504.<br />

53. Sokal, R.R. <strong>and</strong> Rohlf, F.J. 1981. Biometry: the<br />

principles <strong>and</strong> practice <strong>of</strong> statistics in biological<br />

research. 2nd ed., W.H. Freeman <strong>and</strong> Company,<br />

San Francisco, USA, 859 pp.<br />

54. Topuz, E. <strong>and</strong> Erler, F. 2007. Bioefficacy <strong>of</strong><br />

some essential oils against the carmine spider<br />

mite, Tetranychus cinnabarinus. Fresen.<br />

Environ. Bull 16B: 1498-1502.<br />

55. Weaver, K.D., Dunkel, V.F., Potter, C.R., <strong>and</strong><br />

Ntezurubanza, L. 1994. Contact <strong>and</strong> fumigant<br />

efficacy <strong>of</strong> powdered <strong>and</strong> intact Ocimum canum<br />

Sims (Lamiales: Lamiaceae) against Zabrotes<br />

subfasciatus (Boheman) adults (Coleoptera:<br />

Bruchidae). J. Stored Prod. Res. 30: 243-252.<br />

---------------------------<br />

Tunisian Journal <strong>of</strong> Plant Protection 41 Vol. 6, No. 1, 2011


Tunisian Journal <strong>of</strong> Plant Protection 42 Vol. 6, No. 1, 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!