14.07.2013 Views

Brucella

Brucella

Brucella

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Brucella</strong><br />

Pathogenesis<br />

Septses 09 2010<br />

Jean-Pierre GORVEL


ISOLATION OF BRUCELLAE


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston<br />

B.melitensis 1887 (Bruce - Carruana-Secluna)


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston<br />

B.melitensis 1887 (Bruce - Carruana-Secluna)<br />

B.abortus 1895 (Bang)


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston<br />

B.melitensis 1887 (Bruce - Carruana-Secluna)<br />

B.abortus 1895 (Bang)<br />

B.suis 1914 (Traun)


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston<br />

B.melitensis 1887 (Bruce - Carruana-Secluna)<br />

B.abortus 1895 (Bang)<br />

B.suis 1914 (Traun)<br />

B.ovis 1953 (Buddle and Boyes)


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston<br />

B.melitensis 1887 (Bruce - Carruana-Secluna)<br />

B.abortus 1895 (Bang)<br />

B.suis 1914 (Traun)<br />

B.ovis 1953 (Buddle and Boyes)<br />

B.canis 1966 (Carmichael)


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston<br />

B.melitensis 1887 (Bruce - Carruana-Secluna)<br />

B.abortus 1895 (Bang)<br />

B.suis 1914 (Traun)<br />

B.ovis 1953 (Buddle and Boyes)<br />

B.canis 1966 (Carmichael)<br />

B.neotomae 1957 (Stoenner and Zackman)


ISOLATION OF BRUCELLAE<br />

19 th Century (1860) first description of disease by<br />

Marston<br />

B.melitensis 1887 (Bruce - Carruana-Secluna)<br />

B.abortus 1895 (Bang)<br />

B.suis 1914 (Traun)<br />

B.ovis 1953 (Buddle and Boyes)<br />

B.canis 1966 (Carmichael)<br />

B.neotomae 1957 (Stoenner and Zackman)<br />

B.cetaceae and B.pinnipediae in marine mammals 1994


HUMAN PATHOGENS


HUMAN PATHOGENS<br />

B.melitensis


HUMAN PATHOGENS<br />

B.melitensis<br />

B.abortus


HUMAN PATHOGENS<br />

B.melitensis<br />

B.abortus<br />

B.suis (except biovar 2)


HUMAN PATHOGENS<br />

B.melitensis<br />

B.abortus<br />

B.suis (except biovar 2)<br />

B.canis


HUMAN PATHOGENS<br />

B.melitensis<br />

B.abortus<br />

B.suis (except biovar 2)<br />

B.canis


HUMAN PATHOGENS<br />

B.melitensis<br />

B.abortus<br />

B.suis (except biovar 2)<br />

B.canis<br />

Human infection due to B.cetaceae or<br />

B.pinnipediae reported at 2004


BRUCELLOSIS DUE TO B.melitensis


B.melitensis GLOBAL STATUS


B.melitensis GLOBAL STATUS<br />

B.melitensis never reported


B.melitensis GLOBAL STATUS<br />

B.melitensis never reported B.melitensis eradicated


B.melitensis GLOBAL STATUS<br />

B.melitensis never reported B.melitensis eradicated<br />

B.melitensis infected


B.melitensis GLOBAL STATUS<br />

B.melitensis never reported B.melitensis eradicated<br />

B.melitensis infected B.melitensis reported in the past<br />

Data not available


Human brucellosis<br />

Occupational disease (vet, farmer, scientist and slaughterhouse worker).<br />

Consumption of [fresh] unpasteurized dairy products.<br />

Intermittent fever, weakness, weight loss,<br />

epididymitis and orchitis, arthritis,<br />

spondylitis (disabling sequelae).<br />

Prolonged (4 weeks) combined<br />

antibiotherapy (relapses, low compliance).<br />

No significant human to human transmission.<br />

No vaccine in human, several inefficient<br />

vaccines in animals


Human brucellosis: symptoms & evolution<br />

Incubation<br />

10-12 days<br />

to months<br />

Fatigue, chills, sweating<br />

Arthralgia & myalgia<br />

Constipation<br />

Leukocytes 4200/ml<br />

Hepato &<br />

splenomegaly<br />

Lumbar spondylitis<br />

sacroiliitis<br />

Orchitis<br />

A new fever episode<br />

(undulant fever)<br />

Pedro-Pons,A., P.Farreras, A.Foz, J.Surós, R.Surinyach, and R.Frouchtman. 1968. Enfermedades infecciosas. II.A.<br />

