27.06.2013 Views

Mono- and dicyclic unsaturated triterpenoid hydrocarbons in ...

Mono- and dicyclic unsaturated triterpenoid hydrocarbons in ...

Mono- and dicyclic unsaturated triterpenoid hydrocarbons in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mono</strong>- <strong>and</strong> <strong>dicyclic</strong> <strong>unsaturated</strong> <strong>triterpenoid</strong> <strong>hydrocarbons</strong><br />

<strong>in</strong> sediments from Lake Masoko (Tanzania) widely extend<br />

the botryococcene family<br />

Roma<strong>in</strong> de Mesmay a,b , Pierre Metzger b, *, V<strong>in</strong>cent Grossi c , Sylvie Derenne b<br />

a<br />

Laboratoire de Microbiologie, Géochimie et Ecologie Mar<strong>in</strong>es, UMR CNRS 6117, Centre d’Océanologie de Marseille (OSU),<br />

Faculté des Sciences de Lum<strong>in</strong>y, case 901, 13288 Marseille cedex 09, France<br />

b<br />

Laboratoire de Chimie Bioorganique et Organique Physique, UMR CNRS 7618, BIOEMCO, Ecole Nationale Supérieure de Chimie de Paris,<br />

75231 Paris cedex 05, France<br />

c<br />

PaléoEnvironnements et PaléobioSphère, UMR CNRS 5125, Université Lyon 1, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne cedex, France<br />

article <strong>in</strong>fo<br />

Article history:<br />

Received 23 July 2007<br />

Received <strong>in</strong> revised form 19 December 2007<br />

Accepted 4 January 2008<br />

Available onl<strong>in</strong>e 18 March 2008<br />

1. Introduction<br />

abstract<br />

Botryococcus braunii is a green colonial microalga, previously<br />

known as a member of Chlorophyceae but recently<br />

reclassified <strong>in</strong> the Trebouxiophyceae (Senousy et al.,<br />

2004). It is widely distributed <strong>in</strong> freshwater lakes, reservoirs<br />

or ponds, <strong>and</strong> <strong>in</strong> some brackish waters <strong>and</strong> ephemeral<br />

lakes. Isolated stra<strong>in</strong>s as well as wild populations are characterized<br />

by an unusual production of oil conta<strong>in</strong><strong>in</strong>g<br />

numerous <strong>hydrocarbons</strong> [see Metzger <strong>and</strong> Largeau (1999)<br />

for a review]. Accord<strong>in</strong>g to the type of <strong>hydrocarbons</strong> produced,<br />

three different races of B. braunii have been recog-<br />

* Correspond<strong>in</strong>g author. Tel.: +33 1 44 27 67 17; fax: +33 1 43 25 79 75.<br />

E-mail address: pierre-metzger@enscp.fr (P. Metzger).<br />

0146-6380/$ - see front matter Ó 2008 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.orggeochem.2008.01.024<br />

Organic Geochemistry 39 (2008) 879–893<br />

Contents lists available at ScienceDirect<br />

Organic Geochemistry<br />

journal homepage: www.elsevier.com/locate/orggeochem<br />

A mixture of C33–C37 botryococcenes <strong>and</strong> partially reduced derivatives was isolated from<br />

ca. 32,000 year old sediment from Lake Masoko, a freshwater crater lake <strong>in</strong> the Rungwe<br />

Range area (Tanzania). Botryococcenes <strong>and</strong> derivatives accounted for 246 lg/g dry sediment<br />

<strong>and</strong> for >92% of the hydrocarbon fraction; 1D <strong>and</strong> 2D nuclear magnetic resonance<br />

spectroscopy (NMR) <strong>and</strong> mass spectrometry allowed the structure of the dom<strong>in</strong>ant botryococcene<br />

(43% of hydrocarbon fraction) to be established, after purification us<strong>in</strong>g high performance<br />

liquid chromatography (HPLC). The compound is a novel tetra<strong>unsaturated</strong><br />

<strong>dicyclic</strong> C34 botryococcene <strong>and</strong> is named C34 masokocene. Overall, the structures of six<br />

other novel botryococcenes <strong>and</strong> four partially reduced derivatives were tentatively<br />

assigned. The structures of the new biomarkers, three <strong>dicyclic</strong> C34–C36 botryococcenes<br />

(or masokocenes) <strong>and</strong> seven monocyclic C34–C37 analogues are discussed along with their<br />

biosynthetic relationship. The high abundance of such poly<strong>unsaturated</strong> compounds preserved<br />

<strong>in</strong> 32,000 year old sediment from the lake <strong>in</strong>dicates an aquatic ecosystem dom<strong>in</strong>ated<br />

at the time by the green alga Botryococcus braunii, as well very good preservation<br />

of the organic matter.<br />

Ó 2008 Elsevier Ltd. All rights reserved.<br />

nized. Race A produces odd C 23–C 33 n-alkadienes <strong>and</strong><br />

trienes (Metzger et al., 1985a,1986), race B C30–C37 <strong>triterpenoid</strong><br />

<strong>hydrocarbons</strong> with the general formula C nH 2n-10,<br />

called botryococcenes (Metzger et al., 1985a, 1985b), <strong>and</strong><br />

race L synthesizes ma<strong>in</strong>ly the tetraterpene trans, translycopadiene<br />

(C40H78; Metzger <strong>and</strong> Casadevall, 1987; Zhang<br />

et al., 2007 <strong>and</strong> references there<strong>in</strong>). The respective hydrocarbon<br />

signatures of races A <strong>and</strong> L <strong>in</strong> sediments, crude oils<br />

<strong>and</strong> oil shales have only been clearly identified <strong>in</strong> some rare<br />

cases (e.g., Gatellier et al., 1993; Derenne et al., 1997; Grice<br />

et al., 1998; Adam et al., 2006; Zhang et al., 2007), while the<br />

contribution of race B is much more documented. This is<br />

certa<strong>in</strong>ly related to the one to one correspondence between<br />

botryococcenes <strong>and</strong> B. braunii race B. The precise structural<br />

identification of the typical biomarkers of B. braunii race B is


880 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

not always easy to perform due to the common co-occurrence<br />

of complex mixtures of analogues difficult to purify<br />

us<strong>in</strong>g HPLC. To date, among the fifty botryococcenes tentatively<br />

identified us<strong>in</strong>g gas chromatography-mass spectrometry<br />

(GC-MS) analysis of lipids of isolated stra<strong>in</strong>s of B.<br />

braunii or oils extracted from natural samples (e.g. Wake<br />

<strong>and</strong> Hillen, 1981; Metzger et al., 1985a,b, 1988; Okada<br />

et al., 1995; Metzger <strong>and</strong> Largeau, 1999 <strong>and</strong> references<br />

there<strong>in</strong>), only twenty structures have been fully characterized<br />

(Okada et al., 1997; Metzger <strong>and</strong> Largeau, 1999 <strong>and</strong> references<br />

there<strong>in</strong>). Likewise, a few botryococcenes <strong>and</strong><br />

botryococcanes of fossil orig<strong>in</strong> have been identified (Huang<br />

<strong>and</strong> Murray, 1995; Huang et al., 1995, 1996; Grice et al.,<br />

1998; Smittenberg et al., 2005). The reduced C34 botryococcane<br />

was first discovered <strong>in</strong> a Sumatran crude oil (Moldowan<br />

<strong>and</strong> Seifert, 1980) <strong>and</strong> then <strong>in</strong> Australian coastal<br />

bitumens (McKirdy et al., 1986). Some C31 <strong>and</strong> C33 botryococcanes<br />

were found <strong>in</strong> Maom<strong>in</strong>g Oil Shale, Ch<strong>in</strong>a (Brassell<br />

et al., 1986) <strong>and</strong> sulfurized cyclobotryococcanes <strong>in</strong> hypersal<strong>in</strong>e<br />

sediments from the Dead Sea Bas<strong>in</strong>, Israel (Grice et al.,<br />

1998); both cyclic <strong>and</strong> acyclic botryococcenes, together<br />

with partially reduced counterparts, were discovered <strong>in</strong><br />

sediments from crater lakes <strong>in</strong> Kenya (Huang et al., 1995,<br />

1996, 1999; Huang <strong>and</strong> Murray, 1995) <strong>and</strong> Ch<strong>in</strong>a (Fuhrmann<br />

et al., 2003) <strong>and</strong> several C34 botryococcenes were<br />

present <strong>in</strong> large amounts <strong>in</strong> recent sediments from a crater<br />

lake <strong>in</strong> Galápagos (Zhang et al., 2007).<br />

The C 30 botryococcene (m; letters <strong>in</strong> bold refer to the<br />

structures <strong>in</strong> the Appendix), the precursor of all botryococcenes<br />

<strong>and</strong> derivatives, is synthesized <strong>in</strong> the chloroplast<br />

via the non-mevalonate pathway (Sato et al., 2003; Okada<br />

et al., 2004). It arises from condensation of two farnesyl<br />

units via presqualene pyrophosphate, which is also a precursor<br />

for squalene. From this <strong>in</strong>termediate, rearrangement<br />

of the cyclopropyl cation (path a, Fig. 1) or r<strong>in</strong>g<br />

open<strong>in</strong>g of the cyclopropyl r<strong>in</strong>g (path b, Fig. 1) <strong>and</strong> subsequent<br />

reaction with NADPH, lead to the formation of squalene<br />

or C 30 botryococcene, respectively (Huang <strong>and</strong><br />

Poulter, 1989; Okada et al., 2004). Higher homologues of<br />

botryococcene <strong>and</strong> squalene are derived from their respective<br />

C30 precursors by successive methylation with S-adenosylmethion<strong>in</strong>e,<br />

as <strong>in</strong>dicated by bold arrows <strong>in</strong> Fig. 1 for<br />

C30 botryococcene (Metzger et al., 1987; Achitouv et al.,<br />

2004). Afterwards, botryococcenes are excreted to the outer<br />

walls, form<strong>in</strong>g a dense oily matrix (Metzger et al., 1987),<br />

whose structural element is a chemically resistant biopolymer,<br />

the algaenan derived from a polyacetal network bear<strong>in</strong>g<br />

polymethylsqualene derivatives (Metzger et al., 2007).<br />

Cyclization of the term<strong>in</strong>al moieties of botryococcenes may<br />

also occur (Metzger et al., 1985b; David et al., 1988; Huang<br />

et al., 1988; Huang <strong>and</strong> Poulter, 1988; Huang et al., 1995,<br />

1996). Accord<strong>in</strong>gly, the same central pattern exhibit<strong>in</strong>g 1)<br />

the quaternary C-10 bear<strong>in</strong>g a methyl <strong>and</strong> the D 26 exomethylene<br />

unsaturation, 2) the trans D 11 double bond<br />

<strong>and</strong> 3) the methyl group at C-13, is present <strong>in</strong> all botryococcenes.<br />

Moreover, while C31–C34 methylated squalenes<br />

are implicated via their diol derivatives <strong>in</strong> the synthesis<br />

of the structural element of the outer walls, the biological<br />

role of botryococcenes is not obvious. However, as their<br />

accumulation (account<strong>in</strong>g generally for 30–40% of the dry<br />

wt; Metzger et Largeau, 1999) ‘‘results <strong>in</strong> the colonies predom<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong> the upper regions of the water column,<br />

where little <strong>in</strong>cident radiation is lost to the water mass”<br />

(Wake <strong>and</strong> Hillen, 1980), they may allow occupation of<br />

some ecological niches suitable for the algal growth.<br />

In the course of our study of the lipid biomarkers from a<br />

30 metre sediment core from Lake Masoko, southern Tanzania,<br />

prelim<strong>in</strong>ary analysis of a few samples revealed the<br />

presence of a wide variety of botryococcenes, most of unknown<br />

structure. We report here the structural identification<br />

of three <strong>dicyclic</strong> C 34–C 36 <strong>and</strong> seven monocyclic C 34–C 37<br />

botryococcenes <strong>and</strong> partially reduced counterparts isolated<br />

from a ca. 32,000 year old sediment layer. The possible<br />

<strong>in</strong>fluence of some physicochemical <strong>and</strong> environmental<br />

factors on the distribution <strong>and</strong> abundance of these algal<br />

biomarkers <strong>in</strong> Lake Masoko is currently be<strong>in</strong>g studied on<br />

a core section correspond<strong>in</strong>g to the last 32,000 years (de<br />

Mesmay et al., 2007b).<br />

OP P<br />

b<br />

a<br />

path a path b<br />

+ +<br />

3 7<br />

26<br />

10<br />

11<br />

16 20<br />

Squalene C 30 Botryococcene<br />

Fig. 1. Simplified scheme of squalene <strong>and</strong> C 30 botryococcene biosynthesis from presqualene diphosphate (adapted from Huang <strong>and</strong> Poulter, 1989) <strong>and</strong> sites<br />

of methylation (bold arrows).


