16.06.2013 Views

Improved Oil Recovery by Waterflooding - University of Wyoming

Improved Oil Recovery by Waterflooding - University of Wyoming

Improved Oil Recovery by Waterflooding - University of Wyoming

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> <strong>Waterflooding</strong><br />

Nina Loahardjo<br />

Petrophysics and Surface Chemistry Group<br />

Chemical and Petroleum Engineering<br />

<strong>University</strong> <strong>of</strong> <strong>Wyoming</strong><br />

18 January 2011<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Project Personal<br />

• Norman Morrow<br />

• Carol Robinson (administration)<br />

• Winoto Winoto, Ph.D.<br />

– Low salinity, removal <strong>of</strong> water blocks, rate effect, and core properties for screening cores<br />

• Nina Loahardjo, Ph.D.<br />

– Low salinity, sequential waterflooding, and interfacial properties<br />

• Siluni Wickramatilaka, Ph.D.<br />

– Spontaneous Imbibition – scaling <strong>of</strong> viscosity ratio etc., gravity dominated imbibition, MRI imaging<br />

<strong>of</strong> an imbibition front, low salinity imbibition at Sor, surfactant enhanced imbibition<br />

• Pu Hui, Ph.D.<br />

– Low salinity flooding <strong>of</strong> reservoir cores including CBM water, chemical analysis and inline<br />

monitoring <strong>of</strong> pH and conductivity <strong>of</strong> effluent brine<br />

• Behrooz Raeesi, Ph.D. Student<br />

– Drainage/imbibition capillary pressure data, theory and experiments on surface energy, wetting and<br />

surface roughness<br />

EORI staff<br />

• Peugui Yin<br />

– Petrophysics: thin section analysis and data acquisition: surface areas, clay analysis, cation<br />

exchange capacities (Susan Schwapp)<br />

• Shaochang Wo<br />

– Data analysis, modelling, simulation<br />

Machine shop<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

• Ron Borgialli, George Twitchell, and Dean Twitchell


• Jill Buckley<br />

Adjunct Pr<strong>of</strong>essors<br />

• Crude oil characterization, wetting, low salinity and sequential<br />

waterflooding recovery mechanisms, adhesion, interfacial<br />

tension, asphaltene phase behavior<br />

• Koichi Takamura<br />

• <strong>Recovery</strong> mechanisms, surfactants, emulsions, dispersions,<br />

DLVO theory, fundamentals <strong>of</strong> interfacial tensions including<br />

effect <strong>of</strong> pH and salinity for crude oils<br />

• Ge<strong>of</strong>f Mason<br />

• Spontaneous imbibition, pressures at imbibition front and core<br />

face, viscosity ratios – correlations and theory, bubble snap-<strong>of</strong>f<br />

and capillary back pressure for precise pore geometries, nuclear<br />

tracer imaging and interpretation (with EU N H ABergen) N C E D O I L R E C O V E R Y I N S T I T U T E


•Australian National <strong>University</strong><br />

Collaborations<br />

•Digital Core Consortium for Wettability : Mark Knackstedt, Andrew Fogden, Munish Kumar, Evgenia<br />

Lebedevia and Tim Senden<br />

Micro X-ray CT Imaging and Surface Chemical Techniques Related to <strong>Recovery</strong> Mechanisms for Crude <strong>Oil</strong><br />

and Core (Tensleep and Minnelusa) Which Complement UW Coreflood and Imbibition Studies<br />

•<strong>University</strong> <strong>of</strong> Manitoba: Doug Ruth<br />

Simulation and Theory <strong>of</strong> Imbibition<br />

•<strong>University</strong> <strong>of</strong> Bergen: Arne Graue and Martin Fernø<br />

Nuclear Tracer Imaging <strong>of</strong> Imbibition<br />

•ConocoPhillips: James Howard and Jim Stevens<br />

MRI Imaging <strong>of</strong> Sequential flooding, Spontaneous Imbibition, and Low Salinity Flooding<br />

•<strong>University</strong> <strong>of</strong> Kyoto<br />

Application <strong>of</strong> Molecular Simulation to Interpretation <strong>of</strong> the Interfacial and Surface Properties <strong>of</strong> Crude <strong>Oil</strong><br />

•<strong>University</strong> <strong>of</strong> Edmonton: David Potter<br />

Tracking the Movement <strong>of</strong> Clay Particles Within Porous Media from Magnetic Properties<br />

•Chevron: Guoqing Tang<br />

Low Salinity <strong>Waterflooding</strong> – Industrial X-Ray Imaging<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


July 2010 onward<br />

Presentations<br />

• Morrow, N:” Interfacial Properties and <strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> <strong>Waterflooding</strong>”, presented at Technical Advisory Board for<br />

Enhanced <strong>Oil</strong> <strong>Recovery</strong> Institute, <strong>University</strong> <strong>of</strong> <strong>Wyoming</strong>, July 2010<br />

