13.07.2013 Views

Network Traffic Characteristics of Data Centers in the Wild - Sigcomm

Network Traffic Characteristics of Data Centers in the Wild - Sigcomm

Network Traffic Characteristics of Data Centers in the Wild - Sigcomm

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Network</strong> <strong>Traffic</strong> <strong>Characteristics</strong> <strong>of</strong> <strong>Data</strong> <strong>Centers</strong> <strong>in</strong> <strong>the</strong> <strong>Wild</strong><br />

ABSTRACT<br />

Theophilus Benson ∗ , Aditya Akella ∗ and David A. Maltz †<br />

∗ University <strong>of</strong> Wiscons<strong>in</strong>–Madison<br />

† Micros<strong>of</strong>t Research–Redmond<br />

Although<strong>the</strong>reistremendous<strong>in</strong>terest<strong>in</strong>design<strong>in</strong>gimprovednetworksfordatacenters,verylittleisknownabout<strong>the</strong>network-leveltrafficcharacteristics<strong>of</strong>currentdatacenters.Inthispaper,weconductanempiricalstudy<strong>of</strong><strong>the</strong>networktraffic<strong>in</strong>10datacentersbelong<strong>in</strong>gtothreedifferenttypes<strong>of</strong>organizations,<strong>in</strong>clud<strong>in</strong>guniversity,enterprise,andclouddatacenters.Ourdef<strong>in</strong>ition<strong>of</strong>clouddatacenters<strong>in</strong>cludesnotonlydatacentersemployedbylargeonl<strong>in</strong>eserviceproviders<strong>of</strong>fer<strong>in</strong>gInternet-fac<strong>in</strong>gapplications,butalsodatacentersusedtohostdata-<strong>in</strong>tensive(MapReducestyle)applications.<br />

WecollectandanalyzeSNMPstatistics,topology,and<br />

packet-leveltraces.Weexam<strong>in</strong>e<strong>the</strong>range<strong>of</strong>applicationsdeployed<br />

<strong>in</strong><strong>the</strong>sedatacentersand<strong>the</strong>irplacement,<strong>the</strong>flow-levelandpacketleveltransmissionproperties<strong>of</strong><strong>the</strong>seapplications,and<strong>the</strong>irimpactonnetworkutilization,l<strong>in</strong>kutilization,congestion,andpacket<br />

drops.Wedescribe<strong>the</strong>implications<strong>of</strong><strong>the</strong>observedtrafficpatterns<br />

fordatacenter<strong>in</strong>ternaltrafficeng<strong>in</strong>eer<strong>in</strong>gaswellasforrecentlyproposedarchitecturesfordatacenternetworks.<br />

CategoriesandSubjectDescriptors<br />

C.4 [Performance<strong>of</strong>Systems]: Designstudies;Performance<br />

attributes<br />

GeneralTerms<br />

Design,Measurement,Performance<br />

Keywords<br />

<strong>Data</strong>centertraffic,characterization<br />

1. INTRODUCTION<br />

Adatacenter(DC)referstoanylarge,dedicatedcluster<strong>of</strong>computersthatisownedandoperatedbyas<strong>in</strong>gleorganization.<br />

<strong>Data</strong><br />

centers<strong>of</strong>varioussizesarebe<strong>in</strong>gbuiltandemployedforadiverseset<strong>of</strong>purposestoday.<br />

On<strong>the</strong>onehand,largeuniversities<br />

andprivateenterprisesare<strong>in</strong>creas<strong>in</strong>glyconsolidat<strong>in</strong>g<strong>the</strong>irITserviceswith<strong>in</strong>on-sitedatacentersconta<strong>in</strong><strong>in</strong>gafewhundredtoafew<br />

Permissiontomakedigitalorhardcopies<strong>of</strong>allorpart<strong>of</strong>thisworkfor<br />

personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare<br />

notmadeordistributedforpr<strong>of</strong>itorcommercialadvantageandthatcopies<br />

bearthisnoticeand<strong>the</strong>fullcitationon<strong>the</strong>firstpage.Tocopyo<strong>the</strong>rwise,to<br />

republish,topostonserversortoredistributetolists,requirespriorspecific<br />

permissionand/orafee.<br />

IMC’10,November1–3,2010,Melbourne,Australia.<br />

Copyright2010ACM978-1-4503-0057-5/10/11...$10.00.<br />

267<br />

thousandservers.On<strong>the</strong>o<strong>the</strong>rhand,largeonl<strong>in</strong>eserviceproviders,<br />

suchasGoogle,Micros<strong>of</strong>t,andAmazon,arerapidlybuild<strong>in</strong>ggeographicallydiverseclouddatacenters,<strong>of</strong>tenconta<strong>in</strong><strong>in</strong>gmorethan10Kservers,to<strong>of</strong>feravariety<strong>of</strong>cloud-basedservicessuchasEmail,Webservers,storage,search,gam<strong>in</strong>g,andInstantMessag<strong>in</strong>g.<br />

Theseserviceprovidersalsoemploysome<strong>of</strong><strong>the</strong>irdatacentersto<br />

runlarge-scaledata-<strong>in</strong>tensivetasks,suchas<strong>in</strong>dex<strong>in</strong>gWebpagesor<br />

analyz<strong>in</strong>glargedata-sets,<strong>of</strong>tenus<strong>in</strong>gvariations<strong>of</strong><strong>the</strong>MapReduce<br />

paradigm[6].<br />

Despite<strong>the</strong>grow<strong>in</strong>gapplicability<strong>of</strong>datacenters<strong>in</strong>awidevariety<strong>of</strong>scenarios,<strong>the</strong>reareveryfewsystematicmeasurementstudies[19,3]<strong>of</strong>datacenterusagetoguidepracticalissues<strong>in</strong>data<br />

centeroperations. Crucially,littleisknownabout<strong>the</strong>keydifferencesbetweendifferentclasses<strong>of</strong>datacenters,specificallyuniversitycampusdatacenters,privateenterprisedatacenters,andcloud<br />

datacenters(boththoseusedforcustomer-fac<strong>in</strong>gapplicationsand<br />

thoseusedforlarge-scaledata-<strong>in</strong>tensivestasks).<br />

Whileseveralaspects<strong>of</strong>datacentersstillneedsubstantialempiricalanalysis,<strong>the</strong>specificfocus<strong>of</strong>ourworkisonissuesperta<strong>in</strong><strong>in</strong>gtoadatacenternetwork’soperation.Weexam<strong>in</strong>e<strong>the</strong>send<strong>in</strong>g/receiv<strong>in</strong>gpatterns<strong>of</strong>applicationsrunn<strong>in</strong>g<strong>in</strong>datacentersand<br />

<strong>the</strong>result<strong>in</strong>gl<strong>in</strong>k-levelandnetwork-levelperformance. Abetter<br />

understand<strong>in</strong>g<strong>of</strong><strong>the</strong>seissuescanleadtoavariety<strong>of</strong>advancements,<br />

<strong>in</strong>clud<strong>in</strong>gtrafficeng<strong>in</strong>eer<strong>in</strong>gmechanismstailoredtoimproveavailablecapacityandreducelossrateswith<strong>in</strong>datacenters,mechanisms<br />

forimprovedquality-<strong>of</strong>-service,andeventechniquesformanag<strong>in</strong>g<br />

o<strong>the</strong>rcrucialdatacenterresources,suchasenergyconsumption.<br />

Unfortunately,<strong>the</strong>fewrecentempiricalstudies[19,3]<strong>of</strong>datacenternetworksarequitelimited<strong>in</strong><strong>the</strong>irscope,mak<strong>in</strong>g<strong>the</strong>irobservationsdifficulttogeneralizeandemploy<strong>in</strong>practice.<br />

Inthispaper,westudydatacollectedfromtendatacentersto<br />

shedlighton<strong>the</strong>irnetworkdesignandusageandtoidentifypropertiesthatcanhelpimproveoperation<strong>of</strong><strong>the</strong>irnetwork<strong>in</strong>gsubstrate.Thedatacenterswestudy<strong>in</strong>cludethreeuniversitycampus<br />

datacenters,twoprivateenterprisedatacenters,andfivecloud<br />

datacenters,three<strong>of</strong>whichrunavariety<strong>of</strong>Internet-fac<strong>in</strong>gapplicationswhile<strong>the</strong>rema<strong>in</strong><strong>in</strong>gtwopredom<strong>in</strong>antlyrunMapReduce<br />

workloads. Some<strong>of</strong><strong>the</strong>datacenterswestudyhavebeen<strong>in</strong>operationforover10years,whileo<strong>the</strong>rswerecommissionedmuch<br />

morerecently.Ourdata<strong>in</strong>cludesSNMPl<strong>in</strong>kstatisticsforalldata<br />

centers,f<strong>in</strong>e-gra<strong>in</strong>edpackettracesfromselectswitches<strong>in</strong>four<strong>of</strong><br />

<strong>the</strong>datacenters,anddetailedtopologyforfivedatacenters. By<br />

study<strong>in</strong>gdifferentclasses<strong>of</strong>datacenters,weareabletoshedlight<br />

on<strong>the</strong>question<strong>of</strong>howsimilarordifferent<strong>the</strong>yare<strong>in</strong>terms<strong>of</strong><strong>the</strong>ir<br />

networkusage,whe<strong>the</strong>rresultstakenfromoneclasscanbeapplied<br />

to<strong>the</strong>o<strong>the</strong>rs,andwhe<strong>the</strong>rdifferentsolutionswillbeneededfor<br />

design<strong>in</strong>gandmanag<strong>in</strong>g<strong>the</strong>datacenters’<strong>in</strong>ternalnetworks.<br />

Weperformatop-downanalysis<strong>of</strong><strong>the</strong>datacenters,start<strong>in</strong>gwith


<strong>the</strong>applicationsrun<strong>in</strong>eachdatacenterand<strong>the</strong>ndrill<strong>in</strong>gdownto<br />

<strong>the</strong>applications’sendandreceivepatternsand<strong>the</strong>irnetwork-level<br />

impact. Us<strong>in</strong>gpackettraces,wefirstexam<strong>in</strong>e<strong>the</strong>type<strong>of</strong>applicationsrunn<strong>in</strong>g<strong>in</strong>eachdatacenterand<strong>the</strong>irrelativecontributiontonetworktraffic.We<strong>the</strong>nexam<strong>in</strong>e<strong>the</strong>f<strong>in</strong>e-gra<strong>in</strong>edsend<strong>in</strong>gpatternsascapturedbydatatransmissionbehaviorat<strong>the</strong>packetand<br />

flowlevels.Weexam<strong>in</strong>e<strong>the</strong>sepatternsboth<strong>in</strong>aggregateandata<br />

per-applicationlevel.F<strong>in</strong>ally,weuseSNMPtracestoexam<strong>in</strong>e<strong>the</strong><br />

network-levelimpact<strong>in</strong>terms<strong>of</strong>l<strong>in</strong>kutilization,congestion,and<br />

packetdrops,and<strong>the</strong>dependence<strong>of</strong><strong>the</strong>sepropertieson<strong>the</strong>location<strong>of</strong><strong>the</strong>l<strong>in</strong>ks<strong>in</strong><strong>the</strong>networktopologyandon<strong>the</strong>time<strong>of</strong>day.<br />

Ourkeyempiricalf<strong>in</strong>d<strong>in</strong>gsare<strong>the</strong>follow<strong>in</strong>g:<br />

• Weseeawidevariety<strong>of</strong>applicationsacross<strong>the</strong>datacenters,<br />

rang<strong>in</strong>gfromcustomer-fac<strong>in</strong>gapplications,suchasWebservices,filestores,au<strong>the</strong>nticationservices,L<strong>in</strong>e-<strong>of</strong>-Bus<strong>in</strong>essapplications,andcustomenterpriseapplicationstodata<strong>in</strong>tensiveapplications,suchasMapReduceandsearch<strong>in</strong>dex<strong>in</strong>g.Wef<strong>in</strong>dthatapplicationplacementisnon-uniformacross<br />

racks.<br />

• Mostflows<strong>in</strong><strong>the</strong>datacentersaresmall<strong>in</strong>size(≤ 10KB),<br />

asignificantfraction<strong>of</strong>whichlastunderafewhundreds<strong>of</strong><br />

milliseconds,and<strong>the</strong>number<strong>of</strong>activeflowspersecondis<br />

under10,000perrackacrossalldatacenters.<br />

• Despite<strong>the</strong>differences<strong>in</strong><strong>the</strong>sizeandusage<strong>of</strong><strong>the</strong>datacenters,trafficorig<strong>in</strong>at<strong>in</strong>gfromarack<strong>in</strong>adatacenterisON/OFF<br />

<strong>in</strong>naturewithpropertiesthatfi<strong>the</strong>avy-taileddistributions.<br />

• In<strong>the</strong>clouddatacenters,amajority<strong>of</strong>trafficorig<strong>in</strong>atedby<br />

servers(80%)stayswith<strong>in</strong><strong>the</strong>rack. For<strong>the</strong>universityand<br />

privateenterprisedatacenters,most<strong>of</strong><strong>the</strong>traffic(40-90%)<br />

leaves<strong>the</strong>rackandtraverses<strong>the</strong>network’s<strong>in</strong>terconnect.<br />

• Irrespective<strong>of</strong><strong>the</strong>type,<strong>in</strong>mostdatacenters,l<strong>in</strong>kutilizations<br />

arera<strong>the</strong>rlow<strong>in</strong>alllayersbut<strong>the</strong>core.In<strong>the</strong>core,wef<strong>in</strong>d<br />

thatasubset<strong>of</strong><strong>the</strong>corel<strong>in</strong>ks<strong>of</strong>tenexperiencehighutilization.Fur<strong>the</strong>rmore,<strong>the</strong>exactnumber<strong>of</strong>highlyutilizedcore<br />

l<strong>in</strong>ksvariesovertime,butneverexceeds25%<strong>of</strong><strong>the</strong>core<br />

l<strong>in</strong>ks<strong>in</strong>anydatacenter.<br />

• Lossesoccurwith<strong>in</strong><strong>the</strong>datacenters;however,lossesarenot<br />

localizedtol<strong>in</strong>kswithpersistentlyhighutilization.Instead,<br />

lossesoccuratl<strong>in</strong>kswithlowaverageutilizationimplicat<strong>in</strong>gmomentaryspikesas<strong>the</strong>primarycause<strong>of</strong>losses.<br />

We<br />

observethat<strong>the</strong>magnitude<strong>of</strong>lossesisgreaterat<strong>the</strong>aggregationlayerthanat<strong>the</strong>edgeor<strong>the</strong>corelayers.<br />

• Weobservethatl<strong>in</strong>kutilizationsaresubjecttotime-<strong>of</strong>-day<br />

andday-<strong>of</strong>-weekeffectsacrossalldatacenters.However<strong>in</strong><br />

many<strong>of</strong><strong>the</strong>clouddatacenters,<strong>the</strong>variationsarenearlyan<br />

order<strong>of</strong>magnitudemorepronouncedatcorel<strong>in</strong>ksthanat<br />

edgeandaggregationl<strong>in</strong>ks.<br />

Tohighlight<strong>the</strong>implications<strong>of</strong>ourobservations,weconclude<br />

<strong>the</strong>paperwithananalysis<strong>of</strong>twodatacenternetworkdesignissues<br />

thathavereceivedalot<strong>of</strong>recentattention,namely,networkbisectionbandwidthand<strong>the</strong>use<strong>of</strong>centralizedmanagementtechniques.<br />

• BisectionBandwidth:Recentdatacenternetworkproposals<br />

havearguedthatdatacentersneedhighbisectionbandwidth<br />

tosupportdemand<strong>in</strong>gapplications.Ourmeasurementsshow<br />

thatonlyafraction<strong>of</strong><strong>the</strong>exist<strong>in</strong>gbisectioncapacityislikely<br />

tobeutilizedwith<strong>in</strong>agiventime<strong>in</strong>terval<strong>in</strong>all<strong>the</strong>datacenters,even<strong>in</strong><strong>the</strong>“worstcase”whereapplication<strong>in</strong>stancesare<br />

268<br />

<strong>Data</strong>Center Type<strong>of</strong> Type<strong>of</strong> #<strong>of</strong>DCs<br />

