27.06.2013 Views

Mean Project Completion Time in Dynamic Markov PERT Networks

Mean Project Completion Time in Dynamic Markov PERT Networks

Mean Project Completion Time in Dynamic Markov PERT Networks

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proceed<strong>in</strong>gs of the Asia Pacific Management Conference, 2003, 767-782<br />

<strong>Mean</strong> <strong>Project</strong> <strong>Completion</strong> <strong>Time</strong> <strong>in</strong> <strong>Dynamic</strong> <strong>Markov</strong><br />

<strong>PERT</strong> <strong>Networks</strong><br />

Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

In this paper, we apply the stochastic dynamic programm<strong>in</strong>g to approximate the mean project<br />

completion time <strong>in</strong> dynamic <strong>Markov</strong> <strong>PERT</strong> networks. It is assumed that the activity durations are<br />

<strong>in</strong>dependent random variables with exponential distributions, but some social and economical<br />

problems like strike or <strong>in</strong>flation <strong>in</strong>fluence the mean of activity durations. It is also assumed that the<br />

social problems evolve <strong>in</strong> accordance with the <strong>in</strong>dependent cont<strong>in</strong>uous-time <strong>Markov</strong> processes over<br />

the plann<strong>in</strong>g horizon. By us<strong>in</strong>g the stochastic dynamic programm<strong>in</strong>g, we f<strong>in</strong>d a dynamic path with<br />

maximum expected length from the source node to the s<strong>in</strong>k node of the stochastic dynamic network.<br />

The expected value of such path can be considered as an approximation for the mean project completion<br />

time <strong>in</strong> the orig<strong>in</strong>al dynamic <strong>PERT</strong> network.<br />

Keywords: <strong>Dynamic</strong> Programm<strong>in</strong>g, Stochastic Processes, Longest Path, Graph Theory.<br />

1. Introduction<br />

<strong>Project</strong> Schedul<strong>in</strong>g has been a major objective of most models proposed to<br />

aid plann<strong>in</strong>g and management of projects. The most important method to<br />

schedule a project assum<strong>in</strong>g determ<strong>in</strong>istic durations is the well-known CPM –<br />

Critical Path Method. However, most durations have the random natures and<br />

therefore, <strong>PERT</strong> was proposed to determ<strong>in</strong>e the distribution of the total duration,<br />

T. This method is based on the substitution of the network by the CPAD –<br />

critical path assum<strong>in</strong>g that each activity has a fixed duration equal to its mean<br />

(critical path us<strong>in</strong>g average durations). The mean and the variance of the<br />

CPAD are given by the sum of the means and of the variances of its activities,<br />

respectively, and therefore these results considered the mean and the variance<br />

of the total duration of the network.<br />

This paper presents a new methodology to approximate the mean project<br />

completion time <strong>in</strong> dynamic <strong>Markov</strong> <strong>PERT</strong> networks. It is assumed that the<br />

activity durations are <strong>in</strong>dependent random variables with exponential distributions,<br />

but upon start<strong>in</strong>g to do each activity, some social and economical problems<br />

like strike, war or <strong>in</strong>flation <strong>in</strong>fluence the mean of activity duration, and<br />

consequently its exponential distribution’s parameter. It is also assumed that<br />

the social problems evolve <strong>in</strong> accordance with the <strong>in</strong>dependent cont<strong>in</strong>uoustime<br />

<strong>Markov</strong> processes over the plann<strong>in</strong>g horizon.<br />

767


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

By us<strong>in</strong>g the stochastic dynamic programm<strong>in</strong>g, we obta<strong>in</strong> the expected<br />

value of the dynamic longest path <strong>in</strong> the stochastic dynamic network, which<br />

would be approximately equal to the mean of project completion time <strong>in</strong> the<br />

orig<strong>in</strong>al dynamic <strong>PERT</strong> network.<br />

Although we could not f<strong>in</strong>d any paper about the longest path analysis <strong>in</strong><br />

dynamic <strong>PERT</strong> networks, there are several papers about analysis of project<br />

completion time <strong>in</strong> <strong>PERT</strong> networks.<br />

Department of Artificial Complex Systems Eng<strong>in</strong>eer<strong>in</strong>g, Graduate School<br />

of Eng<strong>in</strong>eer<strong>in</strong>g, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima,<br />

Hiroshima, 739-8527 Japan.<br />

E-mails: {azaron, katagiri, kato, sakawa}@msl.sys.hiroshima-u.ac.jp.<br />

Charnes, Cooper and Thompson [3] developed a chance-constra<strong>in</strong>ed programm<strong>in</strong>g.<br />

