02.07.2013 Views

The membrane Resting Membrane Potential Animation

The membrane Resting Membrane Potential Animation

The membrane Resting Membrane Potential Animation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

and<br />

Action <strong>Potential</strong><br />

Lipid monolayer<br />

Irving Langmuir:<br />

- - American physico chemist<br />

- - 1932 Nobel-prise in chemistry<br />

- - 1917: lipids form a monolayer on the surface of the water<br />

Lipid bilayer<br />

Gortel and Grendel:<br />

1925: there is twice as much lipid<br />

in the <strong>membrane</strong> of blood cells<br />

than needed<br />

Bódis Emőke<br />

13 October 2011<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

<strong>The</strong> <strong>membrane</strong><br />

<strong>The</strong> chemical composition of the cell<br />

• Water<br />

• Kations: K + , Na + , Ca 2+<br />

• Anions: Cl - , H 2 PO 4 - , HPO4 2-<br />

• Protein-anions<br />

– Localise mainly intracellularly<br />

– for which <strong>membrane</strong> is impermeable<br />

– Isoelectric point<br />

<strong>Animation</strong><br />

http://www.youtube.com/watch?v=YP_P6bYvEjE&hd=1<br />

1


<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Na +<br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Na Inside<br />

+<br />

14 mEq/L<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Outside<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Na +<br />

Na Inside<br />

+<br />

14 mEq/L<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Na +<br />

Na Inside<br />

+<br />

14 mEq/L<br />

• Make cell <strong>membrane</strong> SELECTIVELY permeable to K+<br />

• K+ wants to move toward region of lower concentration<br />

(CHEMICAL FORCE to move down concentration gradient)<br />

Cl -<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Typical:<br />

-30 - 90 mV<br />

Na +<br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Na Inside<br />

+<br />

14 mEq/L<br />

• If electrode is inserted into cardiac cell, will detect a<br />

negative reading compared to outside of the cell of -80mV<br />

<strong>The</strong> electric field strength: 70 mM/5 nm = 140 000 V/cm<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Outside<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Na +<br />

Na Inside<br />

+<br />

14 mEq/L<br />

• Make cell <strong>membrane</strong> SELECTIVELY permeable to K+<br />

• K+ wants to move toward region of lower concentration<br />

(CHEMICAL FORCE to move down concentration gradient)<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Na +<br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Na Inside<br />

+<br />

14 mEq/L<br />

• As K + leaves cell, negativity increases on the inside<br />

of the cell <strong>membrane</strong> and electrostatically attracts K + .<br />

This electrostatic force prevents K + from leaving cell.<br />

2


<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Na +<br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

A -<br />

Chemical driving force is<br />

eventually balanced by<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Nernst Equation<br />

chemical potential ⇒ W chem = NRT ln (X1/X2)<br />

Na Inside<br />

+<br />

14 mEq/L<br />

Electrical driving force so no<br />

further net movement of K +<br />

N = number of moles associated with the concentration gradient<br />

R = gas constant<br />

T = absolute temperature<br />

X1 / X2 = concentration gradient<br />

electic potential ⇒ W el = NzF ΔE<br />

N = number of moles of the charged particles<br />

z = valency<br />

F = Faraday’s number<br />

∆E (= E 1-E 2 ) = strength of the electric field (V)<br />

€<br />

€<br />

€<br />

Nernst Equation<br />

NzFE = NRT ln X 1<br />

X 2<br />

zFE = RT ln X 1<br />

X 2<br />

E = RT<br />

zF ln X 1<br />

X 2<br />

Forces controlling the movements of<br />

charged particles<br />

Chemical potential: (Willard Gibbs (1876) - American mathematical physicist)<br />

<strong>The</strong> chemical potential of a thermodynamic system is the amount of energy by which<br />

the system would change if an additional particle were introduced (number of the<br />

particles!).<br />

Concentration gradient → diffusion: moving the particles from a high concentration<br />

area to a low one → diffusion potential.<br />

Electric potential: the difference in electrical charge between two points in a circuit<br />

expressed in volts.<br />

Electrical gradients: An electric field creates a force that can move the charged(+ or -)<br />

particles (the work of the electric field) → electric current: moving charged particles.<br />

Electro-chemical potential<br />

<strong>The</strong> combination (sum) of the chemical and the electric potential. Related to the<br />

average energy affecting the charged particle.<br />

A little bit more about the Nernst Equation<br />

Nernst Equation<br />

<strong>The</strong> general form of the equation in your<br />

textbook:<br />

What is the meaning of E x?<br />

E x is the potential at which the flux due to diffusion is equal and<br />

opposite to the flux due to electrophoresis<br />

What is E K for the cell we showed at the beginning?<br />

3


In our cell why was the resting potential -80mV if E K = -100mV?<br />

This cell is permeable to more than one<br />

ionic species at rest.<br />

How can we quantify the contribution of multiple ionic species?<br />

<strong>The</strong> Goldman Equation (or the GHK Equation)<br />

Some important details:<br />

• Derives from the Nernst equation and a few assumptions<br />

• Uses permeabilities rather than conductances<br />

• Cl- is flipped to account for a -1 valence<br />

Goldman-Hodgkin-Katz Equation<br />

Good agreement with the measured value.<br />

Donnan-potential<br />

A negative non-diffusing charge on one side of a <strong>membrane</strong><br />

potential gradient across the <strong>membrane</strong> from which ions will diffuse.<br />