• Loahardjo, N., Xie, X., Winoto, W., Buckley, J., and Morrow, N.R., “<strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Sequential <strong>Waterflooding</strong>”,<br />

presented at the 14th Annual Gulf <strong>of</strong> Mexico Deepwater Technical Symposium, New Orleans, LA, Aug. 19-19, 2010.<br />

• Xie, X., Pu, H., Buckley, J., Morrow, N.R., and Carlisle, C., “Low Salinity <strong>Waterflooding</strong> and <strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong>”, presented<br />

at the 14th Annual Gulf <strong>of</strong> Mexico Deepwater Technical Symposium, New Orleans, LA, Aug. 19-19, 2010.<br />

• Morrow, N. and Mason, G:”Areas <strong>of</strong> Crude <strong>Oil</strong>/Rock Contact That Govern The Development <strong>of</strong> Mixed Wet Rocks”, presented at<br />

11th International Symposium on Reservoir Wettability Calgary, AB, Canada, September 2010<br />

• Loahardjo, N., Xie, X., Winoto, W., Buckley, J. and Morrow, N.:”Mechanism <strong>of</strong> <strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Sequential<br />

<strong>Waterflooding</strong>”, ”, presented at 11th International Symposium on Reservoir Wettability Calgary, AB, Canada, September 2010<br />

• Buckley, J. and Morrow, N.:”<strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Low Salinity <strong>Waterflooding</strong>: A Mechanistic Review”, presented at 11th International Symposium on Reservoir Wettability Calgary, AB, Canada, September 2010<br />

• Morrow, N. and Mason, G:”Spontaneous Imbibition Into Cores with Different Boundary Conditions”, presented at 11th International Symposium on Reservoir Wettability Calgary, AB, Canada, September 2010<br />

• Wickramatilaka, S., Mason, G., Morrow, N., Howard, J. and Stevens.:” Magnetic Resonance Imaging <strong>of</strong> <strong>Oil</strong> <strong>Recovery</strong> during<br />

Spontaneous Imbibitions”, presented at 11th International Symposium on Reservoir Wettability Calgary, AB, Canada, September<br />

2010<br />

• Loahardjo, N.: “Mechanism <strong>of</strong> <strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Sequential <strong>Waterflooding</strong>” Chemical & Petroleum Engineering Graduate<br />

seminar, Nov. 8, 2010.<br />

• Takamura, K., Loahardjo, N., Buckley, J., Morrow, N, Kunieda, M., Liang, Y. and Matsuoka, T.:” Preferential Accumulation <strong>of</strong><br />

Light End Alkanes and Aromatics at The Crude <strong>Oil</strong>/Air and Crude <strong>Oil</strong>/Water Interfaces: Potential Mechanism <strong>of</strong> Accelerated Tar<br />

Ball Formation from Spilled Crude <strong>Oil</strong>”, be presented at the Annual SME Meeting, Denver, February 27 – March 2, 2011<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


July 2010 onward<br />

Publications<br />

• Mason, G., Fisher, H., Morrow, N.R., and Ruth, D.W.: “Correlation for the Effect <strong>of</strong> Fluid Viscosities on Counter-Current<br />

Spontaneous Imbibition”, JPSE. 72, (August) 2010, 195-205.<br />

• Loahardjo, N., Xie, X., and Morrow, N.R., “<strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Sequential <strong>Waterflooding</strong> <strong>of</strong> Mixed-Wet Sandstone and Limestone”,<br />

Energy Fuels 24 (9) 5073-5080, Web published August 30, 2010.<br />

• Pu, H., Xie, X., Yin, P. and Morrow, N.:”Low Salinity <strong>Waterflooding</strong> and Mineral Dissolution”, SPE 134042, SPE Annual Meeting<br />

Technical Conference and Exhibition, Florence, Italy, September 2010<br />

• Pu, H., “<strong>Recovery</strong> <strong>of</strong> Crude <strong>Oil</strong> from Outcrop and Reservoir Sandstone <strong>by</strong> Low Salinity <strong>Waterflooding</strong>”, PhD Defense, Sept. 27,<br />

2010<br />

• Wickramatilaka, S., G., Morrow, N. and Howard, J.:”Effect <strong>of</strong> Salinity on <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Spontaneous Imbibition”, 24<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

th<br />

International Symposium on the Core Analysts, Halifax, Nova Scotia, Canada, October 2010<br />

• Kumar, K., Fodgen, A., Morrow N. and Buckley J.:”Mechanisms <strong>of</strong> <strong>Improved</strong> oil <strong>Recovery</strong> from sandstone <strong>by</strong> Low Salinity<br />

Flooding”, 24th International Symposium on the Core Analysts, Halifax, Nova Scotia, Canada, October 2010<br />