They assumed exponential activity durations. For polynomial activity<br />

durations, Mart<strong>in</strong> [10] provided a systematic way of analyz<strong>in</strong>g the problem<br />

through series-parallel reductions. Kulkarni and Adlakha [9] developed an<br />

analytical procedure for <strong>PERT</strong> networks with <strong>in</strong>dependent and exponentially<br />

distributed activity durations. They modeled such networks as f<strong>in</strong>ite-state, absorb<strong>in</strong>g<br />

cont<strong>in</strong>uous-time <strong>Markov</strong> cha<strong>in</strong>s with upper triangular generator matrices.<br />

Then, they proved the time until absorption <strong>in</strong>to this absorb<strong>in</strong>g state is<br />

equal to the length of the longest path <strong>in</strong> the orig<strong>in</strong>al network provided it starts<br />

from the <strong>in</strong>itial state. Elmaghraby [5] provided lower bounds for the true expected<br />

project completion time. Fulkerson [6], Cl<strong>in</strong>gen [4], Robillard [13] and<br />

Perry and Creig [11] have done the similar works.<br />

The analytical and approximation methods above are all static, because<br />

they consider the activity durations as the <strong>in</strong>dependent random variables and<br />

ignore their dependence on the dynamic behavior of social problems.<br />

There are also a few papers about the shortest path analysis <strong>in</strong> stochastic<br />

dynamic networks, see Hall [7], Bertsimas and Van Ryz<strong>in</strong> [2], Psaraftis and<br />

Tsitsiklis [12] and Azaron and Kianfar [1].<br />

In this paper, we apply the model worked by Azaron and Kianfar [1] <strong>in</strong> order<br />

to f<strong>in</strong>d a dynamic path with maximum expected length <strong>in</strong> the dynamic<br />

<strong>Markov</strong> <strong>PERT</strong> network. The expected length of such path would be approximately<br />

equal to the mean project completion time <strong>in</strong> the dynamic <strong>PERT</strong> network.<br />

The true mean project completion time would be equal or greater than<br />

768


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

such estimate. Therefore, our approximation can be considered as a lower<br />

bound for the true expected project completion time.<br />

The rema<strong>in</strong>der of this paper is organized <strong>in</strong> the follow<strong>in</strong>g way. The analysis<br />

of dynamic <strong>Markov</strong> <strong>PERT</strong> networks is illustrated <strong>in</strong> section 2. In section 3, the<br />

method is illustrated through solv<strong>in</strong>g a numerical example. F<strong>in</strong>ally, we draw<br />

the conclusion of the paper <strong>in</strong> section 4.<br />

2. Analysis of dynamic <strong>Markov</strong> <strong>PERT</strong> networks<br />

In this section, we present an approximation method to obta<strong>in</strong> the mean<br />

project completion time <strong>in</strong> dynamic <strong>Markov</strong> <strong>PERT</strong> networks.<br />

Let G=(V,A) be a <strong>PERT</strong> network, <strong>in</strong> which V and A represent the set of<br />

nodes and activities of G, respectively. The number of effective social and<br />

economical problems, which <strong>in</strong>fluence the mean of activity durations, is equal<br />

to N. Duration of activity ( l, j)<br />

∈ A is an exponential random variable with<br />

parameter lj<br />

1 2 N<br />

λ . This parameter is a function of ( s , s ,..., s ) or the state<br />

vector of system <strong>in</strong> node l, which means the states of the social problems upon<br />

start<strong>in</strong>g to do the activities orig<strong>in</strong>at<strong>in</strong>g from node l. The social problems evolve<br />

<strong>in</strong> accordance with the <strong>in</strong>dependent cont<strong>in</strong>uous-time <strong>Markov</strong> processes over<br />

the plann<strong>in</strong>g horizon. Clearly, the state vector of system is known only at the<br />

source node of the network, because, at the beg<strong>in</strong>n<strong>in</strong>g of project, we know the<br />

<strong>in</strong>itial states of the social problems. The other assumptions are as follows:<br />

