13.07.2013 Views

Network Traffic Characteristics of Data Centers in the Wild - Sigcomm

Network Traffic Characteristics of Data Centers in the Wild - Sigcomm

Network Traffic Characteristics of Data Centers in the Wild - Sigcomm

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5. APPLICATIONCOMMUNICATIONPAT-<br />

TERNS<br />

In<strong>the</strong>previoussection,wedescribed<strong>the</strong>set<strong>of</strong>applicationsrunn<strong>in</strong>g<strong>in</strong>each<strong>of</strong><strong>the</strong>10datacentersandobservedthatavariety<strong>of</strong>applicationsrun<strong>in</strong><strong>the</strong>datacentersandthat<strong>the</strong>irplacementisnonuniform.Inthissection,weanalyze<strong>the</strong>aggregatenetworktransmissionbehavior<strong>of</strong><strong>the</strong>applications,bothat<strong>the</strong>flow-levelandat<br />

<strong>the</strong>f<strong>in</strong>er-gra<strong>in</strong>edpacket-level. Specifically,weaimtoanswer<strong>the</strong><br />

follow<strong>in</strong>gquestions:(1)Whatare<strong>the</strong>aggregatecharacteristics<strong>of</strong><br />

flowarrivals,sizes,anddurations? and(2)Whatare<strong>the</strong>aggregatecharacteristics<strong>of</strong><strong>the</strong>packet-level<strong>in</strong>ter-arrivalprocessacrossallapplications<strong>in</strong>arack—thatis,howburstyare<strong>the</strong>transmissionpatterns<strong>of</strong><strong>the</strong>seapplications?Theseaspectshaveimportant<br />

implicationsfor<strong>the</strong>performance<strong>of</strong><strong>the</strong>networkanditsl<strong>in</strong>ks.<br />

Asbefore,weuse<strong>the</strong>packettraces<strong>in</strong>ouranalysis.<br />

5.1 Flow-LevelCommunication<strong>Characteristics</strong><br />

First,weexam<strong>in</strong>e<strong>the</strong>number<strong>of</strong>activeflowsacross<strong>the</strong>4data<br />

centerswherewehavepacket-leveldata,EDU1,EDU2,EDU3,<br />

andPRV2.Toidentifyactiveflows,weusealong<strong>in</strong>activitytimeout<strong>of</strong>60seconds(similartothatused<strong>in</strong>previousmeasurements<br />

studies[19]).<br />

InFigure3(a),wepresent<strong>the</strong>distribution<strong>of</strong><strong>the</strong>number<strong>of</strong>active<br />

flowswith<strong>in</strong>aonesecondb<strong>in</strong>,asseenatsevendifferentswitches<br />

with<strong>in</strong>4datacenters.Wef<strong>in</strong>dthatalthough<strong>the</strong>distributionvaries<br />

across<strong>the</strong>datacenters,<strong>the</strong>number<strong>of</strong>activeflowsatanygiven<br />

<strong>in</strong>tervalislessthan10,000. Basedon<strong>the</strong>distributions,wegroup<br />

<strong>the</strong>7monitoredswitches<strong>in</strong>totwoclasses. In<strong>the</strong>firstclassare<br />

all<strong>of</strong><strong>the</strong>universitydatacenterswitchesEDU1,EDU2andEDU3,<br />

andone<strong>of</strong><strong>the</strong>switchesfromaprivateenterprise,namelyPRV24,<br />

where<strong>the</strong>number<strong>of</strong>activeflowsisbetween10and500<strong>in</strong>90%<strong>of</strong><br />

<strong>the</strong>time<strong>in</strong>tervals.In<strong>the</strong>secondclass,are<strong>the</strong>rema<strong>in</strong><strong>in</strong>gswitches<br />

from<strong>the</strong>enterprise,namely,PRV21,PRV22,andPRV23,where<br />

<strong>the</strong>number<strong>of</strong>activeflowsisbetween1,000and5,000about90%<br />

<strong>of</strong><strong>the</strong>time.<br />

Weexam<strong>in</strong>e<strong>the</strong>flow<strong>in</strong>ter-arrivaltimes<strong>in</strong>Figure3(b).Wef<strong>in</strong>d<br />

that<strong>the</strong>timebetweennewflowsarriv<strong>in</strong>gat<strong>the</strong>monitoredswitchis<br />

lessthan10µsfor2-13%<strong>of</strong><strong>the</strong>flows. Formost<strong>of</strong><strong>the</strong>switches<strong>in</strong><br />

PRV2,80%<strong>of</strong><strong>the</strong>flowshavean<strong>in</strong>ter-arrivaltimeunder1ms.This<br />

observationsupports<strong>the</strong>results<strong>of</strong>apriorstudy[19]<strong>of</strong>aclouddata<br />

center.However,wefoundthatthisobservationdoesnotholdfor<br />

<strong>the</strong>universitydatacenters,wherewesee80%<strong>of</strong><strong>the</strong>flow<strong>in</strong>terarrivaltimeswerebetween4msand40ms,suggest<strong>in</strong>gthat<strong>the</strong>sedatacentershavelesschurnthanPRV2and<strong>the</strong>previouslystudiedclouddatacenter[19].Amongo<strong>the</strong>rissues,flow<strong>in</strong>ter-arrival<br />

timeaffectswhatk<strong>in</strong>ds<strong>of</strong>process<strong>in</strong>gcanbedoneforeachnew<br />

flowand<strong>the</strong>feasibility<strong>of</strong>logicallycentralizedcontrollersforflow<br />

placement.Wereturnto<strong>the</strong>sequestions<strong>in</strong>Section7.<br />

Next,weexam<strong>in</strong>e<strong>the</strong>distributions<strong>of</strong>flowsizesandandlengths<br />

