17.07.2013 Views

Sedimentation, electrophoresis

Sedimentation, electrophoresis

Sedimentation, electrophoresis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Sedimentation</strong>, <strong>electrophoresis</strong><br />

Biophysics lecture<br />

Talián Csaba Gábor<br />

21. 03.2012.


sedimentation = settling<br />

Sedeo 2, sedi, sessum – sit<br />

Aim:<br />

1 - separation<br />

2 - measure the size or mass of the<br />

particles


F upthrust = ρ mVg<br />

ρρ km<br />

<br />

<br />

<br />

m, ρ<br />

v<br />

<br />

<br />

F g= mg<br />

<strong>Sedimentation</strong> in a gravity field<br />

F frict= fv<br />

<br />

<br />

<br />

<br />

F = F +<br />

g<br />

upthrust<br />

F<br />

frict<br />

ρVg<br />

− ρm<br />

Vg =<br />

spherical<br />

particle<br />

to calculate<br />

v<br />

to measure<br />

V = 4<br />

sed<br />

fv<br />

F − F =<br />

g<br />

upthrust<br />

F<br />

frict<br />

v = constant<br />

3 r3π Ffrict = 6πη0rv<br />

=<br />

(η 0: viscosity of the medium)<br />

2r<br />

ρ m: density of the medium; m: mass, ρ: density, v: velocity of the moving spherical particle<br />

2<br />

( − ρ )<br />

ρ m g<br />

9η<br />

0


<strong>Sedimentation</strong> in a centrifugal field:<br />

1. <strong>Sedimentation</strong> velocity method<br />

Aim: measurement of molecular mass (r ≈ nm)<br />

methods based on gravity are not effective<br />

How to calculate the forces?<br />

F frict =<br />

fv<br />

F centrifug =<br />

2<br />

mrω<br />

2<br />

ρ ρ rω<br />

ρ<br />

m<br />

mVa<br />

=<br />

Fupthrust =<br />

m<br />

Spinning system: a = rω2


What is centrifugal force?<br />

No acceleration Acceleration<br />

F cf = -mrω 2


F frict =<br />

fv<br />

Fcentrifug =<br />

2<br />

mrω<br />

Fupthrust m =<br />

2 m 2<br />

2⎛<br />

ρm<br />

⎞<br />

fv = mrω<br />

− ρm<br />

rω<br />

= mrω<br />

⎜1−<br />

⎟<br />

ρ<br />

⎝ ρ ⎠<br />

but<br />

a = rω 2<br />

2<br />

ρ rω<br />

ρ<br />

m<br />

Upon sedimentation the velocity of the particle<br />

increases while going further from axis! (v ≠ constant)


Theodore Svedberg<br />

Swedish chemist<br />

(1884-1971)<br />

Nobel-prize in 1926<br />

S<br />

=<br />

v<br />

2<br />

rω<br />

to measure<br />

⎛ ρk<br />

⎞<br />

m⎜1−<br />

⎟<br />

=<br />

⎝ ρ ⎠<br />

f<br />

to calculate<br />

S = sedimentation constant<br />

Unit: 1 Sv = 10 -13 s<br />

<strong>Sedimentation</strong><br />

velocity for unit<br />

acceleration<br />

shape factor!<br />

Relationship between shape factor (f) and diffusion constant (D):<br />

k ⋅T<br />

D<br />

R ⋅T<br />

N D<br />

To determine the mass sedimentation<br />

methods must be combined with<br />

diffusion measurements.<br />

f<br />

=<br />

=<br />

A ⋅<br />

kkkk:::: Boltzmann constant<br />

R: R: R: R: universal gas constant<br />

NNNN : Avogadro-number.<br />

=<br />

∙ ∙ <br />

∙ ∙ ( − <br />

)


