30.06.2013 Views

Ofer Lahav

Ofer Lahav

Ofer Lahav

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Large Scale Structure<br />

at Low Redshift<br />

The interface between Cosmology<br />

and Galaxy Formation<br />

<strong>Ofer</strong> <strong>Lahav</strong><br />

University College London


Redshift Surveys


LSS at low z<br />

• 2MRS/6dF The LG dipole revisited,<br />

density and velocity fields<br />

• SDSS “Baryonic” Faber-Jackson<br />

• 2dF Neutrino masses,<br />

Testing the halo model<br />

• DES Photo-z, Dark Energy<br />

“Nearly Normal Galaxies”, BFP@60, Santa Cruz, Aug 2005


Great<br />

Attractor<br />

Greatness in the Cosmic Web<br />

SDSS<br />

CfA Great Wall<br />

2dFGRS


2MASS Galactic chart<br />

F


Spectral PCA types in 2MASS<br />

62% E’s in 2MASS<br />

35% E’s in 2dF<br />

Madgwick, OL et al.


2MASS and follow-ups<br />

• 2MASS: 1.5M galaxies (K s < 13.5)<br />

• 6dF (Southern hemisphere):<br />

150K redshifts (K s < 12.75)<br />

and 15K Dn-sigma distances<br />

* 2MRS: 25K redshifts (K s


A brief history of the LG dipole<br />

• LG motion wrt to the CMB<br />

based on WMAP (1 st year)<br />

v LG = 627 +/- 22 km/sec<br />

towards<br />

(l,b) = (273 +/- 3 , 29 +/- 3) deg<br />

* IRAS dipole<br />

(Yahil, Rowan-Robinson, Davis,<br />

Strauss, …)<br />

* Optical dipole<br />

(Lynden-Bell, <strong>Lahav</strong>, Hudson,…)<br />

* Cluster dipole<br />

(Scaramella, Plionis, Tully,…)<br />

* 2MASS<br />

(Maller,…)


Dipole – weighting schemes<br />

by Number<br />

by Flux<br />

ρ L = (7.67+- 1.02) x 10 8 L_sun h Mpc -3<br />

β=Ω m 0.6 /b<br />

g / L/ (4 π r 2 )


Dipoles in the Local Group Frame<br />

Number weighed Flux weighted<br />

Erdogdu, Huchra, <strong>Lahav</strong> et al.,<br />

Astro-ph/0507166<br />

Ω m 0.6 /bL < 0.55+- 0.20<br />

15 o @ 50 Mpc/h<br />

24 o @ 130 Mpc/h


Kocevski, Mullis<br />

& Ebeling,<br />

astro-ph/0403275<br />

Dipole from X-ray clusters<br />

Shapley


2MRS Dipole directions<br />

Erdogdu et al. 2005


The expected rms bulk motion<br />

h V 2 (R *) i / Ω m 1.2 s dk P(k) W 2 (kR*)<br />

almost independent of the Cosmological Constant<br />

(<strong>Lahav</strong>, Lilje, Primack & Rees 91)<br />

Or Dark Energy (Wang & Steinhardt 98)<br />

In low density CDM smaller amplitude (σ 8 Ω m 0.6 ),<br />

larger coherence length (smaller Ω m h)<br />

than in SCDM


Wiener Filter 2MRS velocity field<br />

(CMB frame)<br />

Erdogdu<br />

et al.


The revival of peculiar velocities<br />

15,000 Dn - σ measurements out to 15,000 km/sec<br />

δσ /σ » 10%<br />

δR /R» 20%<br />

Campbell et al.


“Baryonic” Faber-Jackson relation<br />

M dyn<br />

M dyn ¼ 1.02 M star 1.03<br />

M star<br />

M star ¼ 10 11 M sun (σ/195) 4.05<br />

M star<br />

SDSS data from Bernardi et al Lintott, Ferreras, <strong>Lahav</strong><br />

σ


7 Abell clusters<br />

77 groups (>8)<br />

20 Abell clusters<br />

93 groups (>8)<br />

Baugh et al., Erdogdu et al.<br />

2dFGRS


A Nearly Normal Universe<br />

Are Dark Matter & Dark Energy<br />

the new epicycles?<br />

More components?


From 2dF+CMB (6 parameter fit):<br />

Cole et al. 2005<br />

Ω m =0.23 §0.02


Baryonic wiggles – SDSS LRG<br />

Eisenstein et al 2005.


Brief History of<br />

‘Hot Dark Matter’<br />

* 1970s : Top-down scenario with massive neutrinos (HDM) –<br />

Zeldovich Pancakes<br />

* 1980s: HDM - Problems with structure formation<br />

* 1990s: Mixed CDM (80%) + HDM (20% )<br />

* 2000s: Baryons (4%) + CDM (26%) +Lambda (70%):<br />

But now we know HDM exists!<br />

How much?