• Loahardjo, N., Morrow, N., Stevens, J. and Howard, J.:”Nuclear Magnetic Resonance Imaging: Application to Determination <strong>of</strong><br />

Saturation Changes in a Sandstone Core <strong>by</strong> Sequential <strong>Waterflooding</strong>”, 24th International Symposium on the Core Analysts,<br />

Halifax, Nova Scotia, Canada, October 2010<br />

• Morrow, N., and Buckley, J. ” <strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Low Salinity <strong>Waterflooding</strong>”, SPE Distinguished Author Series, October<br />

2010<br />

• Morrow, N.:” Low salinity <strong>Waterflooding</strong>”, EORI Newsletter, <strong>Wyoming</strong>, October 2010<br />

• Fogden, A., Kumar, M., Morrow, N.R., Buckley, J.S.: “Mobilization <strong>of</strong> Fine Particles during Flooding <strong>of</strong> Sandstones, and Possible<br />

Relations to Enhanced <strong>Oil</strong> <strong>Recovery</strong>”, Energy Fuels, submitted November, 2010.<br />

• Li, Y., Mason, G., Morrow, N. and Ruth D.:” Capillary Pressure at A Saturation Front during Restricted Counter-Current<br />

Spontaneous Imbibition with Liquid Displacing Air”, Transport in Porous Media, November, 2010<br />

• Siluni Wickramathilaka, “<strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Spontaneous Imbibition,” Dec. 1, 2010, PhD. Defense<br />

15 Manuscripts in Preparation for 2011


TOPICS<br />

• Screening outcrop cores for model rocks for low<br />

salinity waterflooding<br />

• Low salinity waterflooding with mineral dissolution<br />

– Eolian sandstones containing dolomite and anhydrites<br />

but without clays (Tensleep, Minnelusa, and Phosphoria)<br />

• Sequential waterflooding<br />

– Mechanisms <strong>of</strong> Sequential waterflooding<br />

– Field test applications<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Oil</strong> <strong>Recovery</strong>: <strong>Waterflooding</strong><br />

Single 5-Spot Well Pattern<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Laboratory Measurement <strong>of</strong><br />

<strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> <strong>Waterflooding</strong><br />

brine<br />

core<br />

<strong>Oil</strong> <strong>Recovery</strong>, %OOIP<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Target for Tertiary <strong>Recovery</strong><br />

<strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> Waterflood<br />

0 2 4 6 8 10 12<br />

Brine Injected, PV<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Definitions<br />

• Low Salinity <strong>Waterflooding</strong> (LSW) at S or<br />

– Low salinity waterflooding <strong>of</strong> watered-out reservoir, nominally at<br />

residual oil saturation, S or, after High Salinity <strong>Waterflooding</strong> (HSW)<br />

(common approach)<br />

R wf (%OOIP)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Core U : R1/C1<br />

LC Crude <strong>Oil</strong><br />

HSW<br />

LSW<br />

LSE<br />

0 2 4 6 8 10 12<br />

Brine Injected, PV<br />

Loahardjo et al., 2007<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Definitions (cont’d)<br />

• Low Salinity <strong>Waterflooding</strong> (LSW) at S wi<br />

– secondary mode low salinity waterflooding that begins at initial water<br />

saturation, S wi (growing interest)<br />

Loahardjo et al., 2010<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


# # # <strong>of</strong> <strong>of</strong> <strong>of</strong> No. No. No. Papers Papers Papers <strong>of</strong> <strong>of</strong> <strong>of</strong> Published Published Published & & & Presentations<br />

Presentations<br />

Presentations Papers Papers Papers<br />

Low Salinity <strong>Waterflooding</strong><br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1996 1996 1996<br />

UW<br />

Other<br />

1998 1998 1998<br />

1999 1999 1999<br />

2000 2000 2000<br />

2001 2001 2001<br />

2002 2002 2002<br />

2003 2003 2003<br />

2004 2004 2004<br />

Year<br />

Figure 3. Histogram <strong>of</strong> Low Salinity Papers and Presentations<br />

EORI Newsletter Fall 2010<br />

Mechanism <strong>of</strong> Low Salinity <strong>Waterflooding</strong> ?<br />

SPE Distinguished Author article on LSE (Morrow and Buckley, 2010)<br />

2005 2005 2005<br />

2006 2006 2006<br />

2007 2007 2007<br />

2008 2008 2008<br />

2009 2009 2009<br />

2010 2010 2010<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Main Hindrances to Systematic<br />

Investigation <strong>of</strong> Low Salinity Flooding<br />

• The type <strong>of</strong> Berea sandstone which<br />

responded to low salinity waterflooding is<br />

no longer available<br />

• Currently available Berea shows little<br />

(< 2% OOIP increase) if there is any<br />

response to low salinity flooding<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Solutions/work in progress<br />