Enfermedades producidas por bacterias. Brucelosis., p. 338-374. Patología y Clínica Médicas, vol. VI. Salvat Ed. S.A.,<br />

Barcelona-Madrid.


<strong>Brucella</strong><br />

Gram negative<br />

Cocobacilli<br />

α2-Proteobacteria


<strong>Brucella</strong><br />

Gram negative<br />

Cocobacilli<br />

α2-Proteobacteria<br />

Facultative intracellular pathogen<br />

Able to escape from innate immunity<br />

Able to multiply in cells<br />

Chronic disease


Flagella<br />

Type III<br />

and IV SS<br />

<strong>Brucella</strong>: DOES NOT bear classical virulence factors<br />

Virulence<br />

plasmids<br />

Noisy parasites<br />

Fimbriae<br />

Exoenzymes<br />

OM<br />

Exopolysaccharide<br />

Exotoxins<br />

<strong>Brucella</strong>: a silent parasite<br />

Type IV SS<br />

2 chromosomes<br />

no plasmids


Flagella<br />

Type III<br />

and IV SS<br />

<strong>Brucella</strong>: DOES NOT bear classical virulence factors<br />

Virulence<br />

plasmids<br />

Noisy parasites<br />

Fimbriae<br />

Exoenzymes<br />

OM<br />

Exopolysaccharide<br />

Exotoxins<br />

<strong>Brucella</strong>: a silent parasite<br />

Type IV SS<br />

2 chromosomes<br />

no plasmids<br />

To become simple and to reduce PAMPs<br />

To develop a tough outer membrane<br />

Not to release host-damaging agents<br />

Not triggering systemic alarms


Bald bacteria such as <strong>Brucella</strong> abortus


From Intracellular Niches of Microbes. <strong>Brucella</strong>,<br />

Monika Kalde, Edgardo Moreno and Jean-Pierre Gorvel<br />

Gorvel JP, Moreno E, Moriyón I.<br />

Nat Rev Microbiol. 2009 Mar;7(3):250<br />

<strong>Brucella</strong> Virulence Factors<br />

Forestier J Immunol. 2000 Nov 1;165(9):5202-10.<br />

Celli J Exp Med. 2003 Aug 18;198(4):545-56.<br />

O’Callagnan, Mol Microbiol, 1999<br />

Delrue, Cell Micro, 2001<br />

Comerci, Cell Micro, 2001<br />

Rohan & Tsolis, I&I, 2007<br />

Guzman-Verri Proc Natl Acad Sci U S A. 2002 Sep 17;99<br />

(19):12375-80.<br />

Freer Infect Immun. 1999 Nov;67(11):6181-6.<br />

Giambartolomei, JI 2004<br />

Arellano-Reynoso Nat Immunol. 2005 Jun;6(6):<br />

618-25.<br />

Conde-Alvarez Cell Microbiol. 2006 Aug;8(8):<br />

1322-35.


