30.06.2013 Views

Stéphane Courteau

Stéphane Courteau

Stéphane Courteau

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nearly Normal Galaxies<br />

in a ΛCDM Universe<br />

UC Santa Cruz 2005<br />

Global Properties of Disk Galaxies<br />

<strong>Stéphane</strong> <strong>Courteau</strong> (Queen’s)<br />

With contributions from:<br />

Aaron Dutton, Frank van den Bosch (ETH)<br />

Avishai Dekel (Hebrew University), Lauren MacArthur (UBC/Caltech)<br />

Jon Holtzman (NMSU), Eric Bell, Hans-Walter Rix (MPIE)<br />

Roelof de Jong (STScI), Guy Worthey (WSU), Mike McDonald (Queen’s)<br />

Claude Carignan (Montréal), Ken Freeman* (ANU)<br />

* From whom some of the Ascona/Terschelling slides/figures were borrowed


Nearly Normal Galaxies<br />

in a ΛCDM Universe<br />

UC Santa Cruz 2005<br />

Many workshops on Disk Galaxies<br />

this summer, including:<br />

• The Formation of Disk Galaxies<br />

Ascona, Switzerland (June 26-July 1)<br />

• Island Universes: Structure and<br />

Evolution of Disk Galaxies<br />

Terschelling, Netherlands (July 3-8)


Ascona/Terschelling Highlights<br />

• Many new (and some old) results on disk galaxies<br />

– The disk is the end product of the dissipation of most<br />

of the baryons, and contains almost all of the baryonic<br />

angular momentum<br />

– Understanding its formation is the most important goal<br />

of galaxy formation theory.<br />

• Brief summary restricted to some highlights<br />

– Structure and properties of extended stellar disks<br />

– Thick disks (bulges, bars, peanuts) & streams<br />

– Expanding horizons: panchromatic surveys<br />

– CDM problems: bulge-less exponential disks,<br />

solid-body rotation curves, …


Ascona/Terschelling Highlights<br />

• Heroic star counts in M31<br />

(Ferguson/Chapman/Guhathakurta/Worthey)<br />

– Very extended structure<br />

(disk>50 kpc; halo to 150 kpc?)<br />

– Disk or metal-poor halo?<br />

– kinematics, [Fe/H]<br />

• UV & Hα evidence for faint outer disks<br />

(Bland-Hawthorne, Zaritsky)<br />

• Origin of these components?<br />

– Star formation threshold?<br />

– Is there a link with presence of HI warp or flare?


The outer regions of M31<br />

Worthey, Espana, MacArthur & <strong>Courteau</strong> 2005<br />

HST photometry in the outermost<br />

regions of M31 yields stellar<br />

metallicity distribution<br />

The metallicity gradient bottoms<br />

out at R=15kpc, at [Fe/H] = -0.5<br />

The high [Fe/H] in the outer<br />

parts of M31 suggests that most<br />

of the stars in the outer “halo”<br />

might be stars of the outer disk.


Ascona/Terschelling Highlights<br />

Galactic open clusters<br />

• abundance gradient<br />

bottoms out at<br />

R G = 10-12 kpc,<br />

[Fe/H] = -0.5<br />

for clusters with<br />

ages from 1 to 5 Gyr<br />

(no age-abundance<br />

relation)<br />

• The abundance gradient<br />

in the disk has flattened<br />

with time, tending<br />

towards solar values.<br />

• outer disk is α-enhanced<br />

Yong & Carney 2005


Ascona/Terschelling Highlights<br />

• New evidence that the disk of M31 goes out to > 50 kpc<br />

= 10 scale lengths (maybe to 150 kpc: Guhathakurta et<br />

al. 2005<br />

• Kinematics of red giants confirms that the outer disk is<br />

rotating almost as rapidly as the inner disk (Ibata et al<br />

2005) and has a velocity dispersion of ~ 30 km s -1 )<br />

• The CMD of M31 suggests that the outer disk is<br />

probably fairly old (several Gyr), as in M33 and the MW<br />

• Outer disk of M31, like the MW, is α-enhanced,<br />

with [α/Fe] = + 0.2 (also Eu-enhanced): indicates<br />

fairly rapid star formation history in the outer disk,<br />

unlike the solar neighborhood.