1. The number of states of ith social problem is equal to Ni (these states are<br />

i i<br />

i<br />

<strong>in</strong> this order: s1 , s2 ,…, s ), and P represents the probability of transition<br />

i<br />

N i<br />

of this social problem from state<br />

miki i<br />

s m to state<br />

i<br />

769<br />

i<br />

s k .<br />

i


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

i<br />

m i<br />

i<br />

2. t represents the transition time of the ith social problem from state<br />

miki s to state i<br />

s . Each i<br />

t is a random variable with exponential density<br />

k i<br />

miki function f (t)<br />

i<br />

, because it was assumed that each social problem evolves <strong>in</strong><br />

miki accordance with a cont<strong>in</strong>uous-time <strong>Markov</strong> process. Then, if we consider i<br />

t mi as the stay<strong>in</strong>g time of the ith social problem <strong>in</strong> state<br />

i<br />

w m (t) would be<br />

i<br />

Ni<br />

i<br />

w m (t)=∑ i<br />

ki<br />

= 1<br />

P<br />

i<br />

m k<br />

i i<br />

f<br />

i<br />

m k<br />

i i<br />

( t)<br />

. (1)<br />

770<br />

i<br />

s m , its density function or<br />

i<br />

3. All imbedded <strong>Markov</strong> processes correspond<strong>in</strong>g to the <strong>in</strong>dicated cont<strong>in</strong>uous-time<br />

<strong>Markov</strong> processes have the ergodic property.<br />

i<br />

4. φ (t)<br />

represents the conditional probability that ith social problem<br />

miki moves to state i<br />

s k , given that at time zero, it was <strong>in</strong> state<br />

i<br />

How can a process that started by enter<strong>in</strong>g state<br />

i<br />

s k at time t. One way this can is for<br />

i<br />

i<br />

s m and<br />

i<br />

i<br />

s m .<br />

i<br />

i<br />

s m at time zero be <strong>in</strong> state<br />

i<br />

i<br />

s k to be the same state and for<br />

i<br />

the process never to have left state i<br />

s m throughout the period (0,t). This<br />

i


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

requires that the process make its first transition after time t. Every other way<br />

to get from state<br />

i<br />

s m to state<br />

i<br />

i<br />

s k <strong>in</strong> the <strong>in</strong>terval (0,t) requires that the process<br />

i<br />

make at least one transition dur<strong>in</strong>g that <strong>in</strong>terval. For example, the process could<br />

have made its first transition from state i<br />

s m to some state<br />

i<br />

i<br />

s l at a time τ ,<br />

i<br />

0 < τ < t , and then by some succession of transitions have made its way to<br />

state<br />

i<br />

φ (t)<br />

.<br />

miki i<br />

s k at time t. These considerations lead us to equation (2) for comput<strong>in</strong>g<br />

i<br />

∞<br />

i<br />

i<br />

i<br />

i i i<br />

φ m k (t)<br />

= δ i i<br />

m k ∫ wm<br />

( τ ) dτ<br />

+ ∑ Pm<br />

l ∫ f m l ( τ ) φl<br />

k ( t −τ<br />

) dτ<br />

,<br />

i i<br />

i<br />

i i i i i i<br />

⎧ 1 if mi<br />

= ki<br />

,<br />

δ m k = ⎨<br />

(2)<br />

i i<br />

⎩0<br />

otherwise.<br />

t<br />

771<br />

N<br />

l = 1<br />

i<br />

Certa<strong>in</strong>ly, we cannot directly compute φ (t)<br />

from equation (2), but<br />

i<br />

miki s<strong>in</strong>ce the second <strong>in</strong>tegral of equation (2) is a convolution of two functions, we<br />

i<br />

can compute φ (t)<br />

by the Laplace transform. Let f (s)<br />

ie<br />

represent the<br />

miki Laplace transform of f (t)<br />

i<br />

ie<br />

and φ (s)<br />

represent the Laplace transform<br />

mili miki t<br />

0<br />

mili


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

i<br />

of φ (t)<br />

, which is computed from equation (3).<br />

miki ∞ ∞<br />

i<br />

−st<br />

i<br />

∫∫ e wm<br />

( τ ) dτdt<br />

+<br />

i ∑<br />

ie<br />

i ie ie<br />

φ ( s) = δ<br />

P f ( s)<br />

φ ( s)<br />

. (3)<br />

m k<br />

i i<br />

m k<br />

i i<br />

0<br />

t<br />

772<br />

N<br />

l = 1<br />

i<br />

Now, we can compute φ (t)<br />

by gett<strong>in</strong>g the <strong>in</strong>verse Laplace of<br />

miki ie<br />

φ (s)<br />

, see Howard [8] for more details.<br />

miki Let<br />

ikilj<br />

m1<br />

m2<br />

mN<br />

represent the conditional probability that after do<strong>in</strong>g the ac-<br />