Study <strong>Data</strong>Center Apps Measured<br />

Fat-tree[1] Cloud MapReduce 0<br />

Hedera[2] Cloud MapReduce 0<br />

Portland[22] Cloud MapReduce 0<br />

BCube[13] Cloud MapReduce 0<br />

DCell[16] Cloud MapReduce 0<br />

VAL2[11] Cloud MapReduce 1<br />

MicroTE[4] Cloud MapReduce 1<br />

Flyways[18] Cloud MapReduce 1<br />

Opticalswitch<strong>in</strong>g[29] Cloud MapReduce 1<br />

ECMP.study1[19] Cloud MapReduce 1<br />

ECMP.study2[3] Cloud MapReduce 19<br />

WebServices<br />

ElasticTree[14] ANY WebServices 1<br />

SPAIN[21] Any Any 0<br />

Ourwork Cloud MapReduce 10<br />

PrivateNet Webservices<br />

Universities DistributedF’S<br />

Table1: Comparison<strong>of</strong>priordatacenterstudies,<strong>in</strong>clud<strong>in</strong>g<br />

type<strong>of</strong>datacenterandapplication.<br />

spreadacrossracksra<strong>the</strong>rthanconf<strong>in</strong>edwith<strong>in</strong>arack.This<br />

istrueevenforMapReducedatacentersthatseerelatively<br />

higherutilization.Fromthis,weconcludethatloadbalanc<strong>in</strong>gmechanismsforspread<strong>in</strong>gtrafficacross<strong>the</strong>exist<strong>in</strong>gl<strong>in</strong>ks<strong>in</strong><strong>the</strong>network’scorecanhelpmanageoccasionalcongestion,given<strong>the</strong>currentapplicationsused.<br />

• CentralizationManagement: Afewrecentproposals[2,<br />

14]havearguedforcentrallymanag<strong>in</strong>gandschedul<strong>in</strong>gnetworkwidetransmissionstomoreeffectivelyeng<strong>in</strong>eerdatacenter<br />

traffic.Ourmeasurementsshowthatcentralizedapproaches<br />

mustemployparallelismandfastroutecomputationheuristicstoscaleto<strong>the</strong>size<strong>of</strong>datacenterstodaywhilesupport<strong>in</strong>g<br />

<strong>the</strong>applicationtrafficpatternsweobserve<strong>in</strong><strong>the</strong>datacenters.<br />

Therest<strong>of</strong><strong>the</strong>paperisstructuredasfollows:wepresentrelated<br />

work<strong>in</strong>Section2and<strong>in</strong>Section3describe<strong>the</strong>datacentersstudied,<br />

<strong>the</strong>irhigh-leveldesign,andtypicaluses.InSection4,wedescribe<br />

<strong>the</strong>applicationsrunn<strong>in</strong>g<strong>in</strong><strong>the</strong>sedatacenters. InSection5,we<br />

zoom<strong>in</strong>to<strong>the</strong>microscopicproperties<strong>of</strong><strong>the</strong>variousdatacenters.<br />

InSection6,weexam<strong>in</strong>e<strong>the</strong>flow<strong>of</strong>trafficwith<strong>in</strong>datacentersand<br />

<strong>the</strong>utilization<strong>of</strong>l<strong>in</strong>ksacross<strong>the</strong>variouslayers.Wediscuss<strong>the</strong>implications<strong>of</strong>ourempirical<strong>in</strong>sights<strong>in</strong>Section7,andwesummarize<br />

ourf<strong>in</strong>d<strong>in</strong>gs<strong>in</strong>Section8.<br />

2. RELATEDWORK<br />

Thereistremendous<strong>in</strong>terest<strong>in</strong>design<strong>in</strong>gimprovednetworksfor<br />

datacenters [1,2,22,13,16,11,4,18,29,14,21];however,such<br />

workanditsevaluationisdrivenbyonlyafewstudies<strong>of</strong>datacentertraffic,andthosestudiesaresolely<strong>of</strong>huge(>10Kserver)data<br />

centers,primarilyrunn<strong>in</strong>gdatam<strong>in</strong><strong>in</strong>g,MapReducejobs,orWeb<br />

services.Table1summarizes<strong>the</strong>priorstudies.FromTable1,we<br />

observethatmany<strong>of</strong><strong>the</strong>dataarchitecturesareevaluatedwithout<br />

empiricaldatafromdatacenters. For<strong>the</strong>architecturesevaluated<br />

wi<strong>the</strong>mpiricaldata,wef<strong>in</strong>dthat<strong>the</strong>seevaluationsareperformed<br />

withtracesfromclouddatacenters.Theseobservationsimplythat<br />

<strong>the</strong>actualperformance<strong>of</strong><strong>the</strong>setechniquesundervarioustypes<strong>of</strong><br />

realisticdatacentersfound<strong>in</strong><strong>the</strong>wild(suchasenterpriseanduniversitydatacenters)isunknownandthuswearemotivatedbythis<br />

toconductabroadstudyon<strong>the</strong>characteristics<strong>of</strong>datacenters.Such<br />

astudywill<strong>in</strong>form<strong>the</strong>designandevaluation<strong>of</strong>currentandfuture<br />

datacentertechniques.


Thispaperanalyzes<strong>the</strong>networktraffic<strong>of</strong><strong>the</strong>broadestset<strong>of</strong><br />

datacentersstudiedtodate,<strong>in</strong>clud<strong>in</strong>gdatacentersrunn<strong>in</strong>gWeb<br />

servicesandMapReduceapplications,butalsoo<strong>the</strong>rcommonenterpriseandcampusdatacentersthatprovidefilestorage,au<strong>the</strong>nticationservices,L<strong>in</strong>e-<strong>of</strong>-Bus<strong>in</strong>essapplications,ando<strong>the</strong>rcustomwrittenservices.Thus,ourworkprovides<strong>the</strong><strong>in</strong>formationneeded<br />

toevaluatedatacenternetworkarchitectureproposalsunder<strong>the</strong><br />

broadrange<strong>of</strong>datacenterenvironmentsthatexist.<br />

Previousstudies[19,3]havefocusedontrafficpatternsatcoarse<br />

time-scales,report<strong>in</strong>gflowsizedistributions,number<strong>of</strong>concurrent<br />

connections,duration<strong>of</strong>congestionperiods,anddiurnalpatterns.<br />

Weextend<strong>the</strong>semeasuresbyconsider<strong>in</strong>gadditionalissues,suchas<br />

<strong>the</strong>applicationsemployed<strong>in</strong><strong>the</strong>differentdatacenters,<strong>the</strong>irtransmissionpatternsat<strong>the</strong>packetandflowlevels,<strong>the</strong>irimpactonl<strong>in</strong>k<br />

andnetworkutilizations,and<strong>the</strong>prevalence<strong>of</strong>networkhot-spots.<br />

Thisadditional<strong>in</strong>formationiscrucialtoevaluat<strong>in</strong>gtrafficeng<strong>in</strong>eer<strong>in</strong>gstrategiesanddatacenterplacement/schedul<strong>in</strong>gproposals.<br />

Theclosestpriorworksare[19]and[3];<strong>the</strong>formerfocuses<br />

onas<strong>in</strong>gleMapReducedatacenters,while<strong>the</strong>latterconsiders<br />

clouddatacentersthathostWebservicesaswellasthoserunn<strong>in</strong>g<br />

MapReduce.Nei<strong>the</strong>rstudyconsidersnon-clouddatacenters,such<br />

asenterpriseandcampusdatacenters,andnei<strong>the</strong>rprovidesascompleteapicture<strong>of</strong>trafficpatternsasthisstudy.Thekeyobservations<br />

fromBenson’sstudy[3]arethatutilizationsarehighest<strong>in</strong><strong>the</strong>core<br />

butlossesarehighestat<strong>the</strong>edge.Inourwork,weaugment<strong>the</strong>se<br />

f<strong>in</strong>d<strong>in</strong>gsbyexam<strong>in</strong><strong>in</strong>g<strong>the</strong>variations<strong>in</strong>l<strong>in</strong>kutilizationsovertime,<br />

<strong>the</strong>localization<strong>of</strong>lossestol<strong>in</strong>k,and<strong>the</strong>magnitude<strong>of</strong>lossesover<br />

time.FromKandula’sstudy[19],welearnedthatwhilemosttraffic<br />

<strong>in</strong><strong>the</strong>cloudisrestrictedtowith<strong>in</strong>arackandasignificantnumber<br />

<strong>of</strong>hot-spotsexist<strong>in</strong><strong>the</strong>network.Ourworksupplements<strong>the</strong>seresultsbyquantify<strong>in</strong>g<strong>the</strong>exactfraction<strong>of</strong>trafficthatstayswith<strong>in</strong><br />

arackforawiderange<strong>of</strong>datacenters. Inaddition,wequantify<br />

<strong>the</strong>number<strong>of</strong>hot-spots,showthatlossesaredueto<strong>the</strong>underly<strong>in</strong>gburst<strong>in</strong>ess<strong>of</strong>traffic,andexam<strong>in</strong>e<strong>the</strong>flowlevelpropertiesfor<br />

universityandprivateenterprise(bothareclasses<strong>of</strong>datacenters<br />

ignored<strong>in</strong>Kandula’sstudy[19]).<br />

Ourworkcomplementspriorworkonmeasur<strong>in</strong>gInternettraffic[20,10,25,9,8,17]bypresent<strong>in</strong>ganequivalentstudyon<strong>the</strong><br />

flowcharacteristics<strong>of</strong>applicationsandl<strong>in</strong>kutilizationswith<strong>in</strong>data<br />

centers.Wef<strong>in</strong>dthatdatacentertrafficisstatisticallydifferentfrom<br />

wideareatraffic,andthatsuchbehaviorhasseriousimplications<br />

for<strong>the</strong>designandimplementation<strong>of</strong>techniquesfordatacenter<br />

networks.<br />

3. DATASETSANDOVERVIEWOFDATA<br />

CENTERS<br />

Inthispaper,weanalyzedata-setsfrom10datacenters,<strong>in</strong>clud<strong>in</strong>g5commercialclouddatacenters,2privateenterprisedatacenters,and3universitycampusdatacenters.Foreach<strong>of</strong><strong>the</strong>sedatacenters,weexam<strong>in</strong>eoneormore<strong>of</strong><strong>the</strong>follow<strong>in</strong>gdata-sets:networktopology,packettracesfromselectswitches,andSNMPpolls<br />

from<strong>the</strong><strong>in</strong>terfaces<strong>of</strong>networkswitches. Table2summarizes<strong>the</strong><br />

datacollectedfromeachdatacenter,aswellassomekeyproperties.<br />

Table2showsthat<strong>the</strong>datacentersvary<strong>in</strong>size,both<strong>in</strong>terms<strong>of</strong><br />

<strong>the</strong>number<strong>of</strong>devicesand<strong>the</strong>number<strong>of</strong>servers.Unsurpris<strong>in</strong>gly,<br />

<strong>the</strong>largestdatacentersareusedforcommercialcomput<strong>in</strong>gneeds<br />

(allownedbyas<strong>in</strong>gleentity),with<strong>the</strong>enterpriseanduniversity<br />

datacentersbe<strong>in</strong>ganorder<strong>of</strong>magnitudesmaller<strong>in</strong>terms<strong>of</strong><strong>the</strong><br />

number<strong>of</strong>devices.<br />

Thedatacentersalsovary<strong>in</strong><strong>the</strong>irproximityto<strong>the</strong>irusers.The<br />

enterpriseanduniversitydatacentersarelocated<strong>in</strong><strong>the</strong>western/mid-<br />

269<br />

<strong>Data</strong>CenterName Number<strong>of</strong>Locations<br />

EDU1 1<br />

EDU2 1<br />

EDU3 1<br />

PRV2 4<br />

Table3:Thenumber<strong>of</strong>packettracecollectionlocationsfor<strong>the</strong><br />

datacenters<strong>in</strong>whichwewereableto<strong>in</strong>stallpacketsniffers.<br />

westernU.S.andarehostedon<strong>the</strong>premises<strong>of</strong><strong>the</strong>organizations<br />

toservelocalusers. Incontrast,<strong>the</strong>commercialdatacentersare<br />

distributedaround<strong>the</strong>world<strong>in</strong><strong>the</strong>U.S.,Europe,andSouthAmerica.<br />

Theirglobalplacementreflectsan<strong>in</strong>herentrequirementfor<br />

geo-diversity(reduc<strong>in</strong>glatencytousers),geo-redundancy(avoid<strong>in</strong>gstrikes,wars,orfibercuts<strong>in</strong>onepart<strong>of</strong><strong>the</strong>world),andregulatoryconstra<strong>in</strong>ts(somedatacannotberemovedfrom<strong>the</strong>E.U.or<br />

U.S.).<br />

Inwhatfollows,wefirstdescribe<strong>the</strong>datawecollect.We<strong>the</strong>n<br />

outl<strong>in</strong>esimilaritiesanddifferences<strong>in</strong>keyattributes<strong>of</strong><strong>the</strong>datacenters,<strong>in</strong>clud<strong>in</strong>g<strong>the</strong>irusagepr<strong>of</strong>iles,andphysicaltopology.<br />

We<br />

foundthatunderstand<strong>in</strong>g<strong>the</strong>seaspectsisrequiredtoanalyze<strong>the</strong><br />

propertiesthatwewishtomeasure<strong>in</strong>subsequentsections,suchas<br />

applicationbehavioranditsimpactonl<strong>in</strong>k-levelandnetwork-wide<br />

utilizations.<br />

3.1 <strong>Data</strong>Collection<br />

SNMPpolls: Forall<strong>of</strong><strong>the</strong>datacentersthatwestudied,we<br />

wereabletopoll<strong>the</strong>switches’SNMPMIBsforbytes-<strong>in</strong>andbytesoutatgranularitiesrang<strong>in</strong>gfrom1m<strong>in</strong>uteto30m<strong>in</strong>utes.For<strong>the</strong><br />

5commercialclouddatacentersand<strong>the</strong>2privateenterprises,we<br />

wereabletopollfor<strong>the</strong>number<strong>of</strong>packetdiscardsaswell.<br />

Foreachdatacenter,wecollectedSNMPdataforatleast10<br />

days. Insomecases(e.g.,EDU1,EDU2,EDU3,PRV1,PRV2,<br />

CLD1,CLD4),ourSNMPdataspansmultipleweeks. Thelong<br />

time-span<strong>of</strong>ourSNMPdataallowsustoobservetime-<strong>of</strong>-dayand<br />

day-<strong>of</strong>-weekdependencies<strong>in</strong>networktraffic.<br />

<strong>Network</strong>Topology: For<strong>the</strong>privateenterprisesanduniversity<br />

datacenters,weobta<strong>in</strong>edtopologyvia<strong>the</strong>CiscoCDPprotocol,<br />

whichgivesboth<strong>the</strong>networktopologyaswellas<strong>the</strong>l<strong>in</strong>kcapacities.Whenthisdataisunavailable,aswith<strong>the</strong>5clouddatacenters,weanalyzedeviceconfigurationtoderiveproperties<strong>of</strong><strong>the</strong>topology,suchas<strong>the</strong>relativecapacities<strong>of</strong>l<strong>in</strong>ksfac<strong>in</strong>gendhostsversus<br />

network-<strong>in</strong>ternall<strong>in</strong>ksversusWAN-fac<strong>in</strong>gl<strong>in</strong>ks.<br />

Packettraces: F<strong>in</strong>ally,wecollectedpackettracesfromafew<br />

<strong>of</strong><strong>the</strong>privateenterpriseanduniversitydatacenters(Table2).Our<br />

packettracecollectionspans12hoursovermultipledays.S<strong>in</strong>ceit<br />

isdifficultto<strong>in</strong>strumentanentiredatacenter,weselectedahandful<strong>of</strong>locationsatrandomperdatacenterand<strong>in</strong>stalledsnifferson<br />

<strong>the</strong>m.InTable3,wepresent<strong>the</strong>number<strong>of</strong>sniffersperdatacenter.<br />

In<strong>the</strong>smallerdatacenters(EDU1,EDU2,EDU3),we<strong>in</strong>stalled<br />

1sniffer. For<strong>the</strong>largerdatacenter(PRV2),we<strong>in</strong>stalled4sniffers.Alltraceswerecapturedus<strong>in</strong>gaCiscoportspan.Toaccount<br />

fordelay<strong>in</strong>troducedby<strong>the</strong>packetduplicationmechanismandfor<br />

endhostclockskew,web<strong>in</strong>nedresultsfrom<strong>the</strong>spans<strong>in</strong>to10microsecondb<strong>in</strong>s.<br />

3.2 High-levelUsage<strong>of</strong><strong>the</strong><strong>Data</strong><strong>Centers</strong><br />

Inthissection,weoutl<strong>in</strong>eimportanthigh-levelsimilaritiesand<br />

differencesamong<strong>the</strong>datacenterswestudied.<br />

Universitydatacenters:Thesedatacentersserve<strong>the</strong>students<br />

andadm<strong>in</strong>istrativestaff<strong>of</strong><strong>the</strong>university<strong>in</strong>question. Theyprovideavariety<strong>of</strong>services,rang<strong>in</strong>gfromsystemback-upstohost<strong>in</strong>g<br />

distributedfilesystems,E-mailservers,Webservices(adm<strong>in</strong>istra-


<strong>Data</strong>Center <strong>Data</strong>Center Location Age(Years) SNMP Packet Topology Number Number Over<br />