2. Experimental<br />

2.1. Site description<br />

Lake Masoko is an oligotrophic Maar lake (9°20 0 S–<br />

33°45 0 E, 800 m above sea level, 36.5 m deep) <strong>in</strong> the Rungwe<br />

Range. Ow<strong>in</strong>g to its small catchment area <strong>and</strong> absence<br />

of river <strong>in</strong>put, it is strongly sensitive to climate change. It<br />

provides one of the most cont<strong>in</strong>uous Late Quaternary<br />

lacustr<strong>in</strong>e sedimentary records from Africa over the last<br />

45,000 yr (Williamson et al., 1999; Gibert et al., 2002; Garc<strong>in</strong><br />

et al., 2006a,b, 2007). Multidiscipl<strong>in</strong>ary studies have<br />

detailed the hydrology (Bergonz<strong>in</strong>i et al., 2001; Delal<strong>and</strong>e<br />

et al., 2005), sedimentary assemblage of charcoal (Thevenon<br />

et al., 2003), pollen (V<strong>in</strong>cens et al., 2003) <strong>and</strong> diatoms<br />

(Barker et al., 2003). Earlier studies of pigments <strong>and</strong> lign<strong>in</strong>derived<br />

phenol assemblages (Merdaci, 1998) outl<strong>in</strong>ed the<br />

remarkable preservation of organic matter <strong>in</strong> the sediments.<br />

More <strong>in</strong>formation on site description is given elsewhere<br />

(de Mesmay et al., 2007a <strong>and</strong> references there<strong>in</strong>).<br />

2.2. Sample description<br />

Three cores (30 m long <strong>in</strong> total, M96-A, -B <strong>and</strong> -C) were<br />

collected from the central area of Lake Masoko us<strong>in</strong>g a sedidrill-Mazier<br />

cable corer <strong>in</strong> order to comb<strong>in</strong>e the most cont<strong>in</strong>uous<br />

cored section <strong>and</strong> to construct a detailed composite<br />

lithostratigraphic record from the last 45,000 yr BP (Garc<strong>in</strong><br />

et al., 2006a). Cores were stored at 4 °C until analysis. Samples<br />

representative of different climatic <strong>and</strong> environmental<br />

periods were <strong>in</strong>vestigated for bulk <strong>and</strong> molecular content.<br />

We present here results from the sample conta<strong>in</strong><strong>in</strong>g the<br />

highest amount of botryococcenes (1856–1871 cm <strong>in</strong>terval;<br />

31.7–32.1 14 C cal. kyr BP). It corresponds to an organic-rich<br />

silty mud deposited dur<strong>in</strong>g the last glacial period<br />

between ca. 34,000 <strong>and</strong> 28,000 cal. yr BP. It consists primarily<br />

of silty organic mud, enriched <strong>in</strong> detrital titanomagnetite<br />

orig<strong>in</strong>at<strong>in</strong>g from the surround<strong>in</strong>g catchment soil <strong>and</strong><br />

littoral area (Williamson et al., 1999). The occurrence of<br />

numerous mm to cm scale turbidites conta<strong>in</strong><strong>in</strong>g few organic<br />

macrorests (plant tissue, charcoal fragments) <strong>and</strong> abundant<br />

herbaceous pollen po<strong>in</strong>t to relatively arid, low lakelevel<br />

conditions (Garc<strong>in</strong> et al., 2006a). The total organic carbon<br />

(TOC; 6% dry wt) <strong>and</strong> fossil pigment contents of this<br />

<strong>in</strong>terval suggest a relatively oligotrophic environment <strong>and</strong>/<br />

or oxic depositional environment (Merdaci, 1998). A C/N<br />

ratio of 21.9 suggests a mixture of terrestrial <strong>and</strong> aquatic<br />

sources (Tyson, 1995; Huang et al., 1999). Assum<strong>in</strong>g that<br />

all the iron occurs as pyrite, the sulfur <strong>and</strong> iron contents<br />

(total S 0.2% dry wt; Fe ca. 0.06%) may suggest the presence<br />

of some organosulfur compounds <strong>in</strong> the sample. However,<br />

it must be noted that molecular sulfur (S8) is present <strong>in</strong> TIC<br />

traces of sediment extracts. Very similar values for sulfur<br />

<strong>and</strong> iron contents were obta<strong>in</strong>ed for two more recent samples<br />

(13,000 <strong>and</strong> 500 yr).<br />

2.3. Lipid extraction <strong>and</strong> separation<br />

Fresh sediment (14 g) was ultrasonically extracted<br />

(10 m<strong>in</strong>.) with CH3OH (100 mL 2), CH3OH/CH2Cl2 (1:1, v/<br />

v, 100 mL 2) <strong>and</strong> CH 2Cl 2 (100 mL 4). Extracts were com-<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 881<br />

b<strong>in</strong>ed <strong>and</strong> evaporated under reduced pressure. The rema<strong>in</strong><strong>in</strong>g<br />

water was removed via azeotropic evaporation with<br />

CH 3OH. The dry extract (110 mg) was chromatographed<br />

over silica gel (Merck silica gel 60). Hydrocarbons, aromatic<br />

compounds, alcohols <strong>and</strong> polar compounds were eluted<br />

with n-hexane, n-hexane/CH2Cl2 (4:1, v/v), CH2Cl2/diethyl<br />

ether (9:1, v/v) <strong>and</strong> CH 3OH/CH 2Cl 2 (1:1, v/v), respectively.<br />

2.4. Hydrogenation<br />

Hydrogenation of an aliquot of the hydrocarbon fraction<br />

was carried out (18 h) <strong>in</strong> heptane under H2 (20 atm) <strong>in</strong> the<br />

presence of a catalyst (Rh/C 5%). The reaction mixture was<br />

centrifuged; the supernatant was collected <strong>and</strong> concentrated<br />

under a stream of N2 <strong>and</strong> analyzed us<strong>in</strong>g GC-MS.<br />

2.5. Ozonolysis<br />

An aliquot of the hydrocarbon fraction <strong>in</strong> 1 ml CS2 was<br />

reacted with ozone at 78 °C until the characteristic blue<br />

colour of O3 persisted. Excess O3 was elim<strong>in</strong>ated by bubbl<strong>in</strong>g<br />

N 2 through the cold solution. The ozonides were reduced<br />

by addition of 5 mg triphenylphosph<strong>in</strong>e <strong>and</strong> the<br />

reaction mixture was allowed to warm to room temperature.<br />

Solvent was evaporated under reduced pressure <strong>and</strong><br />

the compounds were analysed us<strong>in</strong>g GC-MS.<br />

2.6. GC <strong>and</strong> GC-MS<br />

GC was carried out with an Agilent 6890 gas chromatograph<br />

equipped with a flame ionisation detector (FID) <strong>and</strong> a<br />

RTX-5 Sil MS column (30 m 0.25 mm; 0.5 lm film thickness).<br />

The oven temperature was programmed from 60 to<br />

130 °C at20°C/m<strong>in</strong> <strong>and</strong> to 300 °C (35 m<strong>in</strong>) at 4 °C/m<strong>in</strong>. He<br />

was the carrier gas (constant flow, 24.2 ml/m<strong>in</strong>). Hydrocarbons<br />

were quantified via external calibration us<strong>in</strong>g squalane<br />

as st<strong>and</strong>ard. Hydrocarbons <strong>and</strong> their derivatives were<br />

identified us<strong>in</strong>g GC-MS with an Agilent 6890 N chromatograph<br />

equipped with a splitless <strong>in</strong>jector <strong>and</strong> coupled to an<br />

Agilent 5973 mass spectrometer operat<strong>in</strong>g at an ionization<br />

energy of 70 eV <strong>and</strong> a range of m/z 40–700. The chromatograph<br />

was equipped with the same capillary column as described<br />

for GC <strong>and</strong> the same temperature programme was<br />

used. The constant carrier gas flow (He) was 1 mL/m<strong>in</strong>.<br />

2.7. Purification of C34 botryococcene <strong>and</strong> spectroscopic<br />

analysis<br />

The hydrocarbon fraction was further purified us<strong>in</strong>g<br />

isocratic high performance liquid chromatography (HPLC)<br />

with a Waters 600E <strong>in</strong>strument fitted with a differential<br />

Waters 2414 refractometer thermostated at 30 °C. The<br />

mixture was fractionated <strong>in</strong>to three sub-fractions us<strong>in</strong>g a<br />

5 lm XTerra TM MS C18 column (4.6 250 mm) <strong>and</strong> repeated<br />

<strong>in</strong>jection (20 ll, 5% <strong>in</strong> CHCl 3) <strong>and</strong> elution with CH 3CN at a<br />

flow rate of 3 ml/m<strong>in</strong>. The first sub-fraction afforded C34<br />

dicyclobotryococcene c (t R 24 m<strong>in</strong>.). High resolution electron<br />

ionization mass spectrometry (HR-EIMS, 70 eV) analysis<br />

was performed with a Jeol MS 700 via direct <strong>in</strong>let.<br />

NMR spectra were recorded with a Bruker Avance 400<br />

spectrometer operat<strong>in</strong>g at 400.1 <strong>and</strong> 100.6 MHz for 1 H<br />

<strong>and</strong> 13 C, respectively. Spectra were recorded <strong>in</strong> CDCl3.


882 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

Chemical shifts were referenced relative to the residual<br />

proton signal (7.24 ppm) or the central l<strong>in</strong>e of the 13 C multiplet<br />

(77.0 ppm) of CDCl 3. Assignment of <strong>in</strong>dividual resonances<br />

was achieved us<strong>in</strong>g a comb<strong>in</strong>ation of 1D <strong>and</strong> 2D<br />

( 1 H- 1 H <strong>and</strong> 1 H- 13 C) experiments. Multiplicity of each 13 C<br />

nucleus was determ<strong>in</strong>ed us<strong>in</strong>g DEPT (enhanced polarisation<br />

transfer) spectra.<br />

3. Results <strong>and</strong> discussion<br />

3.1. Characterization of botryococcenes <strong>and</strong> reduced<br />

analogues<br />

3.1.1. Composition of hydrocarbon fraction<br />

Exam<strong>in</strong>ation of the hydrocarbon fraction isolated from<br />

the 1856–1871 cm depth sediment sample us<strong>in</strong>g GC-MS<br />

revealed a dom<strong>in</strong>ance (93% of total <strong>hydrocarbons</strong>; Table<br />

1; Fig. 2A) of botryococcenes (CnH2n-10) rang<strong>in</strong>g from C33<br />

to C37 <strong>and</strong> of partially reduced counterparts (CnH2n-8, CnH2n-6 <strong>and</strong> CnH2n-2), together with a m<strong>in</strong>or series of C17–C35<br />

n-alkanes. The botryococcenes <strong>and</strong> related compounds<br />

accounted for more than 246 lg/g dry sediment <strong>and</strong><br />

4 mg/g TOC (total organic carbon). The major compound<br />

was an unknown C34 component (c) account<strong>in</strong>g for ca.<br />

43% of the total <strong>hydrocarbons</strong>, each of the other components<br />

account<strong>in</strong>g for 87%).<br />

3.1.2. Characterization of C34 masokocene c<br />

The high resolution EI spectrum of the dom<strong>in</strong>ant botryococcene<br />

c displays M +. at m/z 466.4530, consistent with<br />

aC34H58 compound (calcd. 466.4522, D +0.8 mmu). The<br />

Table 1<br />

Composition, quantification <strong>and</strong> ozonolysis products of <strong>hydrocarbons</strong> from Lake Masoko sediment<br />