A. Work with reservoir crude oil/brine/rock<br />

Reservoir cores are generally more responsive than outcrop<br />

cores but :<br />

• coring are expensive<br />

• duplicate core plugs are not usually available because <strong>of</strong> heterogeneity<br />

• core quality, history, cleaning and re-use <strong>of</strong> cores are problematic.<br />

• quality <strong>of</strong> crude oil samples can be uncertain<br />

Papers on reservoir sandstone and carbonate results are in<br />

preparation, covering:<br />

• Step changes in salinity<br />

• Injection flow rate<br />

• Intermissions in flow<br />

• Effluent brine analysis<br />

• Etc.<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Solutions/work in progress<br />

B. Total has identified a responsive outcrop<br />

Three groups have reported response (U. <strong>of</strong> <strong>Wyoming</strong>, U.<br />

Bordeaux, and U. <strong>of</strong> Stavanger)<br />

• Cost, heterogeneity, and logistics <strong>of</strong> supply are still a problem<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Solutions/work in progress<br />

C. Screening Outcrop Cores<br />

for Model Rocks for Low<br />

Salinity <strong>Waterflooding</strong><br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Screening <strong>of</strong> commercially available outcrop<br />

Klinkenberg Permeability, mD<br />

Klinkenberg Permeability, mD<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

Berea Buff<br />

Berea Stripe<br />

Idaho Hard<br />

Wisconsin<br />

Silurian Dolomite<br />

Bentheimer<br />

Parker<br />

Torrey Buff<br />

Briar Hill<br />

Boise<br />

Leopard<br />

Castle Gate<br />

Sister Gray<br />

Berea<br />

Kir<strong>by</strong><br />

Edwards<br />

0 5 10 15 20 E N25 25 H A N C E D 30 O I L R E C O35 35 V E R Y I N40 40 S T I T U T E 45<br />

Porosity, %<br />

Bandera Gray<br />

Bandera Brown<br />

Austin Chalk<br />

Idaho Gray<br />

Cordova Cream<br />

Stephen Xtra<br />

Georgetown<br />

Edwards Brown


Berea Stripe,<br />

K klink=382–457 mD, f=20.1–20.5%<br />

Briar Hill,<br />

K klink=5,500–5,900 mD, f=23.7–24.2%<br />

Castle Gate,<br />

K klink=1,140–1,300 mD, f=25.0–25.6%<br />

Idaho Gray,<br />

Kklink=5,600–7,200 mD, f=28.6–29.7%<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


R wf (% OOIP)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Berea Stripe (WP Crude <strong>Oil</strong>)<br />

T a = 60 o C ; T d = 60 o C<br />

k g = 463 mD ; k b = 282 mD<br />

S wi = 23%<br />

Seawater<br />

20x Dilution <strong>of</strong> Seawater<br />

2.3% OOIP<br />

0<br />

0 5 10 15 20 25 30 35 40 0<br />

Injected Brine, PV<br />

pH<br />

P (psi)<br />

Low Salinity <strong>Waterflooding</strong> for Berea Stripe Outcrop<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

pH and P (psi)


R wf (% OOIP)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Idaho Gray (WP Crude <strong>Oil</strong>)<br />

T a = 60 o C ; T d = 60 o C<br />

k g = 7.2 D ; k b = 700 mD<br />

S wi = 22%<br />

Seawater<br />

3.3% OOIP<br />

P (psi)<br />

0<br />

0 5 10 15 20 25 30 0<br />

Injected Brine, PV<br />

Low Salinity <strong>Waterflooding</strong> for Idaho Gray Outcrop<br />

p<br />

20x Dilution <strong>of</strong> Seawater<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

pH and P (psi)


R wf (% OOIP)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Briar Hill (WP Crude <strong>Oil</strong>)<br />

T a = 60 o C ; T d = 60 o C<br />

k g = 5.6 D ; k b = 700 mD<br />

S wi = 27%<br />

Seawater<br />

20x Dilution <strong>of</strong> Seawater<br />

3.7% OOIP<br />

0<br />

0 5 10 15 20 25 30 0<br />

Injected Brine, PV<br />

Low Salinity <strong>Waterflooding</strong> for Briar Hill Outcrop<br />

pH<br />

P (psi)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

pH and P (psi)


R wf (% OOIP)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Castle Gate (WP Crude <strong>Oil</strong>)<br />

T a = 60 o C ; T d = 60 o C<br />

k g = 1.3 D ; k b = 460 mD<br />

S wi = 24%<br />

Seawater<br />

20x Dilution <strong>of</strong> Seawater<br />

(psi)<br />

10<br />

P<br />

8<br />

and<br />

pH<br />

pH<br />

6<br />

P (psi)<br />

4.6% OOIP<br />

0<br />

0 5 10 15 20 25 0<br />

Injected Brine, PV<br />

Low Salinity <strong>Waterflooding</strong> for Castle Gate Outcrop<br />

14<br />

12<br />

4<br />

2<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


enefit compare to<br />

waterflood results (%)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1<br />