P ...<br />

tivity (l,j), the state of ith social problem changes to<br />

i<br />

m l<br />

i i<br />

m l<br />

i i<br />

l k<br />

i i<br />

i<br />

s k , given that upon start-<br />

i<br />

<strong>in</strong>g to do this activity, the state of ith social problem and the state vector of<br />

1 2 N<br />

system have been s and ( s , s ,..., s ) , respectively.<br />

Lemma 1.<br />

P ...<br />

i<br />

m i<br />

ikilj<br />

m1<br />

m2<br />

m is given by<br />

P ...<br />

N<br />

m1 m2<br />

mN<br />

ikilj<br />

m1<br />

m2<br />

mN<br />

=∫ ∞ 1 2 N<br />

i<br />

1 2 N −λlj<br />

( sm<br />

, s ,..., )<br />

1 m s<br />

2 m t<br />

N<br />

m k t)<br />

λlj<br />

( sm<br />

, s ,..., s ) e<br />

0 i i<br />

1 m2<br />

mN<br />

Proof.<br />

ikilj<br />

m m2<br />

mN<br />

P ...<br />

φ ( dt . (4)<br />

1 is computed by condition<strong>in</strong>g on the duration of activity (l,j).<br />

The probability of transition the ith social problem from state<br />

i<br />

s m to state<br />

i<br />

after a time t, upon f<strong>in</strong>ish<strong>in</strong>g the activity (l,j), given that the duration of activity<br />

i<br />

s ki


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

i<br />

(l,j) is equal to t, would be φ (t)<br />

, because the cont<strong>in</strong>uous-time <strong>Markov</strong><br />

miki process correspond<strong>in</strong>g to the transitions of ith social problem is memoryless.<br />

S<strong>in</strong>ce, the activity duration (l,j) has exponential distribution with parameter<br />

1 2 N<br />

λ ( s , s ,..., s ) , then, Lemma 1 is proved.<br />

lj<br />

m1 m2<br />

mN<br />

Let A(l) be the set of forward adjacent nodes of node l, and<br />

1 2 N<br />

V ( s , s ,..., s ) represent the maximum expected length form node l to<br />

l m1<br />

m2<br />

mN<br />

the s<strong>in</strong>k node of the dynamic <strong>PERT</strong> network, if the state vector of system <strong>in</strong><br />

node l, which <strong>in</strong>cludes the states of all social and economical problems upon<br />

start<strong>in</strong>g to do the activities (l,j), A(l)<br />

1 2 N<br />

j ∈ , is ( s , s ,..., s ) .<br />

1 2 N<br />

Theorem 1. V ( s , s ,..., s ) for i 1,<br />

2,...,<br />

N<br />

is given by<br />

l m1<br />

m2<br />

mN<br />

1 2 N<br />

V ( s , s ,..., s ) =<br />

l m1<br />

m2<br />

mN<br />

max<br />

j ∈ A(<br />

l)<br />

⎪⎧<br />

1<br />

⎨ 1 2<br />

⎪⎩ λlj(<br />

sm<br />

, s ,...,<br />

1 m s 2<br />

N<br />

mN<br />

)<br />

N1<br />

N2<br />

NN<br />

+∑∑... ∑<br />

k = 1k= 1 k = 1<br />

1<br />

2<br />

N<br />

P<br />

klj<br />

1 1<br />

m1m<br />

2...<br />

mN<br />

P<br />

773<br />

m1 m2<br />

mN<br />

= and m i = 1,<br />

2,...,<br />

N i<br />

k lj<br />

2 2<br />

m1m<br />

2...<br />

mN<br />

... P<br />

Nk lj<br />

m<br />

N<br />

1m2<br />

... mN<br />

⎪⎫<br />

1 2 N<br />

Vj(<br />

sk<br />

, s ,..., ) ⎬<br />

1 k s 2 k . (5)<br />

N<br />

⎪⎭


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

Proof. The expected length of arc (l,j) is<br />

774<br />

1<br />

1 2 N<br />

lj m , s ,...,<br />

1 m s<br />

2 mN<br />

λ ( s<br />

, because the<br />

)<br />

duration of activity (l,j) has exponential distribution with parameter<br />

1 2 N<br />

λ ( s , s ,..., s ) . The probability that the state vector of system<br />

lj<br />

m1 m2<br />

mN<br />

1 2 N<br />

1 2 N<br />

changes from ( s , s ,..., s ) <strong>in</strong> node l to ( s , s ,..., s ) , after do<strong>in</strong>g<br />

m1 m2<br />

mN<br />

the activity (l,j), would be<br />

1k1lj<br />

m m<br />

mN<br />

2k2lj<br />

m1m2<br />

... mN<br />

k1 k2<br />

kN<br />

Nk Nlj<br />

m1m<br />

mN<br />

P P P ...<br />

1 2...<br />

... 2 , because the<br />

cont<strong>in</strong>uous-time <strong>Markov</strong> processes correspond<strong>in</strong>g to the transitions of the social<br />

problems are <strong>in</strong>dependent. If the arc (l,j) belongs to the path with maximum<br />

expected length, which approximately considered as the longest path,<br />

then, the state vector of system <strong>in</strong> node j actually changes to<br />

