29.06.2013 Views

10 - Onera

10 - Onera

10 - Onera

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Detecting single<br />

photons<br />

Andrea Fiore


Why single-photon<br />

detectors?<br />

Measure "very efficient" nonlinear frequency conversion...<br />

A PhD student "under Rosencher's rule":<br />

Wikipedia<br />

Will I ever get a<br />

few photons<br />

and my thesis?<br />

Solution n. 1: Change field and work on lasers...<br />

Andrea Fiore


Single-photons again...<br />

"Les photons ... présentent un certain nombre de comportements paradoxaux"<br />

Emmanuel Rosencher, Optoélectronique, Masson ed.<br />

"We estimate the potential market for Quantum Cryptography is<br />

likely to reach $1 billion per annum"<br />

Bob Gelfond, MagiQ Corporation, New York<br />

id201 Singlephoton<br />

APD<br />

Presently limits<br />

system performance<br />

Let's get this fixed for good: Single-photon detectors<br />

Andrea Fiore


t<br />

3-<strong>10</strong>nm<br />

Nanowire Superconducting<br />

Single-Photon Detector<br />

NbN<br />

T>T C<br />

I~I C<br />

Golts'man et al., APL (2001)<br />

+ V -<br />

R hs<br />

J>J C<br />

w<br />

60-<strong>10</strong>0nm<br />

Andrea Fiore


5μm<br />

Meander SSPDs<br />

5μm<br />

Nanofabrication: CNR-IFN Rome<br />

<strong>10</strong>0nm<br />

150nm<br />

Marsili et al., Optics Express 2008<br />

Andrea Fiore


+<br />

V<br />

-<br />

Bias T<br />

i<br />

SSPD operation<br />

Voltage (a.u.)<br />

0<br />

1.6 ns<br />

-1<br />

-<strong>10</strong> 0 <strong>10</strong> 20<br />

Time(ns)<br />

• <strong>10</strong>00x more sensitive than InGaAs APDs at 1300-1500 nm<br />

• Can run in continuous mode, with counting rates>80 MHz<br />

• Timing resolution


Photon-number-resolving<br />

detectors<br />

Meander SSPDs do not resolve the photon number<br />

+<br />

V<br />

-<br />

Time<br />

Bias T<br />

?<br />

i<br />

Light Voltage<br />

Rhs Rhs Single-φ PNR<br />

det.<br />

R L<br />

Time<br />

PNR functionality<br />

needed in many<br />

quantum protocols<br />

Andrea Fiore


+<br />

V<br />

-<br />

Parallel-Nanowire Detector<br />

Bias T<br />

Output pulse ∝ photon number if:<br />

• N. wires >> N. photons<br />

• Other wires do no shunt switching wire<br />

Andrea Fiore


R L<br />

V b<br />

+<br />

-<br />

I<br />

R hs<br />

L kin<br />

R 0<br />

Electrical equivalent<br />

circuit<br />

S l<br />

S l<br />

R hs<br />

I b<br />

L kin<br />

R 0<br />

Sl Sl R hs<br />

L kin<br />

Sl Sl R hs<br />

L kin<br />

S l<br />

I b I b I b<br />

R 0<br />

R 0<br />

R A<br />

+<br />

V OUT<br />

-<br />

Andrea Fiore


Fabricated PNDs<br />

R<br />

Film growth and meas. @ EPFL,<br />

nanofab. @CNR-IFN<br />

R<br />

Andrea Fiore


Experimental PND output<br />

PND output voltage under<br />

illumination with laser pulses:<br />

Experimental I out (a.u.)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 50 <strong>10</strong>0 150<br />