2<br />

Low salinity Effect<br />

3<br />

4<br />

Reservoir cores<br />

(Lager et al., 2006)<br />

SorHSWSorLSW <br />

SoiSorLSW <br />

5<br />

6<br />

8<br />

Endicott core<br />

% benefit 100%<br />

9<br />

10<br />

11<br />

12<br />

13<br />

Endicott field average<br />

(Seccombe et al., 2008)<br />

14<br />

15<br />

16<br />

17<br />

18<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Outcrop<br />

cores<br />

Berea<br />

Stripe<br />

Idaho<br />

Gray<br />

Briar<br />

Hill<br />

Castle<br />

gate


LSW from LC Reservoir Core<br />

R wf (%OOIP)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Core U : R1/C1<br />

LC Crude <strong>Oil</strong><br />

HSW<br />

LSW<br />

14% OOIP<br />

P<br />

pH<br />

0<br />

0 2 4 6 8<br />

Brine Injected, PV<br />

10 12<br />

40<br />

30<br />

20<br />

10<br />

Pressure Drop (psi) and pH<br />

Loahardjo et al., 2007<br />

The result shows benefit to LSW compared to HSW is 43%<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Importance <strong>of</strong> Laboratory Coreflood<br />

Tests on Reservoir for LSW<br />

• For any positive LSW effect, tests on reservoir core show<br />

substantial response (averaged at 14%) as opposed to low<br />

response (0-9.6%) on tested outcrop core to date<br />

• Single well chemical tracer tests showed 13% OOIP reduction<br />

in residual oil, consistent with laboratory core test (McGuire et<br />

al. 2005)<br />

• A candidate North Sea field that met the necessary condition<br />

for low salinity effect did not respond to LSW in either<br />

laboratory or pilot test (Skrettingland et al. 2010)<br />

• The correlation between laboratory coreflood test and field<br />

test results confirms the need for individual laboratory tests for<br />

screening low salinity candidate;<br />

The variability in response demonstrates the value<br />

<strong>of</strong> laboratory tests in screening candidate reservoirs<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


2. Low Salinity <strong>Waterflooding</strong><br />

with Mineral Dissolution<br />

Studies on <strong>Wyoming</strong> Reservoirs using<br />

Low Salinity - Coal Bed Methane Water<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Target Formations<br />

• Minnelusa (Gibbs) and Tensleep (Teapot Dome) eolian<br />

sandstones<br />

One half <strong>of</strong> <strong>Wyoming</strong>’s oil production<br />

Abundant dolomite & anhydrite cement<br />

Formation water salinity: 3,300 – 38,650 ppm<br />

Low salinity water: Coalbed Methane Water (1,316 ppm)<br />

• Phosphoria (Cottonwood) dolomite formation<br />

<strong>Recovery</strong> factor as low as 10%<br />

Patchy anhydrite<br />

Formation water salinity: 30,755 ppm<br />

Low salinity water: Diluted formation water (1,537 ppm)<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Oil</strong> sample<br />

Crude <strong>Oil</strong>s<br />

n-C 6 Asph<br />

[%wt]<br />

Acid #<br />

[mg KOH/g oil]<br />

Base #<br />

[mg KOH/g oil]<br />

Tensleep 3.2 0.16 0.96<br />

Minnelusa 9.0 0.17 2.29<br />

Phosphoria 2.9 0.56 1.83<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


100 mm<br />

Minnelusa Rock from <strong>Oil</strong> Zone<br />

Dolomite<br />

Anhydrite<br />

• Mineralogy: sandstone with abundance dolomite and anhydrites cements<br />

• Porosity: 12.2 -18.1%<br />

• Permeability: 63.7 – 174.2 mD<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

Dolomite<br />

Pu et al., 2010


<strong>Oil</strong> recovery, %OOIP<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

M1<br />

K g = 78.4 md, f = 14.6%<br />

S wi = 8.2%,<br />

MW (38,651ppm)<br />

0 2 4 6 8 10 12 14 16 18<br />

Brine injected, PV<br />

+5.8%<br />

CBMW (1,316ppm)<br />

Low Salinity <strong>Waterflooding</strong> for Minnelusa Rock from <strong>Oil</strong> Zone<br />

25<br />

20<br />

15<br />

10<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

5<br />

0<br />

Pu et al., 2010<br />

Pressure drop, psi


Phosphoria Rock from Cottonwood Creek Field<br />

100 mm<br />

Vug<br />

Dolomite<br />

Mineralogy: Crystallin dolomite and patchy anhydrites<br />

Porosity: 9.5 -19.6%<br />

Permeability: 0.25 – 294 md<br />

Dolomite<br />

Pu et al., 2010<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Oil</strong> recovery, %OOIP<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