Ascona/Terschelling Highlights<br />

Summary of outer disks<br />

• The disks of some spirals (NGC 300, M31) extend out<br />

beyond 10 scale lengths.<br />

• The outer disks of M31, M33 and the MW<br />

include a component that is at least several Gyr old.<br />

• The abundance gradients in the outer disks of M31<br />

and the MW bottom out at [Fe/H] = - 0.5<br />

• The older stars of the outer galactic disk are<br />

α-enhanced, indicating that they formed rapidly.<br />

This α-enhancement is less for the younger stars<br />

of the outer disk<br />

• Outer disk stars formed from reservoir of gas that<br />

had a different star formation history from the solar<br />

neighborhood. Star formation may be triggered by<br />

a merger event in the outer disk.


Ascona/Terschelling Highlights<br />

• Most disk galaxies have additional, thick, disk<br />

(Yoachim/Dalcanton)<br />

– Modest mass fraction,<br />

but increases below<br />

v c~120 km s -1<br />

– Some counter-rotate:<br />

⇒ external origin<br />

– Heavier counter-rotating<br />

disks seen in S0s<br />

(Kannappan)<br />

• [α/Fe] vs [Fe/H] in MW thick disk ⇒ it cannot have<br />

formed by accretion of small stellar lumps (Venn)<br />

• Origin in gas-rich merger (Sommer-Larsen)


NGC 4244<br />

Hint of a thick disk<br />

Two pure disk galaxies<br />

vdK&S<br />

NGC 5907


NGC 4656: small bulge<br />

and prominent thick disk<br />

vdK&S


Ascona/Terschelling Highlights<br />

What is the origin of this disk truncation - common and seen<br />

more easily in edge-on galaxies than in face-on galaxies<br />

Kregel etal (2002):<br />

R max/h R = 3.6 ± 0.6<br />

for 34 edge-on disk<br />

galaxies<br />

Perez (2004) finds<br />

similar results at<br />

0.6


Ascona/Terschelling Highlights<br />

Disk truncations<br />

M33 surface brightness<br />

profile<br />

(Ferguson etal 2003)<br />

Sharp decrease in SB<br />

beyond 5 disk scale<br />

lengths.<br />

Star<br />

counts<br />

Light profile<br />

(reaches V~31 mag arcsec -2 !)


Ascona/Terschelling Highlights<br />

Disk truncations<br />

NGC 300* surface<br />

brightness profile<br />

(Bland-Hawthorne<br />

etal 2005)<br />

Exponential profile<br />

extends to 10 disk scale<br />

lengths without a<br />

truncation!<br />

* Similar to M33<br />

Light profile<br />

NGC 300 M33<br />

Light profile<br />

Star<br />

counts<br />

Star counts


Interpretations of disk truncations<br />

• The radius associated with the maximum angular momentum<br />

of the disk baryons in the proto-galaxy -- unlikely -- many<br />

disks have HI extending far beyond the truncation radius<br />

Star<br />

counts<br />

Light profile<br />

• The radius to which the disk has grown today -- unlikely --<br />

The outer disks may be younger but still typically many<br />

Gyr old (eg Bell & de Jong 2000; Ferguson et al 2003).<br />

In some galaxies (eg M83, Milky Way), star formation<br />

continues in the outer disk but there is an underlying old<br />

component.<br />

• The radius where the gas density goes below the<br />

critical value for star formation (Kennicutt 1989) -<br />

star formation regulated by disk stability -- likely.


Ascona/Terschelling Highlights<br />

• Disk truncation is not understood yet: remains an<br />

interesting problem<br />

• Beautiful multi-wavelength high-resolution imaging<br />

– From UV (GALEX) via HST to Spitzer and HI/CO<br />

– Kennicutt, Regan, Murphy/Braun et al.<br />

• Systematic representative surveys (e.g. SINGS)<br />

– Separation of stars and different types of dust<br />

– Get full SED’s, star formation rates, resolved structures<br />

• Key challenge is to model all this in detail (Dopita)