Role Name (CurrVer/Total) Traces Devices Servers Subscription<br />

EDU1 US-Mid 10 22 500 2:1<br />

Universities<br />

EDU2<br />

EDU3<br />

US-Mid<br />

US-Mid<br />

(7/20)<br />

N/A<br />

<br />

<br />

<br />

<br />

<br />

<br />

36<br />

1<br />

1093<br />

147<br />

47:1<br />

147:1<br />

Private<br />

PRV1<br />

PRV2<br />

US-Mid<br />

US-West<br />

(5/5)<br />

> 5<br />

<br />

<br />

X<br />

<br />

<br />

<br />

96<br />

100<br />

1088<br />

2000<br />

8:3<br />

48:10<br />

CLD1 US-West > 5 X X 562 10K 20:1<br />

Commercial<br />

CLD2<br />

CLD3<br />

US-West<br />

US-East<br />

> 5<br />

> 5<br />

<br />

<br />

X<br />

X<br />

X<br />

X<br />

763<br />

612<br />

15K<br />

12K<br />

20:1<br />

20:1<br />

CLD4 S.America (3/3) X X 427 10K 20:1<br />

CLD5 S.America (3/3) X X 427 10K 20:1<br />

Table2:Summary<strong>of</strong><strong>the</strong>10datacentersstudied,<strong>in</strong>clud<strong>in</strong>gdevices,types<strong>of</strong><strong>in</strong>formationcollected,and<strong>the</strong>number<strong>of</strong>servers.<br />

tivesitesandwebportalsforstudentsandfaculty),andmulticast<br />

videostreams. Weprovide<strong>the</strong>exactapplicationmix<strong>in</strong><strong>the</strong>next<br />

section. Intalk<strong>in</strong>gto<strong>the</strong>networkoperators,wefoundthat<strong>the</strong>se<br />

datacenters“organically”evolvedovertime,mov<strong>in</strong>gfromacollection<strong>of</strong>devices<strong>in</strong>astorageclosettoadedicatedroomforserversandnetworkdevices.As<strong>the</strong>datacentersreachedcapacity,<strong>the</strong>operatorsre-evaluated<strong>the</strong>irdesignandarchitecture.Manyoperatorschosetomovetoamorestructured,two-layertopologyand<strong>in</strong>troducedservervirtualizationtoreduceheat<strong>in</strong>gandpowerrequirementswhilecontroll<strong>in</strong>gdatacentersize.<br />

Privateenterprises:TheprivateenterpriseITdatacentersserve<br />

corporateusers,developers,andasmallnumber<strong>of</strong>customers.Unlikeuniversitydatacenters,<strong>the</strong>privateenterprisedatacenterssupportasignificantnumber<strong>of</strong>customapplications,<strong>in</strong>additionto<br />

host<strong>in</strong>gtraditionalserviceslikeEmail,storage,andWebservices.<br />

They<strong>of</strong>tenactasdevelopmenttestbeds,aswell. Thesedatacentersaredeveloped<strong>in</strong>aground-upfashion,be<strong>in</strong>gdesignedspecificallytosupport<strong>the</strong>demands<strong>of</strong><strong>the</strong>enterprise.<br />

For<strong>in</strong>stance,to<br />

satisfy<strong>the</strong>needtosupportadm<strong>in</strong>istrativeservicesandbetatest<strong>in</strong>g<br />

<strong>of</strong>database-dependentproducts,PRV1commissioned<strong>the</strong>development<strong>of</strong>an<strong>in</strong>-housedatacenter5yearsago.PRV2wasdesignedover5yearsagomostlytosupportcustomL<strong>in</strong>e-<strong>of</strong>-Bus<strong>in</strong>essapplicationsandtoprovidelog<strong>in</strong>serversforremoteusers.<br />

Commercialclouddatacenters: Unlike<strong>the</strong>firsttwoclasses<br />

<strong>of</strong>datacenters,<strong>the</strong>commercialdatacenterscatertoexternalusers<br />

and<strong>of</strong>fersupportforawiderange<strong>of</strong>Internet-fac<strong>in</strong>gservices,<strong>in</strong>clud<strong>in</strong>g:InstantMessag<strong>in</strong>g,Webmail,search,<strong>in</strong>dex<strong>in</strong>g,andvideo.Additionally,<strong>the</strong>datacentershostlarge<strong>in</strong>ternalsystemsthatsupport<strong>the</strong>externallyvisibleservices,forexampledatam<strong>in</strong><strong>in</strong>g,storage,andrelationaldatabases(e.g.,forbuddylists).Thesedatacentersare<strong>of</strong>tenpurpose-builttosupportaspecificset<strong>of</strong>applications<br />

(e.g.,withaparticulartopologyorover-subscriptionratiotosome<br />

targetapplicationpatterns),but<strong>the</strong>reisalsoatensiontomake<strong>the</strong>m<br />

asgeneralaspossiblesothat<strong>the</strong>applicationmixcanchangeover<br />

timeas<strong>the</strong>usageevolves.CLD1,CLD2,CLD3hostavariety<strong>of</strong><br />

applications,rang<strong>in</strong>gfromInstantMessag<strong>in</strong>gandWebmailtoadvertisementsandwebportals.CLD4andCLD5areprimarilyused<br />

forrunn<strong>in</strong>gMapReducestyleapplications.<br />

3.3 TopologyandComposition<strong>of</strong><strong>the</strong><strong>Data</strong><strong>Centers</strong><br />

Inthissection,weexam<strong>in</strong>e<strong>the</strong>differencesandsimilarities<strong>in</strong><br />

<strong>the</strong>physicalconstruction<strong>of</strong><strong>the</strong>datacenters. Beforeproceed<strong>in</strong>g<br />

toexam<strong>in</strong>e<strong>the</strong>physicaltopology<strong>of</strong><strong>the</strong>datacentersstudied,we<br />

presentabriefoverview<strong>of</strong><strong>the</strong>topology<strong>of</strong>agenericdatacenter.In<br />

Figure1,wepresentacanonical3-Tiereddatacenter.The3tiers<strong>of</strong><br />

<strong>the</strong>datacenterare<strong>the</strong>edgetier,whichconsists<strong>of</strong><strong>the</strong>Top-<strong>of</strong>-Rack<br />

switchesthatconnect<strong>the</strong>serversto<strong>the</strong>datacenter’snetworkfabric;<br />

<strong>the</strong>aggregationtier,whichconsists<strong>of</strong>devicesthat<strong>in</strong>terconnect<strong>the</strong><br />

270<br />

Figure1:Canonical3-Tierdatacentertopology.<br />

ToRswitches<strong>in</strong><strong>the</strong>edgelayer;and<strong>the</strong>coretier,whichconsists<br />

<strong>of</strong>devicesthatconnect<strong>the</strong>datacenterto<strong>the</strong>WAN.Insmallerdata<br />

centers,<strong>the</strong>coretierand<strong>the</strong>aggregationtierarecollapsed<strong>in</strong>toone<br />

tier,result<strong>in</strong>g<strong>in</strong>a2-Tiereddatacentertopology.<br />

Now,wefocusontopologicalstructureand<strong>the</strong>keyphysical<br />

properties<strong>of</strong><strong>the</strong>constituentdevicesandl<strong>in</strong>ks. Wef<strong>in</strong>dthat<strong>the</strong><br />

topology<strong>of</strong><strong>the</strong>datacenteris<strong>of</strong>tenanaccident<strong>of</strong>history. Some<br />

haveregularpatternsthatcouldbeleveragedfortrafficeng<strong>in</strong>eer<strong>in</strong>gstrategieslikeValiantLoadBalanc<strong>in</strong>g[11],whilemostwould<br />

requireei<strong>the</strong>rasignificantupgradeormoregeneralstrategies.<br />

Topology. Of<strong>the</strong>threeuniversitydatacenters,wef<strong>in</strong>dthattwo<br />

(EDU1,EDU2)haveevolved<strong>in</strong>toastructured2-Tierarchitecture.<br />

Thethird(EDU3)usesastar-liketopologywithahigh-capacity<br />

centralswitch<strong>in</strong>terconnect<strong>in</strong>gacollection<strong>of</strong>serverracks–adesignthathasbeenuseds<strong>in</strong>ce<strong>the</strong><strong>in</strong>ception<strong>of</strong>thisdatacenter.As<br />

<strong>of</strong>thiswrit<strong>in</strong>g,<strong>the</strong>datacenterwasmigrat<strong>in</strong>gtoamorestructured<br />

set-upsimilarto<strong>the</strong>o<strong>the</strong>rtwo.<br />

EDU1usesatopologythatissimilartoacanonical2-Tierarchitecture,withonekeydifference:while<strong>the</strong>canonical2-Tierdata<br />

centersuseTop-<strong>of</strong>-Rackswitches,whereeachswitchconnectstoa<br />

rack<strong>of</strong>20-80serversorso,<strong>the</strong>setwodatacentersutilizeMiddle<strong>of</strong>-Rackswitchesthatconnectarow<strong>of</strong>5to6rackswith<strong>the</strong>potentialtoconnectfrom120to180servers.<br />

Wef<strong>in</strong>dthatsimilar<br />

conclusionsholdforEDU2(omittedforbrevity).<br />

Theenterprisedatacentersdonotdeviatemuchfromtextbookstyleconstructions.<br />

Inparticular,<strong>the</strong>PRV1enterprisedatacenter<br />

utilizesacanonical2-TierCiscoarchitecture.ThePRV2datacenterutilizesacanonical3-TierCiscoarchitecture.


Percent <strong>of</strong> Bytes Per App<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

PRV2 1 PRV2 2 PRV2 3 PRV2 4 EDU1 EDU2 EDU3<br />

OTHER<br />

HTTP<br />

<strong>Data</strong> Center Edge Switches<br />

HTTPS<br />

LDAP<br />

SMB<br />

NCP<br />

AFS<br />

Figure2:Classification<strong>of</strong>networktraffictoapplicationus<strong>in</strong>g<br />

Bro-Id.Each<strong>of</strong><strong>the</strong>sniffersseesaverydifferentmix<strong>of</strong>applications,eventhough<strong>the</strong>first4sniffersarelocatedondifferent<br />

switches<strong>in</strong><strong>the</strong>samedatacenter.<br />

Notethatwedonothave<strong>the</strong>physicaltopologiesfrom<strong>the</strong>cloud<br />

datacenters,although<strong>the</strong>operators<strong>of</strong><strong>the</strong>sedatacenterstellusthat<br />

<strong>the</strong>senetworksuniformlyemploy<strong>the</strong>3-Tiertextbookdatacenter<br />

architecturesdescribed<strong>in</strong>[11].<br />

4. APPLICATIONSINDATACENTERS<br />

Webeg<strong>in</strong>our“top-down”analysis<strong>of</strong>datacentersbyfirstfocus<strong>in</strong>gon<strong>the</strong>applications<strong>the</strong>yrun.<br />

Inparticular,weaimtoanswer<br />

<strong>the</strong>follow<strong>in</strong>gquestions:(1)Whattype<strong>of</strong>applicationsarerunn<strong>in</strong>g<br />

with<strong>in</strong><strong>the</strong>sedatacenters? and,(2)Whatfraction<strong>of</strong>trafficorig<strong>in</strong>atedbyaswitchiscontributedbyeachapplication?<br />

Weemploypackettracedata<strong>in</strong>thisanalysisanduseBro-Id[26]<br />

toperformapplicationclassification.Recallthatwecollectedpacket<br />

tracedatafor7switchesspann<strong>in</strong>g4datacenters,namely,<strong>the</strong>universitycampusdatacenters,EDU1,EDU2,andEDU3,andaprivateenterprisedatacenter,PRV2.<br />

Tolendfur<strong>the</strong>rweighttoour<br />

observations,wespoketo<strong>the</strong>operators<strong>of</strong>eachdatacenter,<strong>in</strong>clud<strong>in</strong>g<strong>the</strong>6forwhichwedidnothavepackettracedata.Theoperatorsprovideduswithadditional<strong>in</strong>formationabout<strong>the</strong>specificapplicationsrunn<strong>in</strong>g<strong>in</strong><strong>the</strong>irdatacenters.<br />

Thetype<strong>of</strong>applicationsfoundateachedgeswitch,alongwith<br />

<strong>the</strong>irrelativetrafficvolumes,areshown<strong>in</strong>Figure2.Eachbarcorrespondstoasniffer<strong>in</strong>adatacenter,and<strong>the</strong>first4barsarefrom<strong>the</strong>4<br />

edgesswitcheswith<strong>in</strong><strong>the</strong>samedatacenter(PRV2).Inconvers<strong>in</strong>g<br />

with<strong>the</strong>operators,wediscoveredthatthisdatacenterhostsamixture<strong>of</strong>au<strong>the</strong>nticationservices(labeled“LDAP”),3-TierL<strong>in</strong>e-Of-<br />

Bus<strong>in</strong>essWebapplications(captured<strong>in</strong>“HTTP”and“HTTPS”),<br />

andcustomhome-brewedapplications(captured<strong>in</strong>“O<strong>the</strong>rs”).<br />

Bylook<strong>in</strong>gat<strong>the</strong>composition<strong>of</strong><strong>the</strong>4barsforPRV2,wecan<strong>in</strong>ferhow<strong>the</strong>servicesandapplicationsaredeployedacrossracks<strong>in</strong><br />

<strong>the</strong>datacenter.Wef<strong>in</strong>dthateach<strong>of</strong><strong>the</strong>edgeswitchesmonitored<br />

hostsaportion<strong>of</strong><strong>the</strong>back-endfor<strong>the</strong>customapplications(cap-<br />

tured<strong>in</strong>“O<strong>the</strong>rs”).Inparticular,<strong>the</strong>rackcorrespond<strong>in</strong>gtoPRV24<br />

appearstopredom<strong>in</strong>antlyhostcustomapplicationsthatcontribute<br />

over90%<strong>of</strong><strong>the</strong>trafficfromthisswitch. At<strong>the</strong>o<strong>the</strong>rswitches,<br />

<strong>the</strong>seapplicationsmakeup50%,25%,and10%<strong>of</strong><strong>the</strong>bytes,respectively.<br />

Fur<strong>the</strong>r,wef<strong>in</strong>dthat<strong>the</strong>secureportions<strong>of</strong><strong>the</strong>L<strong>in</strong>e-<strong>of</strong>-Bus<strong>in</strong>ess<br />

Webservices(labeled“HTTPS”)arehosted<strong>in</strong><strong>the</strong>rackcorrespond-<br />

271<br />

<strong>in</strong>gto<strong>the</strong>edgeswitchPRV22,butnot<strong>in</strong><strong>the</strong>o<strong>the</strong>rthreeracks<br />

monitored.Au<strong>the</strong>nticationservices(labeled“LDAP”)aredeployed<br />

across<strong>the</strong>rackscorrespond<strong>in</strong>gtoPRV21andPRV22,whichmakes<br />

upasignificantfraction<strong>of</strong>bytesfrom<strong>the</strong>seswitches(40%<strong>of</strong><strong>the</strong><br />

bytesfromPRV21and25%<strong>of</strong><strong>the</strong>byesfromPRV22). Asmall<br />

amount<strong>of</strong>LDAPtraffic(2%<strong>of</strong>allbytesonaverage)orig<strong>in</strong>ates<br />

from<strong>the</strong>o<strong>the</strong>rtwoswitches,aswell,butthisismostlyrequesttrafficheadedfor<strong>the</strong>au<strong>the</strong>nticationservices<strong>in</strong>PRV21andPRV22.F<strong>in</strong>ally,<strong>the</strong>unsecuredportions<strong>of</strong><strong>the</strong>L<strong>in</strong>e-<strong>of</strong>-Bus<strong>in</strong>ess(consist<strong>in</strong>g<strong>of</strong>helppagesandbasicdocumentation)arelocatedpredom<strong>in</strong>antlyon<strong>the</strong>rackcorrespond<strong>in</strong>gto<strong>the</strong>edgeswitchPRV23—<br />

nearly85%<strong>of</strong><strong>the</strong>trafficorig<strong>in</strong>at<strong>in</strong>gfromthisrackisHTTP.<br />

Wealsoseesomeamount<strong>of</strong>file-systemtraffic(SMB)acrossall<br />

<strong>the</strong>4switches(roughly4%<strong>of</strong><strong>the</strong>bytesonaverage).<br />

Cluster<strong>in</strong>g<strong>of</strong>applicationcomponentswith<strong>in</strong>thisdatacenterleads<br />

ustobelievethatemerg<strong>in</strong>gpatterns<strong>of</strong>virtualizationandconsolidationshavenotyetledtoapplicationsbe<strong>in</strong>gspreadacross<strong>the</strong><br />

switches.<br />

Next,wefocuson<strong>the</strong>last3bars,whichcorrespondtoanedge<br />

switcheach<strong>in</strong><strong>the</strong>3universitydatacenters,EDU1,EDU2and<br />

EDU3.While<strong>the</strong>se3datacentersserve<strong>the</strong>sametypes<strong>of</strong>userswe<br />

observevariationsacross<strong>the</strong>networks.Two<strong>of</strong><strong>the</strong>universitydata<br />

centers,EDU2andEDU3,seemtoprimarilyutilize<strong>the</strong>networkfor<br />

distributedfilesystemstraffic,namelyAFSandNCP—AFSmakes<br />

upnearlyall<strong>the</strong>trafficseenat<strong>the</strong>EDU3switch,whileNCPconstitutesnearly80%<strong>of</strong><strong>the</strong>trafficat<strong>the</strong>EDU2switch.<br />