P1<br />

K g = 6.8 md, f = 9.5%<br />

S wi = 22.7%<br />

PW<br />

30,755ppm<br />

K we1 = 2.1 md<br />

+8.1%<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Brine injected, PV<br />

5% PW dilute<br />

1,537ppm<br />

K we2 = 1.1 md<br />

Low Salinity <strong>Waterflooding</strong> for Phosphoria Rock<br />

30<br />

25<br />

20<br />

15<br />

10<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

5<br />

0<br />

Pu et al., 2010<br />

Pressure drop, psi


100 mm<br />

Tensleep Rock from <strong>Oil</strong> Zone<br />

Dolomite<br />

quartz<br />

dolomite<br />

anhydrite<br />

• Mineralogy: sandstone with dolomite and anhydrites cements<br />

• Porosity: 8.6 -15.7%<br />

• Permeability: 7.0 – 42.7 md<br />

Pu et al., 2010<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Oil</strong> recovery, %OOIP<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

T4<br />

K g = 22.9 md, f = 12.5%<br />

S wi = 15.3%<br />

MW<br />

38,651ppm<br />

K we1 = 0.53 md<br />

CBMW<br />

1,316ppm<br />

0 10 20 30 40 50 60 70<br />

Brine injected, PV<br />

+5.2%<br />

K we2 = 0.55 md<br />

Low Salinity <strong>Waterflooding</strong> for Tensleep Rock from <strong>Oil</strong> Zone<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

0<br />

Pu et al., 2010<br />

Pressure drop, psi


Anhydrates dissolution in Tensleep rock – the green regions show the region<br />

<strong>of</strong> cement dissolutions after flooding with CBM water (Lebedeva et al., 2009)<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


100 mm<br />

Tensleep Rock from Aquifer<br />

Dolomite<br />

Dolomite<br />

Mineralogy: sandstone with interstitial dolomite crystals and minimal anhydrates<br />

Porosity: 17 -18.7%<br />

Permeability: 50.8 – 228.5 md<br />

Pu et al., 2010<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Oil</strong> recovery, %OOIP<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Core# K g (md) f S wi (%)<br />

TA1 228.5 18.7 22.4<br />

TA2 50.8 18.1 20.4<br />

MW<br />

38,651ppm<br />

CBMW<br />

1,316ppm<br />

0 5 10 15 20 25 30<br />

Brine injected, PV<br />

R TA1<br />

K we = 10.4 md<br />

P TA1<br />

K we = 1.1md<br />

P TA2<br />

R TA2<br />

Low Salinity <strong>Waterflooding</strong> for Tensleep Rock from Aquifer<br />

30<br />

25<br />

20<br />

15<br />

10<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

5<br />

0<br />

Pu et al., 2010<br />

Pressure drop, psi


Silurian Dolomite Outcrop<br />

Mineralogy: interstitial dolomite and no anhydrates<br />

Porosity: 17 – 20%<br />

Permeability: 100 mD – 1,000 md<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


R wf (% OOIP)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Silurian Dolomite (WP Crude <strong>Oil</strong>)<br />

T a = 60 o C ; T d = 60 o C<br />

k g = 102 mD ; k b = 19 mD<br />

S wi = 24%<br />

Seawater<br />

P (psi)<br />

20x Dilution<br />

<strong>of</strong> Seawater<br />

0<br />

0 5 10 15 20 25 30 35 0<br />

Injected Brine, PV<br />

Low Salinity <strong>Waterflooding</strong> for Silurian Dolomite Outcrop<br />

pH<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E<br />

5<br />

pH and P (psi)


Summary<br />

• Tensleep and Minnelusa sandstones, and<br />

Phosphoria dolomite all contained<br />

anhydrites and all responded to low<br />

salinity waterflooding<br />

• Tensleep sandstone from an aquifer and<br />

Silurian dolomite outcrop did not contain<br />

any noticeable anhydrites and did not<br />

respond to low salinity waterflooding<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


3. Sequential <strong>Waterflooding</strong><br />

Morrow, Xie, and Loahardjo,<br />

US Patent No. WO 2009/12663 A2, October 2009<br />

Morrow, Xie, and Loahardjo,<br />

Pending Provisional Patent No. 61/226,709, July 2009<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Effect aging at S or and/or S wi<br />

on sequential waterflooding<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Recovery</strong> <strong>of</strong> Crude <strong>Oil</strong><br />