1 2 N<br />

( s , s ,..., s ) with the <strong>in</strong>dicated probability. F<strong>in</strong>ally, by condition<strong>in</strong>g on<br />

k1 k2<br />

kN<br />

the state vector of system <strong>in</strong> node j, Theorem 1 is proved.<br />

Without los<strong>in</strong>g the generality, we assume that the nodes of the network are<br />

numbered from 1 to n, <strong>in</strong> which there should be no directed path from node j to<br />

node l for j>l. The follow<strong>in</strong>g algorithm can be used to approximate the mean<br />

project completion time <strong>in</strong> dynamic <strong>Markov</strong> <strong>PERT</strong> networks.<br />

Algorithm<br />

1 2 N<br />

Step 1. Beg<strong>in</strong> from node l=n. It is clear that V ( s , s ,..., s ) = 0<br />

m = 1,<br />

2,...,<br />

N , i = 1,<br />

2,...,<br />

N .<br />

for i<br />

i<br />

n m1<br />

m2<br />

mN


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

i<br />

1 2 N<br />

Step 2. Set l=n-1. Then, compute V − ( s , s ,..., s ) for<br />

i<br />

775<br />

n 1 m1<br />

m2<br />

mN<br />

m = 1,<br />

2,...,<br />

N , i = 1,<br />

2,...,<br />

N , from the recursive function (5). In this case,<br />

the second term of (5) would be equal to 0, because A ( n − 1)<br />

= n .<br />

i<br />

Step 3. Compute (t)<br />

φ mik for m i<br />

i = 1,<br />

2,...,<br />

N i , k i 1,<br />

2,...,<br />

N i<br />

= ,<br />

ie<br />

i = 1,<br />

2,...,<br />

N , by gett<strong>in</strong>g the <strong>in</strong>verse Laplace of φ (s)<br />

<strong>in</strong> equation (3).<br />

i<br />

Step 4. Set l=l-1. Then, compute<br />

i<br />

miki ikilj<br />

m1<br />

m2<br />

mN<br />

for m i 1,<br />

2,...,<br />

N i<br />

P ...<br />

= ,<br />

k = 1,<br />

2,...,<br />

N , i = 1,<br />

2,...,<br />

N and j ∈ A(l)<br />

, except for j=n, from equa-<br />

tion (4).<br />

1 2 N<br />

Step 5. Compute ( s , s ,..., s )<br />

V for i<br />

i<br />

l m1<br />

m2<br />

mN<br />

i = 1,<br />

2,...,<br />

N , from the recursive function (5).<br />

Step 6. If l>1, then, go to 4. Otherwise, go to 7.<br />

m = 1,<br />

2,...,<br />

N ,<br />

Step 7. Stop. The approximation of mean project completion time would be<br />

1 2 N<br />

equal to V ( s , s ,..., s ) .<br />

1 m1 m2<br />

mN<br />

In the worst case, assume that we have a complete stochastic network, <strong>in</strong><br />

which for each l, A(l)={l+1,l+2,…,n}. In this case, the time complexity of the<br />

N<br />

N ⎞ ⎛ 2 ⎞<br />

algorithm <strong>in</strong> steps 2 and 3 would be clearly O⎜ N i ⎟ and O⎜∑= N i ⎟ ,<br />

⎝ i 1 ⎠ ⎝ i 1 ⎠<br />

⎛ ∏=


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

respectively. The time complexity of the algorithm <strong>in</strong> step 4 is<br />