Hydrocarbon lg/g d.s. a<br />

Formula e<br />

MW Structure<br />

low resolution EI mass spectrum is characterised by a major<br />

ion at m/z 177, likely correspond<strong>in</strong>g to a fragmentation<br />

at the central quaternary carbon (Fig. 2B). Catalytic hydrogenation<br />

led to the formation of four botryococcanes<br />

C 34H 66 (H3, Fig. 3A) occurr<strong>in</strong>g <strong>in</strong> a 3/23/28/4 ratio, <strong>and</strong><br />

which exhibited identical mass <strong>and</strong> fragment ions<br />

(Fig. 3C). This <strong>in</strong>dicated the presence of two r<strong>in</strong>gs <strong>in</strong> c<br />

<strong>and</strong> suggested that stereochemical isomerisation occurred<br />

dur<strong>in</strong>g hydrogenation. The mass spectrum of H3 shows<br />

fragments at m/z 444/445 correspond<strong>in</strong>g to the loss of<br />

the C-10 ethyl, at m/z 236/237 correspond<strong>in</strong>g to loss of<br />

the long alkyl cha<strong>in</strong> at C-10 <strong>and</strong> at m/z 292/293 correspond<strong>in</strong>g<br />

to loss of the short alkyl cha<strong>in</strong> at C-10.<br />

Detailed <strong>in</strong>spection of the 1 H, 13 C, DEPT, COSY (correlation<br />

spectroscopy), HMQC (heteronuclear multiple quantum<br />

correlation) <strong>and</strong> HMBC (heteronuclear multiple bond<br />

correlation) NMR spectra of c (Table 2) <strong>and</strong> comparison<br />

with NMR data from other botryococcenes <strong>in</strong>dicated the<br />

presence of a term<strong>in</strong>al v<strong>in</strong>yl [dH 5.75 (H-26), 4.92 (H-<br />

27b), 4.90 (H-27a); d C 147.3 (C-26), 110.9 (C-27)] bound<br />

to the quaternary carbon C-10 (dC 41.8). The HMBC experiment<br />

further established that the latter quaternary carbon<br />

is correlated with an olef<strong>in</strong>ic proton (H-11, dH 5.26) of trans<br />

disubstituted unsaturation [J 11,12 = 16.0 Hz; H-12: d H 5.12].<br />

Moreover, long range correlations showed that a meth<strong>in</strong>e<br />

carbon (CH-13, d H 2.03, d C 37.1) bear<strong>in</strong>g a methyl (Me-<br />

28, dH 0.94, dC 21.2) is connected to this olef<strong>in</strong>. This C-10<br />

to C-13 substructure I (with methyls at C-10 <strong>and</strong> C-13<br />

<strong>and</strong> a v<strong>in</strong>yl at C-10, Fig. 4), is characteristic for all botryococcene<br />

structures (Metzger et al., 1985b); it arises from<br />

the 1’-3 condensation of two farnesyl units (Huang <strong>and</strong><br />

Poulter, 1989). The downfield region of the 1 H NMR spec-<br />

lg/g TOC b<br />

Relative% c<br />

Ozonolysis d<br />

C33H56 452 0.5 8.7 0.2<br />

C34H58 466 0.3 4.4 0.1<br />

C34H58 466 trace<br />

C34H66 474 a 0.8 13 0.3 O3 + O1<br />

C34H62 470 b 1.1 17 0.4 O11 + O1<br />

C34H58 466 c 114 1878 43.2 O11 + O9<br />

C34H58 466 d 12 191 4.4 O11 + O9<br />

C34H58 466 0.8 13 0.3<br />

C34H58 466 0.5 8.7 0.2<br />

C35H60 480 e 26 422 9.7 O11 + O10<br />

C36H62 494 f1, f2 5.8 96 2.2 O11 + O6<br />

C36H64 496 g1, g2 36 569 13.5 O11 + O4<br />

C36H62 494 0.5 8.7 0.2<br />

C37H64 508 h 10.6 174 4.0 O11 + O7<br />

C37H64 508 7.9 130 3.0 O11 + O7<br />

C37H66 510 i 18 291 6.7 O11 + O5<br />

C37H64 +C37H66 508/510 3.2 52 1.2<br />

C37H64 508 1.1 17 0.4<br />

C36H62 494 j 6.6 109 2.5 O11 + ?<br />

C37H66 510 0.3 4.4 0.1<br />

Other botryococcenes <strong>and</strong> n-alkanes 20 339 7.4<br />

R <strong>hydrocarbons</strong> 266 4346 100.0<br />

a Dry sediment.<br />

b Total organic carbon.<br />

c Composition determ<strong>in</strong>ed us<strong>in</strong>g GC.<br />

d Compounds from ozonolysis.<br />

e Compounds listed <strong>in</strong> elution order.


elative <strong>in</strong>tensity (%)<br />

100<br />

50<br />

0<br />

relative <strong>in</strong>tensity<br />

n-C 27<br />

40 42 44<br />

69<br />

33 34<br />

a b<br />

trum also shows a broad s<strong>in</strong>glet for two protons (d H 5.03)<br />

of two trisubstituted double bonds [dC 138.3 (quaternary<br />

carbons C-6 <strong>and</strong> C-17) <strong>and</strong> 132.7 (tertiary carbons C-24<br />

<strong>and</strong> C-29)] belong<strong>in</strong>g to two identical substructures II<br />

(Fig. 4). The HMBC correlations (Table 2 <strong>and</strong> Fig. 4) established<br />

that II conta<strong>in</strong> cyclohexenyl r<strong>in</strong>gs bear<strong>in</strong>g three<br />

methyls, of which two are gem<strong>in</strong>al [for example, <strong>in</strong> the left<br />

h<strong>and</strong> moiety of the molecule: Me-1 (dH 0.78, dC 23.4) <strong>and</strong><br />

Me-23 (d H 0.95, d C 29.5)] at C-2 (d C 34.5) <strong>and</strong> a third at<br />

C-3 [Me-31 (dH 0.86, dC 16.2)]. Such a trimethylated cyclohexenyl<br />

moiety was previously found <strong>in</strong> cyclobotryococcene<br />

k, isolated from a stra<strong>in</strong> of B. braunii from the Ivory<br />

Coast <strong>and</strong> grown under laboratory conditions (David<br />

et al., 1988). The relative stereochemistry of the methyls<br />

<strong>in</strong> c was deduced from the correlations observed <strong>in</strong> the<br />

NOESY (nuclear Overhauser enhancement spectroscopy)<br />

NMR spectra (Fig. 4), which suggested that Me-31 is pseudo-axial.<br />

The connection of each substructure II with the<br />

rest of the molecule was drawn from the HMBC experiment.<br />

So, <strong>in</strong> the ‘‘left” moiety of the molecule, cross peaks<br />

of H-7 <strong>and</strong> protons of Me-32 at C-7, to C-6 <strong>in</strong>dicated the<br />

connection C-6/C-7. Furthermore, the two bond HMBC correlations<br />

H-7/C-8, H-8/C-9, <strong>and</strong> H-9/C-10 <strong>and</strong> the long<br />

range correlations H-7/C-9 <strong>and</strong> H-25/C-9 allowed us to<br />

connect the ‘‘left” structural moiety of c to the quaternary<br />

95<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 883<br />

123<br />

c<br />

149<br />

n-C 28<br />

d<br />

177<br />

178<br />

34 34<br />

203<br />

n-C 29<br />

231<br />

e<br />

259<br />

g1<br />

f2<br />

f1<br />

36<br />

177 285<br />

123<br />

-2H<br />

-2H<br />

231<br />

h<br />

i<br />

j<br />

c<br />

259 -2H<br />

-2H 285<br />

n-C 31<br />

retention time (m<strong>in</strong>.)<br />

50 100 150 200 250 300 350 400 450<br />

g2<br />

285<br />

37 37*<br />

37<br />

37<br />

M+. -CH 3<br />

314 341 355 396 423<br />

123<br />

M +.<br />

451 466<br />

Fig. 2. (A) Total ion chromatogram of hydrocarbon fraction from 1856–1871 cm depth sediment <strong>in</strong>terval from Lake Masoko [C xx are n-alkanes with xx carbon<br />

atoms; numbers <strong>in</strong>dicate the carbon number of botryococcenes <strong>and</strong> reduced counterparts whose structures have not been established <strong>in</strong> this work, cf. Table<br />

1, * = coelution between one C37 botryococcene (C37H64) <strong>and</strong> one partially reduced counterpart (C37H66)], (B) EI mass spectrum of C34 masokocene c.<br />

m/z<br />

carbon C-10. In the right h<strong>and</strong> part of the molecule, 1 H<br />

NMR data <strong>and</strong> HMBC correlations showed that the cylohexenyl<br />

r<strong>in</strong>g is bound at C-17 to a tertiary meth<strong>in</strong>e carbon<br />

C-16 which bears the methyl group Me-33. F<strong>in</strong>ally, crosspeaks<br />

of H-15 to C-14 <strong>and</strong> C-13 allowed connection of<br />

the second cyclohexenyl moiety II. Major fragment ions<br />

at m/z 177 (base peak) <strong>and</strong> 123 <strong>in</strong> the mass spectrum of<br />

c support this structural pattern (Fig. 2B).<br />

Ozonolysis has proved to be a powerful tool for the structural<br />

determ<strong>in</strong>ation of botryococcenes <strong>and</strong> derivatives<br />

(Huang et al., 1996). Application to an aliquot of the total<br />

<strong>hydrocarbons</strong> resulted <strong>in</strong> two predom<strong>in</strong>at<strong>in</strong>g compounds:<br />

O9 (C 16H 28O 3)<strong>and</strong>O11 (C 17H 28O 4) result<strong>in</strong>g from oxidation<br />

of masokocene c (Table 1; Figs. 5 <strong>and</strong> 6A). Mass fragmentation<br />

patterns of O9 <strong>and</strong> O11 (Fig. 6E <strong>and</strong> G) were helpful for the<br />

characterization of other <strong>dicyclic</strong> <strong>triterpenoid</strong> <strong>hydrocarbons</strong><br />

(see below). The generic name masokocene is proposed for<br />

all these dicyclobotryococcenes. HPLC purification of c afforded<br />

a coelut<strong>in</strong>g m<strong>in</strong>or botryococcene d (ca. 10% of the mixture)<br />

which exhibited a mass spectrum identical to that of<br />

c. It is very likely that d is a stereoisomer of c.<br />

3.1.3. C 35 <strong>and</strong> C 36 masokocenes e <strong>and</strong> j<br />

GC-MS analysis of the <strong>in</strong>tact <strong>and</strong> the hydrogenated<br />

hydrocarbon fractions clearly <strong>in</strong>dicated that compounds e


884 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

relative <strong>in</strong>tensity<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

relative <strong>in</strong>tensity<br />

43<br />

33<br />

71<br />

C 28<br />

125<br />

85 111<br />

H1<br />

C 29<br />

H2<br />

42 44 46 48 retention time (m<strong>in</strong>.)<br />

125<br />

141 167<br />

236/237<br />

211<br />

<strong>and</strong> j are higher homologues of the C34 masokocene c (Figs.<br />

2 <strong>and</strong> 7). The EI mass spectrum of e is consistent with a<br />

C35H60 botryococcene (M +. at m/z 480; Fig. 7A). It exhibits<br />

prom<strong>in</strong>ent fragments at m/z 123 <strong>and</strong> 177, suggest<strong>in</strong>g the<br />