<strong>The</strong> result will be an electrochemical equilibrium.<br />

<strong>The</strong> concentration (chemical potential) of ions will not necessarily be the same<br />

inside and outside. Thus, as an electrical disequilibrium is maintained because of<br />

diffusing charges.<br />

Goldman-Hodgkin-Katz Equation<br />

To determine the potential across a cell's <strong>membrane</strong> taking<br />

into account all of the ions with different permeabilities<br />

through the <strong>membrane</strong>.<br />

permeability of the given ion inside and outside concentrations<br />

If the <strong>membrane</strong> is not permeable for an ion:<br />

Donnan-potential<br />

Donnan equilibrium: characterising the equlibrium situation when<br />

the <strong>membrane</strong> is not permeable for some ionic components.<br />

Unequal distribution of diffusible ions<br />

between two ionic solutions<br />

separated by a <strong>membrane</strong><br />

impermeable to at least one of the ionic<br />

species present (e.g. proteins)<br />

Donnan-potential<br />

In a Donnan equilibrium, the charge imbalance in the vicinity of a semi-permeable<br />

<strong>membrane</strong> gives rise to an electric field, with a jump in the electrostatic potential<br />

typically occurring over a length of less than a micrometer.<br />

Similarly, if a colloidal suspension has a gradient of concentration (such as is<br />

produced in sedimentation or centrifugation), then a macroscopic electric field is<br />

generated by the charge imbalance appearing at the top and bottom of the sample<br />

column.<br />

4


<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Na +<br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Na Inside<br />

+<br />

14 mEq/L<br />

<strong>Animation</strong><br />

http://bcs.whfreeman.com/thelifewire/content/chp44/4401s.swf<br />

Na + , K + - ATPase Pump<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

Na +<br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Na Inside<br />

+<br />

14 mEq/L<br />

• <strong>The</strong>re is a small, but finite, leakage of Na + into cell<br />

(depolarizing effect)<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

• Potassium is the major determinant of the<br />

<strong>Resting</strong> <strong>Membrane</strong> <strong>Potential</strong><br />

• Potassium and sodium ion channels allow<br />

leakage of these ions across the cell <strong>membrane</strong>s<br />

• In the normal nerve fiber, the permeability of the<br />

<strong>membrane</strong> to potassium is about 100 times as<br />

great as to sodium<br />

Na + , K + - ATPase Pump<br />

(Sodium Pump)<br />

a highly-conserved integral <strong>membrane</strong> protein<br />

is expressed in virtually all cells of higher organisms<br />

it is estimated that roughly 25% of all cytoplasmic ATP is hydrolyzed by sodium<br />

pumps<br />

depending on cell type, there are between 800,000 and 30 million pumps on<br />

the surface of cells<br />

several types of heart failure are associated with significant reductions in<br />

myocardial concentration of Na + -K + -ATPase<br />

5


extracellular<br />

intracellular<br />

Na + , K + - ATPase Pump<br />

(Sodium Pump)<br />

composed of two subunits<br />

alpha subunit (~113 kD): it binds ATP and<br />

both sodium and potassium ions, and<br />

contains the phosphorylation site<br />

beta subunit (~35 kDa glycoprotein):<br />

absolutely necessary for activity of the<br />

complex<br />

several isoforms of both alpha and beta<br />

subunits have been identified<br />

Action <strong>Potential</strong><br />

Action <strong>Potential</strong><br />

Jens Christian Skou<br />

(danish)<br />

1997: Nobel prize<br />

Na +<br />

+ + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - + + + + + + + - - - - - - - - - - - -<br />

K +<br />

Outside<br />

Inside<br />

Na + , K + - ATPase Pump<br />

Na +<br />

Outside<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

3 Na+<br />

2 K +<br />

Na + , K + - ATPase Pump<br />

A -<br />

K + Cl- 142 mEq/L<br />

4 mEq/L<br />

K +<br />

140 mEq/L<br />

Cl -<br />

Action <strong>Potential</strong><br />

K + Cl -<br />

Na Inside<br />

+<br />

14 mEq/L<br />

Na +<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<br />

K +<br />

Outside<br />

Na<br />

Inside<br />

+<br />

Cl- A- Action <strong>Potential</strong><br />

Na +<br />

+ + + + + + + + + + + + + + + + + - - - - - - - + + + + + + + + + + + +<br />

- - - - - - - - - - - - - - - - - - + + + + + + + - - - - - - - - - - - -<br />

K +<br />

Outside<br />

3 Na<br />

Inside<br />

+<br />

2 K +<br />

Na + , K + - ATPase Pump<br />

6


Course of the Action <strong>Potential</strong><br />

• <strong>The</strong> action potential begins with a partial depolarization (e.g.<br />

from firing of another neuron ) [A].<br />

• When the excitation threshold is reached there is a sudden<br />

large depolarization [B].<br />

• This is followed rapidly by repolarization [C] and a brief<br />

hyperpolarization [D].<br />

• <strong>The</strong>re is a refractory period immediately after the action<br />

potential where no depolarization can occur [E]<br />

<strong>Membrane</strong><br />

potential<br />

(mV)"<br />

+40"<br />

0"<br />

-70"<br />

[A]"<br />

[B]"<br />

[C]"<br />

[E]<br />

0" 1" 2" 3"<br />

[D]" excitation threshold!<br />

Time (msec)"<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!