Gram-negative<br />

Bacteria<br />

Gram-negative bacteria envelope<br />

Ornithine Lipid<br />

(<strong>Brucella</strong>)<br />

OM<br />

Periplasm<br />

IM<br />

+<br />

cytoplasm<br />

Omps<br />

LPS<br />

Negatively charged<br />

sugars<br />

Phophates<br />

Peptidoglycan<br />

Phospholipids<br />

PE, PC(<strong>Brucella</strong>)<br />

<strong>Brucella</strong> LPS


•<strong>Brucella</strong> mutants in components of the<br />

Outer Membrane :<br />

- Phosphatidylcholine (BApcs,BApmtA, BApcspmtA)<br />

Conde et al. Cell Microbiology, 2006. PC is an important for evading<br />

lysosomal killing.<br />

- Ornithine Lipids (BAOlsB)<br />

- LPS: Phosphatase (BAI1212,BAII1103,BAI1212II1103)<br />

Manosyltransferase (BALpcC)<br />

- Phosphatases and ornithine lipids<br />

(BA I1212II1103/OlsB)


Bactenecin 7<br />

Bactenecin 5<br />

Cap18<br />

Cecropin A<br />

Cecropin P1<br />

Defensin NP-2<br />

Lactoferricin B<br />

Lactoferrin<br />

Lysozyme<br />

Magainin 1<br />

Magainin 2<br />

Melittin<br />

EMP-2<br />

Poly-L-lysine<br />

Polymyxin B<br />

Poly-L-ornithine<br />

EDTA<br />

Tris<br />

PMNs extract<br />

<strong>Brucella</strong> is resistant to bactericidal<br />

substances of cells<br />

Bactericidal activity (%)<br />

0 25 50 75 100<br />

Salmonella <strong>Brucella</strong><br />

• H 2 O 2<br />

• NO<br />

• Myeloperoxidase<br />

and aldehydes<br />

• Phospholipase A2<br />

• Metaloproteinases<br />

• Complement


In B. abortus, an intact LPS core is required for:<br />

Resistance to the bactericidal action of polycationic peptides and normal serum.<br />

Multiplication in dendritic cells and inhibition of maturation.<br />

Inhibition of recognition by MD-2.<br />

As a consequence,<br />

SAID: Shield Anti-Immune Detection


In B. abortus, an intact LPS core is required for:<br />

Resistance to the bactericidal action of polycationic peptides and normal serum.<br />

Multiplication in dendritic cells and inhibition of maturation.<br />

Inhibition of recognition by MD-2.<br />

As a consequence,<br />

SAID: Shield Anti-Immune Detection<br />

lpcC mutants may be promising vaccines


<strong>Brucella</strong>: a stealth pathogen<br />

• resistance to host cell bactericidal molecules/activities<br />

• intracellular survival and replication<br />

• ability to hide from and modulate the host immune response


<strong>Brucella</strong> replicates within host cells<br />

CFU/well<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

0 10 20 30 40 50<br />

time post infection (h)<br />

C57BL/6 mice bone marrow-derived macrophages<br />

<strong>Brucella</strong> abortus 2308-GFP<br />

<strong>Brucella</strong>-containing vacuole<br />

(BCV)


5 min<br />

1 h<br />

4 h<br />

8 h<br />

12 h<br />

Biogenesis of the BCV in macrophages<br />

Early BCV<br />

EEA + , Rab5 + , TfR +<br />

Intermediate BCV<br />

LAMP1 + , Rab7 — , M6P —<br />

(Pizarro Cerda, Many!!!)<br />

Replicative BCV<br />

LAMP1 — , Cathepsin D —<br />

Calreticulin + , Calnexin + ,<br />

Se61ß + , PDI +<br />

Require Rab2, GAPDH (Fugier<br />

PloS Pathogen 2010)<br />

Sar1 (Celli, J Exp Med,<br />

2003)


BCV interact and fuse with the ER during maturation<br />

glucose-6-phosphatase detection<br />

Chantal de Chastellier


Lack of ER fusion with virB mutant-containing<br />

vacuoles leads to fusion with lysosomes<br />

BMDM infected with the virB10 — <strong>Brucella</strong> strain<br />

glucose-6-phosphatase detection<br />

Celli et al. 2003 J Exp Med<br />

Ly<br />

12h p.i.<br />

Chantal de Chastellier


<strong>Brucella</strong> infection of dendritic cells<br />

New cell model for studying <strong>Brucella</strong> virulence: murine bone<br />

