18.07.2013 Views

ECE 401 Communication Systems - University of Dayton : Homepages

ECE 401 Communication Systems - University of Dayton : Homepages

ECE 401 Communication Systems - University of Dayton : Homepages

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>ECE</strong> <strong>401</strong> <strong>Communication</strong><br />

Dr. Russell Hardie<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

<strong>Systems</strong>


• Syllabus<br />

• Historical perspective<br />

• Anatomy <strong>of</strong> a communication system<br />

• Analog vs. digital communications<br />

• Types <strong>of</strong> channels<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Outline


Focus on EM Signals<br />

• Nearly all long distance modern communications<br />

uses electro-magnetic (EM) signals<br />

• EM signals may be in guided wireline channels<br />

(twisted pair, coaxial, or optic fiber) or wireless<br />

channels (free space)<br />

• Relatively easy to generate, detect, manipulate,<br />

amplifiy, etc.<br />

• Travel at or near the speed <strong>of</strong> light<br />

• Notable exception is underwater acoustic channels<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


1837<br />

Samuel Morse<br />

Electric Telegraph<br />

Balt-Wash 1844<br />

Historical Perspective<br />

(EM Wireline Telecommunications)<br />

1858 1876 1915 1953 1960<br />

Trans-Atlantic<br />

Telegraph<br />

Alexander Bell<br />

Telephone<br />

Hundred Miles<br />

Transcontinental<br />

Telephone<br />

Thanks to<br />

Triode Amplifier<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Trans-Atlantic<br />

Telephone<br />

First<br />

Electronic<br />

Switch<br />

Thanks to<br />

Transistor


More Recent Advances<br />

(EM Wireline Telecommunications)<br />

• Digital transmission <strong>of</strong> voice, video, and<br />

data for more reliable communications<br />

• Move to fiber optic cables yielding a<br />

massive bandwidth increase<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


Here for more<br />

1831<br />

Michael Faraday<br />

Current Produced<br />

When Moving<br />

A Magnet Near<br />

Conductor*<br />

1894<br />

Oliver Lodge<br />

Develops<br />

Sensitive RF<br />

Detector<br />

150 yds<br />

Historical Perspective<br />

(EM Wireless Telecommunications)<br />

1901<br />

Marconi<br />

Transmits<br />

1700 Miles<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

1936 1965<br />

1920 1933 1962<br />

AM<br />

Broadcasts<br />

FM<br />

Broadcasts<br />

BBC Transmits<br />

TV<br />

* M. Guillen Five Equations That Changed the World, MJF Books, New York<br />

Satellite<br />

Relays TV<br />

US-Europe<br />

Commercial<br />

Satellite<br />

Comm.


1920 Spark Transmitter<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


More Recent Advances<br />

(EM Wireless Telecommunications)<br />

• Digital transmission <strong>of</strong> voice, video, and<br />

data for more reliable communications<br />

• Satellite communications<br />

• Cell phones<br />

• Wireless LAN<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


Information<br />

Source<br />

Received<br />

Information<br />

Anatomy <strong>of</strong> a <strong>Communication</strong><br />

Transmitter<br />

Receiver<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

System<br />

Transmission<br />

Medium<br />

(Channel)


Analog <strong>Communication</strong>s<br />

• Analog Signal: Continuous in time and value<br />

• Analog communications: The channel carries<br />

analog information<br />

• Note DSP may be used in parts <strong>of</strong> the transmitter<br />

and/or receiver, but the information content <strong>of</strong> the<br />

signal passed through the channel is analog<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


Digital <strong>Communication</strong>s<br />

• Digital Signal: Discrete in time and value<br />

• Digital Information: Sequence <strong>of</strong> symbols from a<br />

finite set<br />

• Digital communications: The channel carries digital<br />

information<br />

• Note that the waveforms transmitted through the<br />

channel are analog, but the information content <strong>of</strong><br />

those waveforms is digital.<br />

• Also note that some analog electronics may be<br />

involved in the transmitter and receiver<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


Information<br />

Source<br />

Received<br />

Information<br />

Analog <strong>Communication</strong> System<br />

Transducer<br />

Transducer<br />

Transmitter<br />

Receiver<br />

CW<br />

Modulation*<br />

CW<br />

Demodulation*<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Transmission<br />