Thetraffic<br />

at<strong>the</strong>lastdatacenter,EDU1,issplit60/40betweenWebservices<br />

(bothHTTPandHTTPS)ando<strong>the</strong>rapplicationssuchasfileshar<strong>in</strong>g<br />

(SMB).Theoperator<strong>of</strong>thisdatacentertellsusthat<strong>the</strong>datacenter<br />

alsohostspayrollandbenefitsapplications,whicharecaptured<strong>in</strong><br />

“O<strong>the</strong>rs.”<br />

Notethatwef<strong>in</strong>dfilesystemtraffictoconstituteamoresignificantfraction<strong>of</strong><strong>the</strong>switches<strong>in</strong><strong>the</strong>universitydatacenterswemonitoredcomparedto<strong>the</strong>enterprisedatacenter.<br />

Thekeytake-awaysfrom<strong>the</strong>aboveobservationsarethat(1)<br />

Thereisawidevariety<strong>of</strong>applicationsobservedbothwith<strong>in</strong>and<br />

acrossdatacenters,suchas“regular”andsecureHTTPtransactions,au<strong>the</strong>nticationservices,file-systemtraffic,andcustomapplicationsand(2)Weobserveawidevariation<strong>in</strong><strong>the</strong>composition<br />

<strong>of</strong>trafficorig<strong>in</strong>atedby<strong>the</strong>switches<strong>in</strong>agivendatacenter(see<strong>the</strong><br />

4switchescorrespond<strong>in</strong>gtoPRV2).Thisimpliesthatonecannot<br />

assumethatapplicationsareplaceduniformlyatrandom<strong>in</strong>data<br />

centers.<br />

For<strong>the</strong>rema<strong>in</strong><strong>in</strong>gdatacenters(i.e.,PRV1,CLD1–5),wherewe<br />

didnothaveaccesstopackettraces,weused<strong>in</strong>formationfromoperatorstounderstand<strong>the</strong>applicationmix.<br />

CLD4andCLD5are<br />

utilizedforrunn<strong>in</strong>gMapReducejobs,wi<strong>the</strong>achjob,scheduledto<br />

packasmany<strong>of</strong>itsnodesaspossible<strong>in</strong>to<strong>the</strong>sameracktoreduce<br />

demandon<strong>the</strong>datacenter’score<strong>in</strong>terconnect.Incontrast,CLD1,<br />

CLD2,andCLD3hostavariety<strong>of</strong>applications,rang<strong>in</strong>gfrommessag<strong>in</strong>gandWebmailtoWebportals.Each<strong>of</strong><strong>the</strong>seapplicationsiscomprised<strong>of</strong>multiplecomponentswith<strong>in</strong>tricatedependencies,deployedacross<strong>the</strong>entiredatacenter.Forexample,<strong>the</strong>Webportal<br />

requiresaccesstoanau<strong>the</strong>nticationserviceforverify<strong>in</strong>gusers,and<br />

italsorequiresaccesstoawiderange<strong>of</strong>Webservicesfromwhich<br />

dataisaggregated.InstantMessag<strong>in</strong>gsimilarlyutilizesanau<strong>the</strong>nticationserviceandcomposes<strong>the</strong>user’sbuddylistbyaggregat<strong>in</strong>g<br />

dataspreadacrossdifferentdatastores.Theapplicationmixfound<br />

<strong>in</strong><strong>the</strong>datacentersimpacts<strong>the</strong>trafficresults,whichwelookatnext.


5. APPLICATIONCOMMUNICATIONPAT-<br />

TERNS<br />

In<strong>the</strong>previoussection,wedescribed<strong>the</strong>set<strong>of</strong>applicationsrunn<strong>in</strong>g<strong>in</strong>each<strong>of</strong><strong>the</strong>10datacentersandobservedthatavariety<strong>of</strong>applicationsrun<strong>in</strong><strong>the</strong>datacentersandthat<strong>the</strong>irplacementisnonuniform.Inthissection,weanalyze<strong>the</strong>aggregatenetworktransmissionbehavior<strong>of</strong><strong>the</strong>applications,bothat<strong>the</strong>flow-levelandat<br />

<strong>the</strong>f<strong>in</strong>er-gra<strong>in</strong>edpacket-level. Specifically,weaimtoanswer<strong>the</strong><br />

follow<strong>in</strong>gquestions:(1)Whatare<strong>the</strong>aggregatecharacteristics<strong>of</strong><br />

flowarrivals,sizes,anddurations? and(2)Whatare<strong>the</strong>aggregatecharacteristics<strong>of</strong><strong>the</strong>packet-level<strong>in</strong>ter-arrivalprocessacrossallapplications<strong>in</strong>arack—thatis,howburstyare<strong>the</strong>transmissionpatterns<strong>of</strong><strong>the</strong>seapplications?Theseaspectshaveimportant<br />

implicationsfor<strong>the</strong>performance<strong>of</strong><strong>the</strong>networkanditsl<strong>in</strong>ks.<br />

Asbefore,weuse<strong>the</strong>packettraces<strong>in</strong>ouranalysis.<br />

5.1 Flow-LevelCommunication<strong>Characteristics</strong><br />

First,weexam<strong>in</strong>e<strong>the</strong>number<strong>of</strong>activeflowsacross<strong>the</strong>4data<br />

centerswherewehavepacket-leveldata,EDU1,EDU2,EDU3,<br />

andPRV2.Toidentifyactiveflows,weusealong<strong>in</strong>activitytimeout<strong>of</strong>60seconds(similartothatused<strong>in</strong>previousmeasurements<br />

studies[19]).<br />

InFigure3(a),wepresent<strong>the</strong>distribution<strong>of</strong><strong>the</strong>number<strong>of</strong>active<br />

flowswith<strong>in</strong>aonesecondb<strong>in</strong>,asseenatsevendifferentswitches<br />

with<strong>in</strong>4datacenters.Wef<strong>in</strong>dthatalthough<strong>the</strong>distributionvaries<br />

across<strong>the</strong>datacenters,<strong>the</strong>number<strong>of</strong>activeflowsatanygiven<br />

<strong>in</strong>tervalislessthan10,000. Basedon<strong>the</strong>distributions,wegroup<br />

<strong>the</strong>7monitoredswitches<strong>in</strong>totwoclasses. In<strong>the</strong>firstclassare<br />

all<strong>of</strong><strong>the</strong>universitydatacenterswitchesEDU1,EDU2andEDU3,<br />

andone<strong>of</strong><strong>the</strong>switchesfromaprivateenterprise,namelyPRV24,<br />

where<strong>the</strong>number<strong>of</strong>activeflowsisbetween10and500<strong>in</strong>90%<strong>of</strong><br />

<strong>the</strong>time<strong>in</strong>tervals.In<strong>the</strong>secondclass,are<strong>the</strong>rema<strong>in</strong><strong>in</strong>gswitches<br />

from<strong>the</strong>enterprise,namely,PRV21,PRV22,andPRV23,where<br />

<strong>the</strong>number<strong>of</strong>activeflowsisbetween1,000and5,000about90%<br />

<strong>of</strong><strong>the</strong>time.<br />

Weexam<strong>in</strong>e<strong>the</strong>flow<strong>in</strong>ter-arrivaltimes<strong>in</strong>Figure3(b).Wef<strong>in</strong>d<br />

that<strong>the</strong>timebetweennewflowsarriv<strong>in</strong>gat<strong>the</strong>monitoredswitchis<br />

lessthan10µsfor2-13%<strong>of</strong><strong>the</strong>flows. Formost<strong>of</strong><strong>the</strong>switches<strong>in</strong><br />

PRV2,80%<strong>of</strong><strong>the</strong>flowshavean<strong>in</strong>ter-arrivaltimeunder1ms.This<br />

observationsupports<strong>the</strong>results<strong>of</strong>apriorstudy[19]<strong>of</strong>aclouddata<br />

center.However,wefoundthatthisobservationdoesnotholdfor<br />

<strong>the</strong>universitydatacenters,wherewesee80%<strong>of</strong><strong>the</strong>flow<strong>in</strong>terarrivaltimeswerebetween4msand40ms,suggest<strong>in</strong>gthat<strong>the</strong>sedatacentershavelesschurnthanPRV2and<strong>the</strong>previouslystudiedclouddatacenter[19].Amongo<strong>the</strong>rissues,flow<strong>in</strong>ter-arrival<br />

timeaffectswhatk<strong>in</strong>ds<strong>of</strong>process<strong>in</strong>gcanbedoneforeachnew<br />

flowand<strong>the</strong>feasibility<strong>of</strong>logicallycentralizedcontrollersforflow<br />

placement.Wereturnto<strong>the</strong>sequestions<strong>in</strong>Section7.<br />

Next,weexam<strong>in</strong>e<strong>the</strong>distributions<strong>of</strong>flowsizesandandlengths<br />

<strong>in</strong>Figure4(a)and(b),respectively.FromFigure4(a),wef<strong>in</strong>dthat<br />

flowsizesareroughlysimilaracrossall<strong>the</strong>studiedswitchesand<br />

datacenters.Across<strong>the</strong>datacenters,wenotethat80%<strong>of</strong><strong>the</strong>flows<br />

aresmallerthan10KB<strong>in</strong>size.Most<strong>of</strong><strong>the</strong>bytesare<strong>in</strong><strong>the</strong>top10%<br />

<strong>of</strong>largeflows.FromFigure4(b),wef<strong>in</strong>dthatformost<strong>of</strong><strong>the</strong>data<br />

centers80%<strong>of</strong><strong>the</strong>flowsarelessthan11secondslong.Theseresultssupport<strong>the</strong>observationsmade<strong>in</strong>priorastudy[19]<strong>of</strong>acloud<br />

datacenter. However,wedonotethat<strong>the</strong>flows<strong>in</strong>EDU2appear<br />

tobegenerallyshorterandsmallerthan<strong>the</strong>flows<strong>in</strong><strong>the</strong>o<strong>the</strong>rdata<br />

centers. Webelievethisisdueto<strong>the</strong>nature<strong>of</strong><strong>the</strong>predom<strong>in</strong>ant<br />

applicationthataccountsforover70%<strong>of</strong><strong>the</strong>bytesat<strong>the</strong>switch.<br />

F<strong>in</strong>ally,<strong>in</strong>Figure5,weexam<strong>in</strong>e<strong>the</strong>distribution<strong>of</strong>packetsizes<br />

<strong>in</strong><strong>the</strong>studieddatacenters.Thepacketsizesexhibitabimodalpat-<br />

272<br />

CDF<br />

(a)<br />

CDF<br />

(b)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

EDU1<br />

EDU2<br />

EDU3<br />

PRV21 PRV22 PRV23 PRV24 10 100 1000 10000 100000<br />

1<br />

0.8<br />

0.6<br />

Number <strong>of</strong> Active Flows<br />

0.4<br />

0.2<br />

0<br />

EDU1<br />

EDU2<br />

EDU3<br />

PRV21 PRV22 PRV23 PRV24 10 100 1000 10000 100000<br />

Flow Interarrival Times (<strong>in</strong> usecs)<br />

Figure3: CDF<strong>of</strong><strong>the</strong>distribution<strong>of</strong><strong>the</strong>number<strong>of</strong>flowsat<br />

<strong>the</strong>edgeswitch(a)and<strong>the</strong>arrivalrateforflows(b)<strong>in</strong>EDU1,<br />

EDU2,EDU3,andPRV2.<br />

tern,withmostpacketsizescluster<strong>in</strong>garoundei<strong>the</strong>r200Bytesand<br />

1400Bytes.Surpris<strong>in</strong>gly,wefoundapplicationkeep-alivepackets<br />

asamajorreasonfor<strong>the</strong>smallpackets,withTCPacknowledgments,asexpected,be<strong>in</strong>g<strong>the</strong>o<strong>the</strong>rmajorcontributor.Uponclose<br />

<strong>in</strong>spection<strong>of</strong><strong>the</strong>packettraces,wefoundthatcerta<strong>in</strong>applications,<br />

<strong>in</strong>clud<strong>in</strong>gMSSQL,HTTP,andSMB,contributedmoresmallpacketsthanlargepackets.Inoneextremecase,wefoundanapplicationproduc<strong>in</strong>g5timesasmanysmallpacketsaslargepackets.<br />

Thisresultspeakstohowcommonlypersistentconnectionsoccur<br />

asadesignfeature<strong>in</strong>datacenterapplications,and<strong>the</strong>importance<br />

<strong>of</strong>cont<strong>in</strong>uallyma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<strong>the</strong>m.<br />

5.2 Packet-LevelCommunication<strong>Characteristics</strong><br />

Wefirstexam<strong>in</strong>e<strong>the</strong>temporalcharacteristics<strong>of</strong><strong>the</strong>packettraces.<br />

Figure6showsatime-series<strong>of</strong>packetarrivalsobservedatone<strong>of</strong><br />

<strong>the</strong>sniffers<strong>in</strong>PRV2,and<strong>the</strong>packetarrivalsexhibitanON/OFF<br />

patternatboth15msand100msgranularities.Weobservedsimilar<br />

trafficpatternsat<strong>the</strong>rema<strong>in</strong><strong>in</strong>g6switchesaswell.<br />

Per-packetarrivalprocess: Leverag<strong>in</strong>g<strong>the</strong>observationthat<br />

trafficisON/OFF,weuseapacket<strong>in</strong>ter-arrivaltimethresholdto<br />

identify<strong>the</strong>ON/OFFperiods<strong>in</strong><strong>the</strong>traces. Let arrival95be<strong>the</strong><br />

95thpercentilevalue<strong>in</strong><strong>the</strong><strong>in</strong>ter-arrivaltimedistributionataparticularswitch.Wedef<strong>in</strong>eaperiodonas<strong>the</strong>longestcont<strong>in</strong>ualperioddur<strong>in</strong>gwhichall<strong>the</strong>packet<strong>in</strong>ter-arrivaltimesaresmallerthan<br />

arrival95.Accord<strong>in</strong>gly,a period<strong>of</strong>fisaperiodbetweentwoON<br />

periods.TocharacterizethisON/OFFtrafficpattern,wefocuson<br />

threeaspects:(i)<strong>the</strong>durations<strong>of</strong><strong>the</strong>ONperiods,(ii)<strong>the</strong>durations


CDF<br />

(a)<br />

CDF<br />

(b)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

EDU1<br />

EDU2<br />

EDU3<br />

0.2<br />

0<br />

PRV21 PRV22 PRV23 PRV24 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08<br />

1<br />

0.8<br />

0.6<br />

Flow Sizes (<strong>in</strong> Bytes)<br />

0.4<br />

EDU1<br />

EDU2<br />

EDU3<br />

0.2<br />

0<br />

1 10 100<br />

PRV21 PRV22 PRV23 PRV24 1000 10000 100000 1e+06 1e+07 1e+08 1e+09<br />

Flow Lengths (<strong>in</strong> usecs)<br />

Figure4: CDF<strong>of</strong><strong>the</strong>distribution<strong>of</strong><strong>the</strong>flowsizes(a)and<strong>of</strong><br />

flowlengths(b)<strong>in</strong>PRV2,EDU1,EDU2,andEDU3.<br />

CDF<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

EDU1<br />

EDU2<br />

EDU3<br />

PRV21 PRV22 PRV23 PRV24 0 200 400 600 800 1000 1200 1400 1600<br />

Packet Size (<strong>in</strong> Bytes)<br />

Figure5:Distribution<strong>of</strong>packetsize<strong>in</strong><strong>the</strong>variousnetworks.<br />

<strong>of</strong><strong>the</strong>OFFperiods,and(iii)<strong>the</strong>packet<strong>in</strong>ter-arrivaltimeswith<strong>in</strong><br />

ONperiods.<br />

Figure7(a)shows<strong>the</strong>distribution<strong>of</strong><strong>in</strong>ter-arrivaltimeswith<strong>in</strong><br />

ONperiodsatone<strong>of</strong><strong>the</strong>switchesforPRV2. Web<strong>in</strong><strong>the</strong><strong>in</strong>terarrivaltimesaccord<strong>in</strong>gto<strong>the</strong>clockgranularity<strong>of</strong>10µs.Notethat<br />

<strong>the</strong>distributionhasapositiveskewandaheavytail.Weattempted<br />

t<strong>of</strong>itseveralheavy-taileddistributionsandfoundthat<strong>the</strong>lognormal<br />

curveproduces<strong>the</strong>bestfitwith<strong>the</strong>leastmeanerror. Figure7(b)<br />