236<br />

294/295<br />

294<br />

446/447<br />

H2<br />

337 386 431 446<br />

M +. -C2H5 50 100 150 200 250 300 350 400 450 m/z<br />

H3<br />

H3<br />

%<br />

100<br />

50<br />

0<br />

H3<br />

H3<br />

C 31<br />

H4<br />

H4<br />

H5<br />

H6<br />

H6<br />

71<br />

85<br />

111<br />

43<br />

236<br />

141<br />

167<br />

197<br />

253<br />

322<br />

295 349 391 435 459 474<br />

69<br />

83<br />

125<br />

139<br />

43<br />

167<br />

236<br />

306<br />

195 277<br />

251 335363389 429 459<br />

125<br />

322/323<br />

474/475<br />

-C2H5 (on C-21)<br />

306/307 277<br />

458/459<br />

139<br />

125<br />

236/237<br />

125<br />

459<br />

H4<br />

236/237<br />

H5<br />

50 100 150 200 250 300 350<br />

M<br />

400 450 m/z 50 100 150 200 250 300 350 400 450 m/z<br />

+. %<br />

100<br />

50<br />

-C2H5 0<br />

M +. -C2H5 43<br />

71<br />

85<br />

111<br />

236<br />

141<br />

167<br />

197<br />

336<br />

267295 363 419 464 488<br />

125<br />

125<br />

236/237<br />

336/337<br />

488/489<br />

H6<br />

69<br />

111<br />

83 139<br />

125<br />

125<br />

153<br />

167<br />

236/237<br />

320/321<br />

472/473<br />

H7<br />

153<br />

473<br />

50 100 150 200 250 300 350 400 450 m/z<br />

43<br />

50 100 150<br />

195 236<br />

251<br />

200 250<br />

M<br />

293<br />

473<br />

320 363 388415<br />

300 350 400 450 m/z<br />

+. M -C2H5 +. %<br />

100<br />

50<br />

-C2H5 0<br />

43<br />

69<br />

83<br />

111<br />

125<br />

139 167<br />

125<br />

209<br />

236<br />

236/237<br />

H7<br />

-CH3 (on C-21)<br />

292/293 277<br />

444/445<br />

H3<br />

292<br />

277<br />

321349 379<br />

M<br />

445<br />

429<br />

+. -C2H5 50 100 150 200 250 300 350 400 450 m/z<br />

Fig. 3. (A) Total ion chromatogram of hydrogenated hydrocarbon fraction from 1856–1871 cm depth sediment <strong>in</strong>terval from Lake Masoko (C xx are<br />

n-alkanes with xx carbon atoms). (B–G) EI mass spectra of botryococcanes H2-H7.<br />

presence of a trimethyl substituted cyclohexenyl r<strong>in</strong>g <strong>in</strong><br />

the left h<strong>and</strong> part of the molecule, as <strong>in</strong> c. The presence<br />

of two r<strong>in</strong>gs <strong>in</strong> e is supported by the mass spectra of the<br />

several diastereomers of C35 botryococcanes H5 formed<br />

125


Table 2<br />

1 H [400 MHz; dH (J, Hz)] <strong>and</strong> 13 C [100 MHz; d C] NMR data of C 34<br />

masokocene c <strong>in</strong> CDCl 3 at 300 K<br />

Position<br />

1<br />

H(dH)<br />

13<br />

C(dC) HMBC (H ? C)<br />

1, 30 0.78 (6H, s) 23.4 2, 3, 23, 24 a<br />

2, 21 34.5<br />

3, 20 1.41 (2H, m) 38.5 1, 2, 4, 5, 23, 31 a<br />

4, 19 1.26-1.42 (4H, m) 28.1 6 a<br />

5, 18 1.86 (H-5a, H-18a, m) 24.9 3, 4, 6, 24 a<br />

1.78 (H-5b, H-18b, m) 3, 4, 6, 24 a<br />

6, 17 138.3<br />

7 1.90 (1H, m) 41.4 6, 8, 9, 32<br />

8 1.12-1.23 (2H, m) 29.6 7, 9, 10<br />

9 1.24 (2H, m) 39.0 8, 10, 11, 25, 26<br />

10 41.8<br />

11 5.26 (1H, d, 16.0) 135.8 9, 10, 12, 13, 25, 26<br />

12 5.12 (1H, dd, 16.0, 7.7) 133.9 10, 11, 13, 26, 28<br />

13 2.03 (1H, m) 37.1 11, 12, 14, 28<br />

14 1.10-1.25 (2H, m) 35.1 12, 13, 15, 16, 28, 33<br />

15 1.15-1.30 (2H, m) 32.7 13, 14, 16, 33<br />

16 1.94 (1H, m) 40.9 14, 15, 17, 18, 29, 33<br />

22, 23 0.95 (6H, s) 29.5 1, 2, 3, 24 a<br />

24, 29 5.03 (2H, s) 132.7 1, 2, 3, 5, 7, 23 a<br />

25 1.01 (3H, s) 23.8 9, 10, 11, 12, 26, 27<br />

26 5.75 (1H, dd, 17.3, 10.7) 147.3 9, 10, 11, 25<br />

27 4.90 (H-27a, dd, 17.3, 1.5) 110.9 10, 26<br />

4.92 (H-27b, dd, 10.7, 1.5) 10, 26<br />

28 0.94 (3H, d, 6.4) 21.2 11, 12, 13, 14, 15<br />

31, 34 0.86 (6H, d, 6.4) 16.2 2, 3, 4 a<br />

32 0.94 (3H, d, 6.4) 19.8 b<br />

5, 6, 7, 8<br />

33 0.94 (3H, d, 6.4) 19.9 b<br />

15, 16, 17, 18<br />

a<br />

Only correlations concern<strong>in</strong>g proton on the left h<strong>and</strong> part of molecule<br />

given.<br />

b<br />

Signals <strong>in</strong>terchangeable.<br />

25<br />

10<br />

27<br />

28<br />

13<br />

31<br />

substructure I substructure II<br />

2<br />

6<br />

24<br />

HMBC<br />

1<br />

3<br />

5<br />

23<br />

24<br />

7<br />

32<br />

by stereochemical isomerization dur<strong>in</strong>g hydrogenation<br />

(Fig. 3A <strong>and</strong> E). A fragment ion at m/z 458/459 (due to<br />

the loss of the ethyl at C-10) supports the presence of<br />

two r<strong>in</strong>gs <strong>in</strong> H5. Moreover, fragment ions at m/z 236/237<br />

<strong>and</strong> 306/307, orig<strong>in</strong>at<strong>in</strong>g from C-10/C-11 <strong>and</strong> C-9/C-10<br />

cleavage, respectively, <strong>in</strong>dicate the presence of one r<strong>in</strong>g<br />

<strong>in</strong> each side of H5. The ion at m/z 306/307 <strong>in</strong> the H5 spectrum<br />

<strong>in</strong>dicates that the additional carbon is situated on the<br />

right h<strong>and</strong> side of the molecule compared to H3. The position<br />

of this additional carbon <strong>in</strong> e was deduced from its<br />

ozonolysis products. Comparison of the mass spectrum of<br />

O10 (C17H30O3) with that of O9 (C16H28O3; Fig. 6E <strong>and</strong> F)<br />

<strong>in</strong>deed <strong>in</strong>dicates the presence of an ethyl <strong>in</strong> O10, (M +. -<br />

C2H5; fragment at m/z 253). McLafferty rearrangement<br />

lead<strong>in</strong>g to ion at m/z 86 <strong>in</strong>dicates that the ethyl group is<br />

likely carried by carbon C-21. In the mass spectrum of e<br />

(Fig. 7A), the loss of an ethyl is also suggested by an ion<br />

at m/z 451. Thus, on the basis of all these mass spectral<br />

data we propose structure e for the C35 masokocene.<br />

The EI spectrum of the C 36 botryococcene j (C 36H 62,M +. at<br />

m/z 494, Fig. 7B) exhibits an <strong>in</strong>tense ion at m/z 465 due to<br />

the loss of an ethyl. The hydrogenated fraction conta<strong>in</strong>s several<br />

C36 botryococcanes (C36H70, H7) with identical mass<br />

spectra (e.g. Fig. 3A <strong>and</strong> G). Diagnostic ions at m/z 236/237<br />

<strong>and</strong> 125 suggest the presence of a trimethylated cyclohexyl<br />

<strong>in</strong> the left moiety of the molecule as <strong>in</strong> H3 <strong>and</strong> H5. By comparison<br />

with H5, the ion at m/z 320/321 <strong>in</strong>dicates that the<br />

additional carbon is located <strong>in</strong> the right part of the molecule.<br />

An <strong>in</strong>tense peak at m/z 153 (57%) is consistent with a cyclohexane<br />

r<strong>in</strong>g substituted with one more carbon <strong>in</strong> H7 than <strong>in</strong><br />

H5. The mass spectrum of j exhibits a M + -Et fragment (m/z<br />

23 Me<br />

1<br />

Me<br />

Me<br />

31<br />

NOE<br />

Fig. 4. Selected HMBC <strong>and</strong> NOE correlations <strong>in</strong> NMR analysis of C 34 masokocene c.<br />

26<br />

10<br />

11<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 885<br />

12<br />

c<br />

16<br />

29<br />

17<br />

21<br />

O 3<br />

Fig. 5. Ozonolysis products of C 34 masokocene c.<br />

H<br />

O<br />

O<br />

12<br />

H<br />

16<br />

O<br />

+<br />

O<br />

H<br />

O9<br />

17 18<br />

24<br />

O11<br />

H<br />

O<br />

21 29<br />

26<br />

O<br />

2<br />

10<br />

24 11<br />

6<br />

O<br />

Me<br />

H<br />

H


886 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

relative <strong>in</strong>tensity<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

43<br />

57<br />

69<br />

86<br />

A<br />

relative <strong>in</strong>tensity<br />

O1<br />

O4<br />

O<br />

H<br />

113<br />

109 123<br />

O4 O5<br />

O2 O3<br />

40 60 80 100 120 140 160 180 200 220 240 m/z<br />

43<br />

55 71<br />

83<br />

95<br />

100<br />

113<br />

O7<br />

127<br />

141<br />

465) twice more <strong>in</strong>tense than the similar ion <strong>in</strong> the spectrum<br />

of e (35% <strong>in</strong>stead of 16%), suggest<strong>in</strong>g that more than<br />

one ethyl group occurs <strong>in</strong> j. Unfortunately, GC-MS analysis<br />

of the ozonolysis products did not allow identification of<br />

the compound result<strong>in</strong>g from the cleavage of the right half<br />

part of the molecule, likely due to coelution with triphenyl<br />

+H<br />

O6 O7 O8<br />

18 20 22 24 26 time (m<strong>in</strong>.)<br />

B C<br />

113<br />

226<br />

141<br />

141<br />

151 168 179 197<br />

O<br />

H<br />

155<br />

161<br />

240<br />

O<br />

57<br />

226<br />

236<br />

M +.<br />

254<br />

D E<br />

184<br />

225<br />

207<br />

197 240 M<br />

250<br />

+. -H2O 40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

55<br />

O10<br />

H<br />

O<br />

+H<br />

113<br />

+H<br />

113<br />

O<br />

184<br />

155<br />

225<br />

O<br />

+H 71<br />

100<br />

F G<br />

43<br />

69<br />

40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

85<br />

95 141<br />

123<br />

113<br />

151<br />

169<br />

267<br />

198 226<br />

253 M<br />

282<br />

+.<br />

+H +H<br />

+H<br />

86<br />

254 198<br />

141 141 254<br />

156<br />

M +. -CH3 M +. -C2H5 O<br />

+H<br />

169<br />

127<br />

156<br />

+H<br />

86<br />

+H<br />

21<br />

86<br />

O<br />

H<br />

43<br />

%<br />

100<br />

50<br />

0<br />

O9<br />

43<br />

55<br />

55<br />

71<br />

83<br />

O10<br />

100<br />

O11<br />

O5<br />

M +.<br />

109<br />

123<br />

179<br />

240<br />

137 155168 189 207 225 250 268<br />

113<br />

40 60 80 100 120 140 160 180 200 220 240 260 280<br />

43<br />

83<br />

127<br />

95<br />

109<br />

H<br />

O9<br />

H<br />

O<br />

+H<br />

156<br />

155<br />

141<br />

167<br />

M<br />

253<br />

184 212 240<br />

+. M -CH3 250<br />

+. -H2O M +.<br />

268<br />

40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

43<br />

55<br />

71<br />

72<br />

84<br />

95<br />

113<br />

109 127<br />

O11<br />

O<br />

phosph<strong>in</strong>e, the reagent used for the reduction of the polyozonides.<br />