0.01<br />

0.00<br />

Weighing Neutrinos with<br />

Ω ν = 0.05<br />

Elgaroy , <strong>Lahav</strong> & 2dFGRS team,<br />

astro-ph/0204152 , PRL<br />

2dFGRS<br />

Free streaming effect:<br />

Ω ν /Ω m < 0.13<br />

Total ν mass M< 1.8 eV<br />

0.001 < Ω ν < 0.04<br />

(Oscillations) (2dF)<br />

a Four-Component<br />

Universe ?


Data<br />

2dFGRS<br />

Neutrino mass from Cosmology<br />

WMAP+2dF+…<br />

WMAP+2dFnew<br />

SDSS+WMAP<br />

Ly-α + SDSS+<br />

WMAP<br />

WMAP alone<br />

Authors<br />

Elgaroy et al. 02<br />

Spergel et al. 03<br />

Sanchez et al. 05<br />

Tegmark et al. 04<br />

Seljak et al. 04<br />

Ichikawa et al. 04<br />

All upper limits 95% CL, but different assumed priors !<br />

Mν = Σ mi < 1.8 eV<br />

< 0.7 eV<br />

< 1.2 eV<br />

< 1.7 eV<br />

< 0.4 eV<br />

< 2.0 eV


Halo model for LSS<br />

Picture credit: Cooray & Sheth (2002)


The halo model – the ‘new biasing’<br />

P(k) = P lin +P halo<br />

Truncates NFW fit with C=2.4§ 0.2<br />

Using 2dF Groups<br />

Collister & <strong>Lahav</strong>, astro-ph/0412516


Clustering of Red vs. Blue 2dF<br />

galaxies<br />

Madgwick, Hawkins, <strong>Lahav</strong> & 2dFGRS team, astro-ph/0303668


Correlation Function per Type<br />

dP / n [1+ξ(r)] dV<br />

ξ(r) = (r/r 0 ) -γ<br />

Why a power law?<br />

different slopes for blue<br />

and red explained by<br />

different halo<br />

Occupation numbers


Probing Dark Energy<br />

• Probe dark energy through the history of the expansion rate:<br />

H 2 (z) = H 2 0 [Ω M (1+z) 3 + Ω DE (1+z) 3 (1+w) ] (flat Universe)<br />

matter dark energy (constant w)<br />

P = w ρ<br />

• Comoving distance r(z) = ∫ dz/H(z)<br />

• Standard Candles d L(z) = (1+z) r(z)<br />

• Standard Rulers d A(z) = (1+z) −1 r(z)<br />

• Standard Population (volume) dV/dzdΩ = r 2 (z)/H(z)<br />

• The rate of growth of structure also determined by H(z) and by<br />

any modifications of gravity on large scales


Imaging CFHTLS<br />

Supernovae<br />

SDSS<br />

Spectroscopy<br />

SDSS<br />

Clusters AMI<br />

Surveys to measure Dark Energy<br />

2005 2010<br />

CSP<br />

CFHTLS<br />

SZA<br />

FMOS KAOS<br />

ATLAS<br />

APEX<br />

AMIBA<br />

SPT<br />

ACT<br />

CMB WMAP 2/3 WMAP 6 yr<br />

2005<br />

SUBARU<br />

ATLAS KIDS<br />

DES<br />

VISTA JDEM/<br />

Pan-STARRS<br />

SNAP<br />

DES LSST<br />

Pan-STARRS<br />

DES<br />

JDEM/<br />

SNAP<br />

Planck Planck 4yr<br />

2010<br />

LSST SKA<br />

SKA<br />

2015<br />

2015


The Dark Energy Survey<br />

300,000,000 photometric redshifts<br />

• 4 complementary techniques:<br />

* Cluster counts & clustering<br />

* Weak lensing<br />

* Galaxy angular clustering<br />

* SNe Ia distances<br />

A new 3 deg 2 camera<br />

on the CTIO Blanco 4m<br />

Construction 2005-2009<br />

Survey 2009-2014 (~525 nights)<br />

5000 deg 2 g, r, i, z<br />

Goal: error bar of few % on W=P/ρ


Input:<br />

magnitudes<br />

ANNz<br />

Collister & <strong>Lahav</strong> 2004<br />

Output:<br />

redshift


DES<br />

griz filters<br />

10σ Limiting Magnitudes<br />

g 24.6<br />

r 24.1<br />

i 24.0<br />

z 23.9<br />

Field Galaxy Photo-z Results


DES + VISTA<br />

griz+YJHKs filters<br />

10σ 10 Limiting Magnitudes<br />

Y 22.45<br />

J 22.15<br />

H 21.65<br />

Ks 21.15<br />

Field Galaxy Photo-z Results


Mock Dark Energy Survey data<br />

DES (griz) 5-yr alone DES + VISTA (YJHKs)<br />

σ z = 0.13 σ z =0.08


Conclusions - in the Trio’s own words…<br />

● “Although a spherically symmetric Great<br />

Attractor model fits the present data well…it is<br />

dangerous to use it for cosmology.” (Faber &<br />

Burstein 1988)<br />

● “CDM still does the best job, but there are many,<br />

many unresolved issues.” (Blumenthal 1987)<br />

● “The total neutrino mass could be comparable to<br />

that of the visible stars in the universe, or perhaps<br />

even larger.” (Primack 2001)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!