0.15 µm 0.4-0.8 µm 1.2-2.2 µm 3.6 µm<br />

8.0 µm 24 µm 70 µm 160 µm


ΛCDM Structure Formation Models<br />

Small scales, big problems?<br />

• Scaling relations normalization<br />

– Cannot simultaneously predict LF and TF zero-points<br />

• Central regions too dense<br />

– Predicted dark matter halos have more mass near center<br />

(too cuspy) than allowed by observed rotation curves<br />

• Angular momentum crisis<br />

– Disk galaxies are too small for given rotation speed<br />

– Predicted distribution of specific angular momentum<br />

different from observed<br />

• Too much substructure<br />

– Galaxy size dark matter halos have hundreds of sub-halos,<br />

but Milky Way has only ~10 satellites<br />

• Backwards Colour-Luminosity relation<br />

– Lack of very luminous galaxies<br />

– Colour-magnitude relation of spiral galaxies (Bell et al 2003)


ΛCDM Formation Models<br />

• Failures:<br />

– LF normalization & TF zero-point simultaneously<br />

Log V rot (km s -1 )<br />

M I – 5 log(h)<br />

Navarro & Steinmetz (2000)<br />

Abadi etal (2003)


ΛCDM Formation Models<br />

• Failures:<br />

– LF normalization & TF zero-point simultaneously<br />

– Disk size (angular momentum “problem”)<br />

Log j disk (km s -1 h -1 kpc)<br />

Log V rot (km s -1 )<br />

Navarro & Steinmetz (2000)<br />

Abadi etal 2003)


ΛCDM Formation Models<br />

• predictions:<br />

– Hierarchical formation: small structures<br />

collapse first (youngest / massive galaxies<br />

form in clusters today)<br />

– Galaxies evolve inside-out<br />

– “Universal” (NFW) halo profiles<br />

– Sub-maximal disks: DM dominates at all radii<br />

(for R > 1 disk scale length)<br />

mass distribution on all scales is an<br />

important constraint of cosmological models


Mass Modeling: Dutton etal (2005)<br />

• Ingredients:<br />

– Hα + HI rotation curves (Blais-Ouellette 2000)<br />

– R-band surface brightness profile<br />

– gas density profile<br />

– adiabatic contraction<br />

Blumenthal et al. (1986)<br />

(verified by Jesseit etal 2002; Wilson 2003; Gnedin etal 2004;<br />

Sellwood & McGaugh 2005; Kazantzidis etal 2005)<br />

– (disk thickness, oblate halos)<br />

€<br />

• Assume disk M/L and invert light profile ⇒ V disk<br />

2 2 2 2<br />

Vobs = Vdisk + Vgas + Vhalo<br />

rM(r) = const<br />

• Free parameters: disk M/L, halo (α, c, V 200)


Effect of Adiabatic Contraction<br />

(same disk ϒ d)<br />

Final<br />

Initial (NFW)<br />

Without adiabatic contraction, χ 2 = 1.7, v 200 = 91, c = 14.8<br />

Dutton et al (2005)


Mass Modeling Degeneracies<br />

fixed M/L α = 1 (NFW) fixed c<br />

Dutton, <strong>Courteau</strong>, de Jong, & Carignan (2005)


Moving Forward in Mass Modeling<br />

Requires:<br />

• disk M/L from accurate stellar population models<br />

• OPT/IR light profiles (no extinction; trace older<br />

underlying population)<br />

• 2D Hα/HI/CO velocity fields (SparsePak, FaNTOM)<br />

• halo constraints from N-body simulations<br />

(e.g. c anti-correlated with V 200)<br />

• proper error bars<br />

• oblate/prolate halos<br />

• model response of the halo profile to a cooling<br />

disk that grows by accretion


Future work: Stellar Velocity<br />

NGC 3198<br />

Dispersions<br />

€<br />

2<br />

vz 1/ 2<br />

R= 0<br />

∝ µ 0z 0(M /L)


An argument for pure stellar disks<br />

• At a given mass, a ∆R exp of 20% yields<br />

– 10% change in V disk<br />

– 30% offset in luminosity from mean TFR<br />

– Such an effect should be detectable<br />

– DM halo (especially if cuspy) will reduce<br />

this effect


SB Independence of TFR<br />

1700 spirals: Mathewson (1992), Dale/Giovanelli etal (1999), <strong>Courteau</strong> etal (2000)


