14.07.2013 Views

Insect Immunity & Drosophila Gut Immune Response

Insect Immunity & Drosophila Gut Immune Response

Insect Immunity & Drosophila Gut Immune Response

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Bruno Lemaitre<br />

Global Health Institute EPFL


<strong>Insect</strong> Characteristics & Peculiarities<br />

One of the most diverse animal group (> 70% of animal species)<br />

Include *many vectors of human diseases (mosquito, tse-tse flies…)<br />

*many damaging crop species<br />

* many beneficial microbes (bee, silkworm….)<br />

Many adaptive traits, thriving on varied ecological habitats and diets<br />

Animal feeding Parasitoid Plant feeding<br />

=>Strong capacity to deal with microbes


The enemies of insects<br />

• Viruses: Baculovirus<br />

• Bacteria: Bacillus thuringiensis<br />

• Fungi : Beauveria bassiana<br />

• Parasites : Plasmodium falciparum<br />

• Other insects: parasitoid wasps


Baculovirus infection of an insect host<br />

-circular, double stranded DNA<br />

- 80 -180 kbp<br />

- mostly restricted to invertebrates<br />

- used in biotechnology<br />

- biopesticide


Bacillus thuringiensis<br />

- Gram-positive, soil-bacterium,<br />

- express a pore forming toxin : the<br />

Cry toxin<br />

- used as Biopesticide<br />

- used in transgenic crop (Bt Maize)<br />

Crystal<br />

Spore


Beauveria Bassiana: an entomopathogenic fungus<br />

- produces lipase, chitinase<br />

and proteases<br />

- crosses through the cuticle<br />

of insects<br />

- used in field to protect<br />

crop from insects


Plasmodium development in Anopheles<br />

Derived from Riehle et al, 2003<br />

48 hours : Initiation of<br />

Oocysts development<br />

14 hours : ookinetes<br />

formation<br />

24 hours :<br />

Ookinetes penetration


Strategies to block malaria transmission<br />

- Mosquito Nets<br />

- Reduce standing water<br />

- <strong>Insect</strong>icide<br />

- Transgenic mosquitoes<br />

Shin et al, J. Exp. Biol., 2003


A wasp parasitizing of <strong>Drosophila</strong><br />

larvae<br />

Parasitoids wasps<br />

A wasp parasitizing a moth caterpillar


II - How insects (<strong>Drosophila</strong>)<br />

defend themselves<br />

• Antiviral defense<br />

• Physical and Chemical barriers<br />

– Reactive oxygen species<br />

• Cellular <strong>Immunity</strong><br />

– Phagocytosis<br />

– Capsule formation<br />

– Hemolymph coagulation and nodule formation<br />

• Humoral <strong>Immunity</strong><br />

– Melanization<br />

– Antimicrobial peptides


<strong>Drosophila</strong> antiviral defense<br />

1) RNA interference<br />

2) Endosymbiont-mediated immunity<br />

- Wolbachia are common intracellular bacteria of arthropods<br />

Purified particles of DCV<br />

- Wolbachia are transmitted vertically through host eggs, and manipulate host<br />

reproduction to increase transmission to the next generation.<br />

=> New studies suggest that Wolbachia infections in <strong>Drosophila</strong> can<br />