However, taken with these mass spectral data,<br />

the strong structural relationship between the C34-C35 masokocenes<br />

<strong>and</strong> the C 36 analogue allows us to assign compound<br />

j as a C36 <strong>dicyclic</strong> botryococcene with two gem<strong>in</strong>al<br />

ethyls on carbon C-21.<br />

O<br />

113<br />

240<br />

113<br />

O<br />

155<br />

155<br />

225<br />

156<br />

+H<br />

O<br />

71<br />

+H<br />

100<br />

+H<br />

72<br />

O<br />

H<br />

+H +H<br />

240 184<br />

141 127<br />

+H<br />

240<br />

72<br />

H<br />

184<br />

+H +H<br />

+H<br />

H<br />

O<br />

141 197<br />

72<br />

137<br />

155<br />

169<br />

184<br />

222<br />

M<br />

281<br />

250<br />

40 60 80 100 120 140 160 180 200 220 240 260 m/z<br />

+. -CH3 296<br />

M+.<br />

Fig. 6. (A) Total ion chromatogram of ozonised hydrocarbon fraction from Lake Masoko sediment at 1856–1871 cm depth. (B-G) EI mass spectra of<br />

compounds O4, O5, O7, O9, O10 <strong>and</strong> O11.<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

O<br />

127<br />

155<br />

H<br />

197<br />

-H<br />

141<br />

O<br />

84<br />

43


elative <strong>in</strong>tensity<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

%<br />

100<br />

50<br />

0<br />

0<br />

43<br />

69<br />

109<br />

95 123<br />

149<br />

177<br />

50 100 150 200 250 300 350 400 450 m/z<br />

41<br />

41<br />

55<br />

A<br />

C<br />

137<br />

95<br />

109<br />

123<br />

149<br />

177<br />

123<br />

203<br />

231<br />

245 285 465<br />

451<br />

M<br />

299 480<br />

328355 423<br />

+.<br />

M +. -CH3 M +. -C2H5 123<br />

3.1.4. C34 partially reduced botryococcenes<br />

The occurrence of a C 34 octahydrobotryococcene a (Table<br />

1; Fig. 2A) is revealed by its mass spectrum (M +. m/z<br />

474). The correspond<strong>in</strong>g C 34 botryococcane (H1) was found<br />

<strong>in</strong> the hydrogenated sample. The exact molecular structure<br />

of H1 <strong>and</strong> its acyclic nature is given by comparison of its<br />

mass spectrum <strong>and</strong> retention time with an authentic st<strong>and</strong>ard<br />

prepared by catalytic hydrogenation of an acyclic C 34<br />

botryococcene (Metzger et al., 1985b). Comb<strong>in</strong>ation of the<br />

ozonolysis fragments O1 <strong>and</strong> O3, whose mass spectra are<br />

published (Huang et al., 1996), allows us to establish the<br />

position of the double bonds <strong>in</strong> a at C-11/C-12 <strong>and</strong> C-26/<br />

C-27. This compound is 1,6,17,21-octahydrobotryococcene<br />

previously isolated from Sacred Lake, Kenya (Huang <strong>and</strong><br />

177<br />

203<br />

231<br />

245 285 479<br />

M<br />

315 369 411 452<br />

494<br />

+.<br />

M +. -CH3 50 100 150 200 250 300 350 400 450 m/z<br />

E -2H<br />

F<br />

69<br />

95<br />

123<br />

149<br />

177<br />

123<br />

177<br />

177 299<br />

-2H -2H<br />

-2H<br />

231<br />

203<br />

231<br />

245 285<br />

-2H<br />

231<br />

-2H -2H<br />

285<br />

231<br />

-2H<br />

285<br />

-2H<br />

50 100 150 200 250 300 350 400 450 m/z<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 887<br />

259<br />

-2H<br />

285<br />

h<br />

e<br />

451<br />

f1<br />

137<br />

465<br />

M +.<br />

M +. -CH3 493<br />

329 369 397 427 465<br />

508<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

%<br />

100<br />

50<br />

0<br />

B<br />

43<br />

D<br />

41<br />

55<br />

55<br />

81<br />

123<br />

95 123<br />

163<br />

151<br />

149<br />

177<br />

123<br />

203<br />

177<br />

123<br />

203<br />

231<br />

245 285 313 343 381 435<br />

231<br />

177 313<br />

-2H -2H<br />

259 285 317344 385 426453<br />

M<br />

465<br />

+. -C2H5 M<br />

494<br />

+.<br />

50 100 150 200 250 300 350 400 450 m/z<br />

177<br />

231<br />

g1<br />

481 M<br />

496<br />

+.<br />

M +. -CH3 50 100 150 200 250 300 350 400 450 m/z<br />

69<br />

109<br />

123<br />

149<br />

177<br />

203<br />

123<br />

231<br />

Murray, 1995) <strong>and</strong> from upper sediments of lake Masoko<br />

(de Mesmay et al., 2007a).<br />

Although we failed to detect any monocyclic C34 botryococcene<br />

<strong>in</strong> the extract, two diastereomers of a C 34 monocyclic<br />

botryococcane were identified <strong>in</strong> the hydrogenated<br />

sample (compounds H2; Fig. 3A <strong>and</strong> C). The structure was<br />

assigned on the basis of co<strong>in</strong>jection <strong>and</strong> comparison with<br />

previous mass spectral data (David et al., 1988; Grice<br />

et al., 1998). These hydrogenated compounds might be derived<br />

from a partially reduced botryococcene (b) <strong>in</strong> the orig<strong>in</strong>al<br />

fraction (Fig. 2A) <strong>and</strong> whose mass spectrum is very<br />

similar to those of two partially reduced botryococcene isomers,<br />

C34H62 of undeterm<strong>in</strong>ed structures, detected <strong>in</strong> a Ch<strong>in</strong>ese<br />

lacustr<strong>in</strong>e sediment core (Fuhrmann et al., 2003). In<br />

231<br />

-2H<br />

177<br />

-2H<br />

231<br />

259<br />

j<br />

-2H<br />

465<br />

285<br />

-2H<br />

-2H -2H<br />

285<br />

-2H<br />

151<br />

43<br />

259<br />

287 331<br />

M<br />

510<br />

385 427 467<br />

50 100 150 200 250 300 350 400 450 m/z<br />

+.<br />

M<br />

495<br />

+. -CH3 Fig. 7. (A <strong>and</strong> B) EI mass spectra of C 35 <strong>and</strong> C 36 masokocenes e <strong>and</strong> j. (C <strong>and</strong> D) C 36 monocyclic botryococcene f1 <strong>and</strong> its partially reduced counterpart g1.<br />

(E <strong>and</strong> F) C 37 monocyclic botryococcene h <strong>and</strong> its partially reduced counterpart i.<br />

i<br />

467


888 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

the present case of b, the molecular ion at m/z 470 is consistent<br />

with a tetrahydrobotryococcene (C34H62). Fragment<br />

ions at m/z 123, 177 <strong>and</strong> 231 suggest the presence of a<br />

trimethylated cyclohexenyl r<strong>in</strong>g <strong>in</strong> the left half part of the<br />

molecule. In addition, a diagnostic ion at m/z 259 result<strong>in</strong>g<br />

from the cleavage of the C-12/C-13 bond <strong>in</strong>dicated that<br />

two additional unsaturations were present at C-11 <strong>and</strong><br />

C-26. The ozonides O11 <strong>and</strong> more especially O1, although<br />

not specific for the degradation of b (Table 1), also support<br />

structure b as an unprecedented tetrahydrogenated<br />

derivative of k (David et al., 1988), with the C-17/C-29<br />

<strong>and</strong> C-21/C-22 double bonds be<strong>in</strong>g hydrogenated.<br />

3.1.5. C36 <strong>and</strong> C37 monocyclic botryococcenes <strong>and</strong> partially<br />

reduced counterparts<br />

GC-MS analysis of the hydrogenated hydrocarbon fraction<br />

revealed, <strong>in</strong> addition to the aforementioned botryococcanes,<br />

the presence of two C 36 (H4) <strong>and</strong> two C 37 (H6)<br />

monocyclic botryococcanes (Fig. 3A). Each of these two couples<br />

exhibited strictly identical mass spectra, with diagnostic<br />

ions <strong>in</strong>dicative of the presence of a r<strong>in</strong>g <strong>in</strong> the left part of<br />

the molecule (ions at m/z 236/237, Fig. 3D <strong>and</strong> F). The mass<br />

spectra of H4 <strong>and</strong> H6 show similarities to that of H2. Two<br />

(respectively three) additional carbons are situated on the<br />

right h<strong>and</strong> moiety of the molecules (ions at m/z 322/323<br />

for H4, Fig. 3D <strong>and</strong> at m/z 336/337 for H6, Fig. 3F).<br />

C36 botryococcanes H4 probably result from the catalytic<br />

hydrogenation of two partially coelut<strong>in</strong>g C 36 botryococcenes<br />

(M +. at m/z 494, f1 <strong>and</strong> f2) with identical mass spectra<br />

(Figs. 2A <strong>and</strong> 7C) <strong>and</strong> two dihydrogenated counterparts (g1<br />

<strong>and</strong> g2), also partially coelut<strong>in</strong>g (Fig. 2A) with identical<br />

spectra (M +. at m/z 496; Fig. 7C). Fragments at m/z 123,<br />

177, 231 <strong>and</strong> 285 <strong>in</strong> f1, f2, g1 <strong>and</strong> g2 confirmed the occurrence<br />

of a trimethyl cyclohexenyl r<strong>in</strong>g <strong>in</strong> the left h<strong>and</strong> moeity<br />

<strong>and</strong> of two unsaturations at C-11 <strong>and</strong> C-26. The<br />

structures of the right h<strong>and</strong> parts of the compounds were<br />

deduced from the identification <strong>in</strong> the ozonolysis products<br />

of the di- <strong>and</strong> tri-oxygenated compounds O4 <strong>and</strong> O6, respectively<br />

(Table 1). The McLafferty fragment at m/z 86 <strong>in</strong> their<br />

spectra (e.g. Fig. 6B for O4) suggests the presence <strong>in</strong> the<br />

structure of an ethyl ketone exhibit<strong>in</strong>g a methyl group <strong>in</strong><br />

the a position. Consequently, an ethyl group would be present<br />

at ‘‘C-21” (numbered accord<strong>in</strong>g to botryococcene structures)<br />

<strong>in</strong> f1, f2, g1 <strong>and</strong> g2. Moreover, the molecular formulae<br />

of O4 <strong>and</strong> O6 (C16H30O2 <strong>and</strong> C16H26O3, respectively) established<br />

that a C2 moiety was lost from the right h<strong>and</strong> part<br />

dur<strong>in</strong>g ozonolysis, suggest<strong>in</strong>g the presence of a CH3CH=C<br />

pattern <strong>in</strong> the C36 botryococcenes f1 <strong>and</strong> f2, <strong>and</strong> the dihydro<br />

derivatives g1 <strong>and</strong> g2. F<strong>in</strong>ally, the McLafferty fragment at m/<br />

z 170 <strong>in</strong> the spectrum of O6 <strong>in</strong>dicates the presence of a ketone<br />

at ‘‘C-17” (data not shown), <strong>and</strong> the two discrete ions<br />

at m/z 113 <strong>and</strong> 141 <strong>in</strong> the spectrum of O4 show the presence<br />

of a methyl at ‘‘C-17” (Fig. 6B).<br />

These results allow us to tentatively assign f1 <strong>and</strong> f2 as<br />

monocylic C 36 botryococcenes <strong>and</strong> g1 <strong>and</strong> g2 as their dihydro<br />

derivatives. The occurrence of two pairs of isomers with<br />

identical mass spectra is probably due to the existence of<br />

stereoisomers with respect to the C-21/C-22 double bond<br />

stereochemistry. Based on semi-empirical topological<br />

methods for the prediction of the chromatographic retention<br />

of alkene isomers (He<strong>in</strong>zen et al., 1999; Junkes et al.,<br />

2002), it can be assumed that the stereochemistry of the<br />

C-21 double bond is E <strong>in</strong> f1 <strong>and</strong> g1 <strong>and</strong> Z <strong>in</strong> f2 <strong>and</strong> g2.<br />

Similarly, botryococcanes H6 were probably produced by<br />

the catalytic hydrogenation of C37 botryococcenes (C37H64,<br />

M +. at m/z 508) <strong>and</strong> dihydro counterparts (C 37H 66, M +. at<br />

m/z 510) (Table 1 <strong>and</strong> Fig. 3). Among the ozonolysis products,<br />

only the di- <strong>and</strong> tri-oxygenated O5 <strong>and</strong> O7, respectively<br />