Residual Correlations<br />

<strong>Courteau</strong> et al. 2005


TFR as a Tracer of DM<br />

Pure self-gravitating exponential disks should have<br />

∂logV(<br />

M )<br />

∂logR<br />

( M<br />

exp<br />

r = −<br />

0.<br />

5<br />

but observed spiral disks have<br />

∂logV 2.2<br />

∂logR exp<br />

r<br />

)<br />

= −0.08 ± 0.04


Comparison With Models<br />

• Simple exponential disk embedded in a DM halo<br />

• Use density profile for collisionless CDM<br />

simulations of halo formation (NFW)<br />

• Assume adiabatic invariance (Blumenthal etal)<br />

• Use stellar disks of various M/L ratios and<br />

R exp = 3 kpc, and compute the disk-halo<br />

contributions to the rotation curve.<br />

– Get ∂ logV 2.2 / ∂ logR exp for each value of V disk/ V tot<br />

• Test with bulge and isothermal halos


Comparison With Models<br />

→ V disk / V tot = 0.55 ± 0.05 at R = 2.2R exp<br />

<strong>Courteau</strong> & Rix (1999); <strong>Courteau</strong> et al. 2005


Evidence for Sub-Maximal Disks<br />

• Bottema (1997): stellar kinematics of galactic disks<br />

• Predicted by analytical models of galaxy formation<br />

(e.g. Mo, Mao, & White 1998). Assumes AC.<br />

• <strong>Courteau</strong> & Rix (1999), <strong>Courteau</strong> etal (2005): TF residuals<br />

Assumes AC.<br />

• Kregel et al. (2002): disk flattening of edge-on galaxies<br />

• Trott & Webster (2002): lensing + rotation curve<br />

constraints<br />

• Dutton et al. (2005): mass modeling with stellar population<br />

constraints, including barred galaxies. Assumes AC.<br />

V disk /V tot ≤ 0.6 M DM /M tot ≥ 0.7<br />

(on average at 2.2 disk scale lengths)


Evidence for Maximal<br />

(Bright and Barred) Disks<br />

• Weiner (2002), Perez (2003): fluid models<br />

applied to streaming motions in barred galaxies<br />

• Slyz, Kranz & Rix (2003): gas kinematics and<br />

structure of spiral arms -- range of dark matter<br />

content with SB<br />

• N-body simulations: resonance issues related<br />

to bar-halo friction<br />

• What can we do to move forward? HSB galaxies<br />

could be light dominated while LSB galaxies are<br />

DM-dominated at 2 disk scale lengths.


SparsePak Study of Barred<br />

Galaxies


TFR of Barred Galaxies<br />

<strong>Courteau</strong> et al. 2004


€<br />

Scaling Relations of Galaxies<br />

• For a virialized DM halo:<br />

• At early times, with:<br />

MVir 3<br />

RVir ∝ a−3<br />

• Constant M/L :<br />

€<br />

• N-body simul :<br />

Observed:<br />

€<br />

€<br />

€<br />

V obs ∝ a −1/ 2 L 0.33<br />

€<br />

Vobs ∝ LI 0.31±0.02<br />

€<br />

€<br />

L ∝ MVir 2 MVir VVir ∝<br />

RVir a = (1+ z) −1<br />

VVir ∝ a −1/ 2 1/ 3<br />

MVir €<br />

R disk ≅ λR Vir<br />

R disk ∝ aL 0.33<br />

€<br />

R disk ∝ L 0.28±0.02<br />

1/ 3<br />

RVir ∝ aMVir V obs ≅ V Vir


Galaxy scaling relations<br />

1700 spirals: Mathewson (1992), Dale/Giovanelli etal (1999), <strong>Courteau</strong> etal (2000)


λ = halo spin<br />

c = halo conc.<br />

m d = disk mass<br />

(following Mo,<br />

Mao, & White<br />

1998)<br />

Assumes<br />

σ ln=0.3 for each<br />

variable.<br />

Scaling Relations of Disk Galaxies<br />

Dutton etal 2005


Major issues for NNG 2005<br />

• Surface brightness independence of TF relation<br />

why should the luminous/dark ratio change so as to keep the TF relation<br />

independent of surface brightness?<br />

• (Slope), scatter (colour), normalization of scaling<br />

relations<br />

• Mass models of barred and unbarred galaxies<br />

(need to use a common language and same<br />

dynamical tests)<br />

• What is the final halo shape: Is it NFW +<br />

(Blumenthal etal) adiabatic contraction?<br />

• Why can’t we reproduce bulgeless exponential<br />

disks?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!