30.06.2013 Views

Overview Renewable Energy Systems 402 .pdf - Curtin University

Overview Renewable Energy Systems 402 .pdf - Curtin University

Overview Renewable Energy Systems 402 .pdf - Curtin University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Curtin</strong> <strong>University</strong> of Technology<br />

Division of Engineering, Science and Computing<br />

Department of Electrical Engineering<br />

<strong>Renewable</strong> <strong>Energy</strong> <strong>Systems</strong> <strong>402</strong>/604<br />

Semester 2, 2007<br />

Lecture 1<br />

Professor Chem Nayar<br />

Office: 204:205<br />

Telephone: 9266 7934<br />

Email: c.v.nayar@curtin.edu.au<br />

Unit website:<br />

www.ece.curtin.edu.au/~pe301


<strong>Renewable</strong> <strong>Energy</strong> <strong>Systems</strong><br />

<strong>402</strong>/604<br />

Tuition Pattern:<br />

5 Hours:<br />

Lecture 2.00 hours, 1.00 weekly<br />

Tutorial 1.00 hour, 1.00 weekly<br />

Laboratory 2.00 hours fortnightly<br />

Assessment Details:<br />

Assignments : 4 0%<br />

Assignment – 1 (20%)<br />

Assignment - 2 (20%)<br />

Final Examination (2hours) : 60%<br />

Closed book , restricted exam.<br />

( Students can bring a single page of A4 size notes handwritten or typed on<br />

both sides and calculators)


Recommended Texts and Principal References<br />

1. H. L. Willis and W.G. Scott, “Distributed Power Generation, Marcel<br />

Dekker Inc., 2000<br />

1. G. Boyle, “<strong>Renewable</strong> <strong>Energy</strong>, power for sustainable future”, Oxford,<br />

2004.<br />

2. J.F. Manwell, et al, “Wind <strong>Energy</strong> Explained”, John Wiley and Sons,<br />

2002.<br />

3. S. Wenham, M. Green and M. Watt, “Applied Photovoltaics, UNSW,<br />

ISBN 0 86758 909 4.<br />

2.S. AustraliaTM, "AS 4777.3: Grid connections of energy systems via<br />

inverters Part 3: Grid protection requirements," in Standards AustraliaTM,<br />

2002.<br />

3.S. AustraliaTM, "AS 4777.1: Grid connections of energy systems via<br />

inverters Part 1: Installation requirements," in Standards AustraliaTM, 2002.<br />

4.S. AustraliaTM, "AS 4777.2: Grid connections of energy systems via<br />

inverters Part 2: Inverter requirements," in Standards AustraliaTM, 2002.


<strong>Renewable</strong> <strong>Energy</strong> <strong>Systems</strong> <strong>402</strong> Semester 2, 2007<br />

Week Day Topics Lecturer Duration Pre-readings Tutorial Assignment Due<br />

1 31-Jul Introduction Prof. Nayar 4-6pm Lecture Notes<br />

2 7-Aug PV <strong>Systems</strong> 1 M. Dymond 4-6pm Lecture Notes Tutorial No.1<br />

3 14-Aug PV <strong>Systems</strong> 2 M. Dymond 4-6pm Lecture Notes Tutorial No.2<br />

4 21-Aug Wind <strong>Energy</strong> <strong>Systems</strong> 1 Prof Nayar 4-6pm Lecture Notes Tutorial No.3<br />

5 4-Sep Wind <strong>Energy</strong> <strong>Systems</strong> 2 Prof. Nayar 4-6pm Lecture Notes Tutorial No.4<br />

6 11-Sep Wind <strong>Energy</strong> <strong>Systems</strong> 3 Prof. Nayar 4-6pm Lecture Notes Tutorial No.5<br />

7 18-Sep <strong>Energy</strong> Economics Prof. Nayar 4-6pm Lecture Notes Tutorial No.6<br />

8 2-Oct Small Hydro <strong>Systems</strong> Dr. Sumedha 4-6pm Lecture Notes Tutorial No.7 Assignment No.1<br />