(Table 1) could be related to C37 hydrocarbon<br />

precursors. MS comparisons showed that O5 (C 17H 32O 2)<br />

<strong>and</strong> O7 (C17H28O3) were higher homologues of O4 <strong>and</strong> O6,<br />

respectively. Moreover, a base peak at m/z 43 <strong>in</strong> the spectrum<br />

of O7 (Fig. 6D) suggested that the carbon skeleton<br />

probably has a term<strong>in</strong>al isopropyl group. The occurrence<br />

of an isopropyl group <strong>in</strong> O5, justas<strong>in</strong>h <strong>and</strong> i, was also supported<br />

by the presence <strong>in</strong> the spectra of significant ions at<br />

m/z [(M-43) + ; Figs. 6C <strong>and</strong> 7D, E]. The presence of a<br />

CH3CH=C pattern at C-21 <strong>in</strong> h <strong>and</strong> i is supported by the presence<br />

of a ketone a to the isopropyl group both <strong>in</strong> O5 <strong>and</strong> O7<br />

<strong>and</strong> by biogenetic considerations (see below). The comb<strong>in</strong>ation<br />

of O7 with O9,allowsustoproposeh as a higher homologue<br />

of f1 <strong>and</strong> f2 with one more carbon. The spectra of O5<br />

<strong>and</strong> O7 exhibit some identical fragments (m/z 100, 113, 155,<br />

225, 240), but an ion at m/z 184 <strong>in</strong> that of O7, due to McLafferty<br />

rearrangement, <strong>and</strong> two discrete ions at m/z 113 <strong>and</strong><br />

155 <strong>in</strong> that of O5, <strong>in</strong>dicate that O5 <strong>and</strong> O7 differ by way<br />

of the presence of a methyl group <strong>and</strong> a ketone, respectively.<br />

These data suggest that i <strong>and</strong> h only differ <strong>in</strong> the presence<br />

of an exomethylene <strong>and</strong> a methyl group at C-17,<br />

respectively. In contrast to the C36 homologues, h (respectively<br />

i) does not appear as a mixture of two compounds<br />

<strong>in</strong> the GC chromatogram. Nevertheless, h (respectively i)<br />

may occur as a mixture of stereoisomers that are not separated<br />

under the GC conditions used.<br />

3.2. Occurrence of masokocenes <strong>in</strong> ancient ecosystems<br />

Dicyclobotryococcenes have been recently reported to<br />

occur <strong>in</strong> sediments of a Norwegian fjord (Smittenberg<br />

et al., 2005) <strong>and</strong> <strong>in</strong> freshwater wetl<strong>and</strong>s of the Florida Everglades<br />

(Gao et al., 2007), but their structures were not<br />

unambiguously determ<strong>in</strong>ed. On the other h<strong>and</strong>, a hypothetical<br />

dicyclobotryococcene exhibit<strong>in</strong>g a planar structure<br />

similar to that of c had already been assumed to be the precursor<br />

of a major dicyclobotryococcane (tentatively assigned<br />

as H3) detected after Raney nickel desulfurisation<br />

of a polar lipid fraction from Miocene/Pliocene immature<br />

hypersal<strong>in</strong>e sediments (Sdom Formation near the Dead<br />

Sea; Grice et al., 1998). The authors supposed that c was<br />

<strong>in</strong>corporated <strong>in</strong>to a macromolecular matrix via sulfurisation.<br />

The lack of c among the extractable biomarkers of<br />

the Sdom formation was expla<strong>in</strong>ed by its ease of sulfurisation<br />

due to the presence of four double bonds. The strong<br />

dom<strong>in</strong>ance of <strong>in</strong>tact masokocene c <strong>in</strong> a ca. 32,000 year<br />

old sediment <strong>in</strong>dicates excellent conditions of preservation<br />

<strong>in</strong> Lake Masoko sediments, even though the compound<br />

might be sensitive to sulfurisation as well as to oxidative<br />

or reductive attack. Although B. braunii race B is known<br />

to produce large amounts of <strong>hydrocarbons</strong>, the lack of a<br />

hydrocarbon biomarker from other sources <strong>in</strong> Lake Masoko<br />

ca. 32000 years ago is a clue for an ecosystem dom<strong>in</strong>ated at<br />

the time by blooms of B. braunii. This situation strongly


contrasts with the present day, which shows a m<strong>in</strong>or contribution<br />

of botryococcenes to the sedimentary <strong>hydrocarbons</strong><br />

<strong>and</strong> a lack of masokocene c (de Mesmay et al., 2007b).<br />

3.3. Hypothetical biogenetic relationship between cyclic<br />

botryococcenes<br />

As <strong>in</strong> all botryococcenes, non-isoprenoid carbons (C-31<br />

to C-37) likely arise from successive methylation of the<br />

C30 botryococcene precursor m, by methyl transfer from<br />

S-adenosylmethione. In the C 35, C 36 <strong>and</strong> C 37 compounds,<br />

permethylation occurs on the same term<strong>in</strong>al isoprene unit<br />

(i.e. addition of two to four carbons), like that reported for<br />

two acyclic counterparts (Galbraith et al., 1983; Metzger<br />

l<br />

Me +<br />

+<br />

H<br />

pat h I<br />

pat h II<br />

+<br />

et al., 1985b). Two plausible biosynthetic pathways for<br />

the cyclisation lead<strong>in</strong>g to masokocene c may be proposed<br />

(Fig. 8). Cyclisation could be <strong>in</strong>itiated either by methylation<br />

(path I) or by protonation of a previously methylated<br />

precursor (path II), as suggested for the biosynthesis of<br />

monocyclic botryococcenes <strong>in</strong> some stra<strong>in</strong>s of B. braunii<br />

(Metzger et al., 1985b; David et al., 1988; Huang <strong>and</strong> Poulter,<br />

1988). Abiotic cyclisation of <strong>unsaturated</strong> <strong>hydrocarbons</strong><br />

(highly branched isoprenoids, HBIs) has been observed <strong>in</strong><br />

laboratory simulations of diagenetic reactions (Belt et al.,<br />

2000). In Lake Masoko sediments, abiotic cyclisation of<br />

botryococcenes cannot therefore be excluded entirely.<br />

Botryococcenes <strong>in</strong> Lake Masoko ca. 32,000 years ago can<br />

be divided <strong>in</strong>to three types: i) monocyclic botryococcenes<br />

+<br />

-H +<br />

Fig. 8. Plausible biosynthetic pathways for cyclisation lead<strong>in</strong>g to masokocene c.<br />

reduction<br />

methylation<br />

methylation<br />

methylation<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 889<br />

cyclisation<br />

cyclisation<br />

cyclisation<br />

cyclisation<br />

a<br />

methylation<br />

methylation<br />

methylation<br />

f1, f2<br />

h<br />

cyclisation<br />

reduction<br />

b<br />

cyclisation<br />

cyclisation<br />

reduction<br />

g1, g2<br />

reduction<br />

i<br />

Fig. 9. Hypothetical biogenetic relationship between acyclic, monocyclic <strong>and</strong> <strong>dicyclic</strong> botryococcenes <strong>and</strong> their reduced derivatives isolated from Lake<br />

Masoko sediment.<br />

k<br />

c,d<br />

e<br />

j


890 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

(f1, f2 <strong>and</strong> h), ii) masokocenes (i.e. <strong>dicyclic</strong> botryococcenes:<br />

c, d, e <strong>and</strong> j) <strong>and</strong> iii) partially reduced botryococcenes<br />

(a, b, g1, g2 <strong>and</strong> i, Fig. 9). It is noteworthy that all the<br />

monocyclic botryococcenes <strong>and</strong> their derivatives have a<br />

cyclohexenyl moiety <strong>in</strong> the left h<strong>and</strong> side of the molecule.<br />

No monocyclic compound with one r<strong>in</strong>g on the right side<br />

of the molecule has been characterized <strong>in</strong> Lake Masoko<br />

sediments, whereas the occurrence of <strong>dicyclic</strong> compounds<br />

<strong>in</strong>dicates that both sides of the molecule can be cyclized.<br />

Except for a, all the structures <strong>in</strong> Lake Masoko are cyclic,<br />

whereas botryococcenes found <strong>in</strong> sediments or pure stra<strong>in</strong><br />

cultures are mostly acyclic (Metzger <strong>and</strong> Largeau, 1999). B.<br />

braunii microalgae <strong>in</strong> Lake Masoko 32,000 years ago produced<br />

nearly exclusively cyclic botryococcenes, which is<br />

quite <strong>in</strong>trigu<strong>in</strong>g. The virtual lack <strong>in</strong> this sample of acyclic<br />

botryococcenes, likely to be the precursors of cyclic botryococcenes,<br />

suggests an efficient mechanism of cyclisation.<br />

The absence of compound k <strong>and</strong> of the monocyclic C 35 botryococcene,<br />

probable precursors for masokocenes c <strong>and</strong> e,<br />

respectively, means that the second cyclisation is also efficient.<br />

The occurrence of f1 <strong>and</strong> f2 suggests that their cyclisation<br />

to j is probably less efficient due to the steric effect<br />

of the methyl <strong>and</strong> ethyl groups on the C-21/C-22 double<br />

bond. The stronger steric effect <strong>in</strong> h may prevent further<br />

cyclisation to C37 masokocene.<br />

In all partially reduced botryococcenes <strong>in</strong> the sample (i.e.<br />

a, b, g1, g2 <strong>and</strong> i), the most easily reducible double bond (C-<br />

26/C-27) is left unchanged compared with the correspond<strong>in</strong>g<br />

botryococcene. Moreover, only one peak for each compound<br />

a <strong>and</strong> b was detected from GC analysis (Fig. 2A), suggest<strong>in</strong>g<br />

the formation of only one diastereoisomer for a <strong>and</strong> b via biotic<br />

reduction of parent botryococcenes. However, <strong>in</strong> the light<br />

of the recent work of Hebt<strong>in</strong>g et al. (2006) on the preservation<br />

pathway of sedimentary organic carbon, an abiotic process<br />

cannot be entirely excluded. For the other partially reduced<br />

botryococcenes g1 <strong>and</strong> g2, we attribute the occurrence of<br />

two stereoisomers to the Z <strong>and</strong> E stereochemistry of the C-<br />

21/C-22 double bond rather than to hypothetical diastereisomers<br />

that would be formed by an abiotic process (Hebt<strong>in</strong>g<br />

et al., 2006). We then assess that all partially reduced compounds<br />

<strong>in</strong> the ca. 32,000 year old sediments from Lake Masoko<br />

arise from a biotic process. Huang <strong>and</strong> Murray (1995)<br />

<strong>and</strong> Huang et al. (1996) reported similar observations on<br />

some reduced botryococcenes found <strong>in</strong> sediment from<br />

Sacred Lake (Kenya), <strong>and</strong> suggested that they could orig<strong>in</strong>ate<br />

either from a variant population of B. braunii race B or from a<br />

microbial reduction. Moreover, the possibility of a microbial<br />

reduction dur<strong>in</strong>g early diagenesis was recently proposed to<br />

expla<strong>in</strong> the occurrence of partially reduced cyclic <strong>and</strong> acyclic<br />

botryococcenes <strong>in</strong> soils of the Everglades wetl<strong>and</strong>s (Gao et al.,<br />

2007). In the present case, it is noteworthy that the only acyclic<br />

structure <strong>in</strong> this sample is the partially reduced C34 botryococcene<br />

a. This could suggest an <strong>in</strong> vivo competition<br />

between reduction <strong>and</strong> cyclisation dur<strong>in</strong>g biosynthesis. Cyclisation<br />

cannot occur after reduction of double bonds C-1/C-2,<br />

C-6/C-24, C-17/C-29 or C-21/C-30. Partial reduction of l to a<br />

prevents cyclisation occurr<strong>in</strong>g <strong>in</strong> the left h<strong>and</strong> moiety. Furthermore,<br />