Medium<br />

(Channel)<br />

* Not Required for<br />

Baseband Transmission.<br />

CW = Continuous Wave


Analog <strong>Communication</strong>s<br />

• Transducer converts the energy from the<br />

original information source into a suitable<br />

electrical signal (e.g., microphone).<br />

• Continuous wave (CW) modulation shifts<br />

the frequency content <strong>of</strong> the signal into a<br />

desired range for a given channel.<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


Acoustic Speech<br />

Signal<br />

Information<br />

Source<br />

Analog Comm. Sys. Example<br />

Amplitude Modulation (AM)<br />

v(t)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

50 100 150 200 250<br />

t<br />

300 350 400 450 500<br />

Transducer<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

v(t)<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

Transmitter<br />

50 100 150 200 250<br />

t<br />

300 350 400 450 500<br />

CW<br />

Modulation<br />

Antenna


¼-wavelength monopole<br />

Virtual ¼-wavelength monopole<br />

reflected through the ground plane<br />

Antenna Example<br />

(1/2 Wavelength Dipole)<br />

λ /4<br />

λ /4<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

λ =<br />

Ground plane<br />

c<br />

f<br />

Propagation velocity<br />

Freq <strong>of</strong> time-variation


• Speech 300-3600 Hz<br />

• CD Music 20-20 kHz<br />

• Video 0-4 MHz<br />

Baseband Signals<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

8<br />

3× 10 m/s<br />

λ = = 166,667 m/c<br />

1800 Hz (c/s)<br />

λ / 4 = 41,667 m/c<br />

8<br />

3× 10 m/s<br />

λ = =<br />

10,000 Hz (c/s)<br />

λ / 4=7,500 m/c<br />

8<br />

3× 10 m/s<br />

6<br />

2× 10 Hz (c/s)<br />

30,000 m/c<br />

λ = = 150 m/c<br />

λ / 4=37.5 m/c


Need for Radio Frequency (RF)<br />

• To directly transmit most baseband signals, via<br />

EM propagation, the antenna dimensions would be<br />

wildly impractical!<br />

• The modulator allows us to modify (modulate) an<br />

RF signal in proportion to the message.<br />

• The RF carrier is <strong>of</strong> high enough frequency to<br />

allow for practical antenna dimensions for a given<br />

application.<br />

• The message signal can be recovered from the<br />

modulated RF carrier at the receiver using<br />

demodulation.<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


Commercial Broadcast FM<br />

• 100 bands each 200 kHz wide centered at<br />

88.1, 88.3, 88.5, … 107.9 MHz<br />

8<br />

3× 10 m/s<br />

6<br />

97.5× 10 Hz (c/s)<br />

λ = =<br />

λ / 4=0.77 m/c (30 in)<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

3.08 m/c


Commercial Broadcast TV &<br />

• VHF:<br />

– Channels 2-4: 54-72 MHz<br />

– Channels 5-6: 76-88 MHz<br />

– Channels 7-13: 174-216 MHz<br />

• UHF:<br />

– Channels 14-83: 470-890 MHz<br />

– Channels 70-83 (806-890 MHz) is allocated for cell phones<br />

• ¼-Wave Antenna Dimension Examples<br />

– Channel 5 ¼-wave antenna = 38 in<br />

– Channel 13 ¼-wave antenna = 14 in<br />

– Channel 30 ¼-wave antenna = 5 in<br />

– Mobile phone 859 MHz ¼-wave antenna = 3.4 in<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Cell Phone


Continuous Wave Modulation<br />

Amplitude<br />

Modulation (AM)<br />

mt ()<br />

xt () = Amt () cos(2πf<br />

t + θ )<br />

mt ()<br />

mt<br />

()<br />

Frequency<br />

Modulation (FM)<br />

Phase<br />

Modulation (PM)<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

c c c<br />

xt () = Acos( 2πf t+ 2 π f m(<br />

τ ) dτ<br />

+ θ )<br />

c c d c<br />

τ = 0<br />

xt () = Acos(2 π ft+ k m()<br />

t + θ )<br />

c c p c<br />

t<br />


CW Modulation<br />

v(t)<br />

Message @ baseband<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

0 0.1 0.2 0.3 0.4 0.5<br />

t<br />

0.6 0.7 0.8 0.9 1<br />

AM<br />

FM<br />

PM<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

v(t)<br />

v(t)<br />

v(t)<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Amplitude Modulation (AM)<br />