9 9-Oct Fuell Cells 1 Dr. Sumedha 4-6pm Lecture Notes Tutorial No.8<br />

10 16-Oct Fuell Cells 2 Dr. Sumedha 4-6pm Lecture Notes Tutorial No.9<br />

11 23-Oct Distributed Generation 1 Dr. Sumedha 4-6pm Lecture Notes Tutorial No.10<br />

12 30-Oct Distributed Generation 2 Dr. Sumedha 4-6pm Lecture Notes<br />

13 6-Nov Study week Assignment No.2


<strong>Renewable</strong> <strong>Energy</strong> <strong>Systems</strong> <strong>402</strong>/604 Lab


<strong>Overview</strong> of <strong>Renewable</strong><br />

<strong>Energy</strong> <strong>Systems</strong>, Distributed<br />

Generation


What Are Distributed Generators?<br />

• Distributed generation (DG) systems are small<br />

modular electric power generation units<br />

(


DG – A Future Mode of Generation<br />

• Central generation stations vs DG systems (now)<br />

• Super computers vs Personal Computers (25 years ago)


Tremendous DG Market Potential<br />

• Global electricity consumption:40% of total global energy consumption<br />

• Present global DG capacity:30 GW installed capacity<br />

• DG growth rate:currently 8-9GW/year or 3% of newly installed<br />

generation capacity; will be 6% of newly installed capacity by 2020<br />

Global new-capacity Global new DG capacity


Capacity (GW)<br />

Rapid DG Growth – Wind Capacity<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Cumulative Capacity<br />

Installed Capacity<br />

90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06<br />

Year


Rapid DG Growth – PV Capacity


Driving Forces for Rapid DG Growth<br />

Deregulation and<br />

Economics:<br />

Trade<br />

Investment<br />

Environmental<br />

Concerns:<br />

GHG reduction<br />

<strong>Energy</strong> efficiency<br />

Electricity<br />

Sector<br />

Technological<br />

Innovation<br />

Demands:<br />

Increasing demand<br />

Supply quality<br />

Supply security


Electricity and GHG Emissions<br />

Coa l 34. 1%<br />

Courtesy of Hydro Quebec<br />

Nuc l ear 17. 0%<br />

Nat ual Gas 18 . 8%<br />

Oi l 9. 9%<br />

Ren ewabl es 20 . 2%<br />

Electricity: 0.51kg/kWh, or 20% of global GHG


Increasing Electricity Demand<br />

Annual World Electricity Consumption Will Increase at 2.3%<br />

(Developing Countries at 3.5%)<br />

Electricity Consumption (TWh)<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

EE/FSU<br />

Developing<br />

Industrialized<br />

North America<br />

2001 2010 2015 2020 2025<br />

Year


<strong>Energy</strong> Security: Oil and Gas Will<br />

Deplete, Sooner or Later


A Direct Drive Wind Turbine


A Wind Turbine System –<br />

Kinetic ⇒Mechanical ⇒Electric <strong>Energy</strong><br />

• Turbine input power<br />

Pwind =<br />

1 1<br />

mu = ρ Au<br />

2 2<br />

2 3<br />

• Turbine output power<br />

Pmech =<br />

1<br />

2<br />

3<br />

Au Cp ρ<br />

• Turbine performance factor Cp. Theoretical<br />

maximum Cp: Cpmax=16/27=0.593,<br />

practical maximum Cp=0.4 - 0.5


Photovoltaic Cells<br />

• Solar cell operation is based on the ability of<br />

semiconductors to convert sunlight directly into<br />

electricity. In the conversion process the incident energy<br />

of light creates mobile charged particles in the<br />

semiconductor, which are then separated by the device<br />

structure and produce electrical current.