<strong>in</strong>creas<strong>in</strong>g steric h<strong>in</strong>drance due to the successive<br />

effects of the methylation of the same isoprenoid unit results<br />

<strong>in</strong> a strong decrease <strong>in</strong> the proportion of <strong>dicyclic</strong> masokocenes<br />

(from 100% of C 35,downto14%ofC 36 <strong>and</strong> no C 37).<br />

4. Conclusions<br />

Biomarkers specific for the alga B. braunii race B are the<br />

ma<strong>in</strong> constituents of the hydrocarbon fraction extracted<br />

from a ca. 32,000 year old sediment <strong>in</strong>terval from Lake Masoko,<br />

Tanzania. Thanks to GC-MS <strong>and</strong> NMR <strong>and</strong> chemical<br />

degradation, ten new cyclic botryococcenes <strong>and</strong> partially<br />

reduced derivatives were identified. Three C34 to C36 dicyclobotryococcenes,<br />

named masokocenes, were characterized,<br />

along with seven C34 to C37 monocyclic compounds.<br />

The structures <strong>in</strong>dicate that the monocyclic botryococcenes<br />

(CnH2n-10) are likely <strong>in</strong>termediates <strong>in</strong> the biosynthesis of the<br />

<strong>dicyclic</strong> analogues, while the partially reduced botryococcenes<br />

(C nH 2n-2, C nH 2n-6 <strong>and</strong> C nH 2n-8) are likely end products.<br />

The study widely extends the number of molecular structures<br />

with<strong>in</strong> the botryococcene family.<br />

From a biogeographical po<strong>in</strong>t of view, the study also re<strong>in</strong>forces<br />

the idea that botryococcene-produc<strong>in</strong>g B. braunii<br />

would be a rather common colonizer of crater (Huang<br />

et al., 1999; Zhang et al., 2007) <strong>and</strong> maar (Fuhrmann et al.,<br />

2003) lakes, just like reservoirs (Wake <strong>and</strong> Hillen, 1981),<br />

dams (Metzger et al., 1985a; David et al., 1988; Metzger<br />

et al., 1988; Jaffé et al., 1995) <strong>and</strong> also water tanks (Wolf<br />

et al., 1985; Okada et al., 1995), under almost all latitudes<br />

<strong>and</strong> from the sea level up to alp<strong>in</strong>e zones. Known as a freshwater<br />

alga, race B of B. braunii has been also reported to be<br />

present <strong>in</strong> some mar<strong>in</strong>e environments (e.g. Grice et al.,<br />

1998; Smittenberg et al., 2005). Physical <strong>and</strong> chemical conditions<br />

favour<strong>in</strong>g its growth <strong>in</strong> some lakes, lead<strong>in</strong>g sometimes<br />

to endur<strong>in</strong>g blooms (e.g. Wake <strong>and</strong> Hillen, 1981; Metzger<br />

et al., 1985a; Townsend, 2001), are still poorly understood.<br />

Although the preference of B. braunii race B for acidic waters<br />

is often noted, the pH does not seem to be a critical parameter<br />

s<strong>in</strong>ce this microalga has been found <strong>in</strong> environments with<br />

pH up to 8.6. Besides, it would appear from the literature (e.g.<br />

Swale, 1968; Wake <strong>and</strong> Hillen, 1980, 1981; Metzger et al.,<br />

1985a; Huang et al., 1999; Reynolds, 2000; Townsend,<br />

2001; Zhang et al., 2007), that it generally grows <strong>in</strong> rather<br />

small oligotrophic lakes (ca 1–2 km 2 or less) with a small<br />

catchment area. However, the alga can be also present <strong>in</strong><br />

some great lakes like Michigan (Wolf <strong>and</strong> Cox, 1981). Studies<br />

are currently <strong>in</strong> progress to determ<strong>in</strong>e the physicochemical<br />

<strong>and</strong> environmental factors that could be at the orig<strong>in</strong> of the<br />

variation of the distribution <strong>and</strong> abundance of botryococcenes<br />

observed <strong>in</strong> the sediments of Lake Masoko.<br />

Acknowledgments<br />

M. Delal<strong>and</strong>e, D. Williamson <strong>and</strong> L. Bergonz<strong>in</strong>i are<br />

thanked for helpful comments <strong>and</strong> discussions. We also<br />

thank Yongsong Huang <strong>and</strong> Hans-Peter Nytoft reviews <strong>and</strong><br />

constructive comments. The work was supported by the<br />

Centre National de la Recherche Scientifique (CNRS) through<br />

the CLEHA research programme from ECLIPSE-INSU <strong>and</strong> by<br />

the Institute of Resource Assessment (IRA) at University of<br />

Dar es Salaam. We are grateful to C. Fosse (ENSCP, Paris)<br />

for exact mass determ<strong>in</strong>ation <strong>and</strong> to M.-N. Rager (ENSCP,<br />

Paris) for NMR spectral measurements. This paper is contribution<br />

2 of the Rungwe Environmental Science Observatory<br />

Network (RESON) <strong>and</strong> contribution 07.50 of UMR 5125 PEPS.


Appendix<br />

Associate Editor—S. Schouten<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 891


892 R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893<br />

References<br />

Achitouv, E., Metzger, P., Rager, M.-N., Largeau, C., 2004. C 31-C 34<br />

methylated squalenes from a Bolivian stra<strong>in</strong> of Botryococcus braunii.<br />

Phytochemistry 65, 3159–3164.<br />

Adam, P., Schaeffer, P., Albrecht, P., 2006. C40 monoaromatic lycopane<br />

derivatives as <strong>in</strong>dicators of the contribution of the alga Botryococcus<br />

braunii race L to the organic matter of Messel oil shale (Eocene,<br />

Germany). Organic Geochemistry 37, 584–596.<br />

Barker, P., Williamson, D., Gasse, F., Gibert, E., 2003. Climatic <strong>and</strong> volcanic<br />

forc<strong>in</strong>g revealed <strong>in</strong> a 50,000-year diatom record from Lake Massoko,<br />

Tanzania. Quaternary Research 60, 368–376.<br />

Belt, S.T., Allard, W.G., R<strong>in</strong>tatalo, J., Johns, L.A., van Du<strong>in</strong>, A.C.T., Rowl<strong>and</strong>,<br />

S.J., 2000. Clay <strong>and</strong> acid catalysed isomerisation <strong>and</strong> cyclisation<br />

reactions of highly branched isoprenoid (HBI) alkenes: Implications<br />

for sedimentary reactions <strong>and</strong> distributions. Geochimica et<br />

Cosmochimica Acta 64, 3337–3345.<br />

Bergonz<strong>in</strong>i, L., Gibert, E., W<strong>in</strong>ckel, A., Merdaci, O., 2001. Water <strong>and</strong><br />

isotopic ( 18 O <strong>and</strong> 2 H) budget of Lake Massoko, Tanzania.<br />

Quantification of exchange between Lake <strong>and</strong> groundwater.<br />

Comptes Rendus de l’Academie des Sciences, Series IIA, Earth <strong>and</strong><br />

Planetary Science 333, 617–623.<br />

Brassell, S.C., Egl<strong>in</strong>ton, G., Fu, J.M., 1986. Biological marker compounds as<br />

<strong>in</strong>dicators of the depositional history of the Maom<strong>in</strong>g oil shale.<br />

Organic Geochemistry 10, 927–941.<br />

David, M., Metzger, P., Casadevall, E., 1988. Two cyclobotryococcenes<br />

from the B race of the green alga Botryococcus braunii. Phytochemistry<br />

27, 2863–2867.<br />

Delal<strong>and</strong>e, M., Bergonz<strong>in</strong>i, L., Beal, F., Garc<strong>in</strong>, Y., Majule, A., Williamson, D.,<br />

2005. Contribution to the detection of Lake Masoko (Tanzania)<br />

groundwater outflow: isotopic evidence ( 18 O,D). Hydrological<br />

Sciences Journal 50, 867–880.<br />

de Mesmay, R., Grossi, V., Williamson, D., Kajula, S., Derenne, S., 2007a.<br />

Novel mono-, di- <strong>and</strong> tri-<strong>unsaturated</strong> very long cha<strong>in</strong> (C 37 -C 43) n -<br />

alkenes <strong>in</strong> alkenone-free lacustr<strong>in</strong>e sediments (Lake Masoko,<br />

Tanzania). Organic Geochemistry 38, 323–333.<br />

de Mesmay, R., Grossi, V., Metzger, P., Williamson, D., Kajula, S., Derenne,<br />

S., 2007b. Abrupt biogeochemical <strong>and</strong> environmental changes dur<strong>in</strong>g<br />

the last 32,000 years <strong>in</strong> a tropical lake (Lake Masoko, Tanzania)<br />

<strong>in</strong>ferred from lipid biomarkers. 23rd International Meet<strong>in</strong>g on<br />

Organic Geochemistry, Torquay, UK. Book of Abstracts, pp. 1047-<br />

1048.<br />

Derenne, S., Largeau, C., Hetényi, M., Brukner-We<strong>in</strong>, A., Connan, J.,<br />

Lugardon, B., 1997. Chemical structure of the organic matter <strong>in</strong> a<br />

Pliocene maar-type shale: Implicated Botryococcus race stra<strong>in</strong>s <strong>and</strong><br />

formation pathways. Geochimica et Cosmochimica Acta 61, 1879–<br />

1889.<br />

Fuhrmann, A., M<strong>in</strong>gram, J., Lücke, A., Lu, H., Horsfield, B., Liu, J.,<br />

Negendank, J.F.W., Schleser, G.H., Wilkes, H., 2003. Variations <strong>in</strong><br />

organic matter composition <strong>in</strong> sediments from Lake Huguang Maar<br />

(Huguangyan), south Ch<strong>in</strong>a dur<strong>in</strong>g the last 68 ka: implications for<br />

environmental <strong>and</strong> climatic change. Organic Geochemistry 34, 1497–<br />

1515.<br />

Galbraith, M.N., Hillen, L.W., Wake, L.V., 1983. Darw<strong>in</strong>ene: a branched<br />

hydrocarbon from a green form of Botryococcus braunii.<br />

Phytochemistry 22, 1441–1443.<br />

Gao, M., Simoneit, B.R.T., Gantar, M., Jaffé, R., 2007. Occurrence <strong>and</strong><br />

distribution of novel botryococcene <strong>hydrocarbons</strong> <strong>in</strong> freshwater<br />

wetl<strong>and</strong>s of the Florida Everglades. Chemosphere 70, 224–236.<br />

Garc<strong>in</strong>, Y., Williamson, D., Taieb, M., V<strong>in</strong>cens, A., Mathe, P.-E., Majule, A.,<br />

2006a. Centennial to millennial changes <strong>in</strong> maar-lake deposition<br />

dur<strong>in</strong>g the last 45,000 years <strong>in</strong> tropical Southern Africa (Lake Masoko,<br />

Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology 239,<br />

334–354.<br />

Garc<strong>in</strong>, Y., V<strong>in</strong>cens, A., Williamson, D., Guiot, J., Buchet, G., 2006b. Wet<br />

phases <strong>in</strong> tropical southern Africa dur<strong>in</strong>g the last glacial period.<br />

Geophysical Research Letters 33, L07703.<br />

Garc<strong>in</strong>, Y., V<strong>in</strong>cens, A., Williamson, D., Buchet, G., Guiot, J., 2007. Abrupt<br />

resumption of the African Monsoon at the Younger Dryas-Holocene<br />

climatic transition. Quaternary Science Reviews 26, 690–704.<br />

Gatellier, J.-P., de Leeuw, J.W., S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S., Derenne, S., Largeau,<br />

C., Metzger, P., 1993. A comparative study of macromolecular<br />

substances of a Coorongite <strong>and</strong> cell walls of the extant alga<br />

Botryococcus braunii. Geochimica et Cosmochimica Acta 57, 2053–<br />

2068.<br />

Gibert, E., Bergonz<strong>in</strong>i, L., Massault, M., Williamson, D., 2002. AMS- 14 C<br />

chronology of 40.0 cal ka BP cont<strong>in</strong>uous deposits from a crater lake<br />

(Lake Massoko, Tanzania): modern water balance <strong>and</strong> environmental<br />

implications. Palaeogeography, Palaeoclimatology, Palaeoecology<br />

187, 307–322.<br />

Grice, K., Schouten, S., Nissenbaum, A., Charrach, J., S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S.,<br />