confer resistance to viruses and therefore act as mutualists


I - How insects defend themselves<br />

• Antiviral defense<br />

• Physical and Chemical barriers<br />

– Reactive oxygen species<br />

• Cellular <strong>Immunity</strong><br />

– Phagocytosis<br />

– Capsule formation<br />

– Hemolymph coagulation and nodule formation<br />

• Humoral <strong>Immunity</strong><br />

– Melanization<br />

– Antimicrobial peptides


Physical and chemical<br />

barriers<br />

Chitin-containing membranes<br />

- Cuticle<br />

- Peritrophic matrix<br />

In the gut:<br />

- Acidity<br />

- Digestive enzymes and lysozymes<br />

- Production of Reactive Oxygen<br />

Species (ROS) by DUOX<br />

PM:peritrophic matrix<br />

Mv: microvilli B: bacteria


I - How insects defend themselves<br />

• Antiviral defense<br />

• Physical and Chemical barriers<br />

– Reactive oxygen species<br />

• Cellular <strong>Immunity</strong><br />

– Phagocytosis<br />

– Capsule formation<br />

– Hemolymph coagulation and nodule formation<br />

• Humoral <strong>Immunity</strong><br />

– Melanization<br />

– Antimicrobial peptides


Cellular immunity<br />

Cell type<br />

plasmatocyte<br />

lamellocyte<br />

Bacterial infection<br />

Parasitoid Egg<br />

Function<br />

Phagocytosis<br />

Encapsulation


I - How insects defend themselves<br />

• Antiviral defense<br />

• Physical and Chemical barriers<br />

– Reactive oxygen species<br />

• Cellular <strong>Immunity</strong><br />

– Phagocytosis<br />

– Capsule formation<br />

– Hemolymph coagulation and nodule formation<br />

• Humoral <strong>Immunity</strong><br />

– Melanization<br />

– Antimicrobial peptides


Activation of melanization<br />

Melanization:<br />

activation of a<br />

proteolytic<br />

cascade


The <strong>Drosophila</strong> immune system: conclusions<br />

• <strong>Drosophila</strong> is now one of the best-characterized host defense systems<br />

among the metazoans.<br />

• <strong>Drosophila</strong> has multiple defense “modules” that can be deployed in a<br />

coordinated response against distinct pathogens => activation of the<br />

appropriate response<br />

• There are similarities between <strong>Drosophila</strong> host defense and essential<br />

facets of vertebrate innate immunity (signalling pathways)<br />

Future studies should investigate the links between <strong>Drosophila</strong><br />

immune defense and the ecology of this insect


The <strong>Gut</strong><br />

- Site of digestion<br />

- Major entry site of pathogens<br />

- Exposed to commensals<br />

(yeast, bacterial flora)<br />

Epithelial<br />

immunity<br />

Innate <strong>Immunity</strong><br />

Yersinia (Plague)<br />

Rickettsia (Typhus)<br />

Plasmodium (Malaria)<br />

Bacterial<br />

tolerance


- A Gram-negative, phytopathogenic bacteria<br />

- A natural <strong>Drosophila</strong> pathogen<br />

- Induces an Imd-dependent gut immune response upon oral<br />

infection<br />

Natural infection<br />

Filter paper<br />

+ sucrose
<br />

+ bacteria<br />

Wild-type<br />

Wild-type<br />

Imd mutant<br />

Control<br />

Ecc15<br />

Ecc15<br />

Diptericin-lacZ


Wild-type<br />

E. coli<br />

DAP-PGN<br />

LYS- PGN<br />

PGRP<br />

-LC E12<br />

E. coli<br />

Diptericin-lacZ<br />

No role for the Toll pathway in the gut<br />

Imd<br />

Relish<br />

κB κB κB<br />

DAP PGN<br />

AMPs<br />

PGRP-LB<br />

PGRP-LC


PGRP-LB is en enzymatic PGRP regulated<br />

by the Imd pathway<br />

PGRP-LB<br />

<strong>Immune</strong><br />

non-reactive<br />

fragments<br />

Imd<br />

Relish<br />

κB κB κB<br />

DAP PGN<br />

AMPs<br />

PGRP-LB<br />

PGRP-LB


PGRP-LB<br />

Western Blot<br />

(gut extracts)<br />

wild-type<br />

C NI NI<br />

Relish E20<br />

Larval guts<br />

(fed with Ecc15)<br />

Wild-type PGRP-LB RNAi<br />

Dpt-LacZ Dpt-LacZ Dpt-GFP


Absence of infection Severe infection<br />

bacteria<br />

Imd<br />

pathway<br />

RELISH<br />

Imd<br />

Imd<br />

Imd<br />

pathway<br />

RELISH<br />

pathway pathway<br />

RELISH RELISH


The Imd pathway is activated throughout the gut,<br />

BUT<br />

Diptericin shows patterned expression<br />

Diptericin-lacZ<br />

?<br />

PGRP LC<br />

Imd pathway<br />

κB κB κB<br />

Control<br />

Caudal<br />

Diptericin<br />

Caudal RNAi<br />

Ryu et al (2008) Science 319<br />

⇒ additional regulatory elements<br />

restrict Diptericin expression<br />

in some gut cells.