Normal centrifuge<br />

Centrifuge<br />

Supercentrifuge: 20-50.000 rpm (revolution per minute)<br />

Ultracentrifuge: over 50.000 rpm<br />

Analytical centrifuge: determination of size and mass of molecules<br />

Preparative centrifuge: separation of molecules based on their mass and size<br />

angle rotor<br />

swing-out rotor


Velocity boundary sedimentation method<br />

A: boundary<br />

B: plateau<br />

: concentration profile without diffusion


2. <strong>Sedimentation</strong> equilibrium method<br />

low speed centrifugation<br />

diffusion<br />

Jean Baptiste Perrin<br />

French physicist<br />

(1870-1942)<br />

Nobel-prize in 1926<br />

sedimentation


Energy<br />

energia<br />

E 2<br />

E 1<br />

to calculate<br />

c 2<br />

c 1<br />

c<br />

c<br />

c<br />

1<br />

2<br />

=<br />

e<br />

E −E<br />

1 −<br />

kT<br />

m ⎛ ρ ⎞<br />

ω ⎜ − ⎟<br />

2 ⎝ ρ ⎠<br />

2<br />

( ) 2 2<br />

r r<br />

2 m E1 − E2<br />

= 1<br />

2 −<br />

2⎛<br />

ρm<br />

⎞<br />

mω<br />

⎜1−<br />

⎟<br />

⎝ ρ ⎠<br />

( ) 2 2<br />

r −<br />

2 ln =<br />

2 r1<br />

c1<br />

2kT<br />

to measure<br />

No influence of the molecular shape!<br />

1


Advantages of the analytical ultracentrifugation<br />

No standards are required<br />

AUC is sensitive, precise, accurate and robust (yes – all at a time!)<br />

No interactions with a stationary phase or matrix<br />

Wide range of molar masses can be investigated in the same<br />

experiment – works well for peptides to viruses.<br />

No protein modifications required<br />

No change in mobile phase – your protein is examined in exactly the<br />

same solvent in which you want to study it<br />

Theory of sedimentation is well understood


F centrifug =<br />

3. Density gradient method<br />

2<br />

mrω<br />

Fupthrust m =<br />

2<br />

ρ rω<br />

ρ<br />

m<br />

If ρ = ρ m then F c = mrω 2 = F up and v = 0!<br />

High molecular mass, small size:<br />

CsCl, CsBr, glycerol, sucrose (saccharose), ficoll<br />

Blood lipoproteins


Differential centrifugation/<br />

cellular fractionation<br />

Albert Claude<br />

Belgian biologist<br />

(1899-1983)<br />

Nobel-prize in 1974<br />

mitochondria microsomes lysosomes


Electrophoresis<br />

Ionic double layer<br />

Arne Tiselius<br />

Swedish biochemist<br />

(1902-1971)<br />

Nobel-prize in 1948


Coulomb-force: Friction force:<br />

F c = QE = ZeE<br />

E= electric field strength<br />

e = elementary charge<br />

Z= charge number<br />

Till when is the particle accelerating?<br />

F F = : until ZeE = fv<br />

c<br />

u el = v<br />

E<br />

up<br />

electrophoretic mobility<br />

= Ze<br />

f<br />

Ze<br />

6πηr<br />

F f = fv<br />

v = velocity<br />

f = shape factor<br />

For spherical molecules:<br />

ZeE = 6πηrv<br />

(Stokes-law)<br />

= Radius of molecule is<br />

to be calculated


Agarose gel <strong>electrophoresis</strong>


SYBR green


SDS polyacrylamide gel <strong>electrophoresis</strong> (SDS-PAGE)<br />

sodium-dodecyl-sulphate<br />

TEMED (tetramethylethylenediamine)<br />

ammonium-persulphate


Coomassie Brillant Blue<br />

+ protein


Native PAGE


Isoelectric focusing (IEF)


2D <strong>electrophoresis</strong>


pH pH pH 33<br />

3 3<br />

pH pH 10<br />

10<br />

biotech.szbk.u-szeged.hu/KK_Jegyzet/.../5_Downstream_1.ppt


iotech.szbk.u-szeged.hu/KK_Jegyzet/.../5_Downstream_1.ppt


THANK YOU FOR YOUR<br />

ATTENTION!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!