14.07.2013 Views

Candu,Mitev,Quella,VS,Saleur

Candu,Mitev,Quella,VS,Saleur

Candu,Mitev,Quella,VS,Saleur

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Harmonics of<br />

Gauge Theory<br />

Darmstadt, July 2009<br />

Volker Schomerus


Intro: QFT & Statistical Mechanics<br />

QFT in path integral formulation<br />

System of statistical mechanics<br />

lattice<br />

i j<br />

<br />

critical exponent


Intro: ST & Harmonic Analysis<br />

Particle in S 1 with radius R:<br />

q = e -β<br />

String on S 1: momentum winding<br />

T-duality: R 2/R ; w ↔ n<br />

oscillations


Intro: Gauge/String duality<br />

(SUSY) U(N c) Quantum gauge theories in 4D<br />

↔ String theories in 5D Anti-deSitter geometry<br />

[Polyakov] [Maldacena]<br />

Observables ψ Stringy Harmonics<br />

crit. exponents Eigenvalues of Δ S<br />

Plan: 1 – AdS/CFT Correspondence<br />

Gauge Theory, N=4 SYM, CFT; Strings in AdS, supercosets<br />

2 – Stringy Harmonic Analysis<br />

Compact supercosets; e.g. stringy HA on Calabi-Yau CP N-1|N


Quantum Gauge Theory<br />

Observables are<br />

gauge invariants<br />

Lattice:<br />

lattice<br />

holonomy<br />

U ij<br />

N c x N c<br />

matrices<br />

Weight of plaquette:


N=4 Super Yang-Mills Theory<br />

same on all<br />

length scales<br />

6 matrix valued scalars<br />

→ Conformal Quantum Field Theory<br />

Symmetries: U(4) ~ SO(6) `R-symmetry’ and<br />

4D conformal group SO(2,4)<br />

Poincare, Dilations,<br />

Special Conformal<br />

combine with 4 x 4 fermionic symmetries into<br />

Lie Supergroup PSU(2,2|4)


Conformal Quantum Field Theory<br />

There is unitary representation R of SO(2,4)<br />

Dilations:<br />

Eigenvalues of Δ = conformal weights Δ ψ<br />

0<br />

Δψ depends on gYM & Nc: Δψ = Δψ + δψ(λ,Nc) 2<br />

λ = gYM Nc ‘t Hooft coupling<br />

classical dim anomalous dim


Maldacena’s AdS/CFT duality<br />

Conjecture: [Maldacena] N=4 SYM is dual to<br />

String theory on AdS 5 x S 5<br />

x = (x 0 ,..x 3 )<br />

Parameters are related by<br />

line element on S 5<br />

string coupling string length


ST in AdS 5 x S 5 & Supercosets<br />

Symmetries of AdS 5 x S 5 : SO(2,4) x SO(6)<br />

bosonic<br />

PSU(2,2|4)<br />

SO(1,4) x SO(5)<br />

same as in Gauge Theory!<br />

Construction of superstring on AdS 5 x S 5<br />

involves coset superspace<br />

admits action of PSU(2,2|4)<br />

bosonic<br />

base is<br />

[Metsaev,Tseytlin]<br />

[Berkovits]<br />

AdS 5 x S 5<br />

+32 fermionic<br />

coordinates


Compact Symmetric Superspaces<br />

with Ricci-flat metric:<br />

OSP(2S+2|2S)<br />

OSP(2S+1|2S)<br />

U(N|N)<br />

U(N-1|N)xU(1)<br />

→ S2S+1|2S<br />

→ CPN-1|N<br />

.<br />

includes S 5<br />

Calabi-Yau<br />

including string corrections<br />

G/G Z2<br />

OSP(2S+2|2S)<br />

OSP(2S+2-n|2S) x SO(n)<br />

U(N|N)<br />

U(N-n|N) x U(n)<br />

• note: c v (GL(N|N)) = 0 = c v (OSP(2S+2|2S))


Calabi-Yau Calabi Yau Superspaces CP N-1|N 1|N<br />

Twistorial CY CP 3|4 ↔ N=4 Super Yang Mills [Witten]<br />

complex bosonic fermionic<br />

CP N-1|N possess single Kaehler parameter t<br />

complexified size<br />

Complex line bundles with<br />

Perform Harmonic Analysis for as function of parameter t


Harmonic Analysis for CP 1|2<br />

Recall: Harmonic Analysis on CP 1 ~ S 2 gives<br />

u(2) Casimir / R 2 Cartan generator<br />

monopole charge k<br />

Harmonic Analysis for CP 1|2<br />

pu(2|2) character


ST Harmonic Analysis for CP 1|2<br />

open string has<br />

two ends<br />

[<strong>Candu</strong>,<strong>Mitev</strong>,<strong>Quella</strong>,<strong>VS</strong>,<strong>Saleur</strong>]<br />

• Obtained by summing all order perturbative expansion<br />

possible because of target space SUSY<br />

• Tested through extensive numerical lattice simulations


ST Harmonic Analysis for CP 1|2<br />

[<strong>Candu</strong>,<strong>Mitev</strong>,<strong>Quella</strong>,<strong>VS</strong>,<strong>Saleur</strong>]<br />

λ t is universal (depends only on t, k 1,k 2)


ST Harmonic Analysis for CP 1|2<br />

[<strong>Candu</strong>,<strong>Mitev</strong>,<strong>Quella</strong>,<strong>VS</strong>,<strong>Saleur</strong>]<br />

Branching fcts at R = ∞ from decomposition of<br />

explicitly known


ST Harmonic Analysis for CP 1|2<br />

[<strong>Candu</strong>,<strong>Mitev</strong>,<strong>Quella</strong>,<strong>VS</strong>,<strong>Saleur</strong>]<br />

Value of Quadratic Casimir<br />

in representation of pu(2|2)


ST Harmonic Analysis for CP 1|2<br />

[<strong>Candu</strong>,<strong>Mitev</strong>,<strong>Quella</strong>,<strong>VS</strong>,<strong>Saleur</strong>]<br />

Character χ Λ of<br />

representation Λ


f 00<br />

Lattice Models and Numerics<br />

boundary term<br />

level 1<br />

level 2<br />

level 3<br />

w=w(R)<br />

acts on states space:<br />

w=w(R)=0 : non-inter-<br />

secting loop model<br />

[<strong>Candu</strong>,Read,<strong>Saleur</strong>]<br />

[<strong>Candu</strong>,<strong>Mitev</strong>,<strong>Quella</strong>,<br />

<strong>VS</strong>, <strong>Saleur</strong>]


Conclusions & Open Problems<br />

Similar results exist for supersphere S 2S+1|2S<br />

[<strong>Mitev</strong>, <strong>Quella</strong> <strong>VS</strong>]<br />

At R=1: Z(S 3|2 ) decomposes into characters<br />

of affine osp(4|2) at level k = -1/2<br />

[<strong>Candu</strong>,<br />

<strong>Saleur</strong>]<br />

→ there exists description as Gross-Neveu model<br />

~ Landau Ginsburg description of Calabi-Yau<br />

• Affine symmetries for Calabi-Yau CP N-1|N ?<br />

• Ext. to non-compact Supercosets (AdS 5) ?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!