⎛ ( n − 2)(<br />

n −1)<br />

O⎜<br />

⎝ 2<br />

N<br />

∏<br />

N<br />

N i∑<br />

i=<br />

1 i=<br />

1<br />

N<br />

∏<br />

N<br />

i=<br />

1 i=<br />

1<br />

⎞<br />

N i ⎟ , because <strong>in</strong> each node l=1,2,…,n-2, there<br />

⎠<br />

ikilj<br />

are ( n − l −1)<br />

N i∑<br />

N i comb<strong>in</strong>ations for all values of P m1<br />

m2<br />

...<br />

n−2<br />

∑⎜( − l −1)<br />

∏ N i∑<br />

N i ⎟ = ∏ N i∑<br />

l=<br />

1 i=<br />

1 i=<br />

1<br />

i=<br />

1 i=<br />

1<br />

776<br />

m<br />

N<br />

, and<br />

N N<br />

N N<br />

⎛<br />

⎞ ( n − 2)(<br />

n −1)<br />

n N i . With the<br />

⎝<br />

⎠ 2<br />

same reason, the time complexity of the algorithm <strong>in</strong> step 5 would be<br />

⎛ ( n − 2)(<br />

n + 1)<br />

O⎜<br />

⎝ 2<br />

N<br />

∏<br />

i=<br />

1<br />

N i<br />

⎞<br />

⎟<br />

⎠<br />

. Therefore, <strong>in</strong> the worst case, the time<br />

complexity of the algorithm <strong>in</strong> step 3 is polynomial, but the time complexity of<br />

the algorithm <strong>in</strong> steps 2, 4 and 5 would be exponential. In practice, the<br />

stoshatic network is not complete, and there is also a limited number of<br />

effective social and economical problems <strong>in</strong> real world problems. Therefore,<br />

this algorithm would be efficient for approximat<strong>in</strong>g the mean project<br />

completion time <strong>in</strong> dynamic <strong>Markov</strong> <strong>PERT</strong> networks.<br />

3. Numerical example<br />

Consider the dynamic <strong>PERT</strong> network depicted <strong>in</strong> Figure 1. Strike and<br />

<strong>in</strong>flation rate are two social and economical problems, which <strong>in</strong>fluence the<br />

activity durations. These problems evolve <strong>in</strong> accordance with two <strong>in</strong>dependent<br />

cont<strong>in</strong>uous-time <strong>Markov</strong> processes over the plann<strong>in</strong>g horizon. Strike has two<br />

states, <strong>in</strong> which 1<br />

s 1 refers to exist<strong>in</strong>g and 1<br />

s 2 refers to non-exist<strong>in</strong>g the strike,


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

<strong>in</strong> the society. Inflation rate has also two states, <strong>in</strong> which 2<br />

s 1 refers to high<br />

<strong>in</strong>flation rate and 2<br />

s 2 refers to low <strong>in</strong>flation rate. The activity durations are<br />

<strong>in</strong>dependent random variable with exponential distributions, but the social and<br />

econimical problems <strong>in</strong>fulence their parameters, upon start<strong>in</strong>g to do these<br />

activities. These parameters can be estimated from the previous data related to<br />

the similar activities, which have done before <strong>in</strong> similar conditions. Table 1<br />

shows the values of these parameters (time unit is <strong>in</strong> year). The objective is to<br />

approximate the mean project completion time <strong>in</strong> this dynamic <strong>Markov</strong> <strong>PERT</strong><br />

network.<br />

The transition matrices are<br />

1<br />

P<br />

⎡ 0<br />

= ⎢<br />

⎣0.<br />

4<br />

1 ⎤<br />

0.<br />

6<br />

⎥<br />

⎦<br />

2 ⎡0.<br />

8 0.<br />

2⎤<br />

P = ⎢ ⎥ .<br />

⎣0.<br />

3 0.<br />

7⎦<br />

1<br />

2<br />

3<br />

777<br />

4 5


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

Figure 1. The dynamic <strong>Markov</strong> <strong>PERT</strong> network<br />

It is also assumed that f (t)<br />

i<br />

for mi=1,2, ki=1,2, i=1,2, are as follows:<br />

miki 1<br />

1<br />

1<br />

1 −t<br />

f11<br />

( t)<br />

= f12<br />

( t)<br />

= f 21(<br />

t)<br />

= f 22 ( t)<br />

= e t>0<br />

f = 4e -4t t>0<br />

2<br />

11 ( t)<br />

f = 2e -2t t>0<br />

2<br />

12 ( t)<br />

f = 3e -3t t>0<br />

2<br />

21( t)<br />

f = e -t t>0<br />

2<br />

22 ( t)<br />

Table 1. Parameters of activity durations<br />

λ 12 λ 13 λ 23 λ 24 λ 34 λ 35 λ 45<br />

1 2<br />

( s 1 , s1<br />

) 1 2 3 5 1 3 4<br />

1 2<br />

( s 1 , s2<br />

) 2 3 4 6 4 4 6<br />

1 2<br />

( s 2 , s1<br />

) 4 4 7 7 3 5 8<br />

1 2<br />

( s 2 , s2<br />

) 6 5 9 10 7 8 10<br />

778


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

1 2<br />

Accord<strong>in</strong>g to step 1 of the proposed algorithm, ( , ) = 0 s V for<br />