273<br />

# <strong>of</strong> packets received<br />

0 2 4 6 8 10<br />

x 10 4<br />

Time (<strong>in</strong> Milliseconds)<br />

# packets received<br />

0 2 4 6 8 10<br />

x 10 4<br />

Time (<strong>in</strong> milliseconds)<br />

(a)15ms (b)100ms<br />

Figure6:ON/OFFcharacteristics:Timeseries<strong>of</strong><strong>Data</strong>Center<br />

traffic(number<strong>of</strong>packetspertime)b<strong>in</strong>nedbytwodifferent<br />

timescales.<br />

<strong>Data</strong>centerOffperiod ONperiodInterarrivalRate<br />

DistributionDistribution Distribution<br />

PRV 21 LognormalLognormal Lognormal<br />

PRV 22 LognormalLognormal Lognormal<br />

PRV 23 LognormalLognormal Lognormal<br />

PRV 24 LognormalLognormal Lognormal<br />

EDU1 Lognormal Weibull Weibull<br />

EDU2 Lognormal Weibull Weibull<br />

EDU3 Lognormal Weibull Weibull<br />

Table4:Thedistributionfor<strong>the</strong>parameters<strong>of</strong>each<strong>of</strong><strong>the</strong>arrivalprocesses<strong>of</strong><strong>the</strong>variousswitches.<br />

shows<strong>the</strong>distribution<strong>of</strong><strong>the</strong>durations<strong>of</strong>ONperiods. Similarto<br />

<strong>the</strong><strong>in</strong>ter-arrivaltimedistribution,thisONperioddistributionalso<br />

exhibitsapositiveskewandfitswellwithalognormalcurve.The<br />

sameobservationcanbeappliedto<strong>the</strong>OFFperioddistributionas<br />

well,asshown<strong>in</strong>Figure7(c).<br />

Wefoundqualitativelysimilarcharacteristicsat<strong>the</strong>o<strong>the</strong>r6<br />

switcheswherepackettraceswerecollected.However,<strong>in</strong>fitt<strong>in</strong>ga<br />

distributionto<strong>the</strong>packettraces(Table4),wefoundthatonly<strong>the</strong><br />

OFFperiodat<strong>the</strong>differentswitchesconsistentlyfit<strong>the</strong>lognormal<br />

distribution. For<strong>the</strong>ONperiodsand<strong>in</strong>terarrivalrates,wefound<br />

thatbestdistributionwasei<strong>the</strong>rWeibullandlognormal,vary<strong>in</strong>gby<br />

datacenter.<br />

Ourf<strong>in</strong>d<strong>in</strong>gs<strong>in</strong>dicatethatcerta<strong>in</strong>positiveskewedandheavytaileddistributionscanmodeldatacenterswitchtraffic.Thishighlightsadifferencebetween<strong>the</strong>datacenterenvironmentand<strong>the</strong>wideareanetwork,where<strong>the</strong>long-tailedParetodistributiontypicallyshows<strong>the</strong>bestfit[27,24].<br />

Thedifferencesbetween<strong>the</strong>se<br />

distributionsshouldbetaken<strong>in</strong>toaccountwhenattempt<strong>in</strong>gtoapply<br />

modelsortechniquesfromwideareanetwork<strong>in</strong>gtodatacenters.<br />

Per-applicationarrivalprocess:Recallthat<strong>the</strong>datacenters<strong>in</strong><br />

thisanalysis,namely,EDU1,EDU2,EDU3,andPRV2,aredom<strong>in</strong>atedbyWebanddistributedfile-systemtraffic(Figure2).Wenow<br />

exam<strong>in</strong>e<strong>the</strong>arrivalprocessesfor<strong>the</strong>sedom<strong>in</strong>antapplicationsto<br />

seeif<strong>the</strong>yexpla<strong>in</strong><strong>the</strong>aggregatearrivalprocessat<strong>the</strong>correspond<strong>in</strong>gswitches.<br />

InTable5,wepresent<strong>the</strong>distributionthatbestfits<br />

<strong>the</strong>arrivalprocessfor<strong>the</strong>dom<strong>in</strong>antapplication. Fromthistable,<br />

wenoticethat<strong>the</strong>dom<strong>in</strong>antapplications<strong>in</strong><strong>the</strong>universities(EDU1,<br />

EDU2,EDU3),whichaccountfor70–100%<strong>of</strong><strong>the</strong>bytesat<strong>the</strong><br />

respectiveswitches,are<strong>in</strong>deedcharacterizedbyidenticalheavytaileddistributionsas<strong>the</strong>aggregatetraffic.<br />

However,<strong>in</strong><strong>the</strong>case<br />

<strong>of</strong>two<strong>of</strong><strong>the</strong>PRV2switches(#1and#3),wef<strong>in</strong>dthat<strong>the</strong>dom<strong>in</strong>antapplicationdiffersslightlyfrom<strong>the</strong>aggregatebehavior.Thus,<strong>in</strong><strong>the</strong>generalcase,wef<strong>in</strong>dthatsimplyrely<strong>in</strong>gon<strong>the</strong>characteristics<strong>of</strong><strong>the</strong>mostdom<strong>in</strong>antapplicationsisnotsufficienttoaccurately<br />

model<strong>the</strong>aggregatearrivalprocessesatdatacenteredgeswitches.


<strong>Data</strong>centerOffperiodInterarrivalRateONperiod Dom<strong>in</strong>ant<br />

Distribution Distribution DistributionApplications<br />

PRV 21 Lognormal Weibull Exponential O<strong>the</strong>rs<br />

PRV 22 Weibull Lognormal Lognormal LDAP<br />

PRV 23 Weibull Lognormal Exponential HTTP<br />

PRV 24 Lognormal Lognormal Weibull O<strong>the</strong>rs<br />

EDU1 Lognormal Lognormal Weibull HTTP<br />

EDU2 Lognormal Weibull Weibull NCP<br />

EDU3 Lognormal Weibull Weibull AFS<br />

Table5:Thedistributionfor<strong>the</strong>parameters<strong>of</strong>each<strong>of</strong><strong>the</strong>arrivalprocesses<strong>of</strong><strong>the</strong>dom<strong>in</strong>antapplicationsoneachswitch.<br />

(a)<br />

(b)<br />

(c)<br />

CDF<br />

CDF<br />

CDF<br />

10 0<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

10 2<br />

10 3<br />

Interarrival Times (<strong>in</strong> milliseconds)<br />

wbl: 0.013792<br />

logn: 0.011119<br />

exp: 0.059716<br />

pareto: 0.027664<br />

data<br />

10 4<br />

wbl :0.016516<br />

logn :0.016093<br />

exp :0.01695<br />

pareto :0.03225<br />

data<br />

20 30 40 50 60 70 80 90 100<br />

Length <strong>of</strong> ON−Periods (<strong>in</strong> microseconds)<br />

wbl: 0.090269<br />

logn: 0.081732<br />

exp: 0.11594<br />

pareto: 0.66908<br />

data<br />

2 3 4 5 6 7 8 9 10<br />

x 10 4<br />

Length <strong>of</strong> OFF−Periods(<strong>in</strong> milliseconds)<br />

Figure7:CDF<strong>of</strong><strong>the</strong>distribution<strong>of</strong><strong>the</strong>arrivaltimes<strong>of</strong>packets<br />

at3<strong>of</strong><strong>the</strong>switches<strong>in</strong>PRV2.Thefigureconta<strong>in</strong>sbestfitcurve<br />

forlognormal,Weibull,Pareto,andExponentialdistributions,<br />

aswellas<strong>the</strong>leastmeanerrorsforeach.<br />

F<strong>in</strong>ally,wecompare<strong>the</strong>observeddistributionsforHTTPapplications<strong>in</strong><strong>the</strong>datacenteraga<strong>in</strong>stHTTPapplications<strong>in</strong><strong>the</strong>widearea<br />

andf<strong>in</strong>dthat<strong>the</strong>distribution<strong>of</strong>ONperiods<strong>in</strong><strong>the</strong>datacenterdoes<br />

matchobservationsmadebyo<strong>the</strong>rs[7]<strong>in</strong><strong>the</strong>WAN.<br />

Thetakeawaysfromourobservationsarethat: (1)Thenumber<strong>of</strong>activeflowsataswitch<strong>in</strong>anygivensecondis,atmost,<br />

10,000flows. However,newflowscanarrivewith<strong>in</strong>rapidsuccession(10µs)<strong>of</strong>eacho<strong>the</strong>r,result<strong>in</strong>g<strong>in</strong>high<strong>in</strong>stantaneousarrival<br />

rates;(2)Mostflows<strong>in</strong><strong>the</strong>datacentersweexam<strong>in</strong>edaresmall<strong>in</strong><br />

size(≤ 10KB)andasignificantfractionlastunderafewhundreds<strong>of</strong>milliseconds;(3)<strong>Traffic</strong>leav<strong>in</strong>g<strong>the</strong>edgeswitches<strong>in</strong>a<br />

274<br />

datacenterisbursty<strong>in</strong>natureand<strong>the</strong>ON/OFF<strong>in</strong>tervalscanbe<br />

characterizedbyheavy-taileddistributions;and(4)Insomedata<br />

centers,<strong>the</strong>predom<strong>in</strong>antapplicationdrives<strong>the</strong>aggregatesend<strong>in</strong>g<br />

patternat<strong>the</strong>edgeswitch. In<strong>the</strong>generalcase,however,simply<br />

focus<strong>in</strong>gondom<strong>in</strong>antapplicationsis<strong>in</strong>sufficienttounderstand<strong>the</strong><br />

processdriv<strong>in</strong>gpackettransmission<strong>in</strong>to<strong>the</strong>datacenternetwork.<br />

In<strong>the</strong>nextsection,weanalyzel<strong>in</strong>kutilizationsat<strong>the</strong>various<br />

layerswith<strong>in</strong><strong>the</strong>datacentertounderstandhow<strong>the</strong>burstynature<strong>of</strong><br />

trafficimpacts<strong>the</strong>utilizationandpacketloss<strong>of</strong><strong>the</strong>l<strong>in</strong>ksateach<strong>of</strong><br />

<strong>the</strong>layers.<br />

6. NETWORKCOMMUNICATION<br />

PATTERNS<br />

In<strong>the</strong>twoprevioussections,weexam<strong>in</strong>ed<strong>the</strong>applicationsemployed<strong>in</strong>each<strong>of</strong><strong>the</strong>10datacenters,<strong>the</strong>irplacement,andtransmissionpatterns.<br />

Inthissection,weexam<strong>in</strong>e,with<strong>the</strong>goal<strong>of</strong><br />

<strong>in</strong>form<strong>in</strong>gdatacentertrafficeng<strong>in</strong>eer<strong>in</strong>gtechniques,howexist<strong>in</strong>g<br />

datacenterapplicationsutilize<strong>the</strong><strong>in</strong>terconnect. Inparticular,we<br />

aimtoanswer<strong>the</strong>follow<strong>in</strong>gquestions: (1)Towhatextentdoes<br />

<strong>the</strong>currentapplicationtrafficutilize<strong>the</strong>datacenter’s<strong>in</strong>terconnect?<br />

Forexample,ismosttrafficconf<strong>in</strong>edtowith<strong>in</strong>arackornot? (2)<br />

Whatis<strong>the</strong>utilization<strong>of</strong>l<strong>in</strong>ksatdifferentlayers<strong>in</strong>adatacenter?<br />

(3)How<strong>of</strong>tenarel<strong>in</strong>ksheavilyutilizedandwhatare<strong>the</strong>properties<strong>of</strong>heavilyutilizedl<strong>in</strong>ks?<br />

Forexample,howlongdoesheavy<br />

utilizationpersiston<strong>the</strong>sel<strong>in</strong>ks,anddo<strong>the</strong>highlyutilizedl<strong>in</strong>ks<br />

experiencelosses?(4)Towhatextentdol<strong>in</strong>kutilizationsvaryover<br />

time?<br />

6.1 Flow<strong>of</strong><strong>Traffic</strong><br />

Westartbyexam<strong>in</strong><strong>in</strong>g<strong>the</strong>relativeproportion<strong>of</strong>trafficgenerated<br />

by<strong>the</strong>serversthatstayswith<strong>in</strong>arack(Intra-Racktraffic)versus<br />

trafficthatleavesitsrackforei<strong>the</strong>ro<strong>the</strong>rracksorexternaldest<strong>in</strong>ations(Extra-Racktraffic).<br />

Extra-Racktrafficcanbedirectly<br />

measured,asitis<strong>the</strong>amount<strong>of</strong>trafficon<strong>the</strong>upl<strong>in</strong>ks<strong>of</strong><strong>the</strong>edge<br />

switches(i.e.,<strong>the</strong>“Top-<strong>of</strong>-Rack”switches). WecomputeIntra-<br />

Racktrafficas<strong>the</strong>differencebetween<strong>the</strong>volume<strong>of</strong>trafficgeneratedby<strong>the</strong>serversattachedtoeachedgeswitchand<strong>the</strong>traffic<br />

exit<strong>in</strong>gedgeswitches.<br />

InFigure8,wepresentabargraph<strong>of</strong><strong>the</strong>ratio<strong>of</strong>Extra-Rackto<br />

Intra-Racktraffic<strong>in</strong><strong>the</strong>10datacenterswestudied. Wenotethat<br />

apredom<strong>in</strong>antportion<strong>of</strong>server-generatedtraffic<strong>in</strong><strong>the</strong>clouddata<br />

centersCLD1–5—nearly,75%onaverage—isconf<strong>in</strong>edtowith<strong>in</strong><br />

<strong>the</strong>rack<strong>in</strong>whichitwasgenerated.<br />

RecallfromSection4thatonlytwo<strong>of</strong><strong>the</strong>se5datacenters,<br />

CLD4andCLD5,runMapReducestyleapplications,while<strong>the</strong><br />

o<strong>the</strong>rthreerunamixture<strong>of</strong>differentcustomer-fac<strong>in</strong>gWebservices.<br />

Despitethiskeydifference<strong>in</strong>usage,weobservesurpris<strong>in</strong>glylittle<br />

difference<strong>in</strong><strong>the</strong>relativeproportions<strong>of</strong>Intra-RackandExtra-Rack<br />

traffic. Thiscanbeexpla<strong>in</strong>edbyrevisit<strong>in</strong>g<strong>the</strong>nature<strong>of</strong>applications<strong>in</strong><strong>the</strong>sedatacenters:asstated<strong>in</strong>Section4,<strong>the</strong>servicesrunn<strong>in</strong>g<strong>in</strong>CLD1–3havedependenciesspreadacrossmanyservers<strong>in</strong><br />

<strong>the</strong>datacenter. Theadm<strong>in</strong>istrators<strong>of</strong><strong>the</strong>senetworkstrytocolocateapplicationsanddependentcomponents<strong>in</strong>to<strong>the</strong>sameracksto<br />

avoidshar<strong>in</strong>garackwitho<strong>the</strong>rapplications/services. LowExtra-<br />

Racktrafficisaside-effect<strong>of</strong>thisartifact.In<strong>the</strong>case<strong>of</strong>CLD4and<br />

CLD5,<strong>the</strong>operatorsassignMapReducejobstoco-locatedservers<br />

forsimilarreasons. However,faulttolerancerequiresplac<strong>in</strong>gredundantcomponents<strong>of</strong><strong>the</strong>applicationanddatastorage<strong>in</strong>todifferentracks,which<strong>in</strong>creases<strong>the</strong>Extra-Rackcommunication.Ourf<strong>in</strong>d<strong>in</strong>gs<strong>of</strong>highIntra-Racktrafficwith<strong>in</strong>datacenterssupportsobservationsmadebyo<strong>the</strong>rs[19],where<strong>the</strong>focuswasonclouddata<br />

centersrunn<strong>in</strong>gMapReduce.