1998. A remarkable paradox: Sulfurised freshwater algal<br />

(Botryococcus braunii) lipids <strong>in</strong> an ancient hypersal<strong>in</strong>e eux<strong>in</strong>ic<br />

ecosystem. Organic Geochemistry 28, 195–216.<br />

Hebt<strong>in</strong>g, Y., Schaeffer, P., Behrens, A., Adam, P., Schmitt, G.,<br />

Schneckenburger, P., Bernasconi, S.M., Albrecht, P., 2006. Biomarker<br />

evidence for a major preservation pathway of sedimentary organic<br />

carbon. Science 312, 1627–1631.<br />

He<strong>in</strong>zen, V.E.F., Soares, M.F., Yunes, R.A., 1999. Semi-empirical topological<br />

method for the prediction of the chromatographic retention of cis<strong>and</strong><br />

trans-alkene isomers <strong>and</strong> alkanes. Journal of Chromatography A<br />

849, 495–496.<br />

Huang, Y., Murray, M., 1995. Identification of 1,6,17,21octahydrobotryococcene<br />

<strong>in</strong> a sediment. Journal of Chemical Society,<br />

Chemical Communications, 335–336.<br />

Huang, Y., Murray, M., Egl<strong>in</strong>ton, G., Metzger, P., 1995. Sacredicene, a novel<br />

monocyclic C 33 hydrocarbon from sediment of Sacred Lake, a tropical<br />

freshwater lake, Mount Kenya. Tetrahedron Letters 36, 5973–5976.<br />

Huang, Y., Murray, M., Metzger, P., Egl<strong>in</strong>ton, G., 1996. Novel <strong>unsaturated</strong><br />

<strong>triterpenoid</strong> <strong>hydrocarbons</strong> from sediments of Sacred Lake, Mt Kenya,<br />

Kenya. Tetrahedron 52, 6973–6982.<br />

Huang, Y., Street-Perrott, F.A., Perrott, R.A., Metzger, P., Egl<strong>in</strong>ton, G., 1999.<br />

Glacial-<strong>in</strong>terglacial environmental changes <strong>in</strong>ferred from molecular<br />

<strong>and</strong> compound-specific d 13 C analyses of sediments from Sacred Lake,<br />

Mt. Kenya. Geochimica et Cosmochimica Acta 63, 1383–1404.<br />

Huang, Z., Poulter, C.D., Wolf, F.R., Somers, T.C., White, J.D., 1988.<br />

Braunicene. A novel cyclic C 32 isoprenoid from Botryococcus braunii.<br />

Journal of the American Chemical Society 110, 3959–3964.<br />

Huang, Z., Poulter, C.D., 1988. Braunicene. Absolute Stereochemistry of<br />

the Cyclohexane R<strong>in</strong>g. Journal of Organic Chemistry 53, 4089–4094.<br />

Huang, Z., Poulter, C.D., 1989. Stereochemical studies of botryococcene<br />

biosynthesis: analogies between 1’-1 <strong>and</strong> 1’-3 condensations <strong>in</strong> the<br />

isoprenoid pathway. Journal of the American Chemical Society 111,<br />

2713–2715.<br />

Jaffé, R., Wolf, G.A., Cabrera, A.C., Carvajal-Chitty, H., 1995. The<br />

biogeochemistry of lipids <strong>in</strong> rivers of the Or<strong>in</strong>oco Bas<strong>in</strong>. Geochimica<br />

et Cosmochimica Acta 59, 4507–4522.<br />

Junkes, B.S., Amboni, R.D.M.C., He<strong>in</strong>zen, V.E.F., Yunes, R.A., 2002. Use of a<br />

semi-empirical topological method to predict the chromatographic<br />

retention of branched alkenes. Chromatographia 55, 75–81.<br />

McKirdy, D.M., Cox, R.E., Volkman, J.K., Howell, V.J., 1986. Botryococcane<br />

<strong>in</strong> a new class of Australian non-mar<strong>in</strong>e crude oils. Nature 320, 57–59.<br />

Merdaci, O., 1998. Changements climatiques au cours des derniers 30,000<br />

ans en Afrique Sud-Equatoriale (Tanzanie) par l’étude des pigments et<br />

phénols lacustres. PhD Thesis, University Aix-Marseille III.<br />

Metzger, P., Casadevall, E., 1987. Lycopadiene, a tetraterpenoid<br />

hydrocarbon from new stra<strong>in</strong>s of the green alga Botryococcus<br />

braunii. Tetrahedron Letters 28, 3931–3934.<br />

Metzger, P., Largeau, C., 1999. Chemicals of Botryococcus braunii. In:<br />

Cohen, Z. (Ed.), Chemicals from Microalgae. Taylor <strong>and</strong> Francis,<br />

London, pp. 205–260.<br />

Metzger, P., Berkaloff, C., Casadevall, E., Couté, A., 1985a. Alkadiene- <strong>and</strong><br />

botryococcene-produc<strong>in</strong>g races of wild stra<strong>in</strong>s of Botryococcus braunii.<br />

Phytochemistry 24, 2305–2312.<br />

Metzger, P., Casadevall, E., Pouet, M.J., Pouet, Y., 1985b. Structures of some<br />

botryococcenes: branched <strong>hydrocarbons</strong> from the B-race of the green<br />

alga Botryococcus braunii. Phytochemistry 24, 2995–3002.<br />

Metzger, P., Templier, J., Largeau, C., Casadevall, E., 1986. An n -alkatriene<br />

<strong>and</strong> some n -alkadienes from the A race of the green alga Botryococcus<br />

braunii. Phytochemistry 25, 1869–1872.<br />

Metzger, P., David, M., Casadevall, E., 1987. Biosynthesis of <strong>triterpenoid</strong><br />

<strong>hydrocarbons</strong> <strong>in</strong> the B-race of the green alga Botryococcus braunii.<br />

Sites of production <strong>and</strong> nature of the methylat<strong>in</strong>g agent.<br />

Phytochemistry 26, 129–134.<br />

Metzger, P., Casadevall, E., Couté, A., 1988. Botryococcene distribution <strong>in</strong><br />

stra<strong>in</strong>s of the green alga Botryococcus braunii. Phytochemistry 27,<br />

1383–1388.<br />

Metzger, P., Rager, M.-N., Largeau, C., 2007. Polyacetals based on<br />

polymethylsqualene diols, precursors of algaenan <strong>in</strong> Botryococcus<br />

braunii race B. Organic Geochemistry 38, 566–581.<br />

Moldowan, J.M., Seifert, W.K., 1980. First discovery of botryococcane <strong>in</strong><br />

petroleum. Journal of the Chemical Society, Chemical<br />

Communications, 912–914.<br />

Okada, S., Murakami, M., Yamaguchi, K., 1995. Hydrocarbon composition<br />

of newly isolated stra<strong>in</strong>s of the green microalga Botryococcus braunii.<br />

Journal of Applied Phycology 7, 555–559.


Okada, S., Murakami, M., Yamaguchi, K., 1997. Characterization of<br />

<strong>hydrocarbons</strong> from the Yayoi stra<strong>in</strong> of the green alga Botryococcus<br />

braunii. Phytochemical Analysis 8, 198–203.<br />

Okada, S., Devarenne, T.P., Murakami, M., Abe, H., Chapell, J., 2004.<br />

Characterization of botryococcene synthase enzyme activity, a<br />

squalene synthase-like activity from the green microalga<br />

Botryococcus braunii, race B. Archives of Biochemistry <strong>and</strong><br />

Biophysics 422, 110–118.<br />

Reynolds, C.S., 2000. Phytoplankton designer – or how to predict<br />

compositional responses to trophic-state change. Hydrobiologia<br />

424, 123–132.<br />

Sato, S., Ito, Y., Okada, S., Murakami, M., Abe, H., 2003. Biosynthesis of the<br />

<strong>triterpenoid</strong>s, botryococcenes <strong>and</strong> tetramethylsqualene <strong>in</strong> the B race<br />

of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron<br />

Letters 44, 7035–7037.<br />

Senousy, H.H., Beakes, G.W., Hack, E., 2004. Phylogenetic placement<br />

of Botryococcus braunii (Trebouxiophyceae) <strong>and</strong> Botryococcus<br />

sudeticus isolate Utex 2629 (Chlorophyceae). Journal of<br />

Phycology 40, 412–423.<br />

Smittenberg, R.H., Baas, M., Schouten, S., S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S., 2005. The<br />

demise of the alga Botryococcus braunii from a Norwegian fjord was<br />

due to early eutrophication. The Holocene 15, 133–140.<br />

Swale, E.M.F., 1968. The phytoplankton of Oak Mere, Cheshire, 1963-<br />

1966. British Phycological Bullet<strong>in</strong> 3, 441–449.<br />

Thevenon, F., Williamson, D., V<strong>in</strong>cens, A., Taieb, M., Merdaci, O., Decobert,<br />

M., Buchet, G., 2003. A Late Holocene charcoal record from Lake<br />

Masoko, SW Tanzania: climatic <strong>and</strong> anthropologic implications. The<br />

Holocene 15, 785–792.<br />

Townsend, S.A., 2001. Perennial dom<strong>in</strong>ation of phytopankton by<br />

Botryococcus <strong>and</strong> Perid<strong>in</strong>ium <strong>in</strong> a discont<strong>in</strong>uously polymictic<br />

R. de Mesmay et al. / Organic Geochemistry 39 (2008) 879–893 893<br />

reservoir (tropical Australia). Archiv für Hydrobiologie 151, 529–<br />

548.<br />

Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies <strong>and</strong><br />

Palynofacies. Chapman <strong>and</strong> Hall, London.<br />

V<strong>in</strong>cens, A., Williamson, D., Thevenon, F., Taieb, M., Buchet, G., Decobert,<br />

M., Thouveny, N., 2003. Pollen-based vegetation changes <strong>in</strong> southern<br />

Tanzania dur<strong>in</strong>g the last 4200 years: climate change <strong>and</strong>/or human<br />

impact. Palaeogeography, Palaeoclimatology, Palaeoecology 198,<br />

321–334.<br />

Wake, L.V., Hillen, L.W., 1980. Study of a bloom of the oil-rich alga<br />

Botryococcus braunii <strong>in</strong> the Darw<strong>in</strong> River Reservoir. Biotechnology <strong>and</strong><br />

Bioeng<strong>in</strong>eer<strong>in</strong>g 22, 1637–1656.<br />

Wake, L.V., Hillen, L.W., 1981. Nature <strong>and</strong> hydrocarbon content of blooms<br />

of the alga Botryococcus braunii occurr<strong>in</strong>g <strong>in</strong> Australian freshwater<br />

lakes. Australian Journal of Mar<strong>in</strong>e <strong>and</strong> Freshwater Research 32, 353–<br />

367.<br />

Williamson, D., Jackson, M.J., Banerjee, S.K., Marv<strong>in</strong>, J., Merdaci, O.,<br />

Thouveny, N., Decobert, M., Gibert-Massault, E., Massault, M.,<br />

Mazaudier, D., Taieb, M., 1999. Magnetic signatures of hydrological<br />

change <strong>in</strong> a tropical maar-lake (Lake Massoko, Tanzania): Prelim<strong>in</strong>ary<br />

results. Physics <strong>and</strong> Chemistry of the Earth Part A 24, 799–803.<br />

Wolf, F.R., Cox, E.R., 1981. Ultrastructure of active <strong>and</strong> rest<strong>in</strong>g colonies of<br />

Botryococcus braunii (Chlorophyceae). Journal of Phycology 17, 395–<br />

405.<br />

Wolf, F.R., Nonomura, A.M., Bassham, J.A., 1985. Growth <strong>and</strong> branched<br />

hydrocarbon production <strong>in</strong> a stra<strong>in</strong> of Botryococus braunii<br />

(Chlorophyta). Journal of Phycology 21, 388–396.<br />

Zhang, Z., Metzger, P., Sachs, J.P., 2007. Biomarker evidence for the cooccurrence<br />

of three races (A, B, <strong>and</strong> L) of Botryococcus braunii <strong>in</strong> El<br />

Junco Lake, Galápagos. Organic Geochemistry 38, 566–581.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!