<strong>in</strong>Figure4(a)and(b),respectively.FromFigure4(a),wef<strong>in</strong>dthat<br />

flowsizesareroughlysimilaracrossall<strong>the</strong>studiedswitchesand<br />

datacenters.Across<strong>the</strong>datacenters,wenotethat80%<strong>of</strong><strong>the</strong>flows<br />

aresmallerthan10KB<strong>in</strong>size.Most<strong>of</strong><strong>the</strong>bytesare<strong>in</strong><strong>the</strong>top10%<br />

<strong>of</strong>largeflows.FromFigure4(b),wef<strong>in</strong>dthatformost<strong>of</strong><strong>the</strong>data<br />

centers80%<strong>of</strong><strong>the</strong>flowsarelessthan11secondslong.Theseresultssupport<strong>the</strong>observationsmade<strong>in</strong>priorastudy[19]<strong>of</strong>acloud<br />

datacenter. However,wedonotethat<strong>the</strong>flows<strong>in</strong>EDU2appear<br />

tobegenerallyshorterandsmallerthan<strong>the</strong>flows<strong>in</strong><strong>the</strong>o<strong>the</strong>rdata<br />

centers. Webelievethisisdueto<strong>the</strong>nature<strong>of</strong><strong>the</strong>predom<strong>in</strong>ant<br />

applicationthataccountsforover70%<strong>of</strong><strong>the</strong>bytesat<strong>the</strong>switch.<br />

F<strong>in</strong>ally,<strong>in</strong>Figure5,weexam<strong>in</strong>e<strong>the</strong>distribution<strong>of</strong>packetsizes<br />

<strong>in</strong><strong>the</strong>studieddatacenters.Thepacketsizesexhibitabimodalpat-<br />

272<br />

CDF<br />

(a)<br />

CDF<br />

(b)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

EDU1<br />

EDU2<br />

EDU3<br />

PRV21 PRV22 PRV23 PRV24 10 100 1000 10000 100000<br />

1<br />

0.8<br />

0.6<br />

Number <strong>of</strong> Active Flows<br />

0.4<br />

0.2<br />

0<br />

EDU1<br />

EDU2<br />

EDU3<br />

PRV21 PRV22 PRV23 PRV24 10 100 1000 10000 100000<br />

Flow Interarrival Times (<strong>in</strong> usecs)<br />

Figure3: CDF<strong>of</strong><strong>the</strong>distribution<strong>of</strong><strong>the</strong>number<strong>of</strong>flowsat<br />

<strong>the</strong>edgeswitch(a)and<strong>the</strong>arrivalrateforflows(b)<strong>in</strong>EDU1,<br />

EDU2,EDU3,andPRV2.<br />

tern,withmostpacketsizescluster<strong>in</strong>garoundei<strong>the</strong>r200Bytesand<br />

1400Bytes.Surpris<strong>in</strong>gly,wefoundapplicationkeep-alivepackets<br />

asamajorreasonfor<strong>the</strong>smallpackets,withTCPacknowledgments,asexpected,be<strong>in</strong>g<strong>the</strong>o<strong>the</strong>rmajorcontributor.Uponclose<br />

<strong>in</strong>spection<strong>of</strong><strong>the</strong>packettraces,wefoundthatcerta<strong>in</strong>applications,<br />

<strong>in</strong>clud<strong>in</strong>gMSSQL,HTTP,andSMB,contributedmoresmallpacketsthanlargepackets.Inoneextremecase,wefoundanapplicationproduc<strong>in</strong>g5timesasmanysmallpacketsaslargepackets.<br />

Thisresultspeakstohowcommonlypersistentconnectionsoccur<br />

asadesignfeature<strong>in</strong>datacenterapplications,and<strong>the</strong>importance<br />

<strong>of</strong>cont<strong>in</strong>uallyma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<strong>the</strong>m.<br />

5.2 Packet-LevelCommunication<strong>Characteristics</strong><br />

Wefirstexam<strong>in</strong>e<strong>the</strong>temporalcharacteristics<strong>of</strong><strong>the</strong>packettraces.<br />

Figure6showsatime-series<strong>of</strong>packetarrivalsobservedatone<strong>of</strong><br />

<strong>the</strong>sniffers<strong>in</strong>PRV2,and<strong>the</strong>packetarrivalsexhibitanON/OFF<br />

patternatboth15msand100msgranularities.Weobservedsimilar<br />

trafficpatternsat<strong>the</strong>rema<strong>in</strong><strong>in</strong>g6switchesaswell.<br />

Per-packetarrivalprocess: Leverag<strong>in</strong>g<strong>the</strong>observationthat<br />

trafficisON/OFF,weuseapacket<strong>in</strong>ter-arrivaltimethresholdto<br />

identify<strong>the</strong>ON/OFFperiods<strong>in</strong><strong>the</strong>traces. Let arrival95be<strong>the</strong><br />

95thpercentilevalue<strong>in</strong><strong>the</strong><strong>in</strong>ter-arrivaltimedistributionataparticularswitch.Wedef<strong>in</strong>eaperiodonas<strong>the</strong>longestcont<strong>in</strong>ualperioddur<strong>in</strong>gwhichall<strong>the</strong>packet<strong>in</strong>ter-arrivaltimesaresmallerthan<br />

arrival95.Accord<strong>in</strong>gly,a period<strong>of</strong>fisaperiodbetweentwoON<br />

periods.TocharacterizethisON/OFFtrafficpattern,wefocuson<br />

threeaspects:(i)<strong>the</strong>durations<strong>of</strong><strong>the</strong>ONperiods,(ii)<strong>the</strong>durations

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!