Percent <strong>of</strong> <strong>Traffic</strong><br />

0 20 40 60 80 100<br />

EDU1<br />

EDU2<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

<strong>Data</strong> <strong>Centers</strong><br />

CLD2<br />

CLD3<br />

CLD4<br />

Intra-Rack Extra-Rack<br />

Figure8:Theratio<strong>of</strong>Extra-RacktoIntra-Racktraffic<strong>in</strong><strong>the</strong><br />

datacenters.<br />

Next,wefocuson<strong>the</strong>enterpriseanduniversitydatacenters.<br />

With<strong>the</strong>exception<strong>of</strong>EDU1,<strong>the</strong>seappeartobebothverydifferentfrom<strong>the</strong>clouddatacentersandqualitativelysimilartoeacho<strong>the</strong>r:atleast50%<strong>of</strong><strong>the</strong>server-orig<strong>in</strong>atedtraffic<strong>in</strong><strong>the</strong>datacentersleaves<strong>the</strong>racks,comparedwithunder25%for<strong>the</strong>clouddata<br />

centers. Thesedatacentersrunuser-fac<strong>in</strong>gapplications,suchas<br />

Webservicesandfileservers.WhilethisapplicationmixissimilartoCLD1–3discussedabove,<strong>the</strong>Intra/Extrarackusagepatterns<br />

arequitedifferent.Apossiblereasonfor<strong>the</strong>differenceisthat<strong>the</strong><br />

placement<strong>of</strong>dependentservices<strong>in</strong>enterpriseandcampusdatacentersmaynotbeasoptimizedas<strong>the</strong>clouddatacenters.<br />

6.2 L<strong>in</strong>kUtilizationsvsLayer<br />

Next,weexam<strong>in</strong>e<strong>the</strong>impact<strong>of</strong><strong>the</strong>Extra-Racktrafficon<strong>the</strong><br />

l<strong>in</strong>kswith<strong>in</strong><strong>the</strong><strong>in</strong>terconnect<strong>of</strong><strong>the</strong>variousdatacenters. Weexam<strong>in</strong>el<strong>in</strong>kutilizationasafunction<strong>of</strong>location<strong>in</strong><strong>the</strong>datacenter<br />

topology. Recallthatall10datacentersemployed2-Tieredor3-<br />

Tieredtree-likenetworks.<br />

Inperform<strong>in</strong>gthisstudy,westudiedseveralhundred5-m<strong>in</strong>ute<br />

<strong>in</strong>tervalsatrandomforeachdatacenterandexam<strong>in</strong>ed<strong>the</strong>l<strong>in</strong>kutilizationsasreportedbySNMP.InFigure9,wepresent<strong>the</strong>utilizationforl<strong>in</strong>ksacrossdifferentlayers<strong>in</strong><strong>the</strong>datacentersforonesuch<br />

representative<strong>in</strong>terval.<br />

Ingeneral,wef<strong>in</strong>dthatutilizationswith<strong>in</strong><strong>the</strong>core/aggregation<br />

layersarehigherthanthoseat<strong>the</strong>edge; thisobservationholds<br />

acrossallclasses<strong>of</strong>datacenters.Thesef<strong>in</strong>d<strong>in</strong>gssupportobservationsmadebyo<strong>the</strong>rs[3],where<strong>the</strong>focuswasonclouddatacenters.<br />

Akeypo<strong>in</strong>ttonote,notraisedbypriorwork[3],isthatacross<br />

<strong>the</strong>variousdatacenters,<strong>the</strong>rearedifferences<strong>in</strong><strong>the</strong>tail<strong>of</strong><strong>the</strong>distributionsforalllayers–<strong>in</strong>somedatacenters,suchasCLD4,<strong>the</strong>re<br />

isagreaterprevalence<strong>of</strong>highutilizationl<strong>in</strong>ks(i.e.,utilization70%<br />

orgreater)especially<strong>in</strong><strong>the</strong>corelayer,while<strong>in</strong>o<strong>the</strong>rs<strong>the</strong>reareno<br />

highutilizationl<strong>in</strong>ks<strong>in</strong>anylayer(e.g.,EDU1).Next,weexam<strong>in</strong>e<br />

<strong>the</strong>sehighutilizationl<strong>in</strong>ks<strong>in</strong>greaterdepth.<br />

6.3 Hot-spotL<strong>in</strong>ks<br />

Inthissection,westudy<strong>the</strong>hot-spotl<strong>in</strong>ks—thosewith70%<br />

orhigherutilization—unear<strong>the</strong>d<strong>in</strong>variousdatacenters,focus<strong>in</strong>g<br />

on<strong>the</strong>persistenceandprevalence<strong>of</strong>hot-spots.Morespecifically,<br />

weaimtoanswer<strong>the</strong>follow<strong>in</strong>gquestions:(1)Dosomel<strong>in</strong>ksfrequentlyappearashot-spots?Howdoesthisresultvaryacrosslayersanddatacenters?<br />

(2)Howdoes<strong>the</strong>set<strong>of</strong>hot-spotl<strong>in</strong>ks<strong>in</strong><br />

alayerchangeovertime? (3)Dohot-spotl<strong>in</strong>ksexperiencehigh<br />

packetloss?<br />

CLD5<br />

275<br />

CDF<br />

CDF<br />

CDF<br />

(a)<br />

(b)<br />

(c)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.01 0.1 1 10 100<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Edge L<strong>in</strong>k Utilization<br />

EDU1<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0<br />

0.01 0.1 1 10 100<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Agg L<strong>in</strong>k Utilization<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0<br />

0.01 0.1 1 10 100<br />

Core L<strong>in</strong>k Utilization<br />

EDU1<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

Figure9:CDF<strong>of</strong>l<strong>in</strong>kutilizations(percentage)<strong>in</strong>eachlayer.<br />

6.3.1 PersistenceandPrevalence<br />

InFigure10,wepresent<strong>the</strong>distribution<strong>of</strong><strong>the</strong>percentage<strong>of</strong><br />

time<strong>in</strong>tervalsthatal<strong>in</strong>kisahot-spot.WenotefromFigures10(a)<br />

and(b)thatveryfewl<strong>in</strong>ks<strong>in</strong>ei<strong>the</strong>r<strong>the</strong>edgeoraggregationlayersarehot-spots,andthisobservationsholdsacrossalldatacenters<br />

anddatacentertypes. Specifically,only3%<strong>of</strong><strong>the</strong>l<strong>in</strong>ks<strong>in</strong><strong>the</strong>se<br />

twolayersappearasahot-spotformorethan 0.1%<strong>of</strong>time<strong>in</strong>tervals.<br />

Whenedgel<strong>in</strong>ksarecongested,<strong>the</strong>ytendtobecongested<br />

cont<strong>in</strong>uously,as<strong>in</strong>CLD2,whereaverysmallfraction<strong>of</strong><strong>the</strong>edge<br />

l<strong>in</strong>ksappearashot-spots<strong>in</strong>90%<strong>of</strong><strong>the</strong>time<strong>in</strong>tervals.<br />

Incontrast,wef<strong>in</strong>dthat<strong>the</strong>datacentersdiffersignificantly<strong>in</strong><br />

<strong>the</strong>ircorelayers(Figure10(c)).Ourdatacenterscluster<strong>in</strong>to3hotspotclasses:<br />

(1)LowPersistence-LowPrevalence: Thisclass<strong>of</strong><br />

datacenterscomprisesthosewhere<strong>the</strong>hot-spotsarenotlocalized<br />

toanyset<strong>of</strong>l<strong>in</strong>ks. This<strong>in</strong>cludesPRV2,EDU1,EDU2,EDU3,<br />

CLD1,andCLD3,whereanygivencorel<strong>in</strong>kisahot-spotforno<br />

morethan10%<strong>of</strong><strong>the</strong>time<strong>in</strong>tervals;(2)HighPersistence-Low<br />

Prevalence:Thesecondgroup<strong>of</strong>datacentersischaracterizedby<br />

hot-spotsbe<strong>in</strong>glocalizedtoasmallnumber<strong>of</strong>corel<strong>in</strong>ks.This<strong>in</strong>cludesPRV1andCLD2where3%and8%<strong>of</strong><strong>the</strong>corel<strong>in</strong>ks,respectively,eachappearashot-spots<strong>in</strong><br />

> 50%<strong>of</strong><strong>the</strong>time<strong>in</strong>tervals;and<br />

(3)HighPersistence-HighPrevalence: F<strong>in</strong>ally,<strong>in</strong><strong>the</strong>lastgroup<br />

conta<strong>in</strong><strong>in</strong>gCLD4andCLD5,asignificantfraction<strong>of</strong><strong>the</strong>corel<strong>in</strong>ks


CDF<br />

(a)<br />

CDF<br />

CDF<br />

(b)<br />

(c)<br />

1<br />

0.995<br />

0.99<br />

0.985<br />

0.98<br />

EDU1<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.975<br />

0.01 0.1 1 10 100<br />

1<br />

0.995<br />

0.99<br />

0.985<br />

0.98<br />

% <strong>of</strong> Times an Edge L<strong>in</strong>k is a Hotspot<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.975<br />

0.01 0.1 1 10 100<br />

1<br />

0.95<br />

% <strong>of</strong> Times an Agg L<strong>in</strong>k is a Hotspot<br />

0.9<br />

EDU1<br />

EDU2<br />

0.85<br />

EDU3<br />

PRV1<br />

0.8<br />

PRV2<br />

0.75<br />

CLD1<br />

CLD2<br />

0.7<br />

0.65<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.1 1 10 100<br />

% <strong>of</strong> Times a Core L<strong>in</strong>k is a Hotspot<br />

Figure10:ACDF<strong>of</strong><strong>the</strong>fraction<strong>of</strong>timesthatl<strong>in</strong>ks<strong>in</strong><strong>the</strong>variouslayersarehot-spots.<br />

appearpersistentlyashot-spots. Specifically,roughly20%<strong>of</strong><strong>the</strong><br />

corel<strong>in</strong>ksarehot-spotsatleast50%<strong>of</strong><strong>the</strong>timeeach. Notethat<br />

bothCLD4andCLD5runMapReduceapplications.<br />

Next,weexam<strong>in</strong>e<strong>the</strong>variation<strong>in</strong><strong>the</strong>fraction<strong>of</strong><strong>the</strong>corel<strong>in</strong>ks<br />

thatarehot-spotsversustime.InFigure13,weshowourobservationsforonedatacenter<strong>in</strong>each<strong>of</strong><strong>the</strong>3hot-spotclassesjustdescribed.Fromthisfigure,weobservethateachclasshasadifferent<br />

pattern.In<strong>the</strong>lowpersistence-lowprevalencedatacenter,CLD1,<br />

wef<strong>in</strong>dthatveryfewhot-spotsoccurover<strong>the</strong>course<strong>of</strong><strong>the</strong>day,and<br />

when<strong>the</strong>ydooccur,onlyasmallfraction<strong>of</strong><strong>the</strong>corel<strong>in</strong>ksemerge<br />

ashot-spots(lessthan0.002%).However,<strong>in</strong><strong>the</strong>highpersistence<br />

classes,weobservethathot-spotsoccurthroughout<strong>the</strong>day. Interest<strong>in</strong>gly,with<strong>the</strong>highpersistence-highprevalencedatacenter,<br />

CLD5,weobservethat<strong>the</strong>fraction<strong>of</strong>l<strong>in</strong>ksthatarehot-spotsis<br />

affectedby<strong>the</strong>time<strong>of</strong>day.Equallyimportantisthatonly25%<strong>of</strong><br />

<strong>the</strong>corel<strong>in</strong>ks<strong>in</strong>CLD5areeverhot-spots.Thissuggeststhat,depend<strong>in</strong>gon<strong>the</strong>trafficmatrix,<strong>the</strong>rema<strong>in</strong><strong>in</strong>g75%<strong>of</strong><strong>the</strong>corel<strong>in</strong>ks<br />

canbeutilizedto<strong>of</strong>floadsometrafficfrom<strong>the</strong>hot-spotl<strong>in</strong>ks.<br />

6.3.2 Hot-spotsandDiscards<br />

F<strong>in</strong>ally,westudylossratesacrossl<strong>in</strong>ks<strong>in</strong><strong>the</strong>datacenters. In<br />

276<br />

CDF<br />

CDF<br />

CDF<br />

(a)<br />

(b)<br />

(c)<br />

1<br />

0.998<br />

0.996<br />

0.994<br />

0.992<br />

0.99<br />

0.988<br />

0.986<br />

0.984<br />

0.982<br />

0.001 0.01 0.1 1 10 100 1000 10000 100000<br />

1<br />

0.99<br />

0.98<br />

0.97<br />

0.96<br />

0.95<br />

0.94<br />

0.93<br />

0.92<br />

0.91<br />

0.9<br />

0.99<br />

Size <strong>of</strong> Edge Discards (<strong>in</strong> Bits)<br />

EDU1<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06 1e+07<br />

1<br />

Size <strong>of</strong> Agg Discards (<strong>in</strong> Bits)<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.98<br />

EDU1<br />

EDU2<br />

0.97<br />

EDU3<br />

PRV1<br />

0.96<br />

PRV2<br />

0.95<br />

CLD1<br />

CLD2<br />

0.94<br />

0.93<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.001 0.01 0.1 1 10 100 1000 10000<br />

Size <strong>of</strong> Core Discards (<strong>in</strong> Bits)<br />

Figure11:ACDF<strong>of</strong><strong>the</strong>number<strong>of</strong>bitslostacross<strong>the</strong>various<br />

layers.<br />

particular,westartbyexam<strong>in</strong><strong>in</strong>g<strong>the</strong>discardsfor<strong>the</strong>set<strong>of</strong>hotspotl<strong>in</strong>ks.<br />

Surpris<strong>in</strong>gly,wef<strong>in</strong>dthatnone<strong>of</strong><strong>the</strong>hot-spotl<strong>in</strong>ks<br />

experienceloss.Thisimpliesthat<strong>in</strong><strong>the</strong>datacentersstudied,loss<br />

doesnotcorrelatewithhighutilization.<br />

Tounderstandwherelossesareprevalent,weexam<strong>in</strong>eFigures11<br />

and12thatdisplay<strong>the</strong>lossratesandl<strong>in</strong>kutilizationfor<strong>the</strong>l<strong>in</strong>ks<br />

withlosses. In<strong>the</strong>coreandaggregation,all<strong>the</strong>l<strong>in</strong>kswithlosses<br />

havelessthan30%averageutilization,whereasat<strong>the</strong>edge,<strong>the</strong><br />

l<strong>in</strong>kswithlosseshavenearly60%utilization. Thefactthatl<strong>in</strong>ks<br />

withrelativelylowaverageutilizationconta<strong>in</strong>losses<strong>in</strong>dicatesthat<br />

<strong>the</strong>sel<strong>in</strong>ksexperiencemomentaryburststhatdonotpersistfora<br />

longenoughperiodto<strong>in</strong>crease<strong>the</strong>averageutilization.Thesemomentaryburstscanbeexpla<strong>in</strong>edby<strong>the</strong>burstynature<strong>of</strong><strong>the</strong>traffic<br />

(Section5).<br />

6.4 Variations<strong>in</strong>utilization<br />

Inthissection,weexam<strong>in</strong>eif<strong>the</strong>utilizationsvaryovertimeand<br />

whe<strong>the</strong>rornotl<strong>in</strong>kutilizationsarestableandpredictable.<br />

Weexam<strong>in</strong>ed<strong>the</strong>l<strong>in</strong>kutilizationoveraoneweekperiodand<br />

foundthatdiurnalpatternsexist<strong>in</strong>alldatacenters.Asanexample,<br />

Figure14presents<strong>the</strong>utilizationfor<strong>in</strong>putandoutputtrafficata


CDF<br />

(a)<br />

CDF<br />

CDF<br />

(b)<br />

(c)<br />

1<br />

0.998<br />

0.996<br />

0.994<br />

0.992<br />

0.99<br />

0.988<br />

0.986<br />

EDU1<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.984<br />

0.001 0.01 0.1 1 10 100<br />

1<br />

0.99<br />

0.98<br />

0.97<br />

0.96<br />

0.95<br />

0.94<br />

0.93<br />

0.92<br />

Utilization <strong>of</strong> Edge L<strong>in</strong>ks with Discards<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.91<br />

0.001 0.01 0.1 1 10 100<br />

1<br />

0.99<br />

Utilization <strong>of</strong> Agg L<strong>in</strong>ks with Discards<br />

0.98<br />

EDU1<br />

EDU2<br />

0.97<br />

EDU3<br />

PRV1<br />

0.96<br />

PRV2<br />

0.95<br />

CLD1<br />

CLD2<br />

0.94<br />

0.93<br />

CLD3<br />

CLD4<br />

CLD5<br />

0.001 0.01 0.1 1 10 100<br />

Utilization <strong>of</strong> Core L<strong>in</strong>ks with Discards<br />

Figure12:ACDF<strong>of</strong><strong>the</strong>utilization<strong>of</strong>l<strong>in</strong>kswithdiscards.<br />

routerport<strong>in</strong>one<strong>of</strong><strong>the</strong>clouddatacenters.The5-daytraceshows<br />

diurnalandpronouncedweekend/weekdayvariations.<br />

Toquantifythisvariation,weexam<strong>in</strong>e<strong>the</strong>differencebetween<br />

peakandtroughutilizationsforeachl<strong>in</strong>kacross<strong>the</strong>studieddata<br />

centers. InFigure15,wepresent<strong>the</strong>distribution<strong>of</strong>peakversus<br />

troughl<strong>in</strong>kutilizationsacross<strong>the</strong>variousdatacenters.Thex-axis<br />

is<strong>in</strong>percentage. Wenotethatedgel<strong>in</strong>ks<strong>in</strong>generalshowvery<br />

littlevariation(lessthan10%foraleast80%<strong>of</strong>edgel<strong>in</strong>ks).The<br />

sameistrueforl<strong>in</strong>ks<strong>in</strong><strong>the</strong>aggregationlayer(whereavailable),<br />

althoughweseeslightlygreatervariability. Inparticular,l<strong>in</strong>ks<strong>in</strong><br />

<strong>the</strong>aggregationlayer<strong>of</strong>PRV2showsignificantvariability,whereas<br />

those<strong>in</strong><strong>the</strong>o<strong>the</strong>rdatacentersdonot(variationislessthan10%for<br />

aleast80%<strong>of</strong>edgel<strong>in</strong>ks). Notethatl<strong>in</strong>kswithalowdegree<strong>of</strong><br />

variationcanberunataslowerspeedbasedonexpectedtraffic<br />

volumes.Thiscouldresult<strong>in</strong>sav<strong>in</strong>gs<strong>in</strong>networkenergycosts[14].<br />