779<br />

m m s<br />

5 1 2<br />

m = 1,<br />

2 , i = 1,<br />

2 . Then, we go to step 2, set l=4, and compute<br />

i<br />

1 2<br />

( , ) s V for 2 , 1 = m , i = 1,<br />

2 , from (5). Then, we go to step 3 and<br />

m m s<br />

4 1 2<br />

i<br />

i<br />

compute φ (t)<br />

for m = 1,<br />

2 , k = 1,<br />

2 , i = 1,<br />

2 , by gett<strong>in</strong>g the <strong>in</strong>verse<br />

miki i<br />

ie<br />

Laplace of φ (s)<br />

<strong>in</strong> (3). The results are as follows:<br />

1<br />

11( t)<br />

miki φ =0.29+0.71e -1.4t 1<br />

, ( )<br />

φ =0.29-0.29e -1.4t 1<br />

, ( )<br />

1<br />

21( t)<br />

2<br />

11( t)<br />

i<br />

1<br />

φ 12 t =1- φ 11( t)<br />

1<br />

φ 22 t =1- φ 21( t)<br />

φ =0.36+0.73e -0.89t -0.09e -2.81t 2<br />

, ( )<br />

φ =0.36-0.06e -0.89t -0.3e -2.81t 2<br />

, ( )<br />

2<br />

21( t)<br />

2<br />

φ 12 t =1- φ 11( t)<br />

2<br />

φ 22 t =1- φ 21( t)<br />

Then, we go to step 4, set l=3, and compute<br />

ikilj<br />

m1<br />

m2<br />

mN<br />

for i = 1,<br />

2<br />

P ...<br />

m ,<br />

k = 1,<br />

2 , i = 1,<br />

2 and j = 4 , from (4). Tak<strong>in</strong>g <strong>in</strong>to account the results, we<br />

i<br />

1 2<br />

go to step 5 and compute ( , ) s V for 2 , 1 = m , i = 1,<br />

2 , from (5).<br />

m m s<br />

3 1 2<br />

This process cont<strong>in</strong>uous until l=1. In this stage, the state vector of system is<br />

i


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

1 2<br />

actually known and assumed to be ( s 2 , s2<br />

) . Table 2 shows the values of<br />

1 2<br />

V ( s , s ) for m = 1,<br />

2 , i = 1,<br />

2 and l=1,2,3,4. Tak<strong>in</strong>g <strong>in</strong>to account this<br />

l<br />

m<br />

1<br />

m<br />

2<br />

i<br />

table, the approximation of mean project completion time <strong>in</strong> the dynamic<br />

<strong>Markov</strong> <strong>PERT</strong> network of Figure 1 is equal to 0.597 year.<br />

1 2<br />

If the <strong>in</strong>itial sate vector of system is assumed to be ( s 1 , s1<br />

) , or the worst<br />

case for the strike and the <strong>in</strong>flation rate, then, the approximation of mean project<br />

completion time would be equal to 1.89 year. The approximation of mean<br />

project completion time <strong>in</strong> the worst case would be more than 3 times of this<br />

1 2<br />

quantity <strong>in</strong> the best case, or the state of ( s 2, s2<br />

) . Therefore, <strong>in</strong> the real world<br />

problems, the actual mean project completion time is so sensitive to the transitions<br />

of social and economical problems over the plann<strong>in</strong>g horizon, and we<br />

should consider the dynamic behavior of social problems <strong>in</strong> the classical <strong>PERT</strong><br />

networks.<br />

1 2<br />

Table 2. V ( s , s ) for m = 1,<br />

2 , i = 1,<br />

2 and l=1,2,3,4<br />

l<br />

m<br />

1<br />

m<br />

2<br />

i<br />

V 1<br />

2 V V 3<br />

4 V<br />

1 2<br />

( s 1 , s1<br />

) 1.89 1.274 1.182 0.25<br />

1 2<br />

( s 1 , s2<br />

) 1.214 0.724 0.414 0.167<br />

1 2<br />

( s 2 , s1<br />

) 0.902 0.629 0.466 0.125<br />

1 2<br />

( s 2 , s2<br />

) 0.597 0.385 0.249 0.1<br />

780


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

4. Conclusion<br />

In this paper, we developed an algorithm based on semi-<strong>Markov</strong>ian<br />

decision processes and network flows theory to f<strong>in</strong>d a dynamic path with<br />

maximum expected length from the source node to the s<strong>in</strong>k node of dynamic<br />