PGRP-LC<br />

Wild-Type<br />

Imd<br />

Relish<br />

κB κB κB<br />

Caudal<br />

AMP Genes<br />

Ryu et al Science 2008<br />

PGRP-LC<br />

Caudal knock down<br />

Imd<br />

Relish<br />

κB κB κB<br />

AMP Genes


Tolerance to gut indigenous flora<br />

• Compartmentation: restriction of antimicrobial<br />

peptide production in the hindgut to protect the<br />

bacterial flora<br />

• Negative feed-back: Tight regulation of the Imd<br />

pathway to prevent its activation by indigenous<br />

bacteria


Both invasive and indigenous bacteria<br />

stimulate epithelium renewal<br />

Nicolas Buchon<br />

Nichole Broderick<br />

Buchon et al., Cell Host & Microbe 2009<br />

Buchon et al., Genes and Dev 2009


Major Remodeling of the <strong>Gut</strong> upon gut infection is<br />

required for barrier integrity


lumen<br />

Ohlstein et al. 2006, Nature<br />

Micchelli et al. 2006, Nature<br />

Stem cell<br />

Epithelial cells


Mitosis marker staining : phospho histone H3<br />

An#‐PH3
<br />

staining
<br />

An/
PH3
<br />

DAPI
<br />

Unchallenged
 Oral
infec/on
with
Ecc15
<br />

UC
<br />

An/
PH3
<br />

An#
PH3
<br />

E1
 E2
<br />

Number of PH3<br />

Positive cells / midgut<br />

UC
 Ecc15

inf
<br />

lumen



Duox
<br />

1
<br />

Imd
<br />

H2O2 /O ‐<br />

2 
<br />

AMPs
<br />

1:

Recogni/on
of
bacteria
&
immune
response
<br />

2:
Bacteria
destruc/on
&
damage
to
gut
cells
<br />

3:
Cell
repair
&
epithelium
renewal
<br />


What
causes
damage
and
epithelium
renewal
?
<br />


What
are
the
pathways
?
<br />


What
is
the
relevance
upon
infec/on
?
<br />


What
happens
with
different
types
of
bacteria
?
<br />

?<br />

2
<br />

?<br />

?<br />

3
<br />

Buchon et al., 2009, Cell Host & Microbe


Epithelium stress & damage<br />

Bacterial direct stress “Collateral damage”<br />

Oxidative<br />

Stress ???