Medium Permeability Berea Sandstone<br />

Aging at S or after 3 cycles<br />

T a = 75 o C<br />

T d = 60 o C<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


RR RR (%OOIP) (%OOIP) (%OOIP) (%OOIP)<br />

wf wf wf wf<br />

100<br />

80<br />

60<br />

40<br />

20<br />

PH 2L H 02 (WP Crude <strong>Oil</strong>)<br />

T = 75 a o T = 75 C ; t = 6 months<br />

a a o T = 75 C ; t = 6 months<br />

a a o T = 75 C ; t = 6 months<br />

a a o C ; t = 6 months<br />

a<br />

T = 60 d o T = 60 C (m = 28.8 cP)<br />

d o T = 60 C (m = 28.8 cP)<br />

d o T = 60 C (m = 28.8 cP)<br />

d o C (m = 28.8 cP)<br />

R1/C1 : S = 26% : S = 44%<br />

wi or<br />

R1/C2 : S = 36% : S = 28%<br />

wi or<br />

R1/C3 : S = 46% : S = 19%<br />

wi or<br />

k = 604 mD<br />

g<br />

20 days at S or<br />

R1/C4 : S = 42% : S = 15%<br />

wi or<br />

0<br />

0 1 2 3 4 5 6 7<br />

PV Brine Injected<br />

Sequential waterflooding with wettability control<br />

for medium permeability Berea sandstone<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Recovery</strong> <strong>of</strong> Crude <strong>Oil</strong><br />

Low Permeability Berea Sandstone<br />

Aging at S wi after 4 cycles<br />

followed <strong>by</strong> aging at S or<br />

T a = 75 o C<br />

T d = 60 o C<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


RR RR RR (%OOIP) (%OOIP) (%OOIP) (%OOIP) (%OOIP) (%OOIP)<br />

wf wf wf wf wf wf<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Ev 2L 2L 02 02 (WP (WP Crude Crude <strong>Oil</strong>)<br />

<strong>Oil</strong>)<br />

T = 75 a o T = 75 C ; t = 6 months<br />

a a o T = 75 C ; t = 6 months<br />

a a o T = 75 C ; t = 6 months<br />

a a o T = 75 C ; t = 6 months<br />

a a o T = 75 C ; t = 6 months<br />

a a o C ; t = 6 months<br />

a<br />

T = 60 d o T = 60 C (m = 28.8 cP)<br />

d o T = 60 C (m = 28.8 cP)<br />

d o T = 60 C (m = 28.8 cP)<br />

d o T = 60 C (m = 28.8 cP)<br />

d o T = 60 C (m = 28.8 cP)<br />

d o C (m = 28.8 cP)<br />

k = = 84 84 mD<br />

mD<br />

g<br />

30 days at S wi<br />

20 days at S or<br />

R1/C1 R1/C1 : : S S = 28% : S = 49%<br />

wi or<br />

R1/C2 : S = 28% : S = 43%<br />

wi wi wi wi wi or<br />

R1/C3 : S = 31% : S = 38%<br />

wi wi wi wi or<br />

R1/C4 : S = 38% : S = 29%<br />

wi or<br />

R1/C5 : S = 34% : S = 38%<br />

wi or<br />

R1/C6 : S wi = 37% : S or = 22%<br />

0<br />

0 1 2 3 4 5 6 7<br />

PV Brine Brine Injected<br />

Injected<br />

Sequential waterflooding with wettability control<br />

for low permeability Berea sandstone<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Recovery</strong> <strong>of</strong> Crude <strong>Oil</strong><br />

High Permeability Berea Sandstone – BS 4<br />

Aging at S or after 4 cycles<br />

followed <strong>by</strong> aging at S wi, S or , S or and S or<br />

Restoration 2<br />

T a = 75 o C; t a = 1 year<br />

T d = 60 o C<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


21 3 months days at at Sor Sor 25 days at Swi 17 24 days days at at SorSor Sequential waterflooding with wettability control<br />

for high permeability Berea sandstone – Restoration 2<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Summary<br />

• Further investigation <strong>of</strong> oil recovery <strong>by</strong> sequential<br />

waterflooding is needed, particularly for different types <strong>of</strong><br />

crude oil, because wettability, and changes in wettability,<br />

depend on specific crude oil/brine/rock interactions<br />

• Aging at high water saturation usually gave increase in<br />

oil recovery, whereas aging at low water saturation<br />

resulted in decreased oil recovery<br />

• Sequential waterflooding without change in salinity and<br />

without cleaning or re-aging between cycles usually<br />

showed sequential reductions in residual oil saturation.<br />

• Single-well field testing <strong>of</strong> sequential waterflooding is<br />

justified<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Single-Well Tests <strong>of</strong><br />

Sequential Floods<br />

Calculations are based on a simple<br />

piston-like displacement model<br />

f =20.9%, 30 ft reservoir oil-zone thickness<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Reservoir at residual oil saturation after waterflood<br />

(WF1)<br />

Day 0<br />

0 10 20 30 40 50 ft<br />

S OR (WF1)=36.2%<br />

target zone radius = 45 ft<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Injection <strong>of</strong> oil into the target zone<br />