Characteristics of PV Cells<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1000W/m 2<br />

800W/m 2<br />

600W/m 2<br />

0 5 10 15 20 25


6<br />

5<br />

4.6<br />

Current (A)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

VI Characteristic Curve<br />

Nominal 12V array<br />

0 5 10 15 20 25<br />

Voltage (V)<br />

17.4<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

79<br />

Power(W)


Effect of Solar Radiation Level<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1000W/m 2<br />

800W/m 2<br />

600W/m 2<br />

0 5 10 15 20 25


6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Effect of Temperature<br />

75C<br />

50C<br />

25C<br />

0 5 10 15 20 25<br />

This characteristic is important in determining the dc voltage window<br />

of grid connected inverters<br />

0C


Photovoltaic Power <strong>Systems</strong><br />

(a)<br />

DC Input<br />

Power<br />

Electronics<br />

Interface<br />

(b)<br />

Utility


Wind Electric <strong>Systems</strong><br />

Generator<br />

and<br />

Power Electronics<br />

Utility


Power Electronic Converters:<br />

Enabling Technology for DG <strong>Systems</strong><br />

Converters in components, functions and systems of distributed generators


Functions of Power Electronic<br />

Converters for DG <strong>Systems</strong><br />

• Power Conversion<br />

– ac-dc, dc-ac, ac-ac, dc-dc; voltage and<br />

frequency control<br />

• Interconnection with Grid & System Protection<br />

– meeting requirements of interconnection standards<br />

• Resource Control (optimize sources and loads)<br />

– maximum power point tracking<br />

• Power System Support<br />

– power and reactive power control, dispatch etc.