Time (ns)<br />

Divochiy et al., Nature Photonics, 2008<br />

Simulation:<br />

Andrea Fiore


Voltage<br />

Proving the PNR<br />

functionality<br />

Pulse height statistics with a sampling scope:<br />

4 wires PND-R<br />

66 nW<br />

Most promising technology for fast and<br />

sensitive PNR detection in the telecom range<br />

Time<br />

Detected pulses follow Poissonian statistics ⇒ Proof of PNR operation<br />

Divochiy et al., Nature Photonics, 2008<br />

Collaboration with MSPU<br />

Andrea Fiore


Curiosity-driven: A singlephoton<br />

nanodetector?<br />

Detection mechanism in SSPDs is nanoscale,<br />

but meander SSPDs usually cover large areas<br />

⇒ We lose spatial information<br />

Near-field imaging<br />

Det.<br />

• Direct detection in near-field<br />

• Smaller detector ⇒ Lower noise<br />

≈30 nm<br />

Sub-λ quantum imaging<br />

D'Angelo et al., Phys. Rev. Andrea Lett. 2001 Fiore


Nanoscale single-φ<br />

detector<br />

≈50 nm<br />

QE<br />

< 30 nm active<br />

area possible<br />

Andrea Fiore


<strong>10</strong> -3 <strong>10</strong> 5<br />

<strong>10</strong> -2<br />

n-SSPD performance<br />

Proof of single-φ detection:<br />

Counts (s -1 )<br />

<strong>10</strong> 7<br />

<strong>10</strong> 6<br />

I b =8.5μA<br />

50 nm<br />

<strong>10</strong> -1<br />

Slope=0.99<br />

Data<br />

Linear fit<br />

Light power (a. u.)<br />

<strong>10</strong> 0<br />

Diffraction spot of<br />

microscope objective:<br />

Bitauld et al., Nano Lett. 20<strong>10</strong><br />

•Able to image submicrometer (down to 500 nm) features<br />

with single-photon sensitivity<br />

•Expected detector resolution ≈50-<strong>10</strong>0 nm<br />

Andrea Fiore


Nanoscale PNR?<br />

High bias current: Single-φ response<br />

Andrea Fiore


Count rate (s -1 )<br />

<strong>10</strong> 7<br />

<strong>10</strong> 6<br />

<strong>10</strong> 5<br />

Nanoscale PNR detection<br />

I =17μA<br />

b s=1.9<br />

I =14.4μA<br />

b<br />

Low bias current: s=2.98 (≥n)-photon detector<br />

I =11.2μA<br />

b<br />

s=3.99<br />

I =9.2μA<br />

b<br />

<strong>10</strong> 4<br />

<strong>10</strong> 3<br />

<strong>10</strong> 2<br />

<strong>10</strong> 0<br />

C∝<br />

<strong>10</strong> 1<br />

n<br />

s=1.03<br />

s<br />

<strong>10</strong> 2<br />

<strong>10</strong> 3<br />

<strong>10</strong> 4<br />

Average n. photons/pulse<br />

Linear Fits<br />

Andrea Fiore


Detection prob.<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Multiphoton imaging<br />

N=1<br />

N=2<br />

N=3<br />

N=4<br />

0<br />

-3 -2 -1 0 1 2 3<br />

Position (μm)<br />

FWHM (μm)<br />

N=1: FWHM=0.9 μm<br />

N=4: FWHM=0.41 μm<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

FWHM<br />

S = -0.53<br />

1 2 3 4<br />

• Increased contrast<br />

Bitauld et al., Nano Lett. 20<strong>10</strong><br />

• Increased resolution possible with entangled light<br />

N<br />

∝<br />

1<br />

N<br />

Andrea Fiore


Summary<br />

Photodetection in superconducting nanowires opens new<br />

avenues in single- and multi-photon detection<br />

• PNRs detection possible at telecom wavelengths<br />

• Nanoscale detection opens the way to nanoscale quantum<br />

photonics<br />

• Integration with GaAs-based (quantum) photonics possible<br />

Andrea Fiore


Acknowledgements<br />

Contributors:<br />

- F. Marsili, D. Bitauld, S. Jahanmiri Nejad, J.P. Sprengers,<br />

D. Sahin, G.J. Hamhuis, R. Notzel (TU Eindhoven)<br />

- A. Gaggero, R. Leoni, F. Mattioli (CNR Rome, Italy)<br />

- F. Lévy, R. Sanjines (EPF Lausanne)<br />

Funding: EU-FP6 SINPHONIA and FP7 QUANTIP<br />

Dutch STW-Vici, Swiss NCCR Quantum Photonics<br />

Andrea Fiore

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!