WT
<br />

Unchallenged
<br />

WT+Glutathione
<br />

WT
+
Paraquat
<br />

Proliferation : clones of lacZ positive cells Number of mitotic cells<br />

Ecc15
<br />

PH3
posi#ve
cells
<br />

WT
 WT
 dUOX‐
IR
 UAS‐IRC
 WT
 W<br />

UC
 Paraqua<br />

Ecc15 



WT<br />

JAK-STAT<br />

deficient<br />

Unchallenged Ecc15 infection<br />

esg‐gal4;
UAS‐GFP
<br />

esg‐gal4,
UAS‐GFP;
uas‐Socs36E



upd3-Gal4 UAS-GFP


Intestinal<br />

muscles<br />

Intestinal<br />

epithelium<br />

<strong>Gut</strong> lumen<br />

Regula/on
of
ep/helium
renewal
upon
Ecc15
infec/on
<br />

Upd3<br />

DUOX







<br />

Oxida/ve
burst
<br />

JAK/STAT
?
<br />

Vein<br />

JAK/STAT
 EGFR/MAPK



Percentage of survival<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

<strong>Immune</strong> response<br />

0 2 4 6 8 10<br />

Days post treatment<br />

Ecc15<br />

esg-gal4 uas Socs36E / DAPI<br />

WT<br />

UAS-dFADD Relish IR<br />

UAS-upd3 IR<br />

UAS UAS-STAT-IR Dome(dom<br />

neg)<br />

In enterocytes<br />

In ISCs<br />

Epithelium renewal


Pe-GFP<br />

Control P. entomophila


Control<br />

Ecc15<br />

P. entomophila<br />

Control<br />

P.entomophila<br />

Lack of gut integrity<br />

death<br />

DAPI


Two important host defense mechanisms:<br />

- ROS production by DUOX<br />

- Antimicrobial peptide production by the Imd pathway<br />

Negative feedback on the Imd pathway and compartimentation of Imd<br />

pathway activation are important for tolerance and the establishment of<br />

a beneficial flora<br />

A successful response to infection requires coordination of BOTH immune<br />

and homeostatic (repair) pathways<br />

Commensal bacteria stimulate epithelium renewal at a basal level<br />

Epithelium renewal as a target for gut pathogens


A Bacterial Effector Targets Mad2L2, an APC<br />

Inhibitor, to Modulate Host Cell Cycling<br />

Hiroki Iwai et al. 2007 Cell, Vol 130, 611-623, 2007<br />

Summary<br />

…Here, we show that the Shigella effector IpaB,<br />

when delivered into epithelial cells, causes cellcycle<br />

arrest by targeting Mad2L2, an anaphasepromoting<br />

complex/cyclosome (APC) inhibitor. ..<br />

These results strongly indicate that Shigella<br />

employ special tactics to influence epithelial<br />

renewal in order to promote bacterial<br />

colonization of intestinal epithelium<br />

microvilli<br />

Tight Jonction<br />

crypt<br />

α-defensin<br />

Paneth Cells<br />

Lymphocyte<br />

intra-épithélial<br />

Stem Cell<br />

Richard Locksley et al, <strong>Immunity</strong>.1er édition, p57.)


Collaborators<br />

GHI,
EPFL,
Lausanne
(CH)
<br />

Nicolas
Buchon
<br />

Nichole
Broderick
<br />

Takayuki
Kuraishi
<br />

Onya
Opota
<br />

David
Welchman
<br />

Claudine
Neyen
<br />

Sveta
Chakrabar/
<br />

Mathilde
Gendrin
<br />

Jeremy
Herren
<br />

Olivier
Binggeli
<br />

Jean
Philippe
Boquete
<br />

Allison
Bardin
(Ins/tut
Pasteur,
France)
<br />

Dominique
Mengin‐Lecreulx
(Orsay,
France)
<br />

Sylvain
Praverdan
(CIG,
Lausanne)
<br />

CGM,
Gif‐sur‐Yveae
(F)
<br />

Anna
Zaidman‐Rémy
<br />

Mickael
Poidevin



- A successful response to infection requires coordination of BOTH<br />

immune and homeostatic pathways<br />

- Commensal bacteria stimulate epithelium renewal at a basal level<br />

- Epithelium renewal as a target for gut pathogens<br />

Buchon et al.; Genes and Dev 2009


Imd deficient flies have a higher<br />

bacterial load AND an altered flora<br />

composition<br />

PH3
posi/ve
cells
<br />

**<br />

***<br />

This higher bacterial load leads to<br />

increased epithelium renewal


<strong>Gut</strong>s of 30-day-old Relish E20 flies displayed altered gut<br />

morphology that are not observed in axenic conditions.<br />

Relish E20 ,30 days<br />

Conventionally raised Axenic


The EGFR pathway coordinates <strong>Drosophila</strong> stem cell<br />

proliferation and gut remodeling in response to infection


EC<br />

PM<br />

B<br />

Crop<br />

midgut<br />

cardia<br />

DAPI<br />

Pe rfp<br />

Hml-gal4, UAS-GFP<br />

Malpighian<br />

tubules<br />

rectum<br />

Humans <strong>Drosophila</strong><br />

Physical barriers Mucus Peritrophic matrix<br />

Chemicals, enzymatic barriers Low pH, proteases, lysozymes<br />

Flora<br />

Complex (>500 sp)<br />

Dense (10 12 /ml)<br />

<strong>Immune</strong> Defense AMPs, GALT, M cells<br />

Simple (30sp)<br />

Rare<br />

ROS, AMPs,<br />

<strong>Gut</strong>-associated Hemocytes


Esg‐GFP
:
<br />

Stem
cells,
<br />

enteroblasts
<br />

newly
<br />

generated
<br />

enterocytes
<br />

Micchelli
et
al.2006
<br />

Mosaic
<br />

analysis
<br />

lacZ+
clones
<br />

Harrison
and
Perrimon
1993
<br />

Unchallenged
 Oral
infec/on
with
Ecc15


Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!