Bidirectional Switching Power Pole<br />

Ref: Mohan


Low Frequency PWM Generation<br />

Ref: Mohan<br />

V<br />

d a =<br />

V<br />

aN<br />

d


Single-Phase Inverter<br />

Ref: Mohan<br />

v =<br />

Vˆ<br />

o sin<br />

w<br />

o 1<br />

t


Single Phase Grid Connected Inverter


Three-Phase Inverter-Sine PWM<br />

3<br />

( Vl ) V<br />

l max =<br />

d ~ 0.<br />

867V<br />

2<br />

d


Three-Phase Inverter- Sine PWM


Current Source/Voltage Inverter<br />

• A current source inverter (CSI)<br />

has an inductor in series with<br />

the DC input<br />

• A voltage source inverter (VSI)<br />

has a capacitor across the DC<br />

input<br />

– Voltage controlled VSI (VCVSI)<br />

– Current controlled VSI (CCVSI)<br />

Idc<br />

Vdc<br />

L<br />

Q1<br />

Q2<br />

Q1<br />

C<br />

Q2<br />

Io<br />

Io<br />

Load<br />

Load<br />

Q4<br />

Q3<br />

Q4<br />

Q3


Voltage Controlled VSI<br />

P<br />

g<br />

VgVc<br />

VgVc<br />

V<br />

= sin δ;<br />

Qg<br />

= cosδ<br />

−<br />

X<br />

X X<br />

L<br />

L<br />

2<br />

g<br />

L


Current Controlled VSI<br />

ϕ<br />

Real power and Reactive power can<br />

be controlled by regulating the magnitude,<br />

and the angle φ<br />

φ<br />

P g = Vg<br />

I g cosφ; Qg<br />

= Vg<br />

I g sinϕ<br />

I =<br />

Pg= VIg cosφ Qg= VIg sinφ<br />

L<br />

I<br />

g


Current Controlled VSI<br />

• Fast current response<br />

• Inherent current protection<br />

• Appropriate for gridconnected<br />

inverters such<br />

as for PV/Wind generators<br />

– Hysteresis current<br />

controller<br />

– Ramp controller<br />

– Predictive controller<br />

– Current-based space vector<br />

controller


Hysteresis Current Controller


Active and Reactive Power Control


PV/Grid <strong>Energy</strong> System Configurations<br />

• Large Single Inverter Type (Central<br />

Inverter)<br />

• Multiple Small Inverter Type (String<br />

Inverter)<br />

• DC Bus (Multi-string Inverter)<br />

• “AC” Module


Large Single Inverter Type<br />

• Series and Parallel<br />

connection on DC<br />

side<br />

• All PV panels<br />

connected to single<br />

DC bus<br />

• Single Central<br />

Inverter<br />

• Affected by partial<br />

shading of panels<br />

• Only one protection<br />

system required


Multiple Small Inverter Type<br />

• One inverter per<br />

string<br />

• Panels grouped into<br />

smaller inverter –<br />

rated power of<br />

Inverter ( 0.7-5kW)<br />

• Not so badly<br />

affected by shading<br />

• Not badly affected<br />

by inverter failure


Grid-Connected PV Inverter (String Type)<br />

@ 3.3kW


Grid-Connected with <strong>Energy</strong> Back up System<br />

AC Line<br />

DC from PV<br />

160 to 240 V<br />

AC Grid Line<br />

DC 48 V<br />

Controller Back up Line<br />

AC Line<br />

DC 48 V


Grid-Connected PV System<br />

with Back up Inverter<br />

Kang Som-Mao, Ratchaburi<br />

75 Wp x 42 modules<br />

PV<br />

CONTROLLER -<br />

BATTERY batteries for S-218C<br />

INVERTER APOLLO G –304 And S-218C


• Each panel or<br />

group have a DC-<br />

DC step up<br />

converter<br />

• High voltage DC<br />

link feeds<br />

transformer-less<br />

converter<br />

DC Linked


• One Inverter per<br />

panel<br />

• High volume/<br />

low cost?<br />

• Plug-and-play?<br />

AC Modules


Wind<br />

Wind <strong>Energy</strong> Conversion System<br />

Mechanical Power Electrical Power<br />

Wind Turbine<br />

Rotor<br />

Gearbox/<br />

Transmission<br />

Generator<br />

Power<br />

Converter<br />

Power<br />

Transformer<br />

Electric Grid


Permanent Magnet PM Generator<br />

GB<br />

L DC<br />

C DC<br />

V DC<br />

L AC


Applications of Single-Phase<br />

Inverters for Small Wind Turbines<br />

Wind turbine system


AC/DC/AC Full Power Converter<br />

for Three-Phase Grids (PWM Rectifier)


Micro Hydro


Fuel Cells<br />

• Fundamentals<br />

and<br />

background<br />

• <strong>Energy</strong><br />

Conversion<br />

Principle


Microgrid<br />

• A MicroGrid power system<br />

– Is a local scale power system using distributed resources scaled to<br />

the local system demand.<br />

– Is designed to transfer seamlessly between connection with the<br />

local utility and isolated operation.<br />

• Benefits<br />

– Improved power reliability and power quality<br />

– Potential economic benefits: CHP, higher efficiency, diversified fuel<br />

supplies<br />

– Possible ancillary services for power system operators<br />

– Transmission and distribution support in constrained areas.<br />

– Potential for reduced emissions compared to centralized utility.<br />

– Ability to allow high penetration of renewable generation.


Case study : The Republic of Maldives<br />

1,192 islands<br />

with a land area of<br />

about 300 km2,<br />

formed on a chain<br />

of 26 coral reef<br />

atolls in the Indian<br />

Ocean<br />

80 percent of<br />

the total landmass<br />

of the Maldives is<br />

less than 1 meter<br />

above sea level


Kondey<br />

Maldives Remote Islands<br />

Uligam<br />

Raimandhoo


Advantages of the <strong>Renewable</strong> <strong>Energy</strong><br />

Micro-Grid System<br />

+ + +<br />

POWER<br />

ELECTRONICS<br />

• Can Provide 24 hours of Electricity<br />

• Diesel Generator operating hours will be reduced which leads<br />

to save in fuel plus O&M cost<br />

• Reduced Cost of Electricity<br />

• Fast pay back period [2-3 Years]<br />

• Reduced noise and air pollution<br />

• Reduced Greenhouse Gas Emission<br />

+


Micro Grid for Uligam lsland


Micro Wind Farm

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!