Salcedo et al. 2008 PLoS Pathog.<br />

marrow-derived dendritic cells


Log CFU<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

<strong>Brucella</strong> replicates in DCs<br />

wt B. abortus<br />

Salmonella<br />

virB -<br />

1<br />

0 20 40 60<br />

Time post-infection (h)<br />

30 h<br />

LPS wt-DSRed<br />

% DCs with<br />

intracellular bacteria<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2 12 24 48<br />

time post-infection (h)<br />

1-5<br />

5-10<br />

>10


BCVs positive Lamp1 (%)<br />

ER<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

<strong>Brucella</strong> replicates in ER-derived vacuoles<br />

Ba<br />

ER<br />

virB -<br />

wt<br />

0 20 40 60<br />

Time after infection (h)<br />

ER<br />

KDEL<br />

MHCII<br />

wt-GFP<br />

Ba<br />

24 h<br />

calnexin<br />

Murine bone<br />

marrow-derived DCs<br />

(C57BL/6 mice)<br />

Ba


Does <strong>Brucella</strong> affect maturation of DCs?<br />

change in morphology<br />

Immature Mature<br />

transient formation of DALIS (DC aggresome-like induced structures)<br />

increased surface expression of MHC and co-stimulatory molecules<br />

cytokine secretion<br />

antigen presentation


Ub-proteins<br />

MHC-II<br />

Immature (0h)<br />

8-14h E. coli LPS<br />

Mature (24-36h)<br />

Lelouard et al., 2002<br />

<strong>Brucella</strong> does not induce formation of DALIS<br />

Dendritic cell Aggresome Like Structures (DALIS) :<br />

• transient and insoluble structures that appear upon TLR activation<br />

• site of storage/ubiquitination for newly synthesized defective<br />

proteins<br />

DCs with DALIS (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

4 12 24 36 48<br />

Time after infection (h)<br />

negative<br />

Salmonella<br />

B. abortus


24h<br />

DCs with DALIS (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

negative<br />

wt<br />

MHCII<br />

LAMP1<br />

<strong>Brucella</strong> does not induce maturation of DCs<br />

virB -<br />

HK <strong>Brucella</strong><br />

E. coli LPS<br />

FK2<br />

MHCII<br />

Salmonella <strong>Brucella</strong><br />

Salmonella <strong>Brucella</strong>


<strong>Brucella</strong> does not induce surface expression of<br />

co-stimulatory molecules


<strong>Brucella</strong> interferes with the immune<br />

functions of DCs<br />

<strong>Brucella</strong>-infected DCs do not induce T cell proliferation (neither MHCI nor MHCII)


Tir2 6<br />

Log CFU<br />

Identification of Btp1 (<strong>Brucella</strong> TIR-containing protein)<br />

Btp1<br />

8<br />

7<br />

5<br />

4<br />

wt<br />

virB -<br />

btp1 -<br />

3<br />

0 20 40 60<br />

Time post-infection (h)<br />

wt btp1 -<br />

MHCII


Btp1 contributes to blocking DC maturation<br />

Infected cells with DALIS (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

neg<br />

HKB<br />

0<br />

DALIS (24h)<br />

wt<br />

btp1 -<br />

IL12 (ng/ml)<br />

TFNα (pg/ml)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1200<br />

800<br />

400<br />

0<br />

neg<br />

HKB<br />

neg<br />

HKB<br />

IL12<br />

wt<br />

TFNα<br />

Lack of Btp1 had no significant effect on surface expression of CD40 and CD86 and only a<br />

very minor effect on MHCII and CD80 when analysed by flow cytometry<br />

wt<br />

btp1 -<br />

btp1 -<br />

24 h<br />

48 h


Btp1 interferes with TLR2 signalling<br />

Relative luciferase activity<br />

Relative luciferase activity<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