Thevariation<strong>in</strong>l<strong>in</strong>kutilizationsat<strong>the</strong>edge/aggregationaresimilaracross<strong>the</strong>studieddatacenters.<br />

At<strong>the</strong>core,however,weare<br />

abletodist<strong>in</strong>guishbetweenseveral<strong>of</strong><strong>the</strong>datacenters.Whilemost<br />

havelowvariations(lessthan1%),wef<strong>in</strong>dthattwoclouddata<br />

centers(CLD4andCLD5)havesignificantvariations.Recallthat<br />

unlike<strong>the</strong>o<strong>the</strong>rclouddatacenters,<strong>the</strong>setwoclouddatacenters<br />

277<br />

0.002<br />

0.001<br />

0<br />

0.06<br />

0.03<br />

0<br />

0.24<br />

0.12<br />

CLD1<br />

CLD2<br />

0<br />

0 50 100 150 200 250 300<br />

Time (<strong>in</strong> 5 m<strong>in</strong>utes Intervals)<br />

CLD5<br />

Figure13:Timeseries<strong>of</strong><strong>the</strong>fraction<strong>of</strong>l<strong>in</strong>ksthatarehot-spots<br />

<strong>in</strong><strong>the</strong>corelayerforCLD1,CLD2,andCLD5.<br />

L<strong>in</strong>k Utilization<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

Firday Saturday Sunday Monday Tuesday<br />

Days <strong>of</strong> <strong>the</strong> Week<br />

In<br />

Out<br />

Figure14:Time-<strong>of</strong>-Day/Day-<strong>of</strong>-Weektrafficpatterns.<br />

runprimarilyMapReduce-stylejobs. Thelargevariationsreflect<br />

differencesbetween<strong>the</strong>periodswhendataisbe<strong>in</strong>greducedfrom<br />

<strong>the</strong>workernodesto<strong>the</strong>masterando<strong>the</strong>rperiods.<br />

Tosummarize,<strong>the</strong>keytake-awaysfromouranalysis<strong>of</strong>network<br />

trafficpatternsareasfollows:(1)Inclouddatacenters,asignificantfraction<strong>of</strong>trafficstays<strong>in</strong>side<strong>the</strong>rack,while<strong>the</strong>oppositeis<br />

trueforenterpriseandcampusdatacenters;(2)Onaverage,<strong>the</strong><br />

core<strong>of</strong><strong>the</strong>datacenteris<strong>the</strong>mostutilizedlayer,while<strong>the</strong>data<br />

centeredgeislightlyutilized;(3)Thecorelayers<strong>in</strong>variousdata<br />

centersdoconta<strong>in</strong>hot-spotl<strong>in</strong>ks.Insome<strong>of</strong><strong>the</strong>datacenters,<strong>the</strong><br />

hot-spotsappearonlyoccasionally.Insome<strong>of</strong><strong>the</strong>clouddatacenters,asignificantfraction<strong>of</strong>corel<strong>in</strong>ksappearashot-spotsalarge<br />

fraction<strong>of</strong><strong>the</strong>time. At<strong>the</strong>sametime,<strong>the</strong>number<strong>of</strong>corel<strong>in</strong>ks<br />

thatarehot-spotsatanygiventimeislessthan25%;(4)Losses<br />

arenotcorrelatedwithl<strong>in</strong>kswithpersistentlyhighutilizations.We<br />

observedlossesdooccuronl<strong>in</strong>kswithlowaverageutilization<strong>in</strong>dicat<strong>in</strong>gthatlossesareduetomomentarybursts;and(5)Ingeneral,<br />

time-<strong>of</strong>-dayandday-<strong>of</strong>-weekvariationexists<strong>in</strong>many<strong>of</strong><strong>the</strong>data<br />

centers. Thevariation<strong>in</strong>l<strong>in</strong>kutilizationismostsignificant<strong>in</strong><strong>the</strong><br />

core<strong>of</strong><strong>the</strong>datacentersandquitemoderate<strong>in</strong>o<strong>the</strong>rlayers<strong>of</strong><strong>the</strong><br />

datacenters.


CDF<br />

CDF<br />

CDF<br />

(a)<br />

(b)<br />

(c)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.01 0.1 1 10 100<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Max-Trough for Edge L<strong>in</strong>k<br />

EDU1<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0<br />

0.01 0.1 1 10 100<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Max-Trough for Agg L<strong>in</strong>k<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

0<br />

0.01 0.1 1 10 100<br />

Max-Trough for Core L<strong>in</strong>k<br />

EDU1<br />

EDU3<br />

PRV1<br />

PRV2<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

Figure15:Differencebetween<strong>the</strong>peakandtroughutilization.<br />

7. IMPLICATIONSFORDATACENTER<br />

DESIGN<br />

7.1 Role<strong>of</strong>BisectionBandwidth<br />

Severalproposals[1,22,11,2]fornewdatacenternetworkarchitecturesattempttomaximize<strong>the</strong>networkbisectionbandwidth.<br />

Theseapproaches,whilewellsuitedfordatacenters,whichrun<br />

applicationsthatstress<strong>the</strong>network’sfabricwithall-to-alltraffic,<br />

wouldbeunwarranted<strong>in</strong>datacenterswhere<strong>the</strong>bisectionbandwidthisnottaxedby<strong>the</strong>applications.Inthissection,were-evaluate<br />

<strong>the</strong>SNMPandtopologydatacapturedfrom<strong>the</strong>10datacentersand<br />

exam<strong>in</strong>ewhe<strong>the</strong>r<strong>the</strong>prevalenttrafficpatternsarelikelytostress<strong>the</strong><br />

exist<strong>in</strong>gbisectionbandwidth. Wealsoexam<strong>in</strong>ehowmuch<strong>of</strong><strong>the</strong><br />

exist<strong>in</strong>gbisectionbandwidthisneededatanygiventimetosupport<br />

<strong>the</strong>prevalenttrafficpatterns.<br />

Beforeexpla<strong>in</strong><strong>in</strong>ghowweaddress<strong>the</strong>sequestions,weprovide<br />

afewdef<strong>in</strong>itions. Wedef<strong>in</strong>e<strong>the</strong>bisectionl<strong>in</strong>ksforatiereddata<br />

centertobe<strong>the</strong>set<strong>of</strong>l<strong>in</strong>ksat<strong>the</strong>top-mosttier<strong>of</strong><strong>the</strong>datacenter’s<br />

treearchitecture;<strong>in</strong>o<strong>the</strong>rwords,<strong>the</strong>corel<strong>in</strong>ksmakeup<strong>the</strong>bisectionl<strong>in</strong>ks.Thebisectioncapacityis<strong>the</strong>aggregatecapacity<strong>of</strong><strong>the</strong>sel<strong>in</strong>ks.Thefullbisectioncapacityis<strong>the</strong>capacitythatwouldberequiredtosupportserverscommunicat<strong>in</strong>gatfulll<strong>in</strong>kspeedswith<br />

arbitrarytrafficmatricesandnooversubscription. Thefullbisec-<br />

278<br />

Precent <strong>of</strong> Bisection Utilized<br />

0 10 20 30<br />

CLD1<br />

CLD2<br />

CLD3<br />

CLD4<br />

CLD5<br />

EDU1<br />

<strong>Data</strong> Center<br />

EDU2<br />

EDU3<br />

Current<br />

Full<br />

Figure16:Thefirstbaris<strong>the</strong>ratio<strong>of</strong>aggregateservertraffic<br />

overBisectionBWand<strong>the</strong>secondbaris<strong>the</strong>ratio<strong>of</strong>aggregate<br />

servertrafficoverfullbisectioncapacity. They-axisdisplays<br />

utilizationasapercentage.<br />

tioncapacitycanbecomputedassimply<strong>the</strong>aggregatecapacity<strong>of</strong><br />

<strong>the</strong>serverNICs.<br />

Return<strong>in</strong>gto<strong>the</strong>questionsposedearlier<strong>in</strong>thissection,weuse<br />

SNMPdatatocompute<strong>the</strong>follow<strong>in</strong>g:(1)<strong>the</strong>ratio<strong>of</strong><strong>the</strong>current<br />

aggregateserver-generatedtrafficto<strong>the</strong>currentbisectioncapacity<br />

and(2)<strong>the</strong>ratio<strong>of</strong><strong>the</strong>currenttrafficto<strong>the</strong>fullbisectioncapacity.<br />

Indo<strong>in</strong>gso,wemake<strong>the</strong>assumptionthat<strong>the</strong>bisectionl<strong>in</strong>kscan<br />

betreatedasas<strong>in</strong>glepool<strong>of</strong>capacityfromwhichall<strong>of</strong>feredtraffic<br />

candraw. Whilethismaynotbetrue<strong>in</strong>allcurrentnetworks,it<br />

allowsustodeterm<strong>in</strong>ewhe<strong>the</strong>rmorecapacityisneededorra<strong>the</strong>r<br />

betteruse<strong>of</strong>exist<strong>in</strong>gcapacityisneeded(forexample,byimprov<strong>in</strong>g<br />

rout<strong>in</strong>g,topology,or<strong>the</strong>migration<strong>of</strong>applicationservers<strong>in</strong>side<strong>the</strong><br />

datacenter).<br />

InFigure16,wepresent<strong>the</strong>setworatiosforeach<strong>of</strong><strong>the</strong>data<br />

centersstudied.Recall(fromTable2)thatalldatacentersareoversubscribed,mean<strong>in</strong>gthatifallserverssentdataasfastas<strong>the</strong>ycan<br />

andalltrafficleft<strong>the</strong>racks,<strong>the</strong>n<strong>the</strong>bisectionl<strong>in</strong>kswouldbefully<br />

congested(wewouldexpectt<strong>of</strong><strong>in</strong>dutilizationratiosover100%).<br />

However,wef<strong>in</strong>d<strong>in</strong>Figure16that<strong>the</strong>prevalenttrafficpatternsare<br />

suchthat,even<strong>in</strong><strong>the</strong>worstcasewhereallserver-generatedtraffic<br />

isassumedtoleave<strong>the</strong>rackhost<strong>in</strong>g<strong>the</strong>server,<strong>the</strong>aggregateoutput<br />

fromserversissmallerthan<strong>the</strong>network’scurrentbisectioncapacity.<br />

Thismeansevenif<strong>the</strong>applicationsweremovedaroundand<br />

<strong>the</strong>trafficmatrixchanged,<strong>the</strong>currentbisectionwouldstillbemore<br />

thansufficientandnomorethan25%<strong>of</strong>itwouldbeutilizedacross<br />

alldatacenters,<strong>in</strong>clud<strong>in</strong>g<strong>the</strong>MapReducedatacenters.F<strong>in</strong>ally,we<br />

notethat<strong>the</strong>aggregateoutputfromserversisanegligiblefraction<br />

<strong>of</strong><strong>the</strong>idealbisectioncapacity<strong>in</strong>allcases.Thisimpliesthatshould<br />

<strong>the</strong>sedatacentersbeequippedwithanetworkthatprovidesfullbisectionbandwidth,atleast95%<strong>of</strong>thiscapacitywouldgounused<br />

andbewastedbytoday’strafficpatterns.<br />

Thus,<strong>the</strong>prevalenttrafficpatterns<strong>in</strong><strong>the</strong>datacenterscanbesupportedby<strong>the</strong>exist<strong>in</strong>gbisectioncapacity,evenifapplicationswere<br />

placed<strong>in</strong>suchawaythat<strong>the</strong>rewasmore<strong>in</strong>ter-racktrafficthan<br />

existstoday.Thisanalysisassumesthat<strong>the</strong>aggregatecapacity<strong>of</strong><br />

<strong>the</strong>bisectionl<strong>in</strong>ksformsasharedresourcepoolfromwhichall<br />

<strong>of</strong>feredtrafficcandraw.If<strong>the</strong>topologypreventssome<strong>of</strong>feredtrafficfromreach<strong>in</strong>gsomel<strong>in</strong>ks,<strong>the</strong>nsomel<strong>in</strong>kscanexperiencehigh<br />

utilizationwhileo<strong>the</strong>rsseelowutilization.Even<strong>in</strong>thissituation,<br />

however,<strong>the</strong>issueisone<strong>of</strong>chang<strong>in</strong>g<strong>the</strong>topologyandselect<strong>in</strong>g<br />

arout<strong>in</strong>galgorithmthatallows<strong>of</strong>feredtraffictodraweffectively<br />

PRV1<br />

PRV2


from<strong>the</strong>exist<strong>in</strong>gcapacity,ra<strong>the</strong>rthanaquestion<strong>of</strong>add<strong>in</strong>gmore<br />

capacity. Centralizedrout<strong>in</strong>g,discussednext,couldhelp<strong>in</strong>construct<strong>in</strong>g<strong>the</strong>requisitenetworkpaths.<br />

7.2 CentralizedControllers<strong>in</strong><strong>Data</strong><strong>Centers</strong><br />

Thearchitecturesforseveralproposals[1,22,12,2,14,21,4,<br />

18,29]rely<strong>in</strong>someformorano<strong>the</strong>ronacentralizedcontroller<br />

forconfigur<strong>in</strong>groutesorfordissem<strong>in</strong>at<strong>in</strong>grout<strong>in</strong>g<strong>in</strong>formationto<br />

endhosts. Acentralizedcontrollerisonlypracticalifitisableto<br />

scaleuptomeet<strong>the</strong>demands<strong>of</strong><strong>the</strong>trafficcharacteristicswith<strong>in</strong><strong>the</strong><br />

datacenters.Inthissection,weexam<strong>in</strong>ethisissue<strong>in</strong><strong>the</strong>context<strong>of</strong><br />

<strong>the</strong>flowpropertiesthatweanalyzed<strong>in</strong>Section5.<br />

Inparticular,wefocuson<strong>the</strong>proposals(Hedera[2],MicroTE[4]<br />

andElasticTree[14])thatrelyonOpenFlowandNOX[15,23].In<br />

anOpenFlowarchitecture,<strong>the</strong>firstpacket<strong>of</strong>aflow,whenencounteredataswitch,canbeforwardedtoacentralcontrollerthatdeterm<strong>in</strong>es<strong>the</strong>routethat<strong>the</strong>packetshouldfollow<strong>in</strong>ordertomeetsome<br />

network-wideobjective.Alternatively,toelim<strong>in</strong>ate<strong>the</strong>setupdelay,<br />

<strong>the</strong>centralcontrollercanprecomputeaset<strong>of</strong>networkpathsthat<br />

meetnetwork-wideobjectivesand<strong>in</strong>stall<strong>the</strong>m<strong>in</strong>to<strong>the</strong>networkat<br />

startuptime.<br />

Ourempiricalobservations<strong>in</strong>Section5,haveimportantimplicationsforsuchcentralizedapproaches.First,<strong>the</strong>factthat<strong>the</strong>number<strong>of</strong>activeflowsissmall(seeFigure4(a))impliesthatswitchesenabledwithOpenFlowcanmakedowithasmallflowtable,which<br />

isaconstra<strong>in</strong>edresourceonswitchestoday.<br />

Second,flow<strong>in</strong>ter-arrivaltimeshaveimportantimplicationsfor<br />

<strong>the</strong>scalability<strong>of</strong><strong>the</strong>controller.Asweobserved<strong>in</strong>Section5,asignificantnumber<strong>of</strong>newflows(2–20%)canarriveatagivenswitchwith<strong>in</strong>10µs<strong>of</strong>eacho<strong>the</strong>r.Theswitchmustforward<strong>the</strong>firstpackets<strong>of</strong><strong>the</strong>seflowsto<strong>the</strong>controllerforprocess<strong>in</strong>g.Evenif<strong>the</strong>datacenterhasasfewasa100edgeswitches,<strong>in</strong><strong>the</strong>worstcase,acontrollercansee10newflowsperµsor10millionflowspersecond.Depend<strong>in</strong>gon<strong>the</strong>complexity<strong>of</strong><strong>the</strong>objectiveimplementedat<br />

<strong>the</strong>controller,comput<strong>in</strong>garouteforeach<strong>of</strong><strong>the</strong>seflowscouldbe<br />

expensive.Forexample,priorwork[5]showedacommoditymach<strong>in</strong>ecomput<strong>in</strong>gasimpleshortestpathforonly50Kflowarrivals<br />

persecond. Thus,toscale<strong>the</strong>throughput<strong>of</strong>acentralizedcontrolframeworkwhilesupport<strong>in</strong>gcomplexrout<strong>in</strong>gobjectives,we<br />

mustemployparallelism(i.e.,usemultipleCPUspercontrollerand<br />

multiplecontrollers)and/orusefasterbutlessoptimalheuristicsto<br />

computeroutes. Priorwork[28]hasshown,throughparallelism,<br />

<strong>the</strong>ability<strong>of</strong>acentralcontrollertoscaleto20millionflowsper<br />

second.<br />

F<strong>in</strong>ally,<strong>the</strong>flowdurationandsizealsohaveimplicationsfor<strong>the</strong><br />

centralizedcontroller.Thelengths<strong>of</strong>flowsdeterm<strong>in</strong>e<strong>the</strong>relative<br />

impact<strong>of</strong><strong>the</strong>latencyimposedbyacontrolleronanewflow.Recall<br />

thatwefoundthatmostflowslastlessthan100ms.Priorwork[5]<br />

showedthanittakesreactivecontrollers,whichmakedecisionsat<br />

flowstartuptime,approximately10msto<strong>in</strong>stallflowentriesfor<br />

newflows.Givenourresults,thisimposesa10%delayoverhead<br />

onmostflows. Additionalprocess<strong>in</strong>gdelaymaybeacceptable<br />

forsometraffic,butmightbeunacceptableforo<strong>the</strong>rk<strong>in</strong>ds. For<br />