Day 1<br />

0 10 20 30 40 50 ft<br />

S OR (WF1)=36.2%<br />

target zone radius = 45 ft<br />

S O=64.9%<br />

oil injected = 100 bbl<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Displacement Radial length <strong>of</strong> <strong>of</strong> injected oil reaches oil <strong>by</strong> minimum injection before <strong>of</strong> brine<br />

growing upon more (WF2) injection <strong>of</strong> brine<br />

Day 12<br />

0 10 20 30 40 50 ft<br />

S OR (WF1)=36.2%<br />

inner radial distance<br />

START WATER INJECTION<br />

oil bank radial length<br />

oil bank minimum<br />

radial length= 4.5 ft<br />

oil bank volume = 406 bbl<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Continuation <strong>of</strong> oil bank displacement <strong>by</strong><br />

injection <strong>of</strong> brine (WF2)<br />

Day 23<br />

45<br />

6<br />

0 10 20 30 40 50 ft<br />

S OR (WF1)=36.2%<br />

S O=64.9%<br />

S OR (WF2)=28.8%<br />

oil bank radial length= 5.9 ft<br />

oil bank volume = 1,149 bbl<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


The well is put on production and the oil bank<br />

grows in volume and radial length<br />

Day 68<br />

910<br />

0 10 20 30 40 50 ft<br />

S OR (WF1)=36.2%<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


The well is put on production and the oil bank<br />

grows in volume and radial length<br />

Day 10 11 12 13 14<br />

0 10 20 30 40 50 ft<br />

S OR (WF1)=36.2%<br />

S OR (WF2)=28.8%<br />

S OR (WF3)=24.0%<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


100 bbl<br />

oil<br />

100 bbl<br />

oil<br />

Single Well Field Test<br />

2,000 bbl<br />

brine<br />

10,000 bbl<br />

brine<br />

900 bbl oil in 14 days<br />

(as high as 3200 bbl optimistically)<br />

4,000 bbl oil in 62 days<br />

(as high as 15,000 bbl optimistically)<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Single Well Field Tests<br />

• Low cost: Injected brine and oil are directly<br />

available: Required oil volume is small<br />

• Test should first be applied to reservoirs<br />

with flow conformance (responded well to<br />

waterflooding), oil viscosity close to that <strong>of</strong><br />

the injected brine and low gas/oil ratio<br />

• Single well tracer tests can be used to<br />

determine residual oil saturations before<br />

and after the process<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Field Test ? 2011 ?<br />

Discussion <strong>of</strong> potential field test<br />

with James Seccombe and Scott Digert (BP Alaska)<br />

Laramie, <strong>Wyoming</strong>, October 13, 2010<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Further Application <strong>of</strong> Sequential Waterflood<br />

<strong>Improved</strong> <strong>Recovery</strong><br />

<strong>by</strong> Injection <strong>of</strong> Small Volumes <strong>of</strong> <strong>Oil</strong><br />

1. Inject multiple oil banks<br />

(single well or well to well)<br />

2. Reversing production and injection well before breakthrough<br />

to avoid sand production, especially for less consolidated<br />

reservoir<br />

3. Convert a tertiary mode low salinity flood into a more<br />

favorable/effective secondary mode low salinity waterflood<br />

<strong>by</strong> pre-injection <strong>of</strong> oil<br />

4. Establishing initial oil bank for other recovery methods, e.g.<br />

before flooding natural residual oil zone<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Ongoing Topics and Future Work<br />

1. Low Salinity <strong>Waterflooding</strong><br />

a. Tests on reservoir rocks<br />

b. Screening outcrop cores, at S wi and S or<br />

c. Attempt to identify a mechanism for LSW<br />

2. Sequential <strong>Waterflooding</strong><br />

a. Further laboratory tests<br />

b. Field tests <strong>of</strong> Sequential <strong>Waterflooding</strong><br />

3. Waterblock Treatment<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


Acknowledgments<br />

• EORI, <strong>University</strong> <strong>of</strong> <strong>Wyoming</strong><br />

• Wold Chair<br />

• Industry:<br />

Saudi Aramco*, BP*,Chevron, ConocoPhillips, Shell,<br />

StatoilHydro*, Total* (enquiries from Oxy, Kuwait, Maersk)<br />

* includes provision <strong>of</strong> reservoir rock and/or crude oil<br />

Thank You !<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


<strong>Improved</strong> <strong>Oil</strong> <strong>Recovery</strong> <strong>by</strong> <strong>Waterflooding</strong><br />

Nina Loahardjo<br />

Petrophysics and Surface Chemistry Group<br />

Chemical and Petroleum Engineering<br />

<strong>University</strong> <strong>of</strong> <strong>Wyoming</strong><br />

18 January 2011<br />

E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


E N H A N C E D O I L R E C O V E R Y I N S T I T U T E


E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!