neg<br />

+PAM<br />

neg<br />

+CpG<br />

Btp1 + PAM<br />

Btp1 + CpG<br />

PipB2<br />

+<br />

PAM<br />

PipB2<br />

+<br />

CpG<br />

TLR2<br />

TLR9


•Btp1 acts on the myd88/TLR2 pathway<br />

% DCs with DALIS<br />

80<br />

60<br />

40<br />

20<br />

0<br />

wt<br />

myd88<br />

Wild-type <strong>Brucella</strong><br />

TRIF<br />

TLR2<br />

TLR4<br />

TLR7<br />

TLR9<br />

mice<br />

Control<br />

cgs- mutant<br />

Newman et al., I&I, 2006<br />

Salcedo et al., PloSpathogen, 2008<br />

Cirl et al., Nat Med, 2008<br />

Radakrishnan et al., JBC, 2009 (Tirap)<br />

Sengupta et al., JI, 2010 (Mal)<br />

% DCs with DALIS<br />

80<br />

60<br />

40<br />

20<br />

0<br />

wt<br />

myd88<br />

TRIF<br />

Btp1 mutant<br />

TLR2<br />

TLR4<br />

TLR7<br />

TLR9<br />

mice<br />

wt B. abortus<br />

control


Periplasmic glucans<br />

E. coli<br />

outer membrane<br />

periplasm<br />

inner membrane<br />

<strong>Brucella</strong>


Cyclic glucan prevents <strong>Brucella</strong> fusion with lysosomes<br />

cgs —<br />

cgs — + CßG<br />

Arellano-Reynoso et al. 2005 Nat Immun<br />

cathepsin D


Molecular properties<br />

MβCD: Methyl-beta-cyclodextrin<br />

MβCD<br />

<strong>Brucella</strong> CβG<br />

I: CβG is not toxic for<br />

also shown in vivo in<br />

II: CβG extracts<br />

cholesterol<br />

from membranes but<br />

with<br />

Less efficiency than<br />

MβCD<br />

III: CβG modifies lipid raf<br />

Characteristics (flotation gra<br />

Arellano Reynoso, Nat Immunol, 2005


Conclusions<br />

• Both macrophages and dendritic cells are targeted by <strong>Brucella</strong> and<br />

provide a cellular niche for its intracellular replication<br />

• <strong>Brucella</strong> controls the maturation of murine DCs<br />

• Btp1 is a new <strong>Brucella</strong> virulence protein that interferes with TLR2<br />

signaling and contributes to down-modulation of DC maturation<br />

•Cyclic glucan is potent activator of the immune response


Platelet<br />

aggregation<br />

11<br />

Monocyte<br />

PMN<br />

Fever. edema. leukocytosis.<br />

trombocytopenia<br />

Endotoxic shock<br />

Prostaglandins<br />

Leukotrines<br />

Histamine<br />

18<br />

12<br />

10<br />

Chemotaxis<br />

Chemokines<br />

CXCL8<br />

CXCL1<br />

CCL5<br />

CCL4<br />

CCL3<br />

CCL1<br />

Cytokines<br />

TNF-α IL-1<br />

IL-1β<br />

IL-6<br />

IL-12<br />

Mast cell<br />

13<br />

C3a. C5a.<br />

C5b67<br />

14<br />

17<br />

C3a<br />

C5a<br />

15<br />

C’ activation<br />

Mφ<br />

Mφ<br />

1<br />

Activation<br />

killing<br />

Bradykinin<br />

Endothelial<br />

damage<br />

Tissue damage<br />

2<br />

6<br />

Apoptosis<br />

Plasmin<br />

Fibrinopeptides<br />

Apoptotic<br />

body<br />

Fibrinogen<br />

synthesis<br />

Degranulation<br />

ROS. killing<br />

INF-γ<br />

TNF-α Phagocytosis of<br />

apoptotic bodies<br />

IL-18<br />

7<br />

8<br />

16<br />

4<br />

3<br />

9<br />

DC<br />

Defensins<br />

MIP -1α<br />

MIP-1β<br />

CXCL8<br />

TNF-α<br />

IL-1β<br />

Mature DC<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!