<strong>the</strong>class<strong>of</strong>workloadsthatf<strong>in</strong>dsuchadelayunacceptable,Open-<br />

Flowprovidesaproactivemechanismthatallows<strong>the</strong>controllers,<br />

atswitchstartuptime,to<strong>in</strong>stallflowentries<strong>in</strong><strong>the</strong>switches.This<br />

proactivemechanismelim<strong>in</strong>ates<strong>the</strong>10msdelaybutlimits<strong>the</strong>controllertoproactivealgorithms.<br />

Insummary,itappears<strong>the</strong>numberand<strong>in</strong>ter-arrivaltime<strong>of</strong>data<br />

centerflowscanbehandledbyasufficientlyparallelizedimplementation<strong>of</strong><strong>the</strong>centralizedcontroller.However,<strong>the</strong>overhead<strong>of</strong><br />

reactivelycomput<strong>in</strong>gflowplacementsisareasonablefraction<strong>of</strong><br />

<strong>the</strong>length<strong>of</strong><strong>the</strong>typicalflow.<br />

279<br />

8. SUMMARY<br />

Inthispaper,weconductedanempiricalstudy<strong>of</strong><strong>the</strong>network<br />

traffic<strong>of</strong>10datacentersspann<strong>in</strong>gthreeverydifferentcategories,<br />

namelyuniversitycampus,privateenterprisedatacenters,andcloud<br />

datacentersrunn<strong>in</strong>gWebservices,customer-fac<strong>in</strong>gapplications,<br />

and<strong>in</strong>tensiveMap-Reducejobs.To<strong>the</strong>best<strong>of</strong>ourknowledge,this<br />

is<strong>the</strong>broadest-everlarge-scalemeasurementstudy<strong>of</strong>datacenters.<br />

Westartedourstudybyexam<strong>in</strong><strong>in</strong>g<strong>the</strong>applicationsrunwith<strong>in</strong><br />

<strong>the</strong>variousdatacenters. Wefoundthatavariety<strong>of</strong>applications<br />

aredeployedandthat<strong>the</strong>yareplacednon-uniformlyacrossracks.<br />

Next,westudied<strong>the</strong>transmissionproperties<strong>of</strong><strong>the</strong>applications<strong>in</strong><br />

terms<strong>of</strong><strong>the</strong>flowandpacketarrivalprocessesat<strong>the</strong>edgeswitches.<br />

Wediscoveredthat<strong>the</strong>arrivalprocessat<strong>the</strong>edgeswitchesis<br />

ON/OFF<strong>in</strong>naturewhere<strong>the</strong>ON/OFFdurationscanbecharacterizedbyheavy-taileddistributions.Inanalyz<strong>in</strong>g<strong>the</strong>flowsthatconstitute<strong>the</strong>searrivalprocess,weobservedthatflowswith<strong>in</strong><strong>the</strong>data<br />

centersstudiedaregenerallysmall<strong>in</strong>sizeandseveral<strong>of</strong><strong>the</strong>seflows<br />

lastonlyafewmilliseconds.<br />

Westudied<strong>the</strong>implications<strong>of</strong><strong>the</strong>deployeddatacenterapplicationsand<strong>the</strong>irtransmissionpropertieson<strong>the</strong>datacenternetwork<br />

anditsl<strong>in</strong>ks.Wefoundthatmost<strong>of</strong><strong>the</strong>servergeneratedtraffic<strong>in</strong><br />

<strong>the</strong>clouddatacentersstayswith<strong>in</strong>arack,while<strong>the</strong>oppositeistrue<br />

forcampusdatacenters. Wefoundthatat<strong>the</strong>edgeandaggregationlayers,l<strong>in</strong>kutilizationsarefairlylowandshowlittlevariation.<br />

Incontrast,l<strong>in</strong>kutilizationsat<strong>the</strong>corearehighwithsignificant<br />

variationsover<strong>the</strong>course<strong>of</strong>aday. Insomedatacenters,asmall<br />

butsignificantfraction<strong>of</strong>corel<strong>in</strong>ksappeartobepersistentlycongested,but<strong>the</strong>reisenoughsparecapacity<strong>in</strong><strong>the</strong>coretoalleviate<br />

congestion. Weobservedlosseson<strong>the</strong>l<strong>in</strong>ksthatarelightlyutilizedonaverageandarguedthat<strong>the</strong>selossescanbeattributedto<br />

<strong>the</strong>burstynature<strong>of</strong><strong>the</strong>underly<strong>in</strong>gapplicationsrunwith<strong>in</strong><strong>the</strong>data<br />

centers.<br />

On<strong>the</strong>whole,ourempiricalobservationscanhelp<strong>in</strong>formdata<br />

centertrafficeng<strong>in</strong>eer<strong>in</strong>gandQoSapproaches,aswellasrecent<br />

techniquesformanag<strong>in</strong>go<strong>the</strong>rresources,suchasdatacenternetworkenergyconsumption.T<strong>of</strong>ur<strong>the</strong>rhighlight<strong>the</strong>implications<strong>of</strong>ourstudy,were-exam<strong>in</strong>edrecentdatacenterproposalsandarchitectures<strong>in</strong>light<strong>of</strong>ourresults.Inparticular,wedeterm<strong>in</strong>edthatfullbisectionbandwidthisnotessentialforsupport<strong>in</strong>gcurrentapplications.Wealsohighlightedpracticalissues<strong>in</strong>successfullyemploy<strong>in</strong>gcentralizedrout<strong>in</strong>gmechanisms<strong>in</strong>datacenters.Ourempiricalstudyisbynomeansall-encompass<strong>in</strong>g.Werecognizethat<strong>the</strong>remaybeo<strong>the</strong>rdatacenters<strong>in</strong><strong>the</strong>wildthatmayor<br />

maynotshareall<strong>the</strong>propertiesthatwehaveobserved.Ourwork<br />

po<strong>in</strong>tsoutthatitisworthcloselyexam<strong>in</strong><strong>in</strong>g<strong>the</strong>differentdesignand<br />

usagepatterns,as<strong>the</strong>reareimportantdifferencesandcommonalities.<br />

9. ACKNOWLEDGMENTS<br />

Wewouldliketothank<strong>the</strong>operatorsat<strong>the</strong>variousuniversities,<br />

onl<strong>in</strong>eservicesproviders,andprivateenterprisesforboth<strong>the</strong>time<br />

anddatathat<strong>the</strong>yprovidedus. Wewouldalsoliketothank<strong>the</strong><br />

anonymousreviewersfor<strong>the</strong>ir<strong>in</strong>sightfulfeedback.<br />

Thisworkissupported<strong>in</strong>partbyanNSFFINDgrant(CNS-<br />

0626889),anNSFCAREERAward(CNS-0746531),anNSFNetSE<br />

grant(CNS-0905134),andbygrantsfrom<strong>the</strong>University<strong>of</strong><br />

Wiscons<strong>in</strong>-MadisonGraduateSchool.TheophilusBensonissupportedbyanIBMPhDFellowship.<br />

10. REFERENCES<br />

[1] M.Al-Fares,A.Loukissas,andA.Vahdat.Ascalable,<br />

commoditydatacenternetworkarchitecture.InSIGCOMM,<br />

pages63–74,2008.


[2]M.Al-Fares,S.Radhakrishnan,B.Raghavan,W.College,<br />

N.Huang,andA.Vahdat.Hedera:Dynamicflowschedul<strong>in</strong>g<br />

fordatacenternetworks.InProceed<strong>in</strong>gs<strong>of</strong>NSDI2010,San<br />

Jose,CA,USA,April2010.<br />

[3]T.Benson,A.Anand,A.Akella,andM.Zhang.<br />

Understand<strong>in</strong>g<strong>Data</strong>Center<strong>Traffic</strong><strong>Characteristics</strong>.In<br />

Proceed<strong>in</strong>gs<strong>of</strong><strong>Sigcomm</strong>Workshop:ResearchonEnterprise<br />

<strong>Network</strong>s,2009.<br />

[4]T.Benson,A.Anand,A.Akella,andM.Zhang.Thecasefor<br />

f<strong>in</strong>e-gra<strong>in</strong>edtrafficeng<strong>in</strong>eer<strong>in</strong>g<strong>in</strong>datacenters.In<br />

Proceed<strong>in</strong>gs<strong>of</strong>INM/WREN’10,SanJose,CA,USA,April<br />

2010.<br />

[5]M.Casado,M.J.Freedman,J.Pettit,J.Luo,N.McKeown,<br />

andS.Shenker.Ethane:tak<strong>in</strong>gcontrol<strong>of</strong><strong>the</strong>enterprise.In<br />

SIGCOMM,2007.<br />

[6]J.DeanandS.Ghemawat.MapReduce:simplifieddata<br />

process<strong>in</strong>gonlargeclusters.volume51,pages107–113,<br />

NewYork,NY,USA,2008.ACM.<br />

[7]A.B.Downey.Evidenceforlong-taileddistributions<strong>in</strong><strong>the</strong><br />

<strong>in</strong>ternet.InInProceed<strong>in</strong>gs<strong>of</strong>ACMSIGCOMMInternet<br />

MeasurmentWorkshop,pages229–241.ACMPress,2001.<br />

[8]M.Fomenkov,K.Keys,D.Moore,andK.Claffy.<br />

Longitud<strong>in</strong>alstudy<strong>of</strong>Internettraffic<strong>in</strong>1998-2003.In<br />

WISICT’04:Proceed<strong>in</strong>gs<strong>of</strong><strong>the</strong>W<strong>in</strong>terInternational<br />

SymposiumonInformationandCommunication<br />

Technologies,pages1–6.Tr<strong>in</strong>ityCollegeDubl<strong>in</strong>,2004.<br />

[9]H.J.Fowler,W.E.Leland,andB.Bellcore.Localarea<br />

networktrafficcharacteristics,withimplicationsfor<br />

broadbandnetworkcongestionmanagement.IEEEJournal<br />

onSelectedAreas<strong>in</strong>Communications,9:1139–1149,1991.<br />

[10] C.Fraleigh,S.Moon,B.Lyles,C.Cotton,M.Khan,<br />

D.Moll,R.Rockell,T.Seely,andC.Diot.Packet-level<br />

trafficmeasurementsfrom<strong>the</strong>Spr<strong>in</strong>tIPbackbone.IEEE<br />

<strong>Network</strong>,17:6–16,2003.<br />

[11] A.Greenberg,J.R.Hamilton,N.Ja<strong>in</strong>,S.Kandula,C.Kim,<br />

P.Lahiri,D.A.Maltz,P.Patel,andS.Sengupta.VL2:a<br />

scalableandflexibledatacenternetwork.InSIGCOMM,<br />

2009.<br />

[12] A.Greenberg,P.Lahiri,D.A.Maltz,P.Patel,and<br />

S.Sengupta.Towardsanextgenerationdatacenter<br />

architecture:scalabilityandcommoditization.InPRESTO<br />

’08:Proceed<strong>in</strong>gs<strong>of</strong><strong>the</strong>ACMworkshoponProgrammable<br />

routersforextensibleservices<strong>of</strong>tomorrow,pages57–62,<br />

NewYork,NY,USA,2008.ACM.<br />

[13] C.Guo,G.Lu,D.Li,H.Wu,X.Zhang,Y.Shi,C.Tian,<br />

Y.Zhang,andS.Lu.BCube:AHighPerformance,<br />

Server-centric<strong>Network</strong>ArchitectureforModular<strong>Data</strong><br />

<strong>Centers</strong>.InProceed<strong>in</strong>gs<strong>of</strong><strong>the</strong>ACMSIGCOMM2009<br />

Conferenceon<strong>Data</strong>Communication,Barcelona,Spa<strong>in</strong>,<br />

August17-212009.<br />

[14] B.Heller,S.Seetharaman,P.Mahadevan,Y.Yiakoumis,<br />

P.Sharma,S.Banerjee,andN.McKeown.Elastictree:<br />

Sav<strong>in</strong>genergy<strong>in</strong>datacenternetworks.April2010.<br />

280<br />

[15] NOX:AnOpenFlowController.<br />

http://noxrepo.org/wp/.<br />

[16] C.Guo,H.Wu,K.Tan,L.Shi,Y.Zhang,andS.Lu.Dcell:a<br />

scalableandfault-tolerantnetworkstructurefordatacenters.<br />

InSIGCOMM’08:Proceed<strong>in</strong>gs<strong>of</strong><strong>the</strong>ACMSIGCOMM<br />

2008conferenceon<strong>Data</strong>communication,pages75–86,New<br />

York,NY,USA,2008.ACM.<br />

[17] W.JohnandS.Tafvel<strong>in</strong>.Analysis<strong>of</strong>Internetbackbone<br />

trafficandheaderanomaliesobserved.InIMC’07:<br />

Proceed<strong>in</strong>gs<strong>of</strong><strong>the</strong>7thACMSIGCOMMconferenceon<br />

Internetmeasurement,pages111–116,NewYork,NY,USA,<br />

2007.ACM.<br />

[18] S.Kandula,J.Padhye,andP.Bahl.Flywaystode-congest<br />

datacenternetworks.InProc.ACMHotnets-VIII,NewYork<br />

City,NY.USA.,Oct.2009.<br />

[19] S.Kandula,S.Sengupta,A.Greenberg,P.Patel,and<br />

R.Chaiken.TheNature<strong>of</strong><strong>Data</strong>Center<strong>Traffic</strong>:<br />

MeasurementsandAnalysis.InIMC,2009.<br />

[20] W.E.Leland,M.S.Taqqu,W.Will<strong>in</strong>ger,andD.V.Wilson.<br />

On<strong>the</strong>self-similarnature<strong>of</strong>e<strong>the</strong>rnettraffic.InSIGCOMM<br />

’93:Conferenceproceed<strong>in</strong>gsonCommunications<br />

architectures,protocolsandapplications,pages183–193,<br />

NewYork,NY,USA,1993.ACM.<br />

[21] J.Mudigonda,P.Yalagandula,M.Al-Fares,andJ.C.Mogul.<br />

Spa<strong>in</strong>:Cotsdata-centere<strong>the</strong>rnetformultipath<strong>in</strong>gover<br />

arbitrarytopologies.InProceed<strong>in</strong>gs<strong>of</strong>NSDI2010,SanJose,<br />

CA,USA,April2010.<br />

[22] R.NiranjanMysore,A.Pamboris,N.Farr<strong>in</strong>gton,N.Huang,<br />

P.Miri,S.Radhakrishnan,V.Subramanya,andA.Vahdat.<br />

Portland:ascalablefault-tolerantlayer2datacenternetwork<br />

fabric.InSIGCOMM,2009.<br />

[23] TheOpenFlowSwitchConsortium.<br />

http://www.openflowswitch.org/.<br />

[24] V.Paxson.Empirically-DerivedAnalyticModels<strong>of</strong><br />

Wide-AreaTCPConnections.2(4):316–336,Aug.1994.<br />

[25] V.Paxson.Measurementsandanalysis<strong>of</strong>end-to-end<strong>in</strong>ternet<br />

dynamics.Technicalreport,1997.<br />

[26] V.Paxson.Bro:asystemfordetect<strong>in</strong>gnetwork<strong>in</strong>truders<strong>in</strong><br />

real-time.InSSYM’98:Proceed<strong>in</strong>gs<strong>of</strong><strong>the</strong>7thconferenceon<br />

USENIXSecuritySymposium,pages3–3,Berkeley,CA,<br />

USA,1998.USENIXAssociation.<br />

[27] V.PaxsonandS.Floyd.Wideareatraffic:<strong>the</strong>failure<strong>of</strong><br />

poissonmodel<strong>in</strong>g.IEEE/ACMTrans.Netw.,3(3):226–244,<br />

1995.<br />

[28] A.Tavakoli,M.Casado,T.Koponen,andS.Shenker.<br />

Apply<strong>in</strong>gnoxto<strong>the</strong>datacenter.InProc.<strong>of</strong>workshoponHot<br />

Topics<strong>in</strong><strong>Network</strong>s(HotNets-VIII),2009.<br />

[29] G.Wang,D.G.Andersen,M.Kam<strong>in</strong>sky,M.Kozuch,<br />

T.S.E.Ng,K.Papagiannaki,M.Glick,andL.Mummert.<br />

Yourdatacenterisarouter:Thecaseforreconfigurable<br />

opticalcircuitswitchedpaths.InProc.ACMHotnets-VIII,<br />

NewYorkCity,NY.USA.,Oct.2009.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!