<strong>Markov</strong> <strong>PERT</strong> networks. The expected length of such path is approximately<br />

equal to the mean project completion time <strong>in</strong> the dynamic <strong>PERT</strong> network.<br />

As <strong>in</strong>dicated, the mean project completion time is sensitive to the dynamic<br />

behavior of social and economical problems. Therefore, it is necessary to<br />

consider the transitions of social problems <strong>in</strong> real situation <strong>PERT</strong> networks.<br />

Unfortunately, our method has the same disadvantages of the classical<br />

<strong>PERT</strong> method, and the true mean project completion time would be equal or<br />

greater than such estimate. Therefore, our approximation can be considered as<br />

a good lower bound for the true mean project completion time.<br />

Another limitation of this model is that the time complexity of some steps<br />

of the proposed algorithm, <strong>in</strong> the worst case examples, would be exponential.<br />

In practice, there is a limited number of effective social and economical<br />

problems. Therefore, our algorithm would be an efficient algorithm for<br />

approximat<strong>in</strong>g the mean project completion time <strong>in</strong> real situation <strong>PERT</strong><br />

networks.<br />

Our methodology can be extended to general <strong>PERT</strong> networks. We can also<br />

consider the choice of temporary stopp<strong>in</strong>g the activities orig<strong>in</strong>at<strong>in</strong>g from a<br />

node, when the situation of social problems <strong>in</strong> that node is not good and therefore<br />

these activities would have the long durations. In this case, it might be<br />

better to stop do<strong>in</strong>g these activities until the next transitions of the social problems,<br />

for encounter<strong>in</strong>g more favorable conditions. This new model can be easily<br />

developed, by extend<strong>in</strong>g the model of Azaron and Kianfar [1].<br />

References<br />

[1] Azaron, A., Kianfar, F. (2003). <strong>Dynamic</strong> shortest path <strong>in</strong> stochastic<br />

dynamic networks: Ship rout<strong>in</strong>g problem. European Journal of<br />

Operational Research, 144, 138-156.<br />

[2] Bertsimas, D., Van Ryz<strong>in</strong>, G. (1991). A stochastic and dynamic<br />

vehicle rout<strong>in</strong>g problem <strong>in</strong> the euclidean plane. Operations Research, 39,<br />

601-615.<br />

781


Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa<br />

[3] Charnes, A., Cooper, W., Thompson, G. (1964). Critical path analysis<br />

via chance constra<strong>in</strong>ed and stochastic programm<strong>in</strong>g. Operations Research,<br />

12, 460-470.<br />

[4] Cl<strong>in</strong>gen, C. (1964). A modification of fulkerson’s algorithm for expected<br />

duration of a <strong>PERT</strong> project when activities have cont<strong>in</strong>uos d. f.<br />

Operations Research, 12, 629-632.<br />

[5] Elmaghraby, S. (1967). On the expected duration of <strong>PERT</strong> type networks.<br />

Management Science, 13, 299-306.<br />

[6] Fulkerson, D. (1962). Expected critical path lengths <strong>in</strong> <strong>PERT</strong> networks.<br />

Operations Research, 10, 808-817.<br />

[7] Hall, R. (1986). The fastest path through a network with random timedependent<br />

travel times. Transportation Science, 20, 182-188.<br />

[8] Howard, D. (1970). <strong>Dynamic</strong> probabilistic systems. John Wiley & Sons,<br />

New York.<br />

[9] Kulkarni, V., Adlakha, V. (1986). <strong>Markov</strong> and markov-regenerative<br />

<strong>PERT</strong> networks. Operations Research, 34, 769-781.<br />

[10] Mart<strong>in</strong>, J. (1965). Distribution of the time through a directed acyclic<br />

network. Operations Research, 13, 46-66.<br />

[11] Perry, C., Creig, I. (1975). Estimat<strong>in</strong>g the mean and variance of subjective<br />

distributions <strong>in</strong> <strong>PERT</strong> and decision analysis. Management Science, 21,<br />

1477-1480.<br />

[12] Psaraftis, H., Tsitsiklis, J. (1993). <strong>Dynamic</strong> shortest paths <strong>in</strong> acyclic<br />

networks with markovian arc costs. Operations Research, 41, 91-101.<br />

[13] Robillard, P. (1976). Expected completion time <strong>in</strong> <strong>PERT</strong> networks. Operations<br />

Research, 24, 177-182.<br />

782

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!