0 0.1 0.2 0.3 0.4 0.5<br />

t<br />

0.6 0.7 0.8 0.9 1<br />

Frequency Modulation (FM)<br />

-1<br />

0 0.1 0.2 0.3 0.4 0.5<br />

t<br />

0.6 0.7 0.8 0.9 1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Phase Modulation (PM)<br />

-1<br />

0 0.1 0.2 0.3 0.4 0.5<br />

t<br />

0.6 0.7 0.8 0.9 1


Information<br />

Source<br />

Received<br />

Information<br />

Digital <strong>Communication</strong> System<br />

Source & Channel<br />

Encoder<br />

Transmitter<br />

Digital<br />

Modulation*<br />

Codec Modem<br />

Source & Channel<br />

Decoder<br />

Receiver<br />

Digital<br />

Demodulation*<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Transmission<br />

Medium<br />

(Channel)<br />

* May not be<br />

required<br />

for simple<br />

baseband<br />

transmission


Digital <strong>Communication</strong>s<br />

• Source coding involved coding the desired<br />

information into a finite symbol set (preferably in<br />

an efficient manner).<br />

• Channel coding involves adding systematic<br />

redundancy so that error in transmission can be<br />

detected and corrected.<br />

• Digital modulation generates a specific waveform<br />

(suitable for the given channel) for each symbol to<br />

be transmitted.<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


Acoustic<br />

Speech<br />

Signal<br />

v(t)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Information<br />

Source<br />

Digital Comm. Sys. Example<br />

50 100 150 200 250<br />

t<br />

300 350 400 450 500<br />

Transmitter<br />

Source & Channel<br />

Encoder<br />

v(t)<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

1<br />

111 0 0 0 00<br />

0<br />

0 50 100 150<br />

t<br />

200 250 300<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Frequency Shift Keying (FSK)<br />

1<br />

v(t)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Digital<br />

Modulation<br />

1<br />

0<br />

-1<br />

0 50 100 150<br />

t<br />

200 250 300<br />

Antenna


Digital Modulation<br />

• One waveform is transmitted for each symbol<br />

from a finite set.<br />

• Lowpass channel signaling with baseband signals<br />

– Pulse Modulation<br />

– Custom Orthogonal Waveforms<br />

• Bandpass channel signaling using carrier<br />

modulation<br />

– ASK, PSK, FSK<br />

– QAM<br />

– And many more…<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering


EM <strong>Communication</strong> System<br />

EM <strong>Communication</strong> <strong>Systems</strong><br />

Analog Comm Digital Comm<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Categories<br />

Wireless Wireline Wireless Wireline<br />

Radio (AM, FM)<br />

Broadcast TV (UHF, VHF)<br />

Analog Cell Phones<br />

Long Distance Phone (microwave)<br />

Local Phone<br />

Cable TV<br />

Digital Cell Phones<br />

Wireless LAN<br />

Satellite Phone<br />

Satellite TV<br />

Long Distance Phone (microwave)<br />

Phone/Cable Modem<br />

Digital Cable TV<br />

Fiber Optic<br />

Ethernet<br />

Long Distance Phone


• EM Wireline<br />

– Wire<br />

– Twisted pair<br />

– Coaxial<br />

– Fiber Optic<br />

• EM Wireless<br />

– Free space<br />

<strong>Communication</strong>s Channels<br />

• Storage<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

– Optical (CD)<br />

– Magnetic, etc.<br />

• Acoustic<br />

– Air (short range only)<br />

– Water<br />

• Seismic<br />

– Earth


• Noise power<br />

• Signal power<br />

• Bandwidth<br />

xt<br />

()<br />

LTI System<br />

h(t)<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

Channel Issues<br />

• Fidelity (analog)<br />

• Data rate & probability<br />

<strong>of</strong> error (digital)<br />

∑<br />

nt ()<br />

y() t = x()* t h() t + n() t


• Hartley-Shannon Theorem<br />

(band-limited channel with<br />

additive white noise)<br />

C = Blog (1 +<br />

S/ N)<br />

2<br />

Channel Capacity<br />

Capacity (bps)<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

100<br />

<strong>University</strong> <strong>of</strong> <strong>Dayton</strong> Department<br />

<strong>of</strong> Electrical and Computer<br />

Engineering<br />

80<br />

60<br />

SNR<br />

40<br />

20<br />

0<br />

0<br />

200<br />

400<br />

600<br />

Bandwidth (Hz)<